文档库 最新最全的文档下载
当前位置:文档库 › 带优先权的排队论模型

带优先权的排队论模型

带优先权的排队论模型
带优先权的排队论模型

基于排队理论的仿真模型

关键词:动态模拟蒙特卡洛模拟排队论 内容摘要:论文根据超市顾客到达的随机性和服务时间的随机性,用蒙特卡洛方法模拟不同的顾客到达和服务水平,在MA TLAB/Simulink上对超市单队列多收银台的服务系统进行了动态模拟仿真,得到不同顾客到达率和不同服务水平下,顾客的排队等待时间,服务器的空闲率等要素。 在超市收银排队系统中,顾客希望排队等待的时间越短越好,这就需要服务机构设置较多的收银台,这样可以减少排队等待时间,但会增加商场的运营成本。而收银台过少,会使服务质量降低,甚至造成顾客流失。如何科学合理地设置收银台的数量,以降低成本和提高效益,是商场管理人员需要解决的一个重要问题。 蒙特卡洛方法简介 蒙特卡洛方法又称随机模拟方法,它以随机模拟和统计试验为手段,从符合某种概率分布的随机变量中,通过随机选择数字的方法,产生一组符合该随机变量概率分布特性的随机数值序列,作为输入变量序列进行特定的模拟试验、求解(杜比,2007)。在应用该方法时,要求产生的随机数序列应符合该随机变量特定的概率分布。应用该方法的基本步骤如下: 步骤1:建立概率模型,即将所研究的问题变为概率问题,构造一个符合其特点的概率模型;步骤2:产生一组符合该随机变量概率分布特性的随机数值序列;步骤3:以随机数值序列作为系统的抽样输入进行大量的数字模拟试验,以得到模拟试验值;步骤4:对模拟试验结果进行统计处理(如计算频率、均值等),进而对研究问题做出解释。 基于排队理论的仿真模型建立 (一)超市服务排队模型(M/M/C) 超市收款台服务是一个随机服务系统(唐应辉,2006),该系统具有如下特征:服务的对象是已经选购好商品的顾客,顾客源是无限的,顾客之间相互独立,顾客相继到达的时间间隔是随机的。系统有多个服务员且对每个顾客的服务时间是相互独立的。服务规则遵从先到后服务(FCFS)的原则。每个收款台前都有排队队列,顾客选择较短的队列排队等候,这样形成单队列多服务员(M/M/C)的排队系统。超市收银台顾客排队系统结构见图1。 (二)产生随机数值序列 由于顾客到达间隔时间和顾客服务的时间服从负指数颁布的随机数。令这个负指数分布的随机数为x,负指数分布密度函数为:,其分布函数为:,F(x)的反函数为。设u为[0,1]区间上的独立、均匀分布的随机变量,则所求随机数为,进而简化得,这样得到负指数分布的随机数(吴飞,2006)。 针对商场顾客到达和服务水平的统计数据,据此可产生两个随机数列:顾客到达时间间隔a (i)和顾客服务时间st(i),以此数值序列进行动态输入仿真。 (三)模型变量设置 at(i):表示第i 个顾客到达时刻; a(i):表示第i个顾客到达的时间间隔;st(i):第i个顾客的服务时间;sst(i): 第i个顾客的开始服务时间;lea(i):第i个顾客离开时间;ls(j):第j个队列中最后一个顾客的离开时间;ls(m):每个队列中最后一个顾客离开时间的最早值;freet(j):第j个

排队论模型

排队论模型 排队论也称随机服务系统理论。它涉及的是建立一些数学模型,藉以对随机发生的需求提供服务的系统预测其行为。现实世界中排队的现象比比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。排队的内容虽然不同,但有如下共同特征: 有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为“顾客”。 有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员”。 由顾客和服务员就组成服务系统。 顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间不一定是确定的,服务过程的这种随机性造成某个阶段顾客排长队,而某些时候服务员又空闲无事。 排队论主要是对服务系统建立数学模型,研究诸如单位时间内服务系统能够服务的顾客的平均数、顾客平均的排队时间、排队顾客的平均数等数量规律。 一、排队论的一些基本概念 为了叙述一个给定的排队系统,必须规定系统的下列组成部分: 输入过程 即顾客来到服务台的概率分布。排队问题首先要根据原始资料,由顾客到达的规律、作出经验分布,然后按照统计学的方法(如卡方检验法)确定服从哪种理论分布,并估计它的参数值。我们主要讨论顾客来到服务台的概率分布服从泊松分布,且顾客的达到是相互独立的、平稳的输入过程。所谓“平稳”是指分布的期望值和方差参数都不受时间的影响。 排队规则 即顾客排队和等待的规则,排队规则一般有即时制和等待制两种。所谓即时制就是服务台被占用时顾客便随即离去;等待制就是服务台被占用时,顾客便排队等候服务。等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论先到先服务的系统。 服务机构 服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单独顾客进行服务,也可以对成批顾客进行服务。和输入过程一样,多数的服务时间都是随机的,且我们总是假定服务时间的分布是平稳的。若以ξ 表示服务员为 n },n=1,2,…第n个顾客提供服务所需的时间,则服务时间所构成的序列{ξ n 所服从的概率分布表达了排队系统的服务机制,一般假定,相继的服务时间ξ , 1ξ2,……是独立同分布的,并且任意两个顾客到来的时间间隔序列{T n}也是独立的。 如果按服务系统的以上三个特征的各种可能情形来对服务系统进行分类,那么分类就太多了。因此,现在已被广泛采用的是按顾客相继到达时间间隔的分布、服务时间的分布和服务台的个数进行分类。 研究排队问题的目的,是研究排队系统的运行效率,估计服务质量,确定系统参数的最优值,以决定系统的结构是否合理,设计改进措施等。所以,必须确

排队论例题

排队论例题 1、某重要设施是由三道防线组成的防空系统。第一道防线上配备两座武器;第二道防线上配备三座武器;第三道防线上配备一座武器。所有的武器类型一样。武器对来犯敌人的射击时间服从μ=1(架/分钟)的指数分布,敌机来犯服从λ=2(架/分钟)的泊松流。试估计该防空系统的有效率。

解: 武器联合发挥作用 该防空系统有效率 = 1- (三道防线后的损失率) 三道防线均可看成M/M/1/1系统 第一道防线:λ=2架/分钟, μ=2架/分钟(两座武器) ρ=λ/μ=1 .P )A (P ,P ,P ,P P P 1212111110001=======λλρ损 第二道防线 : .P )A (P ,P ,P ,P P P ,)(.414 143313131122100011========= ===λλρμλρμλλ损损三座武器第三道防线: 975 .0,025.0.05.020 1)(,51,54,1,41,41,1.41 313310100012===========∴=+==== ===总损失率该防空系统的有效率总损失率损损损-12 0.05λλλλρμλρμλλP A P P P P P P P P

2、某汽车加油站只有一个加油灌,汽车到达为泊松流,加油时间服从指数分布。平均到达率和平均服务率分别为λ和μ。已知汽车排队等待(不含服务时间)1小时的损失费为C元,加油站空闲1小时损失费为2C元。试求使总的损失费(包括顾客排队等待的损失费和服务机构空闲时的损失费)最小的最优服务强度ρ(ρ=λ/μ)。

解:该排队系统为M/M/1系统 μλρ= W q ==-)(λμμλρρ-12 P0 = 1-ρ=μλ (空闲概率) 每小时空闲时间为1×P0= P0 总损失费为: ρρρ-+-=+=1)1(2220C C Cw Cp y q 对 ρ 求导 C C C C y 22 22)1(22)1()1(22ρρρρρρρ--+-=-+-+-=' ∴22±=ρ 又∵ ρ<1 ∴22-=ρ 由于2阶导数 0)1()2)(1(2)1)(22(422>---+--=''ρρρρρρy ∴在22-=ρ时为0<ρ<1上取最小值 动态规划问题 1.某企业生产某种产品,每月月初按定货单发货,生产得 产品随时入库,由于空间限制,仓库最多能够贮存产品90000件。在上半年(1至6月)其生产成本(万元/ 6个月的生产量使既能满足各月的订单需求同时生产成本最低?

排队论模型

排队论模型 随机服务系统理论是研究由顾客、服务机构及其排队现象所构成的一种排队系统的理论,又称排队论。排队现象是一种经常遇见的非常熟悉的现象,例如:顾客到自选商场购物、乘客乘电梯上班、汽车通过收费站等。随机服务系统模型已广泛应用于各种管理系统,如生产管理、库存管理、商业服务、交通运输、银行业务、医疗服务、计算机设计与性能估价,等等。随机服务系统模拟,如存储系统模拟类似,就是利用计算机对一个客观复杂的随机服务系统的结构和行为进行动态模拟,以获得系统或过程的反映其本质特征的数量指标结果,进而预测、分析或估价该系统的行为效果,为决策者提供决策依据。 排队论模型及其在医院管理中的作用 每当某项服务的现有需求超过提供该项服务的现有能力时,排队就会发生。排队论就是对排队进行数学研究的理论。在医院系统内,“三长一短”的现象是司空见惯的。由于病人到达时间的随机性或诊治病人所需时间的随机性,排队几乎是不可避免的。但如何合理安排医护人员及医疗设备,使病人排队等待的时间尽可能减少,是本文所要介绍的。 一、医院系统的排队过程模型 医院是一个复杂的系统,病人在医院中的排队过程也是很复杂的。如图1中每一个箭头所指的方框都是一个服务机构,都可构成一个排队系统,可见图2。 图1 医院系统的多级排队过程模型 二、排队系统的组成和特征 一般的排队系统都有三个基本组成部分: 1. 输入过程其特征有:顾客源(病人源)的组成是有限的或无限的;顾客单个到来或成批到来;到达的间隔时间是确定的或随机的;顾客的到来是相互独立或有关联的;顾客相继到达的间隔时间分布和所含参数(如期望值、方差等)都与时间无关或有关。 2. 排队规则其特征是对排队等候顾客进行服务的次序有下列规则:先到先服务,后到先服务,有优先权的服务(如医院对于病情严重的患者给予优先治疗,在此不做一般性的讨论),随机服务等;还有具体排队(如在候诊室)和抽象排队(如预约排队)。排队的列数还分单列和多列。 3. 服务机构其特征有:一个或多个服务员;服务时间也分确定的和随机的;服务时间的分布与时间有关或无关。

排队论习题

排队论习题 1、某大学图书馆的一个借书柜台的顾客流服从泊松流,平均每小时50人,为顾客服 务的时间服从负指数分布,平均每小时可服务80人,求: (1)顾客来借书不必等待的概率3/8 (2)柜台前平均顾客数5/3 (3)顾客在柜台前平均逗留时间1/30 (4)顾客在柜台前平均等待时间1/80 2、一个新开张的理发店准备雇佣一名理发师,有两名理发师应聘。由于水平不同,理发师甲平均每小时可服务3人,雇佣理发师甲的工资为每小时14元,理发师乙平均每小时可服务4人,雇佣理发师乙的工资为每小时20元,假设两名理发师的服务时间都服从负指数分布,另外假设顾客到达服从泊松分布,平均每小时2人。问:假设来此理发店理发的顾客等候一小时的成本为30元,请进行经济分析,选出一位使排队系统更为经济的理发师。 3、一个小型的平价自选商场只有一个收款出口,假设到达收款出口的顾客流为泊松流,平均每小时为30人,收款员的服务时间服从负指数分布,平均每小时可服务40人。(1)计算这个排队系统的数量指标P0、L q、L s、W q、W s。 (2)顾客对这个系统抱怨花费的时间太多,商店为了改进服务准备队以下两个方案进行选择。 1)在收款出口,除了收款员外还专雇一名装包员,这样可使每小时的服务率从40人提高到60人。 2)增加一个出口,使排队系统变成M/M/2系统,每个收款出口的服务率仍为40人。 对这两个排队系统进行评价,并作出选择。 4、汽车按泊松分布到达某高速公路收费口,平均90辆/小时。每辆车通过收费口平均需时间35秒,服从负指数分布。司机抱怨等待时间太长,管理部门拟采用自动收款装

置使收费时间缩短到30秒,但条件是原收费口平均等待车辆超过6辆,且新装置的利用率不低于75%时才使用,问上述条件下新装置能否被采用。 5、有一台电话的共用电话亭打电话的顾客服从λ=6个/小时的泊松分布,平均每人打电话时间为3分钟,服从负指数分布。试求: (1)到达者在开始打电话前需等待10分钟以上的概率 (2)顾客从到达时算起到打完电话离去超过10分钟的概率 (3)管理部门决定当打电话顾客平均等待时间超过3分钟时,将安装第二台电话,问当λ值为多大时需安装第二台。 6、某无线电修理商店保证每件送到的电器在1小时内修完取货,如超过1小时分文不收。已知该商店每修一件平均收费10元,其成本平均每件5.5元,即每修一件平均赢利4.5元。已知送来修理的电器按泊松分布到达,平均6件/小时,每维修一件的时间平均为7.5分钟,服从负指数分布。试问: (1)该商店在此条件下能否赢利 (2)当每小时送达的电器为多少件时该商店的经营处于盈亏平衡点。 7、顾客按泊松分布到达只有一名理发员的理发店,平均10人/小时。理发店对每名顾客的服务时间服从负指数分布,平均为5分钟。理发店内包括理发椅共有三个座位,当顾客到达无座位时,就依次站着等待。试求: (1)顾客到达时有座位的概率 (2)到达的顾客需站着等待的概率 (3)顾客从进入理发店到离去超过2分钟的概率 (4)理发店内应有多少座位,才能保证80%顾客在到达时就有座位。 8、某医院门前有一出租车停车场,因场地限制,只能同时停放5辆出租车。当停满5辆后,后来的车就自动离去。从医院出来的病人在有车时就租车乘坐,停车场无车时就向附近出租汽车站要车。设出租汽车到达医院门口按λ=8辆/小时的泊松分布,从医院依次出来的病人的间隔时间为负指数分布,平均间隔时间6分钟。又设每辆车每次只载一名病人,并且汽车到达先后次序排列。试求:

( - 数学建模)排队论模型

(- 数学建模)排队论模型 第五讲排队论模型【修理工录用问题】工厂平均每天有一台机器发生故障而需要修理,机器的故障数服从泊松分布。 修理一台机器平均花费20元。现有技术水平不同的修理工人A 和B,A种修理工平均每天能修理1.2台机器,每天工资3元;B种修理工平均每天能修理1.5台机器,每天工资5元,两种修理工修理机器的时间为负指数分布。问工厂录用哪种工人较合算? 本讲主要内容 1. 排队论的基本概念 2. 单服务台的排队模型 3. 多服务台的排队模型 4. 排队系统的最优化问题 5. 数学建模实例:校园网的设计和调节收费问题5.1 排队论的基本概念5.1.1 什么是排队系统排队论也称随机服务系统理论,它是20世纪初由丹麦数学家Erlang应用数学方法在研究电话话务理论过程中而发展起来的一门学科,在实际中有广泛的应用。

它涉及的是建立一些数学模型,藉以对随机发生的需求提供服务的系统预测其行为。现实世界中排队的现象比比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。排队的内容虽然不同,但有如下共同特征: (1)有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为“顾客”。 (2)有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员”。由顾客和服务员就组成服务系统。 (3)顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间不一定是确定的,服务过程的这种随机性造成某个阶段顾客排长队,而某些时候服务员又空闲无事。 为了叙述一个给定的排队系统,必须规定系统的下列组成部分: 1.输入过程即顾客来到服务台的概率分布。排队问题首先要根据原始资料,由顾客到达的规律、作出经验分布,然后按照统计学的方法(如卡方检验法)确定服从哪种理论分布,并估计它的参数值。我们主要讨论顾客来到服务台的概率分布服从泊松分布,且顾客的达到是相互独立的、平稳的输入过程。所谓“平稳”是指分布的期望值和方差参数都不受时间的影响。

排队论练习题

第9章排队论 判断下列说法是否正确: (1)若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,…名顾客到达的间隔时间也服从负指数分布; (4)对M/M/1或M/M/C的排队系统,服务完毕离开系统的顾客流也为泊松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统; (9)在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分别的方差越大时,顾客的平均等待时间将越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 M/M/1 、某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4人,理发时间服从负指数分布,平均需6小时,求: (1)理发店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内至少有1个顾客的概率; (4)在店内顾客平均数; (5)在店内平均逗留时间; (6)等待服务的顾客平均数; (7)平均等待服务时间; (8)必须在店内消耗15分钟以上的概率。 、某修理店只有一个修理工,来修理东西的顾客到达次数服从泊松分布,平均每小时4 人,修理时间服从负指数分布,平均需6分钟。求: (1)修理店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内顾客平均数; (4)店内等待顾客平均数; (5)顾客在店内平均逗留时间; (6)平均等待修理时间。

基于排队论模型的收费站优化设计

龙源期刊网 https://www.wendangku.net/doc/c08331161.html, 基于排队论模型的收费站优化设计 作者:刘昕岳丁韩旭杨佳琪 来源:《科学家》2017年第15期 摘要本文从形状、尺寸、组合等因素入手,以减少等待时间与不必要的费用为目的,设计了一个新型高速公路收费站。首先,在系统稳态的基础上,运用排队论模型建立收费站车辆行为模型的基本模型。其次,利用元胞自动机算法模拟了四种不同轮廓下的交通流,并分析了它们对拥塞的抵抗能力。最后,进行了遗传算法优化分析,最大限度地提高了吞吐量,降低了成本,提出一种新型的具有双重停车和互惠共享车道的高速公路收费站方案。 关键词排队论模型;元胞自动机算法;遗传算法;高速公路收费站 中图分类号 TP2 文献标识码 A 文章编号 2095-6363(2017)15-0010-01 随着经济不断发展,人们的日常生活节奏不断加快,需要避免把时间浪费在不必要的事情上,比如等待排队,应该花更多的时间去创造更多的价值。基于这样的社会背景,有必要系统地评估高速公路收费站设计。众所周知,高速公路收费站总是浪费时间。除了司机在等待收费亭的时间浪费,如果车辆迅速增加,更容易造成交通堵塞(瓶颈)。如何合理的设计收费站是一个急需解决的问题。 1 排队论模型建立 排队论模型中,车到达一个单次和连续到达的时间间隔服从负指数分布的参数λ。系统中有s服务站。每个服务站的服务时间是相互独立的,服从参数m的负指数分布。当顾客到达时,如果有免费服务台,第一辆车将立即接受服务,否则汽车将排队等候。且等待的时间是无限的。 下面讨论了这个排队系统的平滑分布。本文认为,在系统达到稳定状态后,队列长度n的概率分布等于(n=1,2,…)。设收费站数目为B。 通过公式推导表明,繁忙收费站平均数目并不取决于收费站数目B。 λn=λ,n=0,1,2,… 相关文献给出了在平衡条件下系统中车辆数为n的概率。当收费广场的车辆数目超过或等于收费站的数目,返回的车辆必须等候。 继续推导得到平均队列长度: LB=平均队列长度+被送达车辆的平均数=Lq+p

优先权排队论模型

带优先权的排队论模型 在优先权排队模型中,队中的成员被服务的顺序基于他们被赋予的优先级。 相比一般的排队模型,很多真实存在的排队系统实际上更符合带优先权的排队论模型,比如紧急工作的招聘优先于其他一般的工作;VIP客户较其他一般客户,在服务上享有优先权等等。因此,带优先权的排队论模型有其实际意义。 这里介绍两种最基本的优先权排队模型——非强占性优先权模型和强占性优先权模型。两个模型除优先权行使方式之外,其他假设均一致。我们首先描述这两个模型,之后分别给出其结论,最后通过一个案例来阐述其在实际中的应用。 1.模型 公共假设:(1)两个模型都存在N个优先级(1级代表最高) (2)服务顺序首先基于优先级,同一优先级内,依据“先到先服务” (3)对任意优先级,顾客到达服从Poisson分布,服务时间服从负指数分布 (4)对任意优先级顾客的服务时间相同 (5)不同优先级顾客的平均到达率可以不同 非强占性优先权(Nonpreemptive Priorities)是指,即使一个高优先级的顾客到达,也不能强制让一个正在接受服务的低优先级顾客返回排队。也就是说,一旦服务员开始对一个顾客服务,这项服务就不能被打断直至服务结束。 强占性优先权(Preemptive Priorities)是指,一旦有高优先级的顾客到达,服务员即中断对低优先级顾客的服务(这名顾客重新回到排队中),并马上开始为高优先级顾客服务。结束这项服务后,再按照公共假设中的原则选取下一个被服务的顾客。(这里由于负指数分布的无记忆性,我们不必关注被中断顾客的服务进度,因为剩余服务时间的分布与从起点开始的服务时间的分布总是相同的。) 对这两个模型来说,如果忽略顾客的优先级,它们是完全等同于一般的M/M/s排队模型的。因此,当计算整个队列中顾客的总人数(L,L q)时,M/M/s模型的结论是适用的;实际上,若随机选择一个顾客,其等待时间(W,W q)也可以通过Little公式计算得出。我们改变的只是顾客们等待时间的分布。在优先权排队模型下,等待时间的的方差更大,高优先级的顾客缩短了等待时间,而低优先级的顾客增长了等待时间。为了体现优先权对排队模型的影响,我们需要计算每一个优先级上顾客的平均等待时间(W k,k=1,2,……N)和平均队长(L k,k=1,2,……N)。 2.结论 用W k表示稳定状态下k优先级的顾客平均等待时间(包括服务时间),则两个模型的结论可以表示如下。

数学建模港口问题_排队论

排队模型之港口系统 本文通过排队论和蒙特卡洛方法解决了生产系统的效率问题,通过对工具到达时间和服务时间的计算机拟合,将基本模型确定在//1 M M排队模型,通过对此基本模型的分析和改进,在概率论相关理论的基础之上使用计算机模拟仿真(蒙特卡洛法)对生产系统的整个运行过程进行模拟,得出最后的结论。好。关键词:问题提出: 一个带有船只卸货设备的小港口,任何时间仅能为一艘船只卸货。船只进港是为了卸货,响铃两艘船到达的时间间隔在15分钟到145分钟变化。一艘船只卸货的时间有所卸货物的类型决定,在15分钟到90分钟之间变化。 那么,每艘船只在港口的平均时间和最长时间是多少 若一艘船只的等待时间是从到达到开始卸货的时间,每艘船只的平均等待时间和最长等待时间是多少 卸货设备空闲时间的百分比是多少 船只排队最长的长度是多少 问题分析: | 排队论:排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。本题研究的是生产系统的效率问题,可以将磨损的工具认为顾客,将打磨机当做服务系统。【1】 M M:较为经典的一种排队论模式,按照前面的Kendall记号定义,前//1 面的M代表顾客(工具)到达时间服从泊松分布,后面的M则表示服务时间服从负指数分布,1为仅有一个打磨机。 蒙特卡洛方法:蒙特卡洛法蒙特卡洛(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神

胡运权排队论习题解

胡运权排队论习题解 某修理店只有一个修理工人,来修理的顾客到达次数服从普阿松分布,平均每小时3人,修 理时间服从负指数分布,平均需10分钟,求 (1) 修理店空闲时间概率; (2) 店内有4个顾客的概率; (3) 店内至少有一个顾客的概率 ; (4) 在店内顾客平均数; (5) 等待服务的顾客平均数; (6) 在店内平均逗留时间; (7) 平均等待修理(服务)时间; (8) 必须在店内消耗15分钟以上的概率. (1)P o (3)1 P o 1(人 ); 1 1 (小时); 3 1 1 答:(1修理店空闲时间概率为-;(2)店内有三个顾客的概率为 —;(3)店内至少 1 1 有一个顾客的概率为寸;(4)店内顾客平均数为1人;(5)等待服务顾客平均数为1 2 人; (6)在店内平均逗留时间 1 分钟;(7)平均等待修理时间为丄分钟;(8)必须在店内 3 6 15 消耗15分钟以上的概率为e 20. 1 丄(小时); 6 解:该系统为(M/M/1/ / )模型, 3, 60 6. 10 ⑵P 4 (1 (1 扯4 1 ; ; ⑷L s (5)L q 23 1(人); (8)1-F( )e -(-) e^ 60 e -25

90 3600 38 94.7 94.7 0.95 10.2设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为 打字时间服从指数分布,平均时间为 15分钟,求 (1) 顾客来打字不必等待的概率; (2) 打字室内顾客的平均数; (3) 顾客在打字室内平均逗留时间; (4) 若顾客在打字室内的平均逗留时间超过 1.25小时,则主人将考虑增加设备 及打字员,问顾客的平均到达概率为多少时,主人才会考虑这样做? 解:该题属M /M /1模型. (1)P 0 1 1 - 4 4 (2)L s - 3 3(人 ); 4 3 ⑶W s - — 1 1(小时); 4 3 ⑷Q W s 1 1.25; 1.25, 323.2 3 0.2(人 /小时). 4 1 答:1)顾客来打字不必等待的概率为-;(2)打字室内顾客平均数为3人;(3)顾客在 4 打字室内平均逗留时间为1小时;(4)平均到达率为0.2人/小时时,店主才会考 虑增加设备及打字员. 汽车按平均90辆/h 的poission 流到达高速公路上的一个收费关卡,通过关卡的平均时间 为38s 。由于驾驶人员反映等待时间太长,主管部门打算采用新装置,使汽车通过关卡的平 均时间减少到平均30s 。但增加新装置只有在原系统中等待的汽车平均数超过 5辆和新系统 中关卡空闲时间不超过 10%时才是合算的。根据这一要求,分析新装置是否合算。 解:该系统属于 M/M/1模型 旧装置各参数计算: 90/h 20分钟, 60 3(人/小时), 20 60 4(人/小 时). 15

排队论(queuing theory)

排队论 排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。 1.定义 排队论(queuing theory), 或称随机服务系统理论,是通过对服务对象到来及服务时间的统计研究,得出这些数量指标(等待时间、排队长度、忙期长短等)的统计规律,然后根据这些规律来改进服务系统的结构或重新组织被服务对象,使得服务系统既能满足服务对象的需要,又能使机构的费用最经济或某些指标最优。 1、排队模型的表示 X/Y/Z/A/B/C X—顾客相继到达的间隔时间的分布; Y—服务时间的分布; M—负指数分布、D—确定型、Ek —k阶爱尔兰分布; Z—服务台个数; A—系统容量限制(默认为∞); B—顾客源数目(默认为∞); C—服务规则(默认为先到先服务FCFS)。 2、排队系统的衡量指标 队长Ls—系统中的顾客总数; 排队长Lq—队列中的顾客数;

逗留时间Ws—顾客在系统中的停留时间; 等待时间Wq—顾客在队列中的等待时间; 忙期—服务机构两次空闲的时间间隔; 服务强度ρ; 稳态—系统运行充分长时间后,初始状态的影响基本消失,系统状态不再随时间变化。 3、到达间隔时间与服务时间的分布 泊松分布; 负指数分布; 爱尔兰分布; 统计数据的分布判断。 排队系统的构成及应用前景 排队系统由输入过程与到达规则、排队规则、服务机构的结构、服务时间与服务规划组成。 一般还假设到达间隔时间序列与服务时间均为独立同分布随机变量序列,且这两个序列也相互独立。 评价一个排队系统的好坏要以顾客与服务机构两方面的利益为标准。就顾客来说总希望等待时间或逗留时间越短越好,从而希望服务台个数尽可能多些但是,就服务机构来说,增加服务台数,就意味着增加投资,增加多了会造成浪费,增加少了要引起顾客的抱怨甚至失去顾客,增加多少比较好呢?顾客与服务机构为了照顾自己的利益对排队系统中的3个指标:队长、等待时间、服务台的忙期(简称忙期)都很关心。因此这3个指标也就成了排队论的主要研究内容。 2.组成部分 排队系统又称服务系统。服务系统由服务机构和服务对象(顾客)构成。服务对象到来的时刻和对他服务的时间(即占用服务系统的时间)都是随机的。

排队论练习题

第9章排队论 9.1 判断下列说法是否正确: (1)若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、 3、5、7,…名顾客到达的间隔时间也服从负指数分布; (4)对M/M/1或M/M/C的排队系统,服务完毕离开系统的顾客流也为泊松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统; (9)在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分别的方差越大时,顾客的平均等待时间将越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 M/M/1 9.2、某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4人,理发时 间服从负指数分布,平均需6小时,求: (1)理发店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内至少有1个顾客的概率; (4)在店内顾客平均数; (5)在店内平均逗留时间; (6)等待服务的顾客平均数; (7)平均等待服务时间; (8)必须在店内消耗15分钟以上的概率。 9.3、某修理店只有一个修理工,来修理东西的顾客到达次数服从泊松分布,平均每小时4 人,修理时间服从负指数分布,平均需6分钟。求: (1)修理店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内顾客平均数; (4)店内等待顾客平均数; (5)顾客在店内平均逗留时间; (6)平均等待修理时间。

排队论习题及答案

《运筹学》第六章排队论习题 1. 思考题 (1)排队论主要研究的问题是什么; (2)试述排队模型的种类及各部分的特征; (3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义; (4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分 布的主要性质; (6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系 与区别。 2.判断下列说法是否正确 (1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间 服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分 顾客合起来的顾客流仍为普阿松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序, 则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大 量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后, 系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的 平均等待时间少于允许队长无限的系统; (9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有 关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人 看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负 指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间; (7)一个顾客在店内逗留时间超过15分钟的概率。 4.设有一个医院门诊,只有一个值班医生。病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数; (3)病人在门诊部的平均逗留时间; (4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问 病人平均到达率为多少时,医院才会增加医生? 5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求: (1)系统内没有顾客的概率; (2)系统内顾客的平均数;

排队论例题

排队论例题 Document number:PBGCG-0857-BTDO-0089-PTT1998

几种典型的排队模型 (1)M/M/1///FCFS 单服务台排队模型 系统的稳态概率n P 01P ρ=-,/1ρλμ=<为服务强度;(1)n n P ρρ=-。 系统运行指标 a.系统中的平均顾客数(队长期望值) 0.s n i L n P λμλ∞=== -∑; b.系统中排队等待服务的平均顾客数(排队长期望值) 0(1).q n i L n P ρλμλ ∞==-= -∑; c.系统中顾客停留时间的期望值 1[]s W E W μλ == -; d.队列中顾客等待时间的期望值 1q s W W ρμμλ=- =-。 (2) M/M/1/N//FCFS 单服务台排队模型 系统的稳态概率n P 011,11N P ρρρ+-= ≠-; 11,1n n N P n N ρρρ +-=<- 系统运行指标 a .系统中的平均顾客数(队长期望值) b .系统中排队等待服务的平均顾客数(排队长期望值) c .系统中顾客停留时间的期望值 d .队列中顾客等待时间的期望值 。1q s W W μ=- (3) M/M/1//m/FCFS (或M/M/1/m/m/FCFS )单服务台排队模型 系统的稳态概率n P 00 1!()()!m i i P m m i λμ==-∑; 0!(),1()!n n m P P n m m n λμ=≤≤- 系统运行指标 a .系统中的平均顾客数(队长期望值) b .系统中排队等待服务的平均顾客数(排队长期望值) c .系统中顾客停留时间的期望值

(完整word版)《运筹学》_第六章排队论习题及_答案

《运筹学》第六章排队论习题 转载请注明 1. 思考题 (1)排队论主要研究的问题是什么; (2)试述排队模型的种类及各部分的特征; (3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义; (4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分 布的主要性质; (6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系 与区别。 2.判断下列说法是否正确 (1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间 服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分 顾客合起来的顾客流仍为普阿松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序, 则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大 量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后, 系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的 平均等待时间少于允许队长无限的系统; (9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有 关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人 看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负 指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间; (7)一个顾客在店内逗留时间超过15分钟的概率。 4.设有一个医院门诊,只有一个值班医生。病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数; (3)病人在门诊部的平均逗留时间; (4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问 病人平均到达率为多少时,医院才会增加医生? 5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求:

排队论习题

排队论习题 1. 一个车间内有10台相同的机器,每台机器运行时每小时能创造4元的利润,且平均每小时损坏一次。而一个修理工修复一台机器平均需4小时。以上时间均服从指数分布。设一名修理工一小时工资为6元,试求: (i )该车间应设多少名修理工,使总费用为最小; 解:这个排队系统可以看成是有限源排队模型M/M/s/10,已知 11,0.25,4,104m λλμρμ ====== 设修理工数为s , 由公式()()11010!!!!!!s m n n n n n s m m p m n n m n s s ρρ---==??=+??--??∑∑ ()11001m q n n s s s s n q n n n L n s p L np L s p =--===-??=++- ??? ∑∑∑ 目标函数为min 64s s L =+,用lingo 求解得到1s =,此时平均队长9.5s L =台,又因为当维修工数10s =时平均队长8s L =,说明此模型不合理。 对模型进行修正,由于要求顾客的平均到达率小于系统的平均服务率,才能使系统达到统计平衡。所以假设一名修理工修复一台机器平均需0.5小时,即设2μ=。用lingo 求解得维修工数3s =,平均队长,此时的最小费用为35.97元。(1)

程序: model: lamda=1;mu=2;rho=lamda/mu;m=10; load=m*rho; L_s=@pfs(load,s,m); lamda_e=lamda*(m-L_s); min=6*s+4*L_s; @gin(s); end Local optimal solution found. Objective value: 35.97341 Objective bound: 35.97341 Infeasibilities: 0.1000005E-09 Extended solver steps: 0 Total solver iterations: 388 Variable Value LAMDA 1.000000 MU 2.000000 RHO 0.5000000 M 10.00000 LOAD 5.000000 L_S 4.493352 S 3.000000 LAMDA_E 5.506648 (ii)若要求不能运转的机器的期望数小于4台,则应设多少名修理工; L ,求得应设解:同上,用有限源排队模型求解,增加约束条件4 s 4名修理工。 程序: model: lamda=1;mu=2;rho=lamda/mu;m=10; load=m*rho; L_s=@pfs(load,s,m); lamda_e=lamda*(m-L_s);

排队论测试题

首页 | 课程介绍 | 教学大纲| 授课教案| 测试习题| 教学视频| 实践教学| 考研指导| 参考资料| 前沿追踪| 教学队伍| 交流空测试习题 课后习题 第一章线性规划 第三章图与网络分析 第五章存储论 第七章对策论 综合测试 运筹学(96学时) 运筹学(48学时) 在线测试

以上分别服从泊松分布和负指数分布。为减轻打字员负担,有两个方案;一是增加一名打字员,每天费为 40 元,其工作效率同原打字员;二为购一台自动打字机,以提高打字效率,已知有三种类型打字机其费用及提高打字的效率如表 6-1 所示。 表 6-1 型号每天费用 / 元打字员效率提高程度 /% 1 37 50 2 39 75 3 43 150 据公司估测,每个文件若晚发出 1h 将平均损失 0.80 元。设打字员每天工作 8h ,试确定该公司应采用的方案。 6.8 某商店收款台有 3 名收款员,顾客到达率为每小时 504 人,每名收款员服务率为每小时 240 人,设顾客到达为泊松流,收款服务时间服从负指数分布,分别求 P 0 、 L q 、 L s 、 W q 及 W s 。 6.9 某设备维修中心有 k 名工人,每天到达的需检修的设备服从λ=10 的负指数分布,每名工人维修设备的平均时间服从μ=3 的负指数分布。现已知设置一名工人的服务成本为每天 4 元,而设备等待损失为每天 25 元,试决定此设备维修中心工人的最佳数字 k 。 6.10 考虑某个只有一个服务员的排队系统,输入为参数λ的普阿松流。假定服务时间的概率分布未知,但期望值已知为 1/ μ。 (a) 比较每个顾客在队伍中的期望等待时间,如服务时间的分布为:①负指数分布;②定长分布;③爱郎分布,` 值为负指数分布的 1/2 ; (b) 如与值均增大为原来的 2 倍,值也相应变化,求上述三种情况下顾客在队伍中期望等待间的改变情况。 6.11 汽车按泊松分布到达一个汽车服务部门,平均 5 辆 /h 。洗车部门只拥有一套洗车设备,试分别计算在下列服务时间分布的情况下系统的 L s , L q , W s 与 W q 的值: (a) 洗车时间为常数,每辆需 10min ; (b) 负指数分布, 1/u=10min; (c) t 为 5~15min 的均匀分布; (d) 正态分布,μ=9min,Var(t)=42 ; (e) 离散的概率分布 P ( t=5 ) =1/4 , P(t=10)=1/2, P(t=15)=1/4 。 6.12 某仓库贮存的一种商品,每天的到货与出货量分别服从普阿松分布,其平均值为λ和μ,因此该系统可近似看成为( M/M/1/ ∞ / ∞)的排队系统。设该仓库贮存费为每天每件 c 1 元,一旦发生缺货时,其损失为每天每件 c 2 元,已知 c 2 >c 1 , 要求: (a) 推导每天总期望费用的公式; (b) 使总期望费用为最小的λ/ μ值。 6.13 设顾客按泊松流到达某服务台,平均到达率为λ=12 位 /h ,设每一位接收服务的顾客的等候成本为每小时 5 元,服务台的服务成本为每位顾客 2 元。试确定使此服务台总费用最少的平均服务率μ* 。 6.14 填空

相关文档
相关文档 最新文档