文档库 最新最全的文档下载
当前位置:文档库 › 实验3 日光灯电路与功率因数的提高研究

实验3 日光灯电路与功率因数的提高研究

实验3  日光灯电路与功率因数的提高研究
实验3  日光灯电路与功率因数的提高研究

实验1.4 日光灯电路与功率因数的提高研究

12

实验1.4 日光灯电路与功率因数的提高研究

一、实验目的

(1)了解日光灯的工作原理,学会安装日光灯电路。

(2)学习提高功率因数的方法,理解提高功率因数的实际意义。 (3)掌握交流电压表、电流表和功率表的使用方法。

二、实验设备及材料

通用电学实验台,单相交流调压器,交流电压表、交流电流表,功率表、日光灯套件(光管、镇流器、启辉器)、电容器若干和导线一批。

三、实验原理

1、日光灯工作原理

日光灯电路主要由灯管、镇流器、启辉器等三部分组成。

灯管是一根两端各装有灯丝和电极的密封园形玻璃管,内壁涂有一层均匀的荧光粉(卤磷酸钙)。管内抽成真空之后,注入少量惰性气体(如氩、氖气等)和少量水银,涂在灯丝上的金属氧化物(如氧化钡、氧化锶等)形成电极。当灯管预热后再在两极间加上一定电压,灯管就会点燃。镇流器实质上就是一个铁心线圈,用以限制通过灯管的电流,以及启动时与启辉器配合产生足够的瞬时高压(自感电动势),使灯管点燃。启辉器又称启动器,是一个小型辉光放电氖泡,内部装有的两个电极触片,一个是固定的静触片,一个是倒“U ”形的可动触片,可动触片由两种膨胀系数相差较大的双金属片粘合一起制成。两触片之间并联有一小电容器,以避免启辉器两触头断开时产生火花烧坏触头,同时可防止灯管内部气体放电时产生的电磁波对无线电设备的干扰。

日光灯接线电路如图1.4.1所示。当接通电源时,灯管未被点亮而不导电,电源电压(220V )全部加在启辉器两端,此电压高于起辉电压(135V 左右),启辉器的双金属片与静触片之间发生辉光放电。辉光放电产生的热量使双金属片伸展,动触片与静触片相碰,使触点闭合,接通由镇流器和灯管的两组灯丝构成的电路,灯丝预热并发射电子,发射出的电子促使灯管内的氩气分子游离,灯丝预热产生的热量使管子里的水银蒸发变成水银蒸气。

启辉器双金属片与静触片相碰使触点闭合的同时,氖泡内两电极间电压下降为零,辉光放电停止,双金属片开始冷却,渐向原位收缩,触点断开。在触点断开的一瞬间,原来接通的镇流器、灯丝回路变成断开状态,使镇流器线圈两端产生一个相当高的自感

图1.4.1 日光灯接线电路

第1章 电工(电路)实验

13

电动势。此电动势与电源电压共同加在灯管的两端,促使灯管里的水银蒸汽和氩气离子发生弧光放电。放电产生的紫外线散射到荧光粉上,发出一种近似日光的可见光。

灯管点燃后,镇流器起限制灯管电流的镇流作用,灯管两端电压只有120V 左右(或更低,具体视实际情况而定),此电压低于启辉器的起辉电压,因此启辉器不会发生辉光放电而再次启动,而是一直处于开路状态。

2、提高功率因数方法及其意义

在正弦交流电路中,无源二端网络吸收的有功功率:

cos P UI ?= (1-4-1) 式中:cos φ称为功率因数,φ是功率因数角,即负载的阻抗角。φ越大,功率因数越小。

实际电路中,作为动力的异步电动机是感性负载,功率因数一般为0.70~0.85。使用电感镇流器的日光灯电路的功率因数为0.3~0.5,感应加热装置的功率因数也小于1。

当电源电压、负载功率一定时,功率因数低,电源提供给功率除一部份是负载所需要的有功功率外,能量的另一部份作为无功功率贮存在负载中,这部份能量在电源与负载之间来回吞吐,不但会使输电线路的电流增大,引起线路损耗的增加,降低了输电效率,而且使发电设备的容量不能被充分利用。因此,提高用电负载的功率因数,对于降低电能损耗、提高电源设备的利用率和供电质量,具有重要的经济意义。

提高功率因数的常用方法就是与感性负载并联电容器。在保证感性负载获得的有功功率不变的情况下,减小与电源相接电路的阻抗角(即功率因数角),从而提高了功率因数。例如:电路初始感性负载(R 与L 串联)的功率因数角为φ1,并联电容器C 后的功率因数角为φ,并联到负载两端的电容器的值为: 12

(tan tan )P

C U ??ω=

-。 (1-4-2) 四、实验内容

1、日光灯电路的测量(验证性实验)

按如图1.4.2所示连接实验电路,开关K 断开,不接入电容器。调节自耦变压器,使其输出电压缓慢增大,直到日光灯刚刚起辉点亮为止,记下三表的指示值。然后将电压调至220V ,测量功率P 、总电流I 、总电压U 、镇流器两端电压U L 及灯管两端电压U A ,将测量数据记入表1-4-1中,并根据测量数据完成相关计算(计算方法参考实验1.3交流参数测定)。

图1.4.2 日光灯实验测量电路

实验1.4 日光灯电路与功率因数的提高研究

14

表1-4-1 日光灯电路工作参数测量数据记录

2、功率因数提高研究(研究性实验)

(1)调节自耦变压器,保持输出电压为220V 。

在日光灯电路并联接入不同容量的电容器(至少3~5个,有条件时适当增加),分别测量功率P 、总电流I 、通过镇流器电流I L 及电容器电流I C ,将测量数据记入表1-4-2中,并根据测量数据完成计算。

(2)根据实验测量数据分析,试验探索并联最佳补偿电容值。

表1-4-2 功率因数提高研究测量数据记录 U =220V 实验注意事项:

①自耦变压器在接通电源前,应将其手柄置在零位上,调节时,使其输出电压从零开始逐渐升高。每次改接电路或实验完毕,都必须将其旋柄慢慢调回零位后再切断电源。

②日光灯启动电流较大,测量时应注意选择仪表的合适量程,以防止损坏仪表。 ③日光灯电路要根据灯管功率选择与之相应规格的镇流器配套使用。

④安装日光灯线路时,不能将交流电源不经过镇流器而直接接在灯管两端。应注意把电源开关要安装在相线(即火线)上。

五、预习要求

1、学习交流电压表、电流表和功率表的使用方法。

2、了解日光灯工作原理,学习安装日光灯线路。

3、熟悉实验原理,了解实验内容,明确实验内容中相关计算的原理及方法。

六、实验报告与思考题

1、按实验内容整理记录数据,完成数据记录表格中的有关计算。

2、绘出日光灯电路的测量实验数据表1-4-1中日光灯正常工作时各电压、电流的相量图,验证相量形式的基尔霍夫定律。

3、根据功率因数提高研究实验测量数据分析,总结提高电路功率因数的方法。并联电容器是否越大越好?能否采用串联电容器的方法提高电路功率因数?

4、目前日光灯电路正逐步推广使用电子镇流器。查阅资料,了解电子镇流器结构。

实验2、功率因数的提高(含数据)

功率因数的提高 一. 实验目的 1. 学会用功率表法测量电感阻抗参数的方法。 2.通过实验了解提高功率因数的方法和意义。 3. 熟悉交流电压表、电流表、功率表和单相自耦调压变压器的主要技术特征,并掌握其正确的使用方法。 二. 实验内容 1. 电感阻抗参数的测量,按图5-1接线。 分别测量40W 白炽灯(R),电感线圈(L) 的等效参数。 2. 电感阻抗两端并联电容,接线如图5-2。逐渐加大电容量每改变一次容值,都要测量端电压U (调节自藕变压器使其保持90V 固定值),测量总电流I ,电感阻抗电流IRL ,电容电流IC 以及总功率P 之值,记录于表5-2。 图5-2 表5-2 电感阻抗L 两端并联电容C 测得数据 Z

表5-3 电感阻抗L与两个灯泡R串联后两端并联电容C测得数据 三.注意事项 1. 本实验直接用市电220V交流电源供电,实验中要特别注意人身安全,不可用手直接触摸通电线路的裸露部分,以免触电,进实验室应穿绝缘鞋。 2. 自耦调压器在接通电源前,应将其手柄置在零位上,调节时,使其输出电压从零开始逐渐升高。每次改接实验线路及实验完毕,都必须先将其旋柄慢慢调回零位,再断电源。必须严格遵守这一安全操作规程。 四.实验设备 (1)功率表1只 (2)数字万用表1台 (3)电量仪1台 (4)白炽灯1只40W /220V (5)电感线圈1只 (6)电容器5只0.5μF ,1μF ,2μF,4μF ,8μF /500V 五.实验报告要求 1.完成表格中的数据计算。 2. 以电容C的值为自变量,绘制cosφ曲线。此处cosφ是指负载端的功率因数,包括电容器。 3. 根据一组实验数据分别绘出电压、电流相量图,验证相量形式的基尔霍夫定律。 4.讨论改善电路功率因数的意义和方法。

改善功率因数的实验(华电版)

华北电力大学 实验报告 实验名称:改善功率因数的实验 课程名称:电路实验 专业班级: 学生: 学号: 成绩: 指导教师: 实验日期:2012.11.12

1.感性负载及功率因数 一般在电力系统中,总希望负载能够尽可能运行在较高的功率因数下。实际中,往往通过在感性负载两端并联电容的方法来适当提高功率因数。本实验呢以灯管、镇流器和启辉器组成的日光灯电路作为负载,由于镇流器是一带铁心的绕组,因此整个电路时感性负载,其功率因数较低,一般在0.5一下。 2.日光灯工作原理 日光灯的镇流器在启动时产生高电压以电离灯管气体使日光灯导通,而在正常工作时又能限制灯管的电流。启辉器相当于一个自动开关,其部有两个电极,两电极间并联一个小容量电容器。启动过程中较低的电压加在启辉器两端,产生辉光放电,双金属片因放电而受热伸直,与固定片接触,之后停止放电,双金属片冷却复位,两电极分离。 日光灯电路开关接通或升高电压时,电压加在镇流器、灯丝电阻和启辉器上,灯管两端的电压不足以使其产生弧光放电。启辉器两电极间产生辉光放电,随后动片受热变形与固定片接触,辉光放电停止,动片冷却收缩复位,断开所接电路。由于此时回路突然断开,镇流器上产生较高的自感电压,高电压加在灯管两端,使管产生弧光放电、激发荧光粉辐射出可见光。日光灯正常工作时,灯管两端的电压低于启辉器的动作电压,启辉器不再动作。实际上,日光灯电路时电阻与电感的串联电路。 3.在感性负载两端并联适当的电容可以提高整个电路的功率因数,如下图: (a)电路原理图(b)相量图 五、实验方法与步骤

1. 日光灯电路功率因数提高 (1) 选定接线图并依其接线,将相电压调到220V ,日光灯正常工作后开始实验测量。 (2) 电容器为零的情况下,测量I 、P 、 、I HW 、I C 。 (3) 投入并联电容,找到电流I 最小值且功率因数最高的一点,此时即为近似的谐振点, 测量并记录数据。 (4) 取几个小于谐振电容的不同C 值,测量对应数据,其中应有将功率因数提高到 0.8~0.85之间的一组。 (5) 取几个大于谐振电容的不同C 值,测量对应数据。 2. 接线图 改善功率因数实验接线图如下: 六、 实验注意事项 1、 日光灯回路一定要接镇流器,否则极易烧坏日光灯; 2、 发现接线错误,必须先将电压调到零,断开电源、改线后再送电 3、 当电容值较大时,电容支路电流较大,应适当调节电流表的量程。 4、 接线完毕,老师检查后,再通电做实验,签字完毕后再拆线; 5、 相电压220V ,注意安全。 W V C 相线(用黄/绿/红) N(零线 用蓝或黑) 0—220V I L I c I I U **(I 灯) 镇流器 日 光灯 启辉器 调压器

技能训练19 提高日光灯电路的功率因数

技能训练19 提高日光灯电路的功率因数 一.实验目的 (1)熟悉日光灯电路的工作原理,做到能正确迅速连接线路。 (2)通过实验了解功率因数提高的方法和意义。 (3)学会功率表、功率因数表的使用方法。 二.实验原理及内容说明 日光灯管R ,镇流器L (带铁心电感线圈),启动器S 组成(实验图7-1),当接通电源后,启动器内发生辉光放电,双金属片受热弯曲,触点接通,将灯丝预热使它发射电子,启动器接通后辉光放电停止,双金属片冷却,又把触点断开,这时镇流器感应出高电压加在灯管两端使日光灯放电,灯管内壁的荧光粉吸收后辐射出可见的光,日光灯就开始正常工作,启动器相当一只自动开关,能自动接通电路(加热灯丝)和开断电路(使镇流器产生高电压,将灯管击穿放电)。镇流器的作用除了感应高压使灯管放电外,在日光灯正常工作时,其限制电流的作用,镇流器的名称也由此而来,由于电路中串联着镇流器,它是一个电感量较大的线圈,因而整个电路的功率因数不高。(约0.5左右) 负载功率因数过低,一方面没有充分利用电源容量,另一方面又在输电电路中增加 损耗。为了提高功率因数,一般最常用的方法是在负载两端并联一个补偿电容器,抵消负载电流的一部分无功分量。在日光灯接电源两端并联一个可变电容器,当电容器的容量逐渐增加时,电容支路电流Ic 也随之增大,因Ic 导前电压U90°可以抵消电流I g 的一部分无功分量I gl ,结果总电流I 逐渐减小(实验图7-2),但如果电容器C 增加过多(过补偿) 。Ic>I gl 总电流又将增大。所以并联电容器应有一个合适的数值。 为了测量日光灯的功率有多大,可在电路中接入功率表,一般功率表都是多量程的,使 本实验中所使用的功率表需外接,该功率表的电压回路的灵敏度很高,因而内阻很大,测量时对被测电路的并联分流作用极小。另外,该表电流回路的内阻也特别小,因而对被测电路串联分压效应也很小。 功率表的接线如图7-3所示,图中功率表W 的电流回路引出接线柱应与负载串联连接,W 的电压回路引出端则与负载并联。其中标有* 号,称同名端,接线时应将这两端连在一起。这样连接时当功率表指针正偏或有正读数时,则表示电源向负载传送功率,其数值为 . .

实验3 日光灯电路及功率因数的提高

实验三 交流电路的研究 一、实验目的 1、学会使用交流数字仪表(电压表、电流表、功率表)和自耦调压器; 2、学习用交流数字仪表测量交流电路的电压、电流和功率; 3、学会用交流数字仪表测定交流电路参数的方法; 4、加深对阻抗、阻抗角及相位差等概念的理解。 5、研究提高感性负载功率因数的方法和意义; 二、实验原理 1、交流电路的电压、电流和功率的测量 正弦交流电路中各个元件的参数值,可以用交流电压表、交流电流表及功率表,分别测量出元件两端的电压U ,流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到所求的各值,这种方法称为三表法,是用来测量50Hz 交流电路参数的基本方法。计算的基本公式为: 电阻元件的电阻:I U R R =或2I P R = 电感元件的感抗I U X L L = ,电感f X L π2L = 电容元件的容抗I U X C C = ,电容C 21 fX C π= 串联电路复阻抗的模I U Z = ,阻抗角 R X arctg =? 其中:等效电阻 2 I P R = ,等效电抗2 2 R Z X -= 在R 、L 、C 串联电路中,各元件电压之间存在相位差,电源电压应等于各元件电压的相量和,而不能用它们的有效值直接相加。 电路功率用功率表测量,功率表(又称为瓦特表)是一种电动式仪表,其中电流线圈与负载串联,(具有两个电流线圈,可串联或并联,以便得到两个电流量程),而电压线圈与电源并联,电流线圈和电压线 圈的同名端(标有*号端)必须连在一起,如图3-1 方法与电动式功率表相同,电压、电流量程分别选500V 和3A 。 2、提高感性负载功率因数的研究 供电系统由电源(发电机或变压器)通过输电线路向负载供电。负载通常有电阻负载,如白炽灯、电阻加热器等,也有电感性负载,如电动机、变压器、线圈等,一般情况下,这两种负载会同时存在。由于电感性负载有较大的感抗,因而功率因数较低。

实验八-单相交流电路及功率因数的提高

实验八 单相交流电路及功率因数的提高 一、实验目的 1. 研究正弦稳态交流电路中电压、电流相量之间的关系。 2. 了解日光灯电路的特点,理解改善电路功率因数的意义并掌握其方法。 二、原理说明 1. 交流电路中电压、电流相量之间的关系在单相正弦交流电路中,各支路电流和回路中各元件两端的电压满足相量形式的基尔霍夫定律,即 Σ?=0和ΣU =0 图8-1所示的RC 串联电路,在正弦稳态信号U 的激励下,电阻上的端电压U 与电路中的电流I 同相位,当R 的阻值改变时,R U 和C U 的大小会随之改变,但相位差总是保持90°,R U 的相量轨迹是一个半圆,电压U 、C U 与R U 三者之间形成一个直角三角形。 即U =R U +C U 相位角φ=acr tg (Uc / U R ) 改变电阻R 时,可改变φ角的大小,故RC 串联电路具有移相的作用。 2. 交流电路的功率因数 交流电路的功率因数定义为有功功率与视在功率之比,即 c os φ=P / S 其中φ为电路的总电压与总电流之间的相位差。 交流电路的负载多为感性(如日光灯、电动机、变压器等),电感与外界交换能量本身需要一定的无功功率,因此功率因数比较低(cos φ<0.5)。从供电方面来看,在同一电压下输送给负载一定的有功功率时,所需电流就较大;若将功率因数提高 (如cos φ=1 ),所需电流就可小些。这样即可提高供电设备的利用率,又可减少线路的能量损失。所以,功率因数的大小关系到电源设备及输电线路能否得到充分利用。 为了提高交流电路的功率因数,可在感性负载两端并联适当的电容C,如图8-2所示。并联电容C以后,对于原电路所加的电压和负载参数均未改变,但由于C I 的出现,电路的总电流I 减小了,总电压与总电流之间的相位差φ减小,即功率因数cos φ得到提高。

日光灯电路与功率因数的提高-日光灯功率因数提高

实验4.7 日光灯电路与功率因数的提高 4.7.1实验目的 1.熟悉日光灯的接线方法。 2.掌握在感性负载上并联电容器以提高电路功率因数的原理。 4.7.2实验任务 4.7.2.1基本实验 1.完成因无补偿电容和不同的补偿电容时电路中相关支路的电压、电流以及电路的功率、功率因数的测量和电路的总功率因数曲线cosθ′=f (C )的测量。并测出将电路的总功率因数提高到最大值时所需补偿电容器的电容值。(日光灯灯管额定电压为220V ,额定功率30W 。) 2.完成图4-7-1所示点亮日光灯时 所需电压U 点亮和日光灯熄灭时电压U 熄灭 的测量。 3.定量画出电路的相量图。完成镇流器的等效参数R L 、L 的计算。 4.7.2.2扩展实验 保持U =220V 不变,当电路并联最佳电容器后使得总功率因数达到最大时,在电容器组两端并入20W 灯泡,通过并入灯泡的个数,使得总电流I 与无并联电容时的I 值大致相同,记录此时I 、I C 、I L 、P 以及流入灯泡的电流值。 4.7.3实验设备 1.三相自耦调压器 一套 2. 灯管 一套 3.镇流器 一只 4. 起辉器 一只 5. 单相智能型数字功率表 一只 6. 电容器组/500V 一套 7. 电流插座 三付 8. 粗导线电流插头 一付 9. 交流电压表(0~500V) 或数字万用表 一只 10.交流电流表(0~5A) 一只 11.粗导线 若干 图4-7-1

4.7.4 实验原理 1.日光灯电路组成 日光灯电路主要有灯管、启辉器和镇流器组成。联接关系如图4-7-2所示。 2.日光灯工作原理 接通电源后,启辉器内固定电极、可动电极间的氖气发生辉光放电,使可动电极的双金 属片因受热膨胀而与固定电极接触,内壁涂有 荧光粉的真空灯管里的灯丝预热并发射电子。启辉器接通后辉光放电停止,双金属片冷缩与固定电极断开,此时镇流器将感应出瞬时高电压加于灯管两端,使灯管内的惰性气体电离而引起弧光放电,产生大量紫外线,灯管内壁的荧光粉吸收紫外线后,辐射出可见光,发光后日光灯两端电压急剧下降,下降到一定值,如40W 日光灯下降到110V 左右开始稳定工作。启辉器因在110V 电压下无法接通工作而断开。启辉器在电路启动过程中相当于一个点动开关。 当日光灯正常工作后,可看成由日光灯管和镇流器串联的电路,电源电压按比例分配。镇流器对灯管起分压和限流作用。灯管相当于一个电阻元件,而镇流器是一个具有铁心的电感线圈,但它不是纯电感,我们可把它看成一个R L 、L 串联的感性负载,电流为L I ? 。设日光灯电路两端电压? U 的相位超前于日光灯电路电流L I ? 相位θ角,则日光灯电路的功率因数为cosθ。如图4-7-3所示。 3.提高功率因数的目的 为了减少电能浪费,提高电路的传输效率和电源的利用率,须提高电源的功率因数。提高感性负载功率因数的方法之一,就是在感性负载两端并联适当的补 偿电容,以供给感性负载所需的部分无功功率。并联电容器后,电路两端的电压? U 与总电流(C L I I I ? ? ? +=)的相位差为θ',相应的向量图如图4-7-3所示。由图可见,补偿后的cos θ'>cosθ,即功率因数得到了提高。 ? U ─电源电压 ─日光灯支路电流 L I ?─补偿后电路总电流 ? I C I ?─电容支路电流 θ─补偿前电路的电压与电流间相位角 θ'─补偿后电路的电压与电流间相位角 图4-7-2 日光灯电路图 ? U ~ ? U I ? 图4-7-3 提高电路功率因数的相量图

单相电路参数测量和功率因数的提高

单相电路参数测量及功率因数的提高 一实验目的 1.掌握单相功率表的使用。 2.了解日光灯电路的组成、工作原理和线路的连接。 3.研究日光灯电路中电压、电流相量之间的关系。 4.理解改善电路功率因数的意义并掌握其应用方法。 二实验原理 1.日光灯电路的组成 日光灯电路是一个RL串联电路,由灯管、镇流器、起辉器组成,如图3-1所示。由于有感抗元件,功率因数较低,提高电路功率因数实验可以用日光灯电路来验证。 I 图3-1日光灯的组成电路 灯管:内壁涂上一层荧光粉,灯管两端各有一个灯丝(由钨丝组成),用以发射电子,管内抽真空后充有一定的氩气与少量水银,当管内产生辉光放电时,发出可见光。 镇流器:是绕在硅钢片铁心上的电感线圈。它有两个作用,一是在起动过程中,起辉器突然断开时,其两端感应出一个足以击穿管中气体的高电压,使灯管中气体电离而放电。二是正常工作时,它相当于电感器,与日光灯管相串联产生一定的电压降,用以限制、稳定灯管的电流,故称为镇流器。实验时,可以认为镇流器是由一个等效电阻R L和一个电感L串联组成。 起辉器:是一个充有氖气的玻璃泡,内有一对触片,一个是固定的静触片,一个是用双金属片制成的U形动触片。动触片由两种热膨胀系数不同的金属制成,受热后,双金属片伸张与静触片接触,冷却时又分开。所以起辉器的作用是使电路接通和自动断开,起一个自动开关作用。 2.日光灯点亮过程 电源刚接通时,灯管内尚未产生辉光放电,起辉器的触片处在断开位置,此

时电源电压通过镇流器和灯管两端的灯丝全部加在起辉器的二个触片上,起辉器的两触片之间的气隙被击穿,发生辉光放电,使动触片受热伸张而与静触片构成通路,于是电流流过镇流器和灯管两端的灯丝,使灯丝通电预热而发射热电子。与此同时,由于起辉器中动、静触片接触后放电熄灭,双金属片因冷却复原而与静触片分离。在断开瞬间镇流器感应出很高的自感电动势,它和电源电压串联加到灯管的两端,使灯管内水银蒸气电离产生弧光放电,并发射紫外线到灯管内壁,激发荧光粉发光,日光灯就点亮了。 灯管点亮后,电路中的电流在镇流器上产生较大的电压降(有一半以上电压),灯管两端(也就是起辉器两端)的电压锐减,这个电压不足以引起起辉器氖管的辉光放电,因此它的两个触片保持断开状态。即日光灯点亮正常工作后,起辉器不起作用。 3.日光灯的功率因数 日光灯点亮后的等效电路如图2 所示。灯管相当于电阻负载R A ,镇流器用内阻R L 和电感L 等效代之。由于镇流器本身电感较大,故整个电路功率因数很低,整个电路所消耗的功率P 包括日光灯管消耗功率P A 和镇流器消耗的功率P L 。只要测出电路的功率P 、电流I 、总电压U 以及灯管电压U R ,就能算出灯管消耗的功率P A =I ×U R , 镇流器消耗的功率P L =P ?P A ,UI P =?cos R A 图3-2日光灯工作时的等效电路 2.功率因数的提高 日光灯电路的功率因数较低,一般在0.5 以下,为了提高电路的功率因数,可以采用与电感性负载并联电容器的方法。此时总电流I 是日光灯电流 I L 和电容器电流 I C 的相量和:? ? ? +=C L I I I ,日光灯电路并联电容器后的相量图如图3 所示。由于电容支路的电流I C 超前于电压U 90°角。抵消了一部分日光灯支路电流中的无功分量,使电路的总电流I 减小,从而提高了电路的功率因数。电压与电流的相位差角由原来的 1?减小为?,故cos ?>cos 1?。 当电容量增加到一定值时,电容电流C I 等于日光灯电流中的无功分量,?= 0。cos ?=1,此时总电流下降到最小值,整个电路呈电阻性。若继续增加电容量,

功率因数提高实验报告结论

竭诚为您提供优质文档/双击可除功率因数提高实验报告结论 篇一:功率因数提高实验报告 功率因数提高 一、实验目的 1、了解荧光灯的结构及工作原理。 2、掌握对感性负载提高功率的方法及意义。 二、实验原理 荧光灯管A,镇流器L,启动器s组成,当接通电源后,启动器内发生辉放电,双金属片受热弯曲,触点接通,将灯丝预热使它发射电子,启动器接通后辉光放电停止,双金属片冷却,又把触电断开,这是镇流器感应出高电压加在灯管两(:功率因数提高实验报告结论)端使荧光灯管放电,产生大量紫外线,灯管同壁的荧光粉吸收后辐射出可见光,荧光灯就开始正常的工作,启动器相当一只自动开关,能自动接通电路和开端电路。 伏在功率因数过低,一方面没有充分利用电源容量,另一方面又在输电电路中增加损耗。为了提高功率因数,一般

最常用的方法是在伏在两端并联一个补偿电容器,抵消负载电流的一部分无功分量。三、实验内容 1、按图二接线,经老师检查无误,开启电源。 2、用交流电压表测总电压u,镇流电路两端电压ul及灯管两端电压uA,用交流电流表测总电流I,灯光支路电流Ia及电容支路电流Ic,用功率表测其功率p。 四、实验结论 随着功率因数的提高,负载电流明显降低。 五、实验心得 1注意电容值,以免接入大电容时,电流过大。2不能带电操作。 篇二:实验十.功率因数因数的提高 深圳大学实验报告 课程名称: 学院:信息工程学院 课程编号: 班级: 实验时间: 实验报告提交时间: 教务处制 注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。

2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。 篇三:功率因数提高实验 实验报告 课程名称:电网络分析实验指导老师:姚缨缨成绩: __________________实验名称:功率测量和功率因数提高实验类型:研究探索型同组学生姓名:________一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得 一、实验目的和要求? 1、保持日光灯两端电压不变的条件下测定电流I、功率p与电容c的关系; 2、通过实验了解功率因数提高的意义; 3、作出I2、p、cosφ和电容c的关系曲线; 4、用p-c曲线求单位电容的等效电导g; 5、求I^2-c曲线的有理经验公式 6、由测量数据计算灯管以及镇流器的等效参数 二、实验内容和原理 ? 三、主要仪器设备 1.数字万用表 2.电工综合实验台 3.Dg10互感线圈实验组件 4.Dg11单向变压器实验组件

日光灯电路与功率因数的提高

实验 日光灯电路与功率因数的提高 4.7.1实验目的 1.熟悉日光灯的接线方法。 2.掌握在感性负载上并联电容器以提高电路功率因数的原理。 4.7.2实验任务 4.7.2.1基本实验 1.完成因无补偿电容和不同的补偿电容时电路中相关支路的电压、电流以及电路的功率、功率因数的测量和电路的总功率因数曲线cosθ′=f (C )的测量。并测出将电路的总功率因数提高到最大值时所需补偿电容器的电容值。(日光灯灯管额定电压为220V ,额定功率30W 。) 2.完成图4-7-1所示点亮日光灯时 所需电压U 点亮和日光灯熄灭时电压U 熄灭 的测量。 3.定量画出电路的相量图。完成镇流器的等效参数R L 、L 的计算。 4.7.2.2扩展实验 保持U =220V 不变,当电路并联最佳电容器后使得总功率因数达到最大时,在电容器组两端并入20W 灯泡,通过并入灯泡的个数,使得总电流I 与无并联电容时的I 值大致相同,记录此时I 、I C 、I L 、P 以及流入灯泡的电流值。 4.7.3实验设备 1.三相自耦调压器 一套 2. 灯管 一套 3.镇流器 一只 4. 起辉器 一只 5. 单相智能型数字功率表 一只 6. 电容器组/500V 一套 7. 电流插座 三付 8. 粗导线电流插头 一付 9. 交流电压表(0~500V) 或数字万用表 一只 10.交流电流表(0~5A) 一只 11.粗导线 若干 图4-7-1

4.7.4 实验原理 1.日光灯电路组成 日光灯电路主要有灯管、启辉器和镇流器组成。联接关系如图4-7-2所示。 2.日光灯工作原理 接通电源后,启辉器内固定电极、可动电极间的氖气发生辉光放电,使可动电极的双金 属片因受热膨胀而与固定电极接触,内壁涂有 荧光粉的真空灯管里的灯丝预热并发射电子。启辉器接通后辉光放电停止,双金属片冷缩与固定电极断开,此时镇流器将感应出瞬时高电压加于灯管两端,使灯管内的惰性气体电离而引起弧光放电,产生大量紫外线,灯管内壁的荧光粉吸收紫外线后,辐射出可见光,发光后日光灯两端电压急剧下降,下降到一定值,如40W 日光灯下降到110V 左右开始稳定工作。启辉器因在110V 电压下无法接通工作而断开。启辉器在电路启动过程中相当于一个点动开关。 当日光灯正常工作后,可看成由日光灯管和镇流器串联的电路,电源电压按比例分配。镇流器对灯管起分压和限流作用。灯管相当于一个电阻元件,而镇流器是一个具有铁心的电感线圈,但它不是纯电感,我们可把它看成一个R L 、L 串联的感性负载,电流为L I ? 。设日光灯电路两端电压? U 的相位超前于日光灯电路电流L I ? 相位θ角,则日光灯电路的功率因数为cosθ。如图4-7-3所示。 3.提高功率因数的目的 为了减少电能浪费,提高电路的传输效率和电源的利用率,须提高电源的功率因数。提高感性负载功率因数的方法之一,就是在感性负载两端并联适当的补 偿电容,以供给感性负载所需的部分无功功率。并联电容器后,电路两端的电压? U 与总电流(C L I I I ? ? ? +=)的相位差为θ',相应的向量图如图4-7-3所示。由图可见,补偿后的cos θ'>cosθ,即功率因数得到了提高。 ? U ─电源电压 ─日光灯支路电流 L I ?─补偿后电路总电流 ? I C I ?─电容支路电流 θ─补偿前电路的电压与电流间相位角 θ'─补偿后电路的电压与电流间相位角 图4-7-2 日光灯电路图 ? U ~ ? U I ? 图4-7-3 提高电路功率因数的相量图

感性负载功率因数的提高

感性负载功率因数的提高 一、实验目的 1、研究争先稳态交流电路中电压电流相量之间的关系; 2、理解日光灯电路的工作原理及电路的设计; 3、理解改善电路功率因数的意义并掌握其方法。 二、实验原理 提高感性负载功率因数的研究: 供电系统由电源(发电机或变压器)通过输电线路向负载供电。负载通常有电阻负载,如白炽灯、电阻加热器等,也有电感性负载,如电动机、变压器、线圈等,一般情况下,这两种负载会同时存在。由于电感性负载有较大的感抗,因而功率因数较低。 若电源向负载传送的功率?cos UI P =,当功率P 和供电电压U 一定时,功率因数 ?cos 越低,线路电流I 就越大,从而增加了线路电压降和线路功率损耗,若线路总电阻 为l R ,则线路电压降和线路功率损耗分别为l l IR U =?和l l R I P 2=?;另外,负载的功率因数越低,表明无功功率就越大,电源就必须用较大的容量和负载电感进行能量交换,电源向负载提供有功功率的能力就必然下降,从而降低了电源容量的利用率。因而,从提高供电系统的经济效益和供电质量,必须采取措施提高电感性负载的功率因数。 通常提高电感性负载功率因数的方法是在负载两端并联适当数量的电容器,使负载的总无功功率Q =Q L -Q C 减小,在传送的有功率功率P 不变时,使得功率因数提高,线路电流减小。当并联电容器的Q C =Q L 时,总无功功率Q =0,此时功率因数?cos =1,线路电流I 最小。若继续并联电容器,将导致功率因数下降,线路电流增大,这种现象称为过补偿。 负载功率因数可以用三表法测量电源电压U 、负载电流I 和功率P ,用公式 UI P = =?λcos 计算。 本实验的电感性负载用铁心线圈,(日光灯镇流器)电源用220V 交流电经自耦调压器调压供电。 三.实验设备 1.交流电压表、电流表、功率表(在控制屏) 2.自耦调压器(输出可调的交流电压) 3.镇流器,启辉器,630V/4.3μF 电容器,30W 日光灯

单相交流电路及功率因数的提高

单相交流电路及功率因数的提高 工作资料 2008-11-23 16:25 阅读351 评论0 字号:大中小 一、实验目的 1. 研究正弦稳态交流电路中电压、电流相量之间的关系。 2. 了解日光灯电路的特点,理解改善电路功率因数的意义并掌握其方法。 二、原理说明 1. 交流电路中电压、电流相量之间的关系在单相正弦交流电路中,各支路电流和回路中各元件两端 的电压满足相量形式的基尔霍夫定律,即 ΣI=0和ΣU=0 图12-1所示的RC串联电路,在正弦稳态信号U的激励下,电阻上的端电压与电路中的电流同相位,当R的阻值改变时,和的大小会随之改变,但相位差总是保持90°,的相量轨迹是一个半圆,电压、与三者之间形成一个直角三角形。 即=+ 相位角φ=acr tg (Uc / UR) 改变电阻R时,可改变φ角的大小,故RC串联电路具有移相的作用。 2. 交流电路的功率因数 交流电路的功率因数定义为有功功率与视在功率之比,即 cosφ=P / S 其中φ为电路的总电压与总电流之间的相位差。

交流电路的负载多为感性(如日光灯、电动机、变压器等),电感与外界交换能量本身需要一定的无功功率,因此功率因数比较低(cosφ<0.5)。从供电方面来看,在同一电压下输送给负载一定的有功功率时,所需电流就较大;若将功率因数提高 (如cosφ=1 ),所需电流就可小些。这样即可提高供电设备的利用率,又可减少线路的能量损失。所以,功率因数的大小关系到电源设备及输电线路能否得到充分利用。 为了提高交流电路的功率因数,可在感性负载两端并联适当的电容C,如图12-2所示。并联电容C 以后,对于原电路所加的电压和负载参数均未改变,但由于的出现,电路的总电流减小了,总电压与总电流之间的相位差φ减小,即功率因数cosφ得到提高。 3. 日光灯电路及功率因数的提高 日光灯电路由灯管R、镇流器L和启辉器S组成,C是补偿电容器,用以改善电路的功率因数,如 图12-3所示。其工作原理如下: 当接通220V交流电源时,电源电压通过镇流器施加于启辉器两电极上,使极间气体导电,可动电极(双金属片)与固定电极接触。由于两电极接触不再产生热量,双金属片冷却复原使电路突然断开,此时镇流器产生一较高的自感电势经回路施加于灯管两端,而使灯管迅速起燃,电流经镇流器、灯管而流通。灯管起燃后,两端压降较低,起辉器不再动作,日光灯正常工作。 三、实验设备 序 号 名称型号与规格数量备注 1 自耦调压 器 0~220V 1 控制屏 2 交流电流 表 0~5A 1 RTT03- 1 3 交流电压 表 0~300V 1 RTT03- 1 4 单相瓦特 表 D34-W或其它 1 RTT04 5 白炽灯泡10W/220V 3 RTDG0 7 6 镇流器与30W灯管配用 1 RTDG0 8 7 启辉器 1 RTDG0 8 8 电容器1μF,2.2μF 4.7μF/400V RTDG0 8 9 日光灯灯30W 1 控制屏

电感性负载电路及功率因数的提高试验讲课讲稿

电感性负载电路及功率因数的提高 一.实验目的 1. 掌握正弦交流电路中电压、电流的相量关系。 2. 了解电感性负载并联电容器提高功率因数的原理,从而认识提高功率因数的意义。 3. 学习用实验方法求取线圈的参数。 4. 学习功率表的正确使用方法。 二.实验原理 1.电源设备的容量是视在功率S =UI ,而其输出的有功功率P 为UIcos ?,为了充分利用电源设备的容量,就要求提高电路的功率因数?cos ;另外,当负载的有功功率P 和电压U 一定时,功率因数越高,输出电线路中的电流? Ucos P = I 就越小,在输电线路电阻上消耗的 功率也就越小,因此提高功率因数对电力系统的运行十分重要,有很大的经济意义。 用电设备中,多数是电感性负载,例如工业中广泛应用中的三相异步电动机、照明用的日光灯等。本实验用变阻器R 与带铁心线圈(r 、L )相串联,模拟电感性负载,如图3.1(开关S 未合上)所示。 i C i C I & & 图3.1 电阻及电感串联电路 图3.2电感性负载并C 后各电流的相量图 一般电感性负载功率因数较低,通常用并联适当的补偿电容器来提高电路的功率因数。 并联电容后,虽然电感性负载支路的电流不变,但这个感性电流与电容支路的容性电流相补偿,使电路总电流可以减小,功率因数可以提高。图4.3.2是由电感性负载并联电容后(图3.1中开关S 己合上),各电流的相量图(以U &为参考相量)。 如果感性负载电路的功因率数从?cos 提高到?'cos 则所需并联电容器的电容值可按 下式计算:(F) )tan -(tan ωU P C 2 ??'= 式中50Hz)( π 2ω==f f ,U —电源电压(V ) ,P —电路消耗的有功功率(W )。 本实验中电容器采用电容箱,其示意图3.3。为使用方便每个电容连接一个开关,几个电容并联后,其总电容为各电容值之和。

实验一-日光灯电路及功率因数的提高

电工学&电工学及电气设备 实验指导书山东农业大学电工电子实验中心

实验的基本要求 电工学基础实验课的目的在于培养学生掌握基本的实验方法与操作技能。培养学生学会根据实验目的,实验内容及实验设备拟定实验线路,选择所需仪表,确定实验步骤,测取所需数据,进行分析研究,得出必要结论,从而完成实验报告。在整个实验过程中,必须集中精力,及时认真做好实验。现按实验过程提出下列基本要求。 一、实验前的准备 实验前应复习教科书有关章节,认真研读实验指导书,了解实验目的、项目、方法与步骤,明确实验过程中应注意的问题(有些内容可到实验室对照实验预习,如熟悉组件的编号,使用及其规定值等),并按照实验项目准备记录抄表等。 实验前应写好预习报告,经指导教师检查认为确实作好了实验前的准备,方可开始作实验。 认真作好实验前的准备工作,对于培养同学独立工作能力,提高实验质量和保护实验设备都是很重要的。 二、实验的进行 1、建立小组,合理分工 每次实验都以小组为单位进行,每组由2~3人组成,实验进行中的接线、调节负载、保持电压或电流、记录数据等工作每人应有明确的分工,以保证实验操作协调,记录数据准确可靠。 2、选择组件和仪表 实验前先熟悉该次实验所用的组件,选择仪表量程,然后依次排列组件和仪表便于测取数据。 3、按图接线 根据实验线路图及所选组件、仪表、按图接线,线路力求简单明了,按接线原则是先接串联主回路,再接并联支路。为查找线路方便,每路可用相同颜色的导线或插头。 4、接通电源,观察仪表 接线完毕,首先自我检查,然后请指导教师查验无误后,方可通电。在正式实验开始之前,先熟悉仪表刻度,并记下倍率,然后开始实验,观察所有仪表是否正常(如指针正、反向是否超满量程等)。如果出现异常,应立即切断电源,并排除故障;如果一切正常,即可正式开始实验。 5、测取数据 预习时对电工实验的基本试验方法及所测数据的大小作到心中有数。正式实验时,根据实验步骤逐次测取数据。 6、认真负责,实验有始有终 实验完毕,须将数据交指导教师审阅。经指导教师认可后,才允许拆线并把实验所用的组件、导线及仪器等物品整理好。 实验过程中一定要注意用电安全,按程序规范操作,以避免人身触电事故的发生! 三、实验报告 实验报告是根据实测数据和在实验中观察和发现的问题,经过自己分析研究或分析讨论后写出的心得体

日光灯电路功率因数的提高

实验: 日光灯电路功率因数的提高 一、实验目的: 1.研究正弦稳态交流电路中电压、电流相量之间的关系。 2. 掌握日光灯线路的接线。 3. 理解改善电路功率因数的意义并掌握其方法。 二、原理说明: 1.日光灯线路 日光灯电路由灯管、镇流器及启辉器三部分组成,线路如图1所示。灯管在工作时可认为是一个电阻负载R 。镇流器是一个交流铁心线圈,可等效为一个电感很大的感性负载(r 、L 串联)。灯亮后,启辉器就不起作用了。故实际上是一个R 、L 串联电路,等效电路如图2所示。有关日光灯的工作原理请自行翻阅有关资料。 图1 日光灯电路 图2日光灯等效电路 2.功率因数的提高 电力系统中的大多数负载,如异步电动机、日光灯等都是感性负载,功率因数较低,对电力系统的运行不利。一是使电源设备的利用率减低,二是降低了输电线路的输电功率。也就是说,负载的有功功率一定时,有关系式I=P/UC osφ,可见,功率因数低,线路电流就大,输电线路上的功率消耗I 2r 也就增大(r 为线路等值电阻),使输电功率降低。因此提高负载的功率因数有着重要的经济意义。 提高功率因数即在不改变原负载工作状态的条件下,设法减小线路电流。常用的方法是感性负载并联电容补偿,如图3所示。 图3感性负载电路 图4相量图 在感性负载两端并联电容器后的相量图如图4所示。若忽略线路阻抗,并联电容后并不改变原负载的工作状况,但却通过容性电流对感性电流的补偿,提高了功率因数,降低了对电源输出电流的要求,可增加一定容量电源的带载能力。 I C I B0 I (a)电路图(b) 相量图 启辉 器 U 1U 2U

三、实验设备: 四、实验内容: 1. 日光灯线路接线与测量。 按图5接线。经指导教师检查后接通实验台电源,调节自耦调压器的输出,使其输出电压缓慢增大,直到日光灯刚启辉点亮为止,记录此时的U、U L、U A、I的值。然后将电压调至220V,测量U,U L,U A、I等值,验证电压、电流相量关系。实验数据记入表1。 表1 2. 并联电路──电路功率因数的改善。按图6组成实验线路。 经指导老师检查后,接通实验台电源,将自耦调压器的输出调至220V,记录功率表、电压表读数。通过一只电流表和三个电流插座分别测得三条支路的电流,改变电容值,进行三次重复测量。数据记入表2中。 五、实验注意事项: 1. 本实验用交流市电220V,务必注意用电和人身安全。 2. 在接通电源前,应将自耦调压器手柄置零位上。 3. 线路接线正确,日光灯不能启辉时,应检查启辉器及其接触是否良好。

实验十.功率因数因数的提高

深圳大学实验报告 实验课程名称:电路分析 实验项目名称:功率因数提高 学院:信息工程专业: 报告人:李城权学号:2015130156 班级:04 同组人:虞礼慧 指导教师:李晓滨 实验时间:2016.6.15. 实验报告提交时间:2016.6.20.

一、实验目的: 1.加深对提高功率因数意义的认识。 2.了解提高功率因数的原理及方法。 二、实验原理与方法简述: 一般的用电设备多属干性负载,且功率因数cosφ较,如异步电动机、变压器、日光灯等。由公式P=UI cosφ可知,当负载功率和电压一定时,其功率因数越低,则要求供电电流越大。这将导致电源的利用率不高及增加输电线路上的损耗。为提高功率因数,可在感性负载的两端并联电容C,如图1所示。其原理可用相量图(图2)说明。 在并入电容C之前,总电流I = I1,U与I的相位差φ由感性负载的阻抗角决定。并入电容C之后,由于U保持不变,故I1不变,但I=I1+I C,由图2(a)可见,总电流I 以及U与I的相位差φ'均变小了,即提高了功率因数cosφ'。 若加大电容值,且选择恰当,则可使U与I相同,如图2(b)所示,这时φ'=0,cosφ'=1,总电流降至最小值。若继续加大电容值,I C将会更大,如图2(c)所示,这时电流I超前于电压U,电路变为容性,cosφ'反而降低,总电流I变大。

图3 最后顺便指出,由于在试验过程中,始终保持端电压不变,而感性负载支路的阻抗值亦不变,因此其吸收的功率P不改变,也就是说,功率表的读数始终不会改变。不过,实验中所并联的电容C并非理想元件,它多少有点能量损耗,但因其损耗值甚微,故一般忽略不计。 三、实验设备: 1.自耦式交流调压器 2.交流电流表 3.交流电压表 4.功率表 5.元件箱(一)EEL—51、元件箱(二)EEL—52、电感线圈。 四、任务与步骤 任务研究图1中不同的电容值对功率因数的影响 步1-1. 按图1接线,图中感性负载为图3(a)所示。其中R元件箱(一)EEL-51,取值200Ω;电感线圈用互感线圈经顺接串联(线圈的2、3端短接)得到,其参数大约为r=40Ω、L=04H;C为元件箱(二)EEL-52的电容箱,先取C=0;调节调压器使电压表读数为30V,且始终保持此电压值不变。将电容值在0~10μF之间改变,按表格中的电容值取各个点,记录I、P、cosφ于表1中。

实验2、功率因数的提高(含数据)上课讲义

实验2、功率因数的提高(含数据)

功率因数的提高 一. 实验目的 1. 学会用功率表法测量电感阻抗参数的方法。 2.通过实验了解提高功率因数的方法和意义。 3. 熟悉交流电压表、电流表、功率表和单相自耦调压变压器的主要技术特征,并掌握其正确的使用方法。 二. 实验内容 1. 电感阻抗参数的测量,按图5-1 分别测量40W 白炽灯(R),电感线圈(L) 的等效参数。 图5-1 2. 电感阻抗两端并联电容,接线如图5-2。逐渐加大电容量每改变一次容值,都要测量端电压U (调节自藕变压器使其保持90V 固定值),测量总电流I ,电感阻抗电流IRL ,电容电流IC 以及总功率P 之值,记录于表5-2。 Z

图5-2 表5-2 电感阻抗L两端并联电容C测得数据电容测量数据 uF U(V) I(mA) I RL (mA) I C (mA) P(W) cosφ 2 90 302.8 356. 3 57.5 7.05 0.257 4 90 250.0 356.3 113.2 7.06 0.313 6 90 199.8 357.2 169.9 7.10 0.393 8 90 148.7 354.7 230.1 7.07 0.529 10 90 114.5 355.3 286.9 7.10 0.691 11 90 104.5 354.6 315.5 7.12 0.757 12 90 101.4 357.9 343.8 7.10 0.782 12.5 90 103.3 355.4 358.0 7.15 0.776 13 90 104.4 355.2 372.5 7.16 0.758 表5-3 电感阻抗L与两个灯泡R串联后两端并联电容C测得数据电容测量数据 uF U(V) I(mA) I RL (mA) I C (mA) P(W) cosφ 2 90 109.1 111.0 56.2 9.66 0.9838 4 90 134.2 111.0 115.2 9.59 0.7940 6 90 174.2 111.0 171. 7 9.63 0.6142 8 90 224.1 111.1 230.1 9.65 0.4785 10 90 275.6 111.1 287.4 9.72 0.3919 11 90 301.5 111.0 315.8 9.69 0.3571 12 90 332.2 111.1 346.6 9.77 0.3268 12.5 90 343.7 110.8 361.2 9.62 0.3110 13 90 357.5 110.7 373.3 9.61 0.2987 三.注意事项

实验4 日光灯电路及其功率因数的提高

实验四日光灯电路及其功率因数的提高 一、实验目的 1.了解日光灯电路的工作原理 2.掌握提高功率因数的意义与方法 二、实验器材 1.1台型号为RTDG-3A或RTDG-4B 的电工技术实验台 2.1根40W日光灯灯管 3.1台型号为RTZN13智能存储式交流电压/电流表 4.1个型号为RTDG-08的实验电路板,含有镇流器、启辉器、电容器组 三、实验内容 测量日光灯电路有并联电容和没有并联电容这两种情况下的功率因数,掌握提高功率因数的方法。 四、实验原理 在正弦交流电路中,功率因数的高低关系到交流电源的输出功率和电力设备能否得到充分利用。为了提高交流电源的利用率,减少线路的能量损耗,可采取在感性负载两端并联适当容量的补偿电容,以改善电路的功率因数。并联了补偿电容器C 以后,原来的感性负载取用的无功功率中的一部分,将由补偿电容提供,这样由电源提供的无功功率就减少了,电路的总电流?也会减小,从而使得感性电路的功率因数cos φ得到提高。 图4-1 日光灯电路原理图

五、实验过程 1.日光灯没有并联电容时的操作过程 (1) 先切断实验台的总供电电源开关,按照实验电路图4—1来连线。用导线将调压器输出 相线端、总电流测量插孔、日光灯电流测量插孔、镇流器、日光灯灯丝一端、启辉器、日光灯灯丝另一端、调压器输出地线端按顺序联接到实验线路中。 (2) 用导线将电容器电流测量插孔与电容器组串联再与上述日光灯电路并联,并将电容器 组中各电容器的控制开关均置于断开位置。注意,电容器电流测量插孔应联接在总电流测量插孔的后面。 (3) 实验电路接线完成后,需经过实验指导教师检查无误,方可进行下一步操作。 (4) 将安装在电工实验台左侧面的自耦变压器调压手柄按照逆时针方向旋转到底。 (5) 闭合实验台的总供电电源开关,按下启动按键。 (6) 按下调压按键,使实验台的调压器开始工作,这时实验台上的三相电压表显示调压器 的输出电压。 (7) 闭合交流电表开关,用导线将交流电压表与调压器输出端相联接,按顺时针方向旋转 自耦变压器的调压手柄,用交流电压表监测,将调压器输出电压逐渐调升至220V。这时安装在实验台内部的日光灯灯管将会点亮,日光灯电路开始正常工作。 (8) 使用交流电压表、交流电流表,按表4—1中的顺序测量电路端电压U、电路总电流I、 日光灯灯管电压U R,将测量结果记入表4—1中。 表4—1 日光灯电路的测量 2. 日光灯并联电容时的操作过程 按照表4—2中列出的电容器容量值,逐项测量电路总电流I、日光灯支路电流I R(或I L)、电容器支路电流I C的数值,并将测量结果记入表4—2中。

相关文档
相关文档 最新文档