文档库 最新最全的文档下载
当前位置:文档库 › Ni-Fe-P化学镀层的耐腐蚀性能

Ni-Fe-P化学镀层的耐腐蚀性能

Ni-Fe-P化学镀层的耐腐蚀性能
Ni-Fe-P化学镀层的耐腐蚀性能

化学镀镍镀层性能

化学镀镍:镀层性能 发布日期:2013-04-10 浏览次数:14 核心提示:化学镀层,特别是化学镀镍层有着广泛的工业应用,这主要是由于它具有独特的耐蚀性和耐磨性,镀层的结构和化学组成直接决定它们的这些性能及其他重要特性。 1结构 化学镀层,特别是化学镀镍层有着广泛的工业应用,这主要是由于它具有独特的耐蚀性和耐磨性,镀层的结构和化学组成直接决定它们的这些性能及其他重要特性。这些性能同样取决于槽液组成和沉积参数(如,温度和搅拌),化学镀的另一个重要优点是它能够在任意形状的物体上沉积均匀的镀层。 化学镀镍层依据所使用的还原剂分为两类:一类是Ni—P合金;另一类是N —B合金。 镀态化学镀层是一种亚稳态过饱和合金[13],在酸性镀槽中用次磷酸盐作还原剂沉积的化学镀层结构为非晶态或液体状[13],在330℃左右热处理发现(文献[3,13],见“基本原理”第16章)产生半结晶,面心立方(fcc)镍分布在金属互化物(如,Ni3P和Ni3B)中。沉积过程中不会形成金属互化物,因此镀态化学镀镍层中,P原子不规则地夹杂在Ni原子之间,正如上面所讨论(如图18—3所示),Ni-P镀层中的P含量取决于镀槽的pH值。通常,槽液pH值越高,镀层的含P量越低,镍的结晶态越高,也就是说,P含量越低,组成膜层的单元镍晶粒的平均尺寸越大。因此,可以认为,P在晶体形成中起抑制剂的作用。可以通过下面简单形式进行解释:当P原子夹杂到Ni原子之间时,P原子的存在,减少了Ni原子之间接触形成延展镍晶体的可能性。沉积过程中伴随H2的逸出,接近生长膜处的pH值将升高,而随后的搅拌使pH值回到原来的较低值,这种周期变化使得P含量随膜层厚度变化,20世纪50年代[14]某些研究人员已经观察到了这一现象。另外,P含量还决定材料密度,图18—4表明,在P含量为0时,镀层的密度接近其金属块的密度[15]。

影响镀锌层耐腐蚀性的因素探讨

影响镀锌层耐腐蚀性的因素探讨摘要:采用中性盐雾试验来检测锌镀层的耐蚀性,以耐盐雾试验时间长短,锌镀层外观变化程度来判断锌镀层耐蚀性的好坏。介绍了导致镀锌层耐腐蚀性差的原因,以及提高锌镀层耐性性的生产工艺及维护方法,使镀锌层耐腐蚀性能得到提高。 引言 锌镀层对于钢铁而言,属于阳极性镀层,能提供可靠的电化学保护。在工业生产中被广泛应用。锌镀层经过钝化后耐蚀性可提高6-8倍,如何提高锌镀层耐蚀性是镀锌生产厂家时刻关注的问题。 锌镀层多通过中性盐雾试验(NSS试验)来检测耐蚀性。目前许多镀锌生产厂家因电镀工件未能通过盐雾试验,大量工件返修,造成诸多浪费,生产成本增加。如何提高锌镀层耐蚀性,对于广大镀锌生产厂家是一个十分重要的课题。本文通过分析盐雾试验失败的原因,介绍提高锌镀层耐蚀性的方法,供广大读者借鉴。 1 与锌镀层耐蚀性有关的因素 锌镀层耐蚀性与下面条件有关: 1)锌镀层纯度锌镀层越纯净,耐蚀性越好;镀锌层含金属杂质越多,产生腐蚀原电池的机会越多,耐蚀性越差;锌镀层夹杂有机物越多,耐蚀性越差。 2)镀锌层的结合力镀层结合力差、起泡、脱皮、脆性区易发生腐蚀,镀锌层孔隙率也会影响镀层耐蚀性。 3)镀锌层的均匀度镀件不同部位厚度相差不应大于5um。

4)使用环境锌在干燥空气中几乎不发生变化,在通风不良,空气潮湿条件下,与非金属的挥发物(低分子梭酸、醛、酚、氨等)接触时易遭腐蚀。 2 影响镀锌层耐蚀性的原因 镀锌层耐蚀性差的原因众多,除钝化液因素外,还与工件表面状态、镀液状态、前处理、电镀过程操作方式、钝化后处理、电镀生产管理、工件存放条件等众多因素有关。 镀锌层耐蚀性差的原因: 2.1 前处理不良 工件前处理不良,导致电镀质量差。 2.2 电镀过程操作不当 1) 电镀时电流过大,造成镀层粗糙;电镀时间短,镀层太薄; 2)工件出镀槽和钝化后清洗不彻底; 3)工件在最后工序没有烘干; 4)老化温度过高造成钝化膜龟裂; 5)镀液温度过高造成镀层抗蚀能力差。 2.3 镀液中杂质过多 1)镀液中含重金属杂质多,重金属杂质导致镀层腐蚀加快;2)镀液中光亮剂过多,造成镀层夹杂光亮剂过多导致耐蚀性变差;3)镀液中有机杂质过多,造成镀层质量差;4)镀液不洁净,造成镀层质量差。 2.4 钝化液配制及使用出现的问题 1)钝化液配制时,最好使用纯水,自来水也应洁净;2)钝化液使用过程

镀层的耐蚀性能试验pdf

镀层的耐蚀性能试验 镀层面耐蚀性测定方法有户外曝晒腐蚀试验和人工加速腐蚀试验。户外曝晒试验对鉴定户外使用的镀层性能和电镀工艺特别有用,其试验结果通常可作为制定厚度标准的依据。人工加速腐蚀试验主要是为了快速鉴定电镀层的质量。但任何一种加速腐蚀试验都无法表征和代替镀层的实际腐蚀环境和腐蚀状态,试验结果只能提供相对性。 一、不同环境的腐蚀条件 一般产品的使用环境大致分为室内环境、室外环境和海洋气候环境三种。. (1)室内环境。空气中侵蚀金属的主要因素大多数是氧气。但是当空气中有一定的相对湿度(即所谓临界湿度)时才会发生重要的实际腐蚀作用。一般临界湿度约在60%~70%之间,超过临界湿度越大,则腐蚀作用越大。 在居住和工作房间中夏季的相对湿度高,因而腐蚀作用比冬天大。在山区和海洋地区,室内的相对湿度大多比平坦的内地高,腐蚀作用相对大。如果空气中不存在特别侵蚀的成分,那么腐蚀的量一般来说就比较小。因此,腐蚀作用会由于尘埃的增加,空气中的气态杂质,特别是二氧化硫、酸雾(由燃烧气体产生)、含硫有机化合物(厨房和餐室中)、氨气(主要是厕所,木工场)等含量增加而加剧。 更严重的腐蚀可能是由于制件和各种物体相接触而产生。如接触汗水、木材(有机酸或浸渍剂),纸张(酸、碱、氯和硫化物)等。 (2)室外环境。在室外环境中腐蚀影响的情况基本上同室内环境相似,它们的主要差别是室外环境大多数情况会有更多的杂质和大气尘埃。 雨水一方面润湿金属,促进零件腐蚀;另一方面,它也可能加速对腐蚀成分的冲洗,从而减轻材料的腐蚀。 室外环境中主要腐蚀因素起源于烟道气,这些气体使空气中硫化物的含量加大,特别是二氧化硫、硫酸和硫酸铵。因此,大气腐蚀一般是工业区大于市区,而市区又大于农村,在住宅区冬天空气中硫含量大都显著高于夏天。 (3)海洋气候环境。在海岸上,大都有高的相对湿度(80%以上)和高的盐含量,这促使腐蚀作用增强。但腐蚀危险地带沿海岸只有几公里宽,并且在这区域的内部也有显著的差别。如果物体直接受到海水区域的细水雾粒作用,则还会加速腐蚀作用。 如放置在船舶甲板上的物体,受到直接海水飞溅,就会产生严重的腐蚀。在这种情况下将使腐蚀作用增高到和最严重的工业区大气腐蚀相同。 二、各种镀层的腐蚀情况1.金属的平均腐蚀速度 各地区金属的平均腐蚀速度见表l0—3—1。 2.金属电镀层在不同环境下的腐蚀 (1)铅镀层。在室内环境中,铅镀层大多数是很稳定的。但在以下4种情况下可能形成显著 表10—3—1 各地区金属的平均腐蚀速度 (单位:μm/a) 的腐蚀:

材料的物理性能与化学性能

、物理性能 物理性能是指材料固有地属性,金属地物理性能包括密度、熔点、电性能、热性能、磁性能等. 文档来自于网络搜索 ()密度:密度是指在一定温度下单位体积物质地质量,密度表达式如下:文档来自于网络搜索 ρ 式中ρ——物质地密度(); ——物质地质量(); ——物质地体积(). 常用材料地密度(℃) 材料铅铜铁钛铝锡钨塑料玻璃 钢 碳纤维复合材料密度[] 密度意义:密度地大小很大程度上决定了工件地自重,对于要求质轻地工件宜采用密度较小地材料(如铝、钛、塑料、复合材料等);工程上对零件或计算毛坯地质量也要利用密度.文档来自于网络搜索 ()熔点:是材料从固态转变为液态地温度,金属等晶体材料一般具有固定地熔点,而高分子材料等非晶体材料一般没有固定地熔点. 文档来自于网络搜索 常用材料地熔点 材料钨钼钛铁铜铝铅铋锡铸铁碳钢铝合金 熔 点℃ 熔点意义:金属地熔点是热加工地重要工艺参数;对选材有影响,不同熔点地金属具有不同地应用场合:高地熔点金属(如钨、钼等)可用于制造耐高温地零件(如火箭、导弹、燃气轮机零件,电火花加工、焊接电极等),低地熔点金属(如铅、铋、锡等)可用于制造熔丝、焊接钎料等. 文档来自于网络搜索 ()电阻率:电阻率用ρ 表示,电阻率是单位长度、单位截面积地电阻值,其单位为Ω.文档来自于网络搜索 电阻率地意义:是设计导电材料和绝缘材料地主要依据.材料地电阻率ρ越小,导电性能越好.金属中银地导电性最好、铜与铝次之.通常金属地纯度越高,其导电性越好,合金地导电性比纯金属差,高分子材料和陶瓷一般都是绝缘体.导电器材常选用导电性良好地材料,以减少损耗;而加热元件、电阻丝则选用导电性差地材料制作,以提高功率. 文档来自于网络搜索 ()导热率:导热率用导热率λ表示,其含义是在单位厚度金属,温差为℃时,每秒钟从单位断面通过地热量.单位为(.K).文档来自于网络搜索 常用金属地热导率 材料银铜铝铁灰铸铁碳钢 热导率[(.K)] (℃) 金属具有良好地导热性,尤其是银、铜、铝地导热性很好;一般纯金属具有良好地导热性,合金地成分越复杂,其导热性越差. 文档来自于网络搜索 导热率地意义:是传热设备和元件应考虑地主要性能,对热加工工艺性能也有影响. 散热器等传热元件应采用导热性好地材料制造;保温器材应采用导热性差地材料制造.热加工工艺与导热性有密切关系,在热处理、铸造、锻造、焊接过程中,若材料地导热性差,则

PETG的耐化学性能很好的

PETG的耐化学性能很好的,比PC PMMA等都好。 化学品名耐化性 醋酸Acetic Acid(40%) ◎ 丙酮Acetone ○ 硫酸铝Aluminum Sulphate ◎ 氨水Ammonia(10%) ○ 戊基醋酸Amyl Acetate ○ 戊基乙醇Amyl Alcohol ◎ 苯Benzene △ 安息酸Benzoic Acid(Solid) ◎ 苯甲基醋酸Benzyl Acetate △ 苯甲基乙酸Benzyl Alcohol △ 丁基醋酸Butyl Acetate △ 丁基乙醇Butyl Alcohol ◎ 丁基硬酯酸Butyl Stcarate ◎ 四氯化碳arbon Tetrachloride ◎ 柠檬酸Citric Acid ◎ 乙醇腊Celyl Alcohol ◎ 氯仿Chloroform △ 邻苯二甲酸盐Ci-alkyl Phthalate ◎ 清洁剂Detergents ◎ 二乙基乙醇2-Ethyl Ethanol ◎ 乙基醋酸Ethyl Acetate △ 甲醛Formaldehyde(40%) ◎ 蚁酸Formic Acid(30%) ◎ 香叶醇Geraniol ◎ 乙二醇Glycol ◎ 丙三醇Glycerine ◎ 氢酸Hydrobromic Acid(50%) ◎ 氢氯酸Hydrobromic Acid(10%) ◎ 氢氟酸Hydrobromic Acid(60%) ○ 过氧化氢Hydrogen peroxide ◎ 异丙醇Isopropyl Alcohol ◎ 润滑油Lubrication Grease and Oils ◎ 甲醇Methyl alcohol ◎ 矿物油Mineral oil ○ 石腊Paraffin ◎ 汽油Petrol ◎ 碳酸钠Sodium Garbonate ◎ 氯化钠Sodium Chloride ◎ 氢氧化钠Sodium Hydroxide △ 硫酸Sulphuric Acid(30% dilute) ◎ 甲苯Toluene ◎酒石酸Trataric Acid ◎ 二甲苯Xylene ◎ 氯化锌Zinc Chloride ◎ ◎代表优Completely non-erosive / ○代表可Slightly erosive / △代表劣Unusable ◆上表为测试数值,仅供参考用。/ Testing value of the above list for reference only

3种锌镍合金镀层耐蚀性的电化学研究

3种锌镍合金镀层耐蚀性的电化学研究 常立民,陈 丹,石淑云 (吉林师范大学化学学院,吉林四平 136000) [摘 要] Zn-N i 合金镀层作为优良的钢铁防护性镀层,具有良好的耐蚀性,可替代镉镀层。采用极化曲线(Tafel)、电化学噪声(EN )和电化学交流阻抗谱(E I S)等电化学方法,检测和评价了直流电沉积(DC)、单脉冲电沉积(PC)和周期换向脉冲电沉积(PRC)下制备的Zn-N i 合金镀层的耐蚀性。所选用的试样具有相同镍含量。结果表明,周期换向脉冲电沉积制备的Zn-N i 合金镀层耐蚀性能最佳,单脉冲电沉积制备的Zn-N i 合金镀层的耐蚀性优于直流电沉积制备的Zn-N i 合金镀层。 [关键词] 脉冲电镀;直流电镀;周期换向脉冲电镀;Zn-N i 合金;耐蚀性能;电化学噪声;电化学交流阻抗 [中图分类号]TQ 153.2 [文献标识码]A [文章编号]1001-1560(2008)10-0017-03 [收稿日期] 20080710 [基金项目] 吉林省科技发展计划项目(20000513) 0 前 言 为了满足工业生产对材料高耐蚀性的要求,防护 性合金镀层主要采用Zn-N i 、Zn-Fe 、Zn-Co 等锌基合金 镀层,并以此替代镉镀层。N i 质量分数为10%~15% 的Zn-N i 合金镀层在工业大气和海洋大气中,耐蚀性 是纯Zn 镀层的3~6倍,与镀Cd 层相当,优于镀A l 层。随着脉冲电镀理论研究的进一步成熟,脉冲电镀 已能够解决直流电镀不能解决的问题,因而在非贵金 属电镀领域有着较广泛的应用。此外,脉冲电镀能够 借助关断时间内扩散层的松弛克服自然传递的限制, 让金属离子浓度得到恢复,对金属离子共沉积有利,使 它在合金电镀领域也有更大的发展空间。 关于周期换向脉冲电沉积Zn-N i 合金镀层的研究 刚刚起步,相关文献很少,但已展现出良好的应用前 景。Ra m anauskas R 等[1]研究了脉冲参数对Zn-N i 合金镀层表面形貌、晶粒尺寸、晶格缺陷和耐蚀性的影响。周期换向脉冲电沉积Zn-N i 合金镀层与直流电沉积镀层相比,具有更平整的表面,晶粒尺寸明显减小、晶粒分散更均匀及晶格缺陷数目增多,这都是其耐蚀性提高的主要原因。B ajat J B 等[2]发现脉冲参数通过影响Zn-N i 合金的相结构和化学成分而影响合金的耐蚀性。本工作利用极化曲线、电化学噪声和电化学交流阻抗谱等电化学方法,研究了不同沉积方式下制备的Zn-N i 合金镀层的耐蚀性能。1 试 验1.1 镀液成分及工艺参数基础镀液成分:100.0g /L ZnSO 4#7H 2O,91.5g /L N i S O 4#6H 2O,20.0g /L H 3B O 3,100.0g /L Na 2SO 4,20.0g /L (NH 4)2SO 4。试剂均为分析纯,用去离子水配成电镀液。阳极为可溶性镍板(质量分数\99.9%),阴极采用的铁片为基体(规格为25.0mm @40.0mm @0.3mm ),其非工作面绝缘。基础镀液配方不变,通过改变电沉积的方式进行制样。电镀时间为90m i n ,制得试样的镀层厚度约为20L m 。本试验所用试样分别在直流(DC )、单脉冲(PC )和周期换向脉冲 (PRC )下制备,N i 质量分数分别为11.45%,11.28%, 11.68%。 1.2 电化学测试 采用极化曲线、电化学噪声和电化学交流阻抗谱 评价镀层的耐蚀性能。所有电化学测试均在室温下进 行,电势均相对于饱和甘汞电极,采用A utolab 公司的 电化学工作站进行测量,腐蚀介质为中性3.5%NaC l 溶液。极化曲线、电化学阻抗测试采用三电极体系,以 饱和甘汞电极为参比电极,铂电极为对电极。极化曲 线扫描速度为1mV /s ,电化学阻抗频率范围10kH z~ 100mH z ,测试施加幅值为10mV 的扰动电位。电化学第41卷 第10期 2008年10月材料保护M aterials P rotection V o.l 41 N o .10O ct .2008

化学镀镍液的主要组成及其作用

化学镀镍液的主要组成及其作用 优异的镀液配方对于产生最优质的化学镀镍层是必不可少的。化学镀镍溶液应包括:镍盐、还原剂、络合剂、缓冲剂、促进剂、稳定剂、光亮剂、润湿剂等。 主盐 化学镀镍溶液中的主盐就是镍盐,如硫酸镍、氯化镍、醋酸镍等,由它们提供化学镀反应过程中所需要的镍离子。早期曾用过氯化镍做主盐,但由于氯离子的存在不仅会降低镀层的耐蚀性,还产生拉应力,所以目前已很少有人使用。同硫酸镍相比用醋酸镍做主盐对镀层性能是有益的。但因其价格昂贵而无人使用。其实最理想的镍离子来源应该是次磷酸镍,使用它不至于在镀浴中积存大量的硫酸根,也不至于在使用中随着补加次磷酸钠而带入大量钠离子,同样因其价格因素而不能被工业化应用。目前应用最多的就是硫酸镍,由于制造工艺稍有不同而有两种结晶水的硫酸镍。因为硫酸镍是主盐,用量大,在镀中还要进行不断的补加,所含杂质元素会在镀液的积累,造成镀液镀速下降、寿命缩短,还会影响到镀层性能,尤其是耐蚀性。所以在采购硫酸镍时应该力求供货方提供可靠的成分化验单,做到每个批量的质量稳定,尤其要注意对镀液有害的杂质尤其是重金属元素的控制。 还原剂 用得最多的还原剂是次磷酸钠,原因在于它的价格低、镀液容易控制,而且合金镀层性能良好。次磷酸钠在水中易于溶解,水溶液的pH值为6。是白磷溶于NaOH中,加热而得到的产物。目前国内的次磷酸钠制造水平很高,除了国内需求外还大量出口。 络合剂 化学镀镍溶液中除了主盐与还原剂以外,最重要的组成部分就是络合剂。镀液性能的差异、寿命长短主要取决于络合剂的选用及其搭配关系。 络合剂的第一个作用就是防止镀液析出沉淀,增加镀液稳定性并延长使用寿命。如果镀液中没有络合剂存在,由于镍的氢氧化物溶解度较小,在酸性镀液中便可析出浅绿色絮状含水氢氧化镍沉淀。硫酸镍溶于水后形成六水合镍离子,它有水解倾向,水解后呈酸性,这时即析出了氢氧化物沉淀。如果六水合镍离子中有部分络合剂存在则可以明显提高其抗水解能力,甚至有可能在碱性环境中以镍离子形式存在。不过,pH值增加,六水合镍离子中的水分子会被OH根取代,促使水解加剧,要完全抑制水解反应,镍离子必须全部螯合以得到抑制水解的最大稳定性。镀液中还有较多次磷酸根离子存大,但由于次磷酸镍溶液度较大,一般不致析出沉淀。镀液使用后期,溶液中亚磷酸根聚集,浓度增大,容易析出白色的NiHPO3.6H2O沉淀。加入络合剂以后溶液中游离镍离子浓度大幅度降低,可以抑制镀液后期亚磷酸镍沉淀的析出。 络合剂的第二个作用就是提高沉积速度,加络合剂后沉积速度增加的数据很多。加入络合剂使镀液中游离镍离子浓度大幅度下降,从质量作用定律看降低反应物浓度反而提高了反应速度是不可能的,所以这个问题只能从动力学角度来解释。简单的说法是有机添加剂吸附在工件表面后,提高了它的活性,为次磷酸根释放活性原子氢提供更多的激活能,从而增加了沉积反应速度。络合剂在此也起了加速剂的作用。 能应用于化学镀镍中的络合剂很多,但在化学镀镍溶液中所用的络合剂则要求它们具有较大的溶解度,存在一定的反应活性,价格因素也不容忽视。目前,常用的络合剂主要是一些脂肪族羧酸及其取代衍生物,如丁二酸、柠檬酸、乳酸、苹果酸及甘氨酸等,或用它们的盐类。在碱浴中则用焦磷酸盐、柠檬酸盐及铵盐。不饱和脂肪酸很少使用,因不饱和烃在饱和时要吸收氢原子,降低还原剂的利用率。而常见的一元羧酸如甲酸、乙酸等则很少使用,乙酸常用作缓冲剂,丙酸则用作加速剂。 稳定剂 化学镀镍溶液是一个热力学不稳定体系,由于种种原因,如局部过热、pH值提高,或

热浸镀Al-Zn-In-Si和Al-Zn-Sn-Si镀层的耐腐蚀性能及微观组织研究

热浸镀Al-Zn-In-Si和Al-Zn-Sn-Si镀层的耐腐蚀性能及微观组 织研究 热浸镀铝是一种简单高效的表面镀层技术,钢铁镀铝后可以增强其耐腐蚀、耐候及抗高温氧化等诸多性能,从而减少了钢铁因腐蚀而造成的严重经济损失,延长了钢材的使用寿命,提高了经济效益。由于热浸镀铝层表面的纯铝易钝化,除了在含有较高Cl-的环境中外,一般情况下为阴极性镀层,在镀层有缺陷的情况下不能对基体提供有效的阴极保护,所以国外发展了具有全介质牺牲阳极性能的55%Al-43.4%Zn-1.6%Si合金镀层,但55%Al-43.4%Zn-1.6%Si合金镀层的耐蚀性明显低于热浸镀纯铝。 为此,本文借鉴铝合金牺牲阳极的原理,对热浸镀纯铝进行改进,以期研究出一种既具有全介质牺牲阳极性能、而耐蚀性又好于55%Al-43.4%Zn-1.6%Si合金镀层的热浸镀铝层。本文通过在铝液中添加Zn、In、Sn等合金元素,采用熔剂法制备了表面光滑平整的热浸镀Al-Zn-Si、Al-Zn-In-Si、Al-Zn-Sn-Si镀层试样。 实验中首先研究了添加Zn、In、Sn元素对镀层的极化曲线和全浸腐蚀实验失重的影响,其次分析了热浸镀Al-Zn-In-Si、Al-Zn-Sn-Si镀层的组成、结构,最后研究了热浸镀Al-Zn-In-Si、 Al-Zn-Sn-Si镀层在Cl-浓度下降时极性逆转的情况,得出如下结论:(1)在热浸镀Al-Zn-Si镀层中,综合确定含4%Zn、5%Zn、6%Zn的热浸镀层的耐蚀性较好;在Al-Zn-In-Si镀层中,综合确定 Al-5%Zn-0.02%In-0.1%Si热浸镀层的耐蚀性最好;在Al-Zn-Sn-Si镀层中,综合确定Al-4%Zn-0.06%Sn-0.1%Si热浸镀层的耐蚀性最好,其次是 Al-5%Zn-0.06%Sn-0.1%Si镀层。(2)所有添加Zn、In、Sn的热浸铝镀层的组织都是由表面的富铝层和内部的合金层组成,且镀层与基体间为冶金结合。

SilcoTek不锈钢耐腐蚀涂层分析

SilcoTek不锈钢耐腐蚀涂层分析 304和316不锈钢是许多行业中常用的不锈钢材料,两种等级的主要区别是在316不锈钢中加入了2-3%的钼,这一添加大大提高了材料的耐腐蚀性能,而材料良好的保护涂层也可以显著延长金属材料的使用寿命,适应各种苛刻严酷的环境。 研究304和316不锈钢取样片(每种各有一块样品具有SilcoTek®的Dursan 钝化涂层)在20%盐酸、25%硫酸、5%盐酸溶液中浸泡一周的性能对比,结果表明在5%盐酸环境中,涂覆和未涂覆钝化涂层的304和316不锈钢片腐蚀情况差异巨大,Dursan 涂层的涂覆可有效地降低304和316不锈钢的腐蚀速率,降低速率大致相同(图三)。在更恶劣的酸性腐蚀条件下(即在20%盐酸,25%硫酸)下,无论是否有Dursan涂层,304 不锈钢材料都不能很好地抵御腐蚀(图一、二),相反具有Dursan涂层的316 不锈钢在这些恶劣环境中腐蚀情况大大改善。 这些结果表明,解决不锈钢腐蚀问题的可将基体金属和涂层作为一个整体来考虑,而不是仅仅选择一个涂层并将其应用于任何基准金属。环境的恶劣程度、基体金属材质、涂层和基体金属之间的界面、涂层本身的质量和最终用户的期望(即预期寿命和允许的材料损失等),所有问题综合考虑才能为腐蚀问题提供一个成功解决方案。因此,在客户作出决定和拓展应用之前,可在实际的应用环境中进行测试以验证钝化效果的可靠性。SilcoTek®涂层以其超强惰性、耐腐蚀而著称,它可将将材料表面功能化以获得特定的惰性性能,有效防止金属材料表面的腐蚀。 北京明尼克分析仪器设备中心全面代理美国SilcoTek®公司钝化产品,长年备有钝化产品现货,同时承接硅钝化表面处理技术定制服务,在硅表面钝化处理领域为您提供全方面支持与服务。 1

电镀镍与化学镀镍

电镀镍的特点、性能、用途: 1、电镀镍层在空气中的稳定性很高,由于金属镍具有很强的钝化能力,在表面能迅速生成一层极薄的钝化 膜,能抵抗大气、碱和某些酸的腐蚀。 2 、电镀镍结晶极其细小,并且具有优良的抛光性能。经抛光的镍镀层可得到镜面般的光泽外表,同时在大 气中可长期保持其光泽。所以,电镀层常用于装饰。 3、镍镀层的硬度比较高,可以提高制品表面的耐磨性,在印刷工业中常用镀镍层来提高铅表面的硬度。 由于金属镍具有较高的化学稳定性,有些化工设备也常用较厚的镇镀层,以防止被介质腐蚀。镀镍层 还广泛的应用在功能性方面,如修复被磨损、被腐蚀的零件,采用刷镀技术进行局部电镀。采用电铸 工艺,用来制造印刷行业的电铸版、唱片模以及其它模具。厚的镀镍层具有良好的耐磨性,可作为耐 磨镀层。尤其是近几年来发展了复合电镀,可沉积出夹有耐磨微粒的复合镍镀层,其硬度和耐磨性比镀 镍层更高。若以石墨或氟化石墨作为分散微粒,则获得的镍-石墨或镍-氟化石墨复合镀层就具有很好的 自润滑性,可用作为润滑镀层。黑镍镀层作为光学仪器的镀覆或装饰镀覆层亦都有着广泛的应用。 4、镀镍的应用面很广,可作为防护装饰性镀层,在钢铁、锌压铸件、铝合金及铜合金表面上,保护基体材 料不受腐蚀或起光亮装饰作用;也常作为其他镀层的中间镀层,在其上再镀一薄层铬,或镀一层仿金层, 其抗蚀性更好,外观更美。在功能性应用方面,在特殊行业的零件上镀镍约1~3mm厚,可达到修复目

的。特别是在连续铸造结晶器、电子元件表面的模具、合金的压铸模具、形状复杂的宇航发动机 部件和微型电子元件的制造等方应用越来越广泛。 5、在电镀中,由于电镀镍具有很多优异性能,其加工量仅次于电镀锌而居第二位,其消耗量占到镍总产量 的10%左右。 化学镀镍的特点、性能、用途: 1、厚度均匀性厚度均匀和均镀能力好是化学镀镍的一大特点,也是应用广泛的原因之一,化学镀镍避 免了电镀层由于电流分布不均匀而带来的厚度不均匀。化学镀时,只要零件表面和镀液接触,镀液中消 耗的成份能及时得到补充,镀件部位的镀层厚度都基本相同,即使凹槽、缝隙、盲孔也是如此。 2、镀件不会渗氢,没有氢脆,化学镀镍后不需要除氢。 3、很多材料和零部件的功能如耐蚀、抗高温氧化性等比电镀镍好。 4、可沉积在各种材料的表面上,例如:钢镍基合金、锌基合金、铝合金、玻璃、陶瓷、塑料、半导体等材 料的表面上,从而为提高这些材料的性能创造了条件。 5、不需要一般电镀所需的直流电机或控制设备。 6、热处理温度低,只要在400℃以下经不同保温时间后,可得到不同的耐蚀性和耐磨性,因此,特别适用 于形状复杂,表面要求耐磨和耐蚀的零部件的功能性镀层等

热浸Al-Zn-Mg镀层显微组织及耐蚀性能的研究

热浸Al-Zn-Mg镀层显微组织及耐蚀性能的研究热浸镀铝锌镀层因其兼具镀锌的牺牲阳极保护和镀铝的隔离防护的优点,在工业生产中有着广阔的应用前景。在铝锌熔池中添加不同的合金元素,可获得满足不同使用要求的合金镀层。 铝锌熔池中添加镁元素可以大大改善镀层的耐腐蚀性能。至今为止,对铝锌镁合金镀层的研究工作主要集中在低铝含量镀层,镁对高铝含量铝锌镀层的影响则少有研究。 本课题组前期在研究镁对45Al-Zn高铝合金镀层的影响时,发现了周期层状组织,此外,盐雾腐蚀结果表明,镀层的耐蚀性能得到了提高。为深入了解这种周期层状组织,本工作借助扫描电子显微镜(SEM)、能谱分析仪(EDS)、X射线衍射分析仪(XRD)、X射线光电子能谱分析(XPS)、电化学工作站等设备仪器,通过改变热浸镀铝锌镁熔池中的铝和镁含量以及浸镀时间,对镀层中周期层状组织的组织结构、形成条件和耐蚀性能进行了系统研究。 对铝锌镁镀层中典型的周期层状组织进行深入分析后发现,周期层状组织由交替排列的浅灰色FeAl3Znx层和深灰色的(Al+Zn)层构成,此外,在基体与周期层状组织之间还有一层较薄的Fe2Al5Znx层。浸镀时间较短时镀层中不会形成周期层状组织,随着浸镀时间增加达到其形成所需的孕育期,周期层状组织开始形成,然而浸镀时间过长时,周期层状组织开始被液相破坏。 熔池中铝含量在15-25 wt.%之间时,镀层为常见铝锌镁镀层,由靠近基体的铁铝合金层和与之相邻的(Al+Zn)层构成,并没有周期层状组织的出现。当铝含量增加至35 wt.%时,镀层中开始形成了周期层状组织,且随着铝含量增加,周期层状组织形成的孕育期缩短,然而当铝含量过高,周期层状组织反而开始被破坏。

如何改善化学镀镍的耐腐蚀性能

如何改善化学镀镍的耐腐蚀性能 化学镀技术能广为应用的原因之一是镀层具有优越的耐蚀性能,它是阴极性镀层,所以镀层厚度及完整性是保护基材效果好坏的关键,否则反而加快基材的腐蚀,这点必须充分予以重视。 Ni-P镀层耐蚀性能与磷量密切相关,高磷镀层耐蚀性能优越源于它的非晶态结构。非晶态与晶态的本质区别在它们的原子排列是否周期性,由于固体化学键的作用从短程看二者都是有序的,非晶的特性是不存在长程有序,无平移周期性。这种原子排列的长程无序,使非常均匀的Ni-P固溶体组织中不存在晶界、位错、孪晶或其他缺陷。另外,非晶态镀层表面钝化膜性质也因为基体的特征,其组织也是高度均匀的非晶结构,无位错、层错等缺陷,韧性也好,不容易发生机械损伤。与晶态合金对比,非晶态合金钝化膜形成速度快,破损后能立即修复而具有良好的保护性。 研究发现Ni-P合金在酸性介质中形成的钝化膜是磷化物膜,其保护能力比纯镍钝化膜强。例如,Ni-P合金在稀盐酸中腐蚀,磷量低是磷促进镍的活性溶解。小于8%P的镀层表面有黑灰色的腐蚀产物,用俄歇电子谱仪测定表面一定深度处发现Ni、P及O三种元素,光电子能谱仪进一步证实它是镍的磷酸盐膜。但大于8%P的高磷镀层腐蚀后表面呈灰白色,一般尚能保持光洁,俄歇电子谱仪观测到约10?深处有Ni、O,是氧化镍层,依次在20?处是Ni、P及O共存,是磷酸盐层,内层则为富P的Ni、P层,P量约占20(重量)%,大体对应Ni2P。 含P≥8%的非晶态Ni-P镀层在HCl、FeCl3等介质中腐蚀后X射线从产物中检查出Ni2P。光电子能谱定量分析发现腐蚀前Ni/P=3.4,腐蚀后Ni/P=1.2,即有磷在表面富集现象。腐蚀过程的热效应也会使亚稳的非晶态结构晶化,形成Ni2P或NixPy。Ni-8%P镀层在H2SO4中腐蚀后光电子能谱除了发现NixPy峰外,还发现PO43-。 非晶态Ni-P层表面形成的磷化物膜阻挡了腐蚀继续进行而提高了它的耐蚀性,但这层磷化物膜易被氧化性酸如HNO3溶解,所以Ni-P层不耐氧化性介质的腐蚀。从以上讨论不难理解镀层中磷量分布不均除了形成微电池加速腐蚀外,对磷化物钝化膜的均匀性也会产生影响,以至减小膜的保护性。 化学镀的抗变色能力远优于电沉积的金属层。高磷不含硫和重金属的镀层能在空气中色泽保持长期不变。Ni-B镀层的抗变色能力较差,可用CrO3后处理加以改善。抗变色能力也就是耐蚀性的反映,因此HNO3试验能迅速做出判断,如用1∶1HNO3浸泡,小于20s出现黑色膜则表明该镀层的抗变色能力不佳,但不能对耐蚀性作出描述。 以下分八个方面介绍化学镀镍层的腐蚀问题:

化学镍和电镀镍

化学镀和电镀的知识点电镀镍与化学镀镍的区别 1. 化学镀镍层是极为均匀的,只要镀液能浸泡得到,溶质交换充分,镀层就会非常均匀,几乎可以达到仿形的效果。 2. 化学镀目前市场上只有纯镍磷合金的一种颜色,而电镀可以实现很多色彩。 3. 化学镀是依靠在金属表面所发生的自催化反应,化学镀与电镀从原理上的区别就是电镀需要外加的电流和阳极。 4. 化学镀过以对任何形状工件施镀,但电镀无法对一些形状复杂的工件进行全表面施镀。 5. 电镀因为有外加的电流,所以镀速要比化学镀快得我,同等厚度的镀层电镀要比化学镀提前完成。 6. 高磷的化学镀镍层为非晶态,镀层表面没有任何晶体间隙,而电镀层为典型的晶态镀层。 7. 化学镀层的结合力要普遍高于电镀层。 8. 化学镀由于大部分使用食品级的添加剂,不使用诸如氰化物等有害物质,所以化学镀比电镀要环保一些。 关于化学镀镍层的工艺特点: 1. 厚度均匀性 厚度均匀和均镀能力好是化学镀镍的一大特点,也是应用广泛的原因之一,化学镀镍避免了电镀层由于电流分布不均匀而带来的厚度不均匀,电镀层的厚度在整个零件,尤其是形状复杂的零件上差异很大,在零件的边角和离阳极近的部位,镀层较厚,而在内表面或离阳极远的地方镀层很薄,甚至镀不到,采用化学镀可避免电镀的这一不足。化学镀时,只要零件表面和镀液接触,镀液中消耗的成份能及时得到补充,任何部位的镀层厚度都基本相同,即使凹槽、缝隙、盲孔也是如此。 2. 不存在氢脆的问题 电镀是利用电源能将镍阳离子转换成金属镍沉积到阳极上,用化学还原的方法是使镍阳离子还原成金属镍并沉积在基体金属表面上,试验表明,镀层中氢的夹入与化学还原反应无关,而与电镀条件有很大关系,通常镀层中的含氢量随电流密度的增加而上升。 3. 很多材料和零部件的功能如耐蚀、抗高温氧化性等均是由材料和零部件的表面层体现出来,在一般情况下可以采用某些具有特殊功能的化学镀镍层取代用其他方法制备的整体实心材料,也可以用廉价的基体材料化学镀镍代替有贵重原材料制造的零部件,因此,化学镀镍的经济效益是非常大的。 4. 可沉积在各种材料的表面上,例如:钢镍基合金、锌基合金、玻璃、陶瓷、塑料、半导体等材料的表面上,从而为提高这些材料的性能创造了条件。 5. 不需要一般电镀所需的直流电机或控制设备,热处理温度低,只要在400℃以下经不同保温时间后,可得到不同的耐蚀性和耐磨性,因此,它不存在热处理变形的问题,特别适用于加工一些形状复杂,表面要求耐磨和耐蚀的零部件等。 化学镀镍技术是采用金属盐和还原剂,在材料表面上发生自催化反应获得镀层的方法。到目前为止,化学镀镍是国外发展最快的表面处理工艺之一,且应用范围也最广。化学镀镍之所以得到迅速发展,是由于其优越的工艺特点所决定 三大处理金属表面的方法 在现有的工件表面处理方法中,清理效果最佳的还数喷砂清理。喷砂适用于工件表面要求较高的清理。 手工处理:如刮刀、钢丝刷或砂轮等。用手工可以除去工件表面的锈迹和氧化皮,但手工处理劳动强度大,生产效率低,质量差,清理不彻底。对于较复杂的结构件和有孔的零件,经酸性溶液酸洗后,浸入缝隙或孔穴中的余酸难以彻底清除,若处理不当,将成为工件以后

12种橡胶耐300种化学药品性能表

表的阅读方法 可用的顺序以1、2、3、4、5表示,这是通过综合考虑体积变化率及其它物理性质而决定的。 1. 也可用于动态部位,体积变化率在10%以内 2. 根据使用条件,也可用于动态部位,体积变化率在20%以内 3. 可用于静态部位,体积变化率在30%以内 4. 根据使用条件,可用于静态部位,体积变化率在100%以内 5. 不能使用。体积变化率在100%以上。 此外,橡胶采用了ISO的分类符号。但,Q:硅橡胶,U:聚氨酯橡胶。 另外,本表的耐性排名为参考值,实际的混合橡胶,可能会因品牌、使用环境的不同而 有所变化。 参考文献: 1. 杜邦公司:VITON Bulletin No.15 氟化橡胶的耐液体性 2. 杜邦公司:Elastmer Review 3. Goodrich公司:Hycar Report 4. Polymer公司:Technical Report 5. J.H.Perry:Chemical Engineering Hand-book 6. 信越化学:Silicone Review 7. Parkerseal公司:Seal Compound manual 8. The Los Angeles Rubbor Group Inc:The General Chemical Resistance of Various Elastomers 9. 日本华尔卡:测试数据

552

各种弹性体橡胶的耐性一览表 橡胶温度药品 丙烯酸乙酯 丙烯酸丁酯 丙烯腈 沥青 乙炔 乙醛 乙酰胺 乙酰醋酸酯 乙酰苯 丙酮 苯胺 苯胺 苯胺盐酸盐 亚麻子油 戊醇 戊烷氯萘 戊基萘 亚硫酸 亚硫酸钠 安息香酸 安息香酸苄基 Anderol、L-774 (双酯类) 氨(液体) ″ 氨(气体) ″ 氨水(30%) 硫磺 异辛烷 异癸烷 异丁醇 异丙醇 异丙醚一氧化碳 威士忌 5 5 3

电化学技术表征能量存储器件的性能

电化学技术表征能量存储器件的性能 一. 循环伏安曲线(CV) 【原理简介】 循环伏安法是以线性扫描伏安法的电位扫描到头后,再回过头来扫描到原来的起始电位值,所得的电流—电压曲线为基础的分析方法。扫描电压呈等腰三角形。如果前半部扫描(电压上升部分)为去极化剂在电极上被还原的阴极过程,则后半部扫描(电压下降部分)为还原产物重新被氧化的阳极过程。一次三角波扫描完成一个还原过程和氧化过程的循环,故称为循环伏安法。 在一个典型的循环伏安实验中,工作电极一般为浸在溶液中的固定电极。为了尽可能降低欧姆电阻,最好采用三电极系统。在三电极系统中,电流通过工作电极和对电极。工作电极电位是以一个分开的参比电极(如饱和甘汞电极,SCE)为基准的相对电位。在循环伏安测试实验中,工作电极的电位以10 mV/s 到200 mV/s 的扫描速度随时间线性变化(Fig.1a),在此同时记录在不同电位下的电流(Fig.1b)。 图一 【实验原理】 若电极反应为O+e →R,反应前溶液中只含有反应粒子O且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势φ正得多的起始电势j i处开始势作 0附近时,O 正向电扫描,电流响应曲线则如图所示。当电极电势逐渐负移到φ 平 开始在电极上还原,并有法拉第电流通过。由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电流就增加。当O的表面浓度下

降到近于零,电流也增加到最大值I pc,然后电流逐渐下降。当电势达到j r后,又改为反向扫描。随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大, 0时,表面上的电化学平衡应当向着越来越有利于生成R 在电势接近并通过φ 平 的方向发展。于是R开始被氧化,并且电流增大到峰值氧化电流I pa,随后又由于R的显著消耗而引起电流衰降。整个曲线称为“循环伏安曲线”。如图2所示: 图二 【应用】 基于CV曲线的电容器容量计算,可以根据公式(1)计算。 (ν为扫速,单位V/s) (1) 从式(1)来看,对于一个电容器来说,在一定的扫速下做CV测试。充电状态下,通过电容器的电流i是一个恒定的正值,而放电状态下的电流则为一个恒定的负值。这样,在CV图上就表现为一个理想的矩形。由于界面可能会发生氧化还原反应,实际电容器的CV图总是会略微偏离矩形。因此,CV曲线的形状可以反映所制备材料的电容性能。对双电层电容器,CV曲线越接近矩形,说明电容性能越理想;而对于赝电容型电容器,从循环伏安图中所表现出的氧化还原峰的位置,我们可以判断体系中发生了哪些氧化还原反应。 二. 恒电流充放电曲线(CCD) 【原理简介】 恒电流充放电法,又称计时电势法。一种研究材料电化学性能中非常重要的方法之一。在恒流条件下对被测电极进行充放电操作,记录其电位随时间的变化规律,研究电位随时间的函数变化的规律。它的基本工作原理是:在恒流条件下对被测电极进行充放电操作,记录其电位随时间的变化规律,进而研究电极的充

低碳钢表面火焰喷涂复合涂层的耐腐蚀性能研究

低碳钢表面火焰喷涂复合涂层的耐腐蚀性能研究 文章利用火焰喷涂技术在Q235低碳钢表面制备了不同配比度的Ni基WC-12Co复合涂层,其中它们的配比度分别10%WC-12Co、20%WC-12Co、30%WC-12Co复合涂层,利用金相显微镜、电化学分析仪对涂层微观组织和性能进行分析。结果表明涂层与基体都有较好的结合性能,三组涂层与基体相比硬度都有所提高,且30%WC-12Co的涂层的硬度最高。30%WC-12Co的涂层与前两者涂层和基体相比,电化学腐蚀速度较慢,30%WC-12Co涂层与前两种涂层相比,孔隙较少,耐腐蚀性较高。 标签:火焰喷涂;WC-12Co;耐腐蚀性;电化学腐蚀 1 概述 由于低碳钢具有良好的机械性能,能够应用于各个行业的许多方面,因此,如何延长低碳钢工件的使用寿命,降低腐蚀对低碳钢的应用有很大的影响,低碳钢表面火焰喷涂就是其中的一种方法,由于环境的影响,低碳钢表面火焰喷涂复合涂层的耐腐蚀性能就有一定的要求:涂层与基体间的结合强度要高。涂层易脱落,则使得涂层的寿命减小,涂层脱落后对基体的防腐蚀就消失了。由于火焰喷涂的火焰温度范围较大,能够适应各种温度要求,能够喷涂许多的合金粉末,操作简单,能够在许多环境下独立完成,因此火焰喷涂广泛应用于低碳钢表面加工。因此,文章对利用火焰喷涂技术在Q235低碳钢表面制备了不同配比度的Ni基WC-12Co复合涂层,并对其结果进行了研究和分析。 2 实验材料和方法 试验基体材料为Q235钢,Q235是碳素结构钢,与旧标准GB700-79牌号中的A3、C3钢相当,是沿用俄罗斯TOCT的牌号。其钢号中的Q代表屈服强度。Q235钢是低碳钢,由于其优越的物理性能和化学性能使的它应用于工业以及生活中的许多方面。在一般的情况下,这种钢不需要经过热处理就直接进行使用。喷涂材料为镍基WC-12Co,将喷涂材料配比成含WC-12Co为10%,20%,30%的混合粉末进行喷涂。 氧乙炔火焰喷涂枪是利用两根导管,一根连接氧气一根连接乙炔。粉末罐内填装混合均匀的喷涂粉末材料。利用氧和乙炔气体的高速流动使得材料粉末被吹到喷涂喷头处,经过火焰的加热熔化或者半熔化,然后粉末颗粒击打在涂层表面形成涂层。将配置好的粉末材料充分混合后放入粉末罐中,接通导气管,先开氧气让枪体内的空气排净后,打开乙炔。最后点燃即可进行喷涂。 3 实验结果分析 3.1 低碳钢表面火焰喷涂复合涂层试样的宏观金相的分析

化学镍和电镀镍区别

化学镀镍是通过自身的催化作用,也称为无电镀镍,电镀镍通过基体之间的电位差靠外界放电来进行,成本基本来说没有太大的差别! 电镀镍主要用作防护装饰性镀层。它广泛用于汽车、自行车、钟表、医疗器械、仪器仪表和日用五金等方面。借电化学作用,在黑色金属或有色金属制件表面上沉积一层镍的方法。可用作表面镀层,但主要用于镀铬打底,防止腐蚀,增加耐磨性、光泽和美观。广泛应用于机器、仪器、仪表、医疗器械、家庭用具等制造工业。 化学镀镍层是极为均匀的,只要镀液能浸泡得到,溶质交换充分,镀层就会非常均匀,几乎可以达到仿形的效果。电镀无法对一些形状复杂的工件进行全表面施镀,但化学镀过以对任何形状工件施镀。高磷的化学镀镍层为非晶态,镀层表面没有任何晶体间隙,而电镀层为典型的晶态镀,电镀因为有外加的电流,所以镀速要比化学镀快得我,同等厚度的镀层电镀要比化学镀提前完成。化学镀层的结合力要普遍高于电镀层。化学镀由于大部分使用食品级的添加剂,不使用诸如氰化物等有害物质,所以化学镀比电镀要环保一些。化学镀目前市场上只有纯镍磷合金的一种颜色,而电镀可以实现很多色彩 化学镀镍与电镀镍层性能比较 镀层性能电镀镍化学镀镍 组成含镍99%以上平均92%Ni+8%P 结构晶态非晶态 密度8.9 平均7.9 镀层均匀性变化±10% 熔点/℃1455 ~890 镀后硬度(VHN) 150~400 500~600 热处理后硬度(VHN) 不变900~1000 耐磨性良好优良 耐腐蚀性良好(镀层有孔隙) 优良(镀层几乎无孔隙) 相对磁化率36 4 电阻率/Ω?CM7 60~100 热导率/W?M-1?K-1?1040.67 0.04~0.08 线膨胀系数/K-1 13.5 14.0 弹性模量/MPa 207 69 延伸率 6.3% 2% 内应力/MPa ±69±69

FKM 耐化学品性能比较表

氟橡胶 耐化学品性比较表 是否可以使用的参考基准 A:适合使用 C:不推荐使用 B:可以使用 D:无法使用 化学品名(常温,常压,100%浓度)AFLAS? 100/150/300AFLAS? 200FKM(2元系)FKM(3元系) 全氟橡胶乙醛Acetaldehyde D D D D C 乙酰胺Acetamide A B D C A 醋酸Acetic Acid, Glacial C D D D A 无水醋酸Acetic Anhydride B C D D A 丙酮Acetone D D D D A 乙腈Acetonitrile A A A A A 苯乙酮Acetophenone D D D D A 氯乙酰Acetyl Chloride A A A A A 乙酰丙酮Acetylacetone D D D D A 乙炔Acetylene A A A A A 丙烯酸Acrylic Acid D D D D A 丙烯腈Acrylonitrile B C C C A 己二酸Adipic Acid B C C C A 氯丙烯Allyl Chloride B C C C A 对氨基苯甲酸Aminobenzoic Acid A B C C A 对氨基吡啶Aminopyridine C D D D A 液氨Ammonia Gas, Cold A C D D A 氢氧化铵Ammonium Hydroxide A A B B A 醋酸正戊酯Amyl Acetate D D D D A 氯戊烷Amyl Chloride A A A A A 戊醇Amyl Alcohol A A B B A 戊基氯代萘Amyl chloronaphthalene B B A A A 戊基萘Amylnaphthalene B B A A A 苯胺Aniline B C D C A 盐酸苯胺Aniline Hydrochloride A A B B A 阿尼林油Aniline Oils B C C C A 王水Aqua Regia C C C C B 砷酸Arsenic Acid A A A A A 三氯化砷Arsenic Trichloride D D D D A ASTM-燃料C ASTM-Reference Fuel C D C A A A ASTM-燃料D ASTM-Reference Fuel D D C A A A ASTM-油No.1ASTM-Reference Oil No.1A A A A A ASTM-油No.3ASTM-Reference Oil No.3A A A A A 苯甲醛Benzaldehyde B C D D B 苯Benzene D C A A A 苯磺酸Benzene Sulfonic Acid A A A A A

相关文档