文档库 最新最全的文档下载
当前位置:文档库 › 朱颢东2015-2016学年第二学期《数据结构》实验指导书(修订版)-1

朱颢东2015-2016学年第二学期《数据结构》实验指导书(修订版)-1

朱颢东2015-2016学年第二学期《数据结构》实验指导书(修订版)-1
朱颢东2015-2016学年第二学期《数据结构》实验指导书(修订版)-1

《数据结构》实验指导书

郑州轻工业学院

2016.02.20

目录

前言 (3)

实验01 顺序表的基本操作 (5)

实验02 单链表的基本操作 (13)

实验03 栈的基本操作 (21)

实验04 队列的基本操作 (23)

实验05 二叉树的基本操作 (25)

实验06 哈夫曼编码 (26)

实验07 图的两种存储和遍历 (28)

实验08 最小生成树、拓扑排序和最短路径 (31)

实验09 二叉排序树的基本操作 (33)

实验10 哈希表的生成 (34)

实验11 常用的内部排序算法 (35)

附:实验报告模板........................ 错误!未定义书签。

前言

《数据结构》是计算机相关专业的一门核心基础课程,是编译原理、操作系统、数据库系统及其它系统程序和大型应用程序开发的重要基础,也是很多高校考研专业课之一。它主要介绍线性结构、树型结构、图状结构三种逻辑结构的特点和在计算机内的存储方法,并在此基础上介绍一些典型算法及其时、空效率分析。这门课程的主要任务是研究数据的逻辑关系以及这种逻辑关系在计算机中的表示、存储和运算,培养学生能够设计有效表达和简化算法的数据结构,从而提高其程序设计能力。通过学习,要求学生能够掌握各种数据结构的特点、存储表示和典型算法的设计思想及程序实现,能够根据实际问题选取合适的数据表达和存储方案,设计出简洁、高效、实用的算法,为后续课程的学习及软件开发打下良好的基础。另外本课程的学习过程也是进行复杂程序设计的训练过程,通过算法设计和上机实践的训练,能够培养学生的数据抽象能力和程序设计能力。学习这门课程,习题和实验是两个关键环节。学生理解算法,上机实验是最佳的途径之一。因此,实验环节的好坏是学生能否学好《数据结构》的关键。为了更好地配合学生实验,特编写实验指导书。

一、实验目的

本课程实验主要是为了原理和应用的结合,通过实验一方面使学生更好的理解数据结构的概念和常用的几种数据结构在计算机中的存储和实现的方法,加强学生动手能力;另一方面培养学生从实际问题中抽象出对应的抽象数据类型,进而找到合适的计算机存储方法和算法,为以后课程的学习、大型软件的开发、实际工程问题打下良好的软件开发基础。

二、实验要求

1、每次实验前学生必须根据实验内容认真准备实验程序及调试时所需的输入数据。

2、在指导教师的帮助下能够完成实验内容,得出正确的实验结果。

3、实验结束后总结实验内容、书写实验报告。

4、遵守实验室规章制度、不缺席、按时上、下机。

5、实验学时内必须做数据结构的有关内容,不允许上网聊天或玩游戏,如发现上述现象,取消本次上机资格,平时成绩扣10分。

6、实验报告有一次不合格,扣5分,两次以上不合格者,平时成绩以零分记。

三、实验环境

VC++6.0或其他C++相关的编译环境。

四、说明

1、本实验的所有算法中元素类型应根据实际需要合理选择。

2、实验题目中带*者为较高要求,学生可自选;其余部分为基本内容,应尽量完成(至少完成70%,否则实验不合格)。

3、数据结构是很多高校的硕士研究生入学考试的专业课之一,希望有志于考研的学生能够在

学习过程中注意各种算法的理解,以便为考研做一定的准备。

4、好的算法决定了好的程序,要有效地实现算法,就需要设计能够有效表达和简化算法的数据结构,因此数据结构是有效进行程序设计的基础,是每个程序员的必修课。

五、实验报告的书写要求

1、明确实验的目的及要求。

2、记录实验的输入数据和输出结果。

3、说明实验中出现的问题和解决过程。

4、写出实验的体会和实验过程中没能解决的问题。

5、实验程序请构建为多文件程序,每一个算法对应的函数原型声明存放在头文件*.h中,对应的函数实现存放在源文件*.c中;main()函数存放在另一个源文件中,该文件包含头文件*.h即可。

六、成绩考评办法

1、期末考试占70分,闭卷。

2、平时考评占30分。其中实验环节占20分(实验准备、上机、报告、验收等);平时占10分(出勤、作业、测验等)。

七、参考书目

1、《数据结构》(C语言版)严蔚敏等清华大学出版社。

2、《数据结构题集》(C语言版)严蔚敏等清华大学出版社。

3、《数据结构与算法分析——C语言描述》,Mark Allen Weiss著,机械工业出版社,2012。

实验01 顺序表的基本操作

实验学时:2学时

实验类型:上机

背景知识:顺序表的插入、删除及应用。

目的要求:

1.掌握顺序存储结构的特点。

2.掌握顺序存储结构的常见算法。

实验内容:

编写一个完整的程序,实现顺序表的生成、插入、删除、输出等基本运算。

(1)建立一个顺序表,含有n个数据元素。

(2)输出顺序表。

(3)在顺序表中删除值为x的结点或者删除给定位置i的结点。

(4)实现把该表中所有奇数排在偶数之前,即表的前面为奇数,后面为偶数。

(5)输入整型元素序列,利用有序表插入算法建立一个有序表。

(6)*利用算法5建立两个非递减有序表A和B,并把它们合并成一个非递减有序表C。

(7)在主函数中设计一个简单的菜单,分别测试上述算法。

(8)*综合训练:

利用顺序表实现一个班级学生信息管理(数据录入、插入、删除、排序、查找等)。

实验说明:

1.请构建多文件程序,算法1至算法6对应的函数原型声明存放在头文件SqList.h中,对应的函数实现存放在源文件SqList.c中;main()函数存放在另一个源文件中,该文件包含头文件SqList.h 即可。

2.类型定义

#define MAXSIZE 100 //表中元素的最大个数

typedef int ElemType; //元素类型

typedef struct

{

ElemType *elem; //线性表

int length; //表的实际长度

int listsize; //当前分配的存储容量

}SqList; //顺序表的类型名

3.建立顺序表时可利用随机函数自动产生数据。

注意问题:

1、插入、删除时元素的移动原因、方向及先后顺序。

2、理解函数形参与实参的传递关系。

部分源代码:

DS.h

#include

#include

#include

#include

#define TRUE 1

#define FALSE 0

#define OK 1

#define ERROR 0

typedef int Status;

SqList.h

#ifndef SQLIST_H_INCLUDED

#define SQLIST_H_INCLUDED

#include "DS.h"

typedef int ElemType;

typedef struct

{

ElemType *elem;

int length;

int listsize;

}SqList;

void menu();

Status InitList_Sq(SqList &L, int n);/*初始化顺序表*/

Status CreateList_Sq(SqList &L);/*建立顺序表*/

void PrintList_Sq(SqList L);/*输出顺序表*/

Status DeleteList_Sq(SqList &L,int i,ElemType &e);/*删除第i个元素*/ Status DeleteListX_Sq(SqList &L,ElemType x);/*删除值为x的元素*/

Status AdjustList_Sq(SqList &L);/*奇数排在偶数之前*/

Status OrderList_sq(SqList &L, int n);/*插入法生成递增有序表*/

void MergeList_Sq(SqList La, SqList Lb, SqList &Lc );/*两个非递减有序表A和B,并把它们合并成一个非递减有序表C*/

#endif // SQLIST_H_INCLUDED

SqList.cpp

#include "SqList.h"

void menu()

{

printf("\t\t\t 顺序表基本操作\n\n");

printf("\t\t\t1.建立顺序表\n");

printf("\t\t\t2.遍历顺序表\n");

printf("\t\t\t3.删除第i 个元素\n");

printf("\t\t\t4.删除值为x 的元素\n");

printf("\t\t\t5.奇数排在偶数之前\n");

printf("\t\t\t6.插入法生成递增有序表\n");

printf("\t\t\t7.两个非递减有序表La和Lb合并成非递减有序表Lc\n");

printf("\t\t\t0.退出\n\n");

}

/*初始化顺序表*/

Status InitList_Sq(SqList &L, int n)

{

L.elem=(ElemType*)malloc(n*sizeof(ElemType));

if(!L.elem) exit(OVERFLOW);

L.length=0;

L.listsize=n;

return OK;

}

/*建立顺序表*/

Status CreateList_Sq(SqList &L)

{

int n, i;

printf("请输入顺序表长度:");

scanf("%d", &n);

if(InitList_Sq(L, n))

{

printf("请输入%d个元素:", n);

for(i = 0; i < n; i++)

{

scanf("%d", &L.elem[i]);

L.length++;

}

return OK;

}

else

return ERROR;

}

/*输出顺序表*/

void PrintList_Sq(SqList L)

{

int i;

printf("顺序表中元素为:\n");

for(i = 0; i < L.length; i++)

{

printf("%d ", L.elem[i]);

}

printf("\n");

}

/*删除第i个元素*/

Status DeleteList_Sq(SqList &L,int i,ElemType &e) {

ElemType *p, *q;

if( (i<1) || (i>L.length) ) return ERROR;

p = &(L.elem[i-1]);

e = *p;

q = L.elem+L.length-1;

for(++p; p <= q; ++p) *(p-1) = *p;

--L.length;

return OK;

}

/*删除值为x的元素,删除成功返回OK,删除失败返回ERROR*/ Status DeleteListX_Sq(SqList &L,ElemType x)

{

ElemType *p, *q;

}

/*奇数排在偶数之前*/

Status AdjustList_Sq(SqList &L)

{

ElemType *p, *q;

int temp;

return OK;

}

/*插入法生成递增有序表,有序表生成成功返回OK,失败返回ERROR*/ Status OrderList_sq(SqList &L, int n)

{

int i, j, x; /*x表示每次待插入的元素*/

}

/*两个非递减有序表A和B,并把它们合并成一个非递减有序表C*/ void MergeList_Sq(SqList La, SqList Lb, SqList &Lc )

{

ElemType *pa, *pb, *pc, *pa_last, *pb_last;

pa = La.elem; pb = Lb.elem;

Lc.listsize = Lc.length = La.length+Lb.length;

pc = Lc.elem = (ElemType *)malloc(Lc.listsize * sizeof(ElemType));

if (!Lc.elem) exit (OVERFLOW);

pa_last = La.elem + La.length - 1;

pb_last = Lb.elem + Lb.length - 1;

while (pa <= pa_last && pb <= pb_last)

{

if (*pa <= *pb) *pc++ = *pa++;

else *pc++ = *pb++;

}

while(pa <= pa_last) *pc++ = *pa++;

while(pb <= pb_last) *pc++ = *pb++;

}

main.cpp

#include "SqList.h"

int main()

{

int choice, n, i, x;

SqList L, La, Lb, Lc;

while(1)

{

menu();

printf("选择你的操作:");

scanf("%d",&choice);

switch(choice)

{

case 1:

if(CreateList_Sq(L))

printf("顺序表创建成功\n");

else

printf("顺序表创建失败\n");

break;

case 2:

PrintList_Sq(L);

break;

case 3:

printf("请输入删除元素的位置:");

scanf("%d", &i);

if(DeleteList_Sq(L, i, x))

printf("被删除元素值为:%d\n",x);

else

printf("删除失败\n");

break;

case 4:

printf("请输入删除元素值:");

scanf("%d", &x);

if(DeleteListX_Sq(L, x))

printf("删除成功\n");

else

printf("删除失败\n");

PrintList_Sq(L);

break;

case 5:

AdjustList_Sq(L);

printf("新链表为:\n");

PrintList_Sq(L);

break;

case 6:

printf("请输入顺序表长度:");

scanf("%d", &n);

if(OrderList_sq(L, n))

{

printf("值有序顺序表为:\n");

PrintList_Sq(L);

}

else

printf("顺序表创建失败\n");

break;

case 7:

printf("请输入顺序表La的长度:");

scanf("%d", &n);

OrderList_sq(La, n);

printf("请输入顺序表Lb的长度:");

scanf("%d", &n);

OrderList_sq(Lb, n);

MergeList_Sq(La, Lb, Lc);

printf("合并后的顺序表为:\n");

PrintList_Sq(Lc);

break;

case 0:

return 0;

default:

printf("输入错误,请重新输入\n");

}

}

}

实验02 单链表的基本操作

实验学时:2学时

实验类型:上机

背景知识:单链表的插入、删除及应用。

目的要求:

1.掌握单链表的存储特点及其实现。

2.掌握单链表的插入、删除算法及其应用算法的程序实现。

实验内容:

编写一个完整的程序,实现单链表的生成、插入、删除、输出等基本操作。

(1)随机产生或键盘输入一组元素,建立一个带头结点的单向链表(无序)。

(2)计算单链表的长度,遍历单链表。

(3)把单链表中的元素逆置(不允许申请新的结点空间)。

(4)在单链表中删除所有值为偶数的元素结点。

(5)编写在非递减有序单链表中插入一个元素使链表元素仍有序的函数,并利用该函数建立一个非递减有序单链表。

(6)* 利用算法5建立两个非递减有序单链表,然后合并成一个非递增有序链表。

(7)* 利用算法5建立两个非递减有序单链表,然后合并成一个非递减有序链表。

(8)* 利用算法1建立的链表,实现将其分解成两个链表,其中一个全部为奇数,另一个全部为偶数(尽量利用已知的存储空间)。

(9)* 采用单链表实现一元多项式的存储并实现两个多项式相加并输出结果。

(10)在主函数中设计一个简单的菜单,分别调试上述算法。

(11)* 综合训练:

1)利用链表实现一个班级学生信息管理(数据录入、插入、删除、排序、查找等,并能够实现将数据存储到文件中)

2)约瑟夫环问题:设有n个人围坐在圆桌周围,从某个位置开始编号为1,2,3,…,n,坐在编号为1的位置上的人从1开始报数,数到m的人便出列;下一个(第m+1个)人又从1开始报数,数到m的人便是第二个出列的人;如此重复下去,直到最后一个人出列为止,得到一个出列的编号顺序。例如,当n=8,m=4时,若从第一个位置数起,则出列的次序为4,8,5,2,1,3,7,6。试编写程序确定出列的顺序。要求用不带头结点的单向循环链表作为存储结构模拟此过程,按照出列顺序打印出个人编号。

实验说明:

1.类型定义

typedef int ElemType; //元素类型

typedef struct node

{

ElemType data;

struct node *next;

}LinkNode, *LinkList;

2.为了算法实现简单,建议采用带头结点的单链表。

注意问题:

1.重点理解链式存储的特点及指针的含义。

2.注意比较顺序存储与链式存储的各自特点。

3.注意比较带头结点、无头结点链表实现插入、删除算法时的区别。

4.单链表的操作是数据结构的基础,一定要注意对这部分常见算法的理解。部分源代码:

DS.h

#include

#include

#include

#include

#define TRUE 1

#define FALSE 0

#define OK 1

#define ERROR 0

typedef int Status;

LinkList.h

#include "DS.h"

typedef int Elemtype;

typedef struct Node

{

Elemtype data;

struct Node *next;

}Lnode,*LinkList;

void menu(); /*菜单*/

Status Init_Linklist(LinkList &L); /*初始化空表*/

Status Creat_Linklist(LinkList &L); /*尾插法建立单链表*/

void Disp_Linklist(LinkList L); /*单链表遍历*/

int length_Linklist(LinkList L); /*计算单链表长度*/

void Reverse_Linklist(LinkList L); /*单链表逆置*/

void DelEven_Linklist(LinkList L); /*删除值为偶数的结点*/

Status Insert_Linklist(LinkList L, int x); /*在有序单链表L中插入元素x,链表仍然有序*/ Status CreatOrder_Linklist(LinkList &L); /*创建非递减有序单链表*/

void MergeDescend_Linklist(LinkList La, LinkList Lb, LinkList &Lc); /*两个非递减有序单链表La和Lb合并成一个非递增有序链表Lc*/

void MergeAscend_Linklist(LinkList La, LinkList Lb, LinkList &Lc); /*两个非递减有序单链表La和Lb 合并成一个非递减有序链表Lc*/

void Split_Linklist(LinkList La, LinkList &Lb); /*链表La按值分解成两个链表,La全部为奇数,Lb 全部为偶数*/

LinkList.cpp

#include "LinkList.h"

void menu()

{

printf("\t\t\t 单链表基本操作\n\n");

printf("\t\t\t1.建立单链表\n");

printf("\t\t\t2.遍历单链表\n");

printf("\t\t\t3.计算链表长度\n");

printf("\t\t\t4.链表逆置\n");

printf("\t\t\t5.删除偶数节点\n");

printf("\t\t\t6.生成值有序单链表\n");

printf("\t\t\t7.合并生成降序链表\n");

printf("\t\t\t8.合并生成升序链表\n");

printf("\t\t\t9.分解链表\n");

printf("\t\t\t0.退出\n\n");

}

/*初始化空表*/

Status Init_Linklist(LinkList &L)

{

L=(LinkList)malloc(sizeof(Lnode));

if(!L) return ERROR;

L->next=NULL;

return OK;

}

/*尾插法建立单链表*/

Status Creat_Linklist(LinkList &L)

{

int x;

LinkList p,rear;

Init_Linklist(L);

rear = L;

printf("输入-1表示输入结束\n");

while(scanf("%d",&x),x != -1)

{

p = (LinkList)malloc(sizeof(Lnode));

if(!p) return ERROR;

p->data = x;

rear->next = p;

rear = p;

}

rear->next = NULL;

return OK;

}

/*单链表遍历*/

void Disp_Linklist(LinkList L)

{

LinkList p;

p = L->next;

while(p)

{

printf("%d ", p->data);

p = p->next;

}

printf("\n");

}

/*计算单链表长度*/

int length_Linklist(LinkList L)

{

int count = 0; /*count表示单链表长度*/

LinkList p;

return count;

}

/*单链表逆置*/

void Reverse_Linklist(LinkList L)

{

LinkList p, q ;

}

/*删除值为偶数的结点*/

void DelEven_Linklist(LinkList L)

{

LinkList p, q;

}

/*在有序单链表中插入元素,链表仍然有序,插入成功返回OK,插入失败返回ERROR*/ Status Insert_Linklist(LinkList L, int x)

{

;

}

/*创建非递减有序单链表,创建成功返回OK,创建失败返回ERROR*/ Status CreatOrder_Linklist(LinkList &L)

{

}

/*两个非递减有序单链表La和Lb合并成一个非递增有序链表Lc*/ void MergeDescend_Linklist(LinkList La, LinkList Lb, LinkList &Lc)

{

}

/*两个非递减有序单链表La和Lb合并成一个非递减有序链表Lc*/ void MergeAscend_Linklist(LinkList La, LinkList Lb, LinkList &Lc)

{

LinkList pa, pb, pc;

pa = La->next;

pb = Lb->next;

pc = Lc = La;

while(pa && pb)

{

if(pa->data <= pb->data)

{

pc->next = pa; pc = pa; pa = pa->next;

}

else

{

pc->next = pb; pc = pb; pb = pb->next;

}

}

pc->next = pa ? pa : pb;

free(Lb);

}

/*链表La按值分解成两个链表,La全部为奇数,Lb全部为偶数*/ void Split_Linklist(LinkList La, LinkList &Lb)

{

}

main.cpp

#include "LinkList.h"

int main()

{

int choice, length;

LinkList L, La, Lb, Lc;

while(1)

{

menu();

printf("选择你的操作:");

scanf("%d",&choice);

switch(choice)

{

case 1:

if(Creat_Linklist(L))

printf("单链表创建成功\n");

else

printf("单链表创建失败\n");

break;

case 2:

Disp_Linklist(L);

break;

case 3:

length = length_Linklist(L);

printf("单链表长度为:%d\n",length);

break;

case 4:

Reverse_Linklist(L);

printf("逆置后的链表为:\n");

Disp_Linklist(L);

break;

case 5:

DelEven_Linklist(L);

printf("新链表为:\n");

Disp_Linklist(L);

break;

case 6:

if(CreatOrder_Linklist(L))

{

printf("值有序链表为:\n");

Disp_Linklist(L);

}

else

printf("单链表创建失败\n");

break;

case 7:

CreatOrder_Linklist(La);

CreatOrder_Linklist(Lb);

MergeDescend_Linklist(La, Lb, Lc);

printf("合并后的新链表为:\n");Disp_Linklist(Lc);

break;

case 8:

CreatOrder_Linklist(La);

CreatOrder_Linklist(Lb);

MergeAscend_Linklist(La, Lb, Lc);

printf("合并后的新链表为:\n");Disp_Linklist(Lc);

break;

case 9:

Creat_Linklist(L);

Split_Linklist(L, Lb);

printf("分裂后的新链表为:\n");

Disp_Linklist(L);

Disp_Linklist(Lb);

break;

case 0:

return 0;

default:

printf("输入错误,请重新输入\n");

}

}

}

数据结构实验七 查找

实验七查找 一、实验目的 1. 掌握查找的不同方法,并能用高级语言实现查找算法; 2. 熟练掌握二叉排序树的构造和查找方法。 3. 熟练掌握静态查找表及哈希表查找方法。 二、实验内容 设计一个读入一串整数,然后构造二叉排序树,进行查找。 三、实验步骤 1. 从空的二叉树开始,每输入一个结点数据,就建立一个新结点插入到当前已生成的二叉排序树中。 2. 在二叉排序树中查找某一结点。 3.用其它查找算法进行排序(课后自己做)。 四、实现提示 1. 定义结构 typedef struct node { int key; int other; struct node *lchild, *rchild; } bstnode; void inorder ( t ) { if (t!=Null) { inorder(t→lchild); printf(“%4d”, t→key); inorder(t→rchild); } } bstnode *insertbst(t, s) bstnode *s, *t; { bstnode *f, *p; p=t;

while(p!=Null) { f=p; if (s→key= =p→key) return t; if (s→key

数据结构课程实验指导书

数据结构实验指导书 一、实验目的 《数据结构》是计算机学科一门重要的专业基础课程,也是计算机学科的一门核心课程。本课程较为系统地论述了软件设计中常用的数据结构以及相应的存储结构与实现算法,并做了相应的性能分析和比较,课程内容丰富,理论系统。本课程的学习将为后续课程的学习以及软件设计水平的提高打下良好的基础。 由于以下原因,使得掌握这门课程具有较大的难度: 1)理论艰深,方法灵活,给学习带来困难; 2)内容丰富,涉及的知识较多,学习有一定的难度; 3)侧重于知识的实际应用,要求学生有较好的思维以及较强的分析和解决问题的能力,因而加大了学习的难度; 根据《数据结构》课程本身的特性,通过实验实践内容的训练,突出构造性思维训练的特征,目的是提高学生分析问题,组织数据及设计大型软件的能力。 课程上机实验的目的,不仅仅是验证教材和讲课的内容,检查自己所编的程序是否正确,课程安排的上机实验的目的可以概括为如下几个方面: (1)加深对课堂讲授内容的理解 实验是对学生的一种全面综合训练。是与课堂听讲、自学和练习相辅相成的必不可少的一个教学环节。通常,实验题中的问题比平时的习题复杂得多,也更接近实际。实验着眼于原理与应用的结合点,使学生学会如何把书上学到的知识用于解决实际问题,培养软件工作所需要的动手能力;另一方面,能使书上的知识变" 活" ,起到深化理解和灵活掌握教学内容的目的。 不少学生在解答习题尤其是算法设计时,觉得无从下手。实验中的内容和教科书的内容是密切相关的,解决题目要求所需的各种技术大多可从教科书中找到,只不过其出

现的形式呈多样化,因此需要仔细体会,在反复实践的过程中才能掌握。 (2) 培养学生软件设计的综合能力 平时的练习较偏重于如何编写功能单一的" 小" 算法,而实验题是软件设计的综合训练,包括问题分析、总体结构设计、用户界面设计、程序设计基本技能和技巧,多人合作,以至一整套软件工作规范的训练和科学作风的培养。 通过实验使学生不仅能够深化理解教学内容,进一步提高灵活运用数据结构、算法和程序设计技术的能力,而且可以在需求分析、总体结构设计、算法设计、程序设计、上机操作及程序调试等基本技能方面受到综合训练。实验着眼于原理与应用的结合点,使学生学会如何把书本上和课堂上学到的知识用于解决实际问题,从而培养计算机软件工作所需要的动手能力。 (3) 熟悉程序开发环境,学习上机调试程序一个程序从编辑,编译,连接到运行,都要在一定的外部操作环境下才能进行。所谓" 环境" 就是所用的计算机系统硬件,软件条件,只有学会使用这些环境,才能进行 程序开发工作。通过上机实验,熟练地掌握程序的开发环境,为以后真正编写计算机程序解决实际问题打下基础。同时,在今后遇到其它开发环境时就会触类旁通,很快掌握新系统的使用。 完成程序的编写,决不意味着万事大吉。你认为万无一失的程序,实际上机运行时可能不断出现麻烦。如编译程序检测出一大堆语法错误。有时程序本身不存在语法错误,也能够顺利运行,但是运行结果显然是错误的。开发环境所提供的编译系统无法发现这种程序逻辑错误,只能靠自己的上机经验分析判断错误所在。程序的调试是一个技巧性很强的工作,尽快掌握程序调试方法是非常重要的。分析问题,选择算法,编好程序,只能说完成一半工作,另一半工作就是调试程序,运行程序并得到正确结果。 二、实验要求 常用的软件开发方法,是将软件开发过程划分为分析、设计、实现和维护四个阶段。虽然数据结构课程中的实验题目的远不如从实际问题中的复杂程度度高,但为了培养一个软件工作者所应具备的科学工作的方法和作风,也应遵循以下五个步骤来完成实验题目: 1) 问题分析和任务定义 在进行设计之前,首先应该充分地分析和理解问题,明确问题要求做什么?限制条件是什么。本步骤强调的是做什么?而不是怎么做。对问题的描述应避开算法和所涉及的数据类型,而是对所需完成的任务作出明确的回答。例如:输入数据的类型、值的范围以及输入的

数据结构实验指导书(2016.03.11)

《数据结构》实验指导书 郑州轻工业学院 2016.02.20

目录 前言 (3) 实验01 顺序表的基本操作 (7) 实验02 单链表的基本操作 (19) 实验03 栈的基本操作 (32) 实验04 队列的基本操作 (35) 实验05 二叉树的基本操作 (38) 实验06 哈夫曼编码 (40) 实验07 图的两种存储和遍历 (42) 实验08 最小生成树、拓扑排序和最短路径 (46) 实验09 二叉排序树的基本操作 (48) 实验10 哈希表的生成 (50) 实验11 常用的内部排序算法 (52) 附:实验报告模板 .......... 错误!未定义书签。

前言 《数据结构》是计算机相关专业的一门核心基础课程,是编译原理、操作系统、数据库系统及其它系统程序和大型应用程序开发的重要基础,也是很多高校考研专业课之一。它主要介绍线性结构、树型结构、图状结构三种逻辑结构的特点和在计算机内的存储方法,并在此基础上介绍一些典型算法及其时、空效率分析。这门课程的主要任务是研究数据的逻辑关系以及这种逻辑关系在计算机中的表示、存储和运算,培养学生能够设计有效表达和简化算法的数据结构,从而提高其程序设计能力。通过学习,要求学生能够掌握各种数据结构的特点、存储表示和典型算法的设计思想及程序实现,能够根据实际问题选取合适的数据表达和存储方案,设计出简洁、高效、实用的算法,为后续课程的学习及软件开发打下良好的基础。另外本课程的学习过程也是进行复杂程序设计的训练过程,通过算法设计和上机实践的训练,能够培养学生的数据抽象能力和程序设计能力。学习这门课程,习题和实验是两个关键环节。学生理解算法,上机实验是最佳的途径之一。因此,实验环节的好坏是学生能否学好《数据结构》的关键。为了更好地配合学生实验,特编写实验指导书。 一、实验目的 本课程实验主要是为了原理和应用的结合,通过实验一方面使学生更好的理解数据结构的概念

数据结构实验

实验2 查找算法的实现和应用?实验目的 1. 熟练掌握静态查找表的查找方法; 2. 熟练掌握动态查找表的查找方法; 3. 掌握hash表的技术. ?实验内容 1.用二分查找法对查找表进行查找; 2.建立二叉排序树并对该树进行查找; 3.确定hash函数及冲突处理方法,建立一个hash表并实现查找。 程序代码 #include using namespace std; int main() { int arraay[10]={1,2,3,4,5,6,7,8,9,10}; int binary_search(int a[10],int t); cout<<"Enter the target:"; int target; cin>>target; binary_search(arraay,target); return 0; } int binary_search(int a[10],int t) { int bottom=0,top=9; while(bottom

cout<<"Not present!"; } return 0; } 结果 二叉排序树 #include #include #include using namespace std; typedef int keyType; typedef struct Node { keyType key; struct Node* left; struct Node* right; struct Node* parent; }Node,*PNode; void inseart(PNode* root, keyType key) { PNode p = (PNode)malloc(sizeof(Node)); p -> key = key;

数据结构实验7实验报告

暨南大学本科实验报告专用纸 课程名称数据结构实验成绩评定 实验项目名称习题6.51 指导教师孙世良 实验项目编号实验7 实验项目类型实验地点实验楼三楼机房学生姓名林炜哲学号2013053005 学院电气信息学院系专业软件工程 实验时间年月日午~月日午温度℃湿度(一)实验目的 熟悉和理解二叉树的结构特性; 熟悉二叉树的各种存储结构的特点及适用范围; 掌握遍历二叉树的各种操作及其实现方式。 (二)实验内容和要求 编写一个算法,输出以二叉树表示的算术表达式,若该表达式中含有括号,则应该在输出时添上。 (三)主要仪器设备 实验环境:Microsoft Visual Studio 2012 (四)源程序 #include #include typedef struct bitnode{ char data; struct bitnode *lchild,*rchild; }bitnode,*bitree; void create(bitree &T){ char t; t=getchar();

if(t==' ') T=NULL; else{ if( !( T=(bitnode*)malloc(sizeof(bitnode)) ) ) exit(0); T->data=t; create(T->lchild); create(T->rchild); } } void middle_order(bitree &Node){ if(Node != NULL){ if((Node->data=='*'||Node->data=='/')&&(Node->lchild->data=='+'|| Node->lchild->data=='-')) printf("( "); middle_order(Node->lchild); if((Node->data=='*'||Node->data=='/')&&(Node->lchild->data=='+'|| Node->lchild->data=='-')) printf(") "); printf("%c ", Node->data); if((Node->data=='*'||Node->data=='/')&&(Node->rchild->data=='+'|| Node->rchild->data=='-')) printf("( "); middle_order(Node->rchild); if((Node->data=='*'||Node->data=='/')&&(Node->rchild->data=='+'|| Node->rchild->data=='-')) printf(") "); } } int main() { bitree y; printf("以先序遍历的方式输入二叉树:"); create(y); printf("输出表达式:"); middle_order(y); return 0; } (五)数据调试

实验指导-数据结构B教案资料

实验指导-数据结构B

附录综合实验 1、实验目的 本课程的目标之一是使得学生学会如何从问题出发,分析数据,构造求解问题的数据结构和算法,培养学生进行较复杂程序设计的能力。本课程实践性较强,为实现课程目标,要求学生完成一定数量的上机实验。从而一方面使得学生加深对课内所学的各种数据的逻辑结构、存储表示和运算的方法等基本内容的理解,学习如何运用所学的数据结构和算法知识解决应用问题的方法;另一方面,在程序设计方法、C语言编程环境以及程序的调试和测试等方面得到必要的训练。 2、实验基本要求: 1)学习使用自顶向下的分析方法,分析问题空间中存在哪些模块,明确这些模块之间的关系。 2)使用结构化的系统设计方法,将系统中存在的各个模块合理组织成层次结构,并明确定义各个结构体。确定模块的主要数据结构和接口。 3)熟练使用C语言环境来实现或重用模块,从而实现系统的层次结构。模块的实现包括结构体的定义和函数的实现。 4)学会利用数据结构所学知识设计结构清晰的算法和程序,并会分析所设计的算法的时间和空间复杂度。 5)所有的算法和实现均使用C语言进行描述,实验结束写出实验报告。

3、实验项目与内容: 1、线性表的基本运算及多项式的算术运算 内容:实现顺序表和单链表的基本运算,多项式的加法和乘法算术运算。 要求:能够正确演示线性表的查找、插入、删除运算。实现多项式的加法和乘法运算操作。 2、二叉树的基本操作及哈夫曼编码译码系统的实现 内容:创建一棵二叉树,实现先序、中序和后序遍历一棵二叉树,计算二叉树结点个数等操作。哈夫曼编码/译码系统。 要求:能成功演示二叉树的有关运算,实现哈夫曼编码/译码的功能,运算完毕后能成功释放二叉树所有结点占用的系统内存。 3、图的基本运算及智能交通中的最佳路径选择问题 内容:在邻接矩阵和邻接表两种不同存储结构上实现图的基本运算的算法,实现图的深度和宽度优先遍历算法,解决智能交通中的路径选择问题。设有n 个地点,编号为0~n-1,m条路径的起点、终点和代价由用户输入提供,寻找最佳路径方案(例如花费时间最少、路径长度最短、交通费用最小等,任选其一即可)。 要求:设计主函数,测试上述运算。 4、各种内排序算法的实现及性能比较 内容:验证教材的各种内排序算法。分析各种排序算法的时间复杂度。 要求:使用随机数产生器产生较大规模数据集合,运行上述各种排序算法,使用系统时钟测量各算法所需的实际时间,并进行比较。

数据结构实验指导书

《数据结构》实验指导书 实验一顺序表 实验目的: 熟悉顺序表的逻辑特性、存储表示方法和顺序表的基本操作。 实验要求: 了解并熟悉顺序表的逻辑特性、存储表示方法和顺序表的基本操作的实现和应用。 实验内容: 1、编写程序实现在线性表中找出最大的和最小的数据元素,并符合下列要求: (1)设数据元素为整数,实现线性表的顺序存储表示。 (2)从键盘输入10个数据元素,利用顺序表的基本操作建立该表。 (3)利用顺序表的基本操作,找出表中最大的和最小的数据元素(用于比较的字段为整数)。 2、编写一个程序实现在学生成绩中找出最高分和最低分,并符合下列要求: (1)数据元素为学生成绩(含姓名、成绩等字段)。 (2)要求尽可能少地修改第一题的程序来得到此题的新程序,即要符合第一题的所有要求。(这里用于比较的字段为分数) 实验二链表 实验目的: 熟悉链表的逻辑特性、存储表示方法的特点和链式表的基本操作。 实验要求: 了解并熟悉链式表的逻辑特性、存储表示方法和链式表的基本操作的实现和应用。

实验内容: 1、编写一个程序建立存放学生成绩的有序链表并实现相关操作,要求如下: (1)设学生成绩表中的数据元素由学生姓名和学生成绩字段组成,实现这样的线性表的链式存储表示。 (2)键盘输入10个(或若干个,特殊数据来标记输入数据的结束)数据元素,利用链表的基本操作建立学生成绩单链表,要求该表为有序表 并带有头结点。(用于比较的字段为分数)。 (3)输入关键字值x,打印出表中所有关键字值<=x的结点。(用于比较的关键字字段为分数)。 (4)输入关键字值x,删除表中所有关键字值<=x的结点。(用于比较的关键字字段为分数)。 (5)输入关键字值x,并插入到表中,使所在的链表仍为有序表。(用于比较的字段为分数)。 实验三栈的应用 实验目的: 熟悉栈的逻辑特性、存储表示方法和栈的基本操作。 实验要求: 了解并熟悉栈的逻辑特性、顺序和链式存储表示方法和栈的基本操作的实现和应用。 实验内容: (1)判断一个表达式中的括号(仅有一种括号,小、中或大括号) 是否配对。编写并实现它的算法。 (2)用不同的存储方法,求解上面的问题。 (3)* 若表达式中既有小括号,又有大括号(或中括号),且允许 互相嵌套,但不能交叉,写出判断这样的表达式是否合法的算 法。如 2+3*(4-{5+2}*3)为合法;2+3*(4-{5+2 * 3} 、 2+3*(4-[5+2 * 3)为不合法。

数据结构实验报告

数据结构实验报告 一.题目要求 1)编程实现二叉排序树,包括生成、插入,删除; 2)对二叉排序树进行先根、中根、和后根非递归遍历; 3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。 4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、姓名、成绩3项),对比查找效率,并说明在什么情况下二叉排序树效率高,为什么? 二.解决方案 对于前三个题目要求,我们用一个程序实现代码如下 #include #include #include #include "Stack.h"//栈的头文件,没有用上 typedefintElemType; //数据类型 typedefint Status; //返回值类型 //定义二叉树结构 typedefstructBiTNode{ ElemType data; //数据域 structBiTNode *lChild, *rChild;//左右子树域 }BiTNode, *BiTree; intInsertBST(BiTree&T,int key){//插入二叉树函数 if(T==NULL) { T = (BiTree)malloc(sizeof(BiTNode)); T->data=key; T->lChild=T->rChild=NULL; return 1; } else if(keydata){ InsertBST(T->lChild,key); } else if(key>T->data){ InsertBST(T->rChild,key); } else return 0; } BiTreeCreateBST(int a[],int n){//创建二叉树函数 BiTreebst=NULL; inti=0; while(i

数据结构实验八内部排序

实验八内部排序 一、实验目的 1、掌握内部排序的基本算法; 2、分析比较内部排序算法的效率。 二、实验内容和要求 1. 运行下面程序: #include #include #define MAX 50 int slist[MAX]; /*待排序序列*/ void insertSort(int list[], int n); void createList(int list[], int *n); void printList(int list[], int n); void heapAdjust(int list[], int u, int v); void heapSort(int list[], int n); /*直接插入排序*/ void insertSort(int list[], int n) { int i = 0, j = 0, node = 0, count = 1; printf("对序列进行直接插入排序:\n"); printf("初始序列为:\n"); printList(list, n); for(i = 1; i < n; i++) { node = list[i]; j = i - 1; while(j >= 0 && node < list[j]) { list[j+1] = list[j]; --j; } list[j+1] = node; printf("第%d次排序结果:\n", count++); printList(list, n); } } /*堆排序*/ void heapAdjust(int list[], int u, int v)

《数据结构》实验指导

《数据结构》实验指导 (计算机信息大类适用) 实验报告至少包含以下内容: 实验名称 实验目的与要求: 实验内容与步骤(需要你进行细化): 实验结果(若顺利完成,可简单说明;若实验过程中遇到问题,也请在此说明) 收获与体会(根据个人的实际情况进行说明,不得空缺) 实验1 大整数加法(8课时) 目的与要求: 1、线性表的链式存储结构及其基本运算、实现方法和技术的训练。 2、单链表的简单应用训练。 3、熟悉标准模版库STL中的链表相关的知识。 内容与步骤: 1、编程实现单链表的基本操作。 2、利用单链表存储大整数(大整数的位数不限)。 3、利用单链表实现两个大整数的相加运算。 4、进行测试,完成HLOJ(https://www.wendangku.net/doc/ce8415285.html,) 9515 02-线性表大整数A+B。 5、用STL之list完成上面的任务。 6、尝试完成HLOJ 9516 02-线性表大菲波数。 实验2 栈序列匹配(8课时) 目的与要求 1、栈的顺序存储结构及其基本运算、实现方法和技术的训练。 2、栈的简单应用训练。 3、熟悉标准模版库STL中的栈相关的知识。 内容与步骤: 1、编程实现顺序栈及其基本操作。 2、对于给出的入栈序列和出栈序列,判断2个序列是否相容。即:能否利用栈 将入栈序列转换为出栈序列。 3、进行测试,完成HLOJ 9525 03-栈与队列栈序列匹配。 4、用STL之stack完成上面的任务。 5、尝试完成HLOJ 9522 03-栈与队列胡同。

实验3 二叉排序树(8课时) 目的与要求 1、二叉树的链式存储结构及其基本运算、实现方法和技术的训练。 2、二叉树的遍历方法的训练。 3、二叉树的简单应用。 内容与步骤: 1、编程实现采用链式存储结构的二叉排序树。 2、实现插入节点的操作。 3、实现查找节点的操作(若查找失败,则将新节点插入二叉排序树)。 4、利用遍历算法对该二叉排序树中结点的关键字按递增和递减顺序输出,完成 HLOJ 9576 07-查找二叉排序树。 5、尝试利用二叉排序树完成HLOJ 9580 07-查找Let the Balloon Rise。 实验4 最小生成树(8课时) 目的与要求 1、图的邻接矩阵存储结构及其相关运算的训练。 2、掌握最小生成树的概念。 3、利用Prim算法求解最小生成树。 实验背景: 给定一个地区的n个城市间的距离网,用Prim算法建立最小生成树,并计算得到的最小生成树的代价。要求显示得到的最小生成树中包括了哪些城市间的道路,并显示得到的最小生成树的代价。 内容与步骤: 1、建立采用邻接矩阵的图。 2、编程实现Prim算法,求解最小生成树的代价。 3、尝试利用Prim算法完成:HLOJ 9561 06-图最小生成树。

2017数据结构实验指导书

《数据结构》实验指导书 贵州大学 电子信息学院 通信工程

目录 实验一顺序表的操作 (3) 实验二链表操作 (8) 实验三集合、稀疏矩阵和广义表 (19) 实验四栈和队列 (42) 实验五二叉树操作、图形或网状结构 (55) 实验六查找、排序 (88) 贵州大学实验报告 (109)

实验一顺序表的操作 实验学时:2学时 实验类型:验证 实验要求:必修 一、实验目的和要求 1、熟练掌握线性表的基本操作在顺序存储和链式存储上的实现。 2、以线性表的各种操作(建立、插入、删除等)的实现为重点。 3、掌握线性表的动态分配顺序存储结构的定义和基本操作的实现。 二、实验内容及步骤要求 1、定义顺序表类型,输入一组整型数据,建立顺序表。 typedef int ElemType; //定义顺序表 struct List{ ElemType *list; int Size; int MaxSize; }; 2、实现该线性表的删除。 3、实现该线性表的插入。 4、实现线性表中数据的显示。 5、实现线性表数据的定位和查找。 6、编写一个主函数,调试上述算法。 7、完成实验报告。 三、实验原理、方法和手段 1、根据实验内容编程,上机调试、得出正确的运行程序。 2、编译运行程序,观察运行情况和输出结果。 四、实验条件 运行Visual c++的微机一台 五、实验结果与分析 对程序进行调试,并将运行结果进行截图、对所得到的的结果分析。 六、实验总结 记录实验感受、上机过程中遇到的困难及解决办法、遗留的问题、意见和建议等,并将其写入实验报告中。

【附录----源程序】 #include #include using namespace std; typedef int ElemType; struct List { ElemType *list; int Size; int MaxSize; }; //初始化线性表 bool InitList(List &L) { L.MaxSize=20; L.list=new ElemType[L.MaxSize]; for(int i=0;i<20&&L.list==NULL;i++) { L.list=new ElemType[L.MaxSize]; } if(L.list==NULL) { cout<<"无法分配内存空间,退出程序"<L.Size+1||pos<1) { cout<<"位置无效"<

数据结构实验报告

姓名: 学号: 班级: 2010年12月15日

实验一线性表的应用 【实验目的】 1、熟练掌握线性表的基本操作在顺序存储和链式存储上的实现。、; 2、以线性表的各种操作(建立、插入、删除、遍历等)的实现为重点; 3、掌握线性表的动态分配顺序存储结构的定义和基本操作的实现; 4、通过本章实验帮助学生加深对C语言的使用(特别是函数的参数调用、指针类型的 应用和链表的建立等各种基本操作)。 【实验内容】 约瑟夫问题的实现:n只猴子要选猴王,所有的猴子按1,2,…,n编号围坐一圈,从第一号开始按1,2…,m报数,凡报到m号的猴子退出圈外,如此次循环报数,知道圈内剩下一只猴子时,这个猴子就是猴王。编写一个程序实现上述过程,n和m由键盘输入。【实验要求】 1、要求用顺序表和链表分别实现约瑟夫问题。 2、独立完成,严禁抄袭。 3、上的实验报告有如下部分组成: ①实验名称 ②实验目的 ③实验内容:问题描述:数据描述:算法描述:程序清单:测试数据 算法: #include #include typedef struct LPeople { int num; struct LPeople *next; }peo; void Joseph(int n,int m) //用循环链表实现 { int i,j; peo *p,*q,*head; head=p=q=(peo *)malloc(sizeof(peo)); p->num=0;p->next=head; for(i=1;inum=i;q->next=p;p->next=head; } q=p;p=p->next; i=0;j=1; while(i

数据结构实验报告七查找、

云南大学软件学院数据结构实验报告 (本实验项目方案受“教育部人才培养模式创新实验区(X3108005)”项目资助)实验难度: A □ B □ C □ 学期:2010秋季学期 任课教师: 实验题目: 查找算法设计与实现 姓名: 王辉 学号: 20091120154 电子邮件: 完成提交时间: 2010 年 12 月 27 日

云南大学软件学院2010学年秋季学期 《数据结构实验》成绩考核表 学号:姓名:本人承担角色: 综合得分:(满分100分) 指导教师:年月日(注:此表在难度为C时使用,每个成员一份。)

(下面的内容由学生填写,格式统一为,字体: 楷体, 行距: 固定行距18,字号: 小四,个人报告按下面每一项的百分比打分。难度A满分70分,难度B满分90分)一、【实验构思(Conceive)】(10%) 1 哈希表查找。根据全年级学生的姓名,构造一个哈希表,选择适当的哈希函数和解决冲突的方法,设计并实现插入、删除和查找算法。 熟悉各种查找算法的思想。 2、掌握查找的实现过程。 3、学会在不同情况下运用不同结构和算法求解问题。 4 把每个学生的信息放在结构体中: typedef struct //记录 { NA name; NA tel; NA add; }Record; 5 void getin(Record* a)函数依次输入学生信息 6 人名折叠处理,先将用户名进行折叠处理折叠处理后的数,用除留余数法构造哈希函数,并返回模值。并采用二次探测再散列法解决冲突。 7姓名以汉语拼音形式,待填入哈希表的人名约30个,自行设计哈希函数,用线性探测再散列法或链地址法处理冲突;在查找的过程中给出比较的次数。完成按姓名查询的操作。将初始班级的通讯录信息存入文件。 二、【实验设计(Design)】(20%) (本部分应包括:抽象数据类型的功能规格说明、主程序模块、各子程序模块的伪码说明,主程序模块与各子程序模块间的调用关系) 1抽象数据类型的功能规格说明和结构体: #include

《数据结构》实验指导书

《数据结构》实验指导书 实验类别:课内实验实验课程名称:数据结构 实验室名称:软件工程实验室实验课程编号:N02070601 总学时:64 学分: 4 适用专业:计算机科学与技术、网络工程、物联网工程、数字媒体专业 先修课程:计算机科学导论、离散数学 实验在教学培养计划中地位、作用: 数据结构是计算机软件相关专业的主干课程,也是计算机软硬件专业的重要基础课程。数据结构课程实验的目的是通过实验掌握数据结构的基本理论和算法,并运用它们来解决实际问题。数据结构课程实验是提高学生动手能力的重要的实践教学环节,对于培养学生的基本素质以及掌握程序设计的基本技能并养成良好的程序设计习惯方面发挥重要的作用。 实验一线性表的应用(2学时) 1、实验目的 通过本实验,掌握线性表链式存储结构的基本原理和基本运算以及在实际问题中的应用。 2、实验内容 建立某班学生的通讯录,要求用链表存储。 具体功能包括: (1)可以实现插入一个同学的通讯录记录; (2)能够删除某位同学的通讯录; (3)对通讯录打印输出。 3、实验要求 (1)定义通讯录内容的结构体; (2)建立存储通讯录的链表结构并初始化; (3)建立主函数: 1)建立录入函数(返回主界面) 2)建立插入函数(返回主界面) 3)建立删除函数(返回主界面) 4)建立输出和打印函数(返回主界面) I)通过循环对所有成员记录输出 II)输出指定姓名的某个同学的通讯录记录 5)退出 实验二树的应用(2学时) 1、实验目的 通过本实验掌握二叉排序树的建立和排序算法,了解二叉排序树在实际中的应用并熟练运用二叉排序树解决实际问题。 2、实验内容 建立一个由多种化妆品品牌价格组成的二叉排序树,并按照价格从低到高的顺序 打印输出。 3、实验要求 (1)创建化妆品信息的结构体; (2)定义二叉排序树链表的结点结构; (3)依次输入各类化妆品品牌的价格并按二叉排序树的要求创建一个二叉排序树链表;(4)对二叉排序树进行中序遍历输出,打印按价格从低到高顺序排列的化妆品品牌信息。 实验三图的应用(2学时)

数据结构实验

长春大学计算机学院网络工程专业 数据结构实验报告 实验名称:实验二栈和队列的操作与应用 班级:网络14406 姓名:李奎学号:041440624 实验地点:日期: 一、实验目的: 1.熟练掌握栈和队列的特点。 2.掌握栈的定义和基本操作,熟练掌握顺序栈的操作及应用。 3.掌握链队的入队和出队等基本操作。 4.加深对栈结构和队列结构的理解,逐步培养解决实际问题的编程能力。 二、实验内容、要求和环境: 注:将完成的实验报告重命名为:班级+学号+姓名+(实验二),(如:041340538张三(实验二)),发邮件到:ccujsjzl@https://www.wendangku.net/doc/ce8415285.html,。提交时限:本次实验后24小时之内。 阅读程序,完成填空,并上机运行调试。 1、顺序栈,对于输入的任意一个非负十进制整数,打印输出与其等值的八进制数 (1)文件SqStackDef. h 中实现了栈的顺序存储表示 #define STACK_INIT_SIZE 10 /* 存储空间初始分配量*/ #define STACKINCREMENT 2 /* 存储空间分配增量*/ typedef struct SqStack { SElemType *base; /* 在栈构造之前和销毁之后,base 的值为NULL */ SElemType *top; /* 栈顶指针*/ int stacksize; /* 当前已分配的存储空间,以元素为单位*/ }SqStack; /* 顺序栈*/ (2)文件SqStackAlgo.h 中实现顺序栈的基本操作(存储结构由SqStackDef.h 定义) Status InitStack(SqStack &S) { /* 构造一个空栈S */ S.base=(SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType)); if(!S.base) exit(OVERFLOW); /* 存储分配失败*/ S.top=S.base; S.stacksize=STACK_INIT_SIZE; return OK; } int StackLength(SqStack S) { // 返回S 的元素个数,即栈的长度, 编写此函数

数据结构实验七图的创建与遍历

实验七图的创建与遍历 实验目的: 通过上机实验进一步掌握图的存储结构及基本操作的实现。 实验内容与要求: 要求: ⑴能根据输入的顶点、边/弧的信息建立图; ⑵实现图中顶点、边/弧的插入、删除; ⑶实现对该图的深度优先遍历; ⑷实现对该图的广度优先遍历。 备注:单号基于邻接矩阵,双号基于邻接表存储结构实现上述操作。算法设计: #include #include #define INFINITY 32767 #define MAX_VEX 20 //最大顶点个数 #define QUEUE_SIZE (MAX_VEX+1) //队列长度 using namespace std; bool *visited; //访问标志数组 //图的邻接矩阵存储结构 typedef struct{ char *vexs; //顶点向量 int arcs[MAX_VEX][MAX_VEX]; //邻接矩阵 int vexnum,arcnum; //图的当前顶点数和弧数 }Graph; //队列类 class Queue{ public: void InitQueue() { base=(int *)malloc(QUEUE_SIZE*sizeof(int)); front=rear=0;

. } void EnQueue(int e) { base[rear]=e; rear=(rear+1)%QUEUE_SIZE; } void DeQueue(int &e) { e=base[front]; front=(front+1)%QUEUE_SIZE; } public: int *base; int front; int rear; }; //图G中查找元素c的位置 int Locate(Graph G,char c) { for(int i=0;i

数据结构实验指导书及答案(徐州工程学院)

《数据结构实验》实验指导书及答案

信电工程学院计算机科学和技术教研室编 2011.12 数据结构实验所有代码整理 作者郑涛 声明:在这里我整理了数据结构实验的所有代码,希望能对大家的数据结构实验的考试有所帮助,大家可以有选择地浏览,特别针对一些重点知识需要加强记忆(ps:重点知识最好让孙天凯给出),希望大家能够在数据结构实验的考试中取得令人满意的成绩,如果有做的 不好的地方请大家谅解并欢迎予以指正。 实验一熟悉编程环境 实验预备知识: 1.熟悉本课程的语言编译环境(TC或VC),能够用C语言编写完整的程序,并能够发现和改正错误。 2.能够灵活的编写C程序,并能够熟练输入C程序。 一、实验目的 1.熟悉C语言编译环境,掌握C程序的编写、编译、运行和调试过程。 2.能够熟练的将C程序存储到指定位置。 二、实验环境 ⒈硬件:每个学生需配备计算机一台。 ⒉软件:Windows操作系统+Turbo C; 三、实验要求 1.将实验中每个功能用一个函数实现。 2.每个输入前要有输入提示(如:请输入2个整数当中用空格分割:),每个输出数据都要求有内容说明(如:280和100的和是:380。)。 3.函数名称和变量名称等用英文或英文简写(每个单词第一个字母大写)形式说明。 四、实验内容 1.在自己的U盘中建立“姓名+学号”文件夹,并在该文件夹中创建“实验1”文件夹(以后每次实验分别创建对应的文件夹),本次实验的所有程序和数据都要求存储到本文件夹中(以后实验都按照本次要求)。

2.编写一个输入某个学生10门课程成绩的函数(10门课程成绩放到结构体数组中,结构体包括:课程编号,课程名称,课程成绩)。 3.编写一个求10门成绩中最高成绩的函数,输出最高成绩和对应的课程名称,如果有多个最高成绩,则每个最高成绩均输出。 4.编写一个求10门成绩平均成绩的函数。 5.编写函数求出比平均成绩高的所有课程及成绩。 #include #include struct subject { int subject_id; char subject_name[20]; double subject_grades; }; struct subject sub[10]; void input() { int i; printf("please input:\n"); for(i=0;i<10;i++) { scanf("%d %s %lf",&sub[i].subject_id,&sub[i].subject_name,&sub[i].subject_g rades); } printf("you just input:\n"); for(i=0;i<3;i++) { printf("%d %s %lf\n",sub[i].subject_id,sub[i].subject_name,sub[i].subject_g rades); } } void subject_max() { int i,flag; double max=sub[0].subject_grades; for(i=0;i<10;i++) { if(sub[i].subject_grades>max)

数据结构实验指导书(C版)

数据结构实验指导书(C语言版) 2017年9月

目录 1、顺序表的实现 (1) 2、链栈的实现 (3) 3、前序遍历二叉树 (5) 4、图的深度优先遍历算法 (7) 5、散列查找 (9)

1、顺序表的实现 1. 实验目的 ⑴掌握线性表的顺序存储结构; ⑵验证顺序表及其基本操作的实现; ⑶理解算法与程序的关系,能够将顺序表算法转换为对应的程序。 2. 实验内容 ⑴建立含有若干个元素的顺序表; ⑵对已建立的顺序表实现插入、删除、查找等基本操作。 3. 实现提示 定义顺序表的数据类型——顺序表结构体SeqList,在SeqList基础上实现题目要求的插入、删除、查找等基本操作,为便于查看操作结果,设计一个输出函数依次输出顺序表的元素。简单起见,本实验假定线性表的数据元素为int型,要求学生: (1)将实验程序调试通过后,用模板类改写; (2)加入求线性表的长度等基本操作; (3)重新给定测试数据,验证抛出异常机制。 4. 实验程序 在编程环境下新建一个工程“顺序表验证实验”,并新建相应文件,文件包括顺序表结构体SeqList的定义,范例程序如下: #define MaxSize 100 /*假设顺序表最多存放100个元素*/ typedef int DataType; /*定义线性表的数据类型,假设为int型*/ typedef struct { DataType data[MaxSize]; /*存放数据元素的数组*/ int length; /*线性表的长度*/ } SeqList; 文件包括建立顺序表、遍历顺序表、按值查找、插入操作、删除操作成员函数的定义,范例程序如下: int CreatList(SeqList *L, DataType a[ ], int n) { if (n > MaxSize) {printf("顺序表的空间不够,无法建立顺序表\n"); return 0;} for (int i = 0; i < n; i++) L->data[i] = a[i]; L->length = n; return 1; }

相关文档