文档库 最新最全的文档下载
当前位置:文档库 › 椭圆各类题型分类汇总

椭圆各类题型分类汇总

椭圆各类题型分类汇总
椭圆各类题型分类汇总

椭圆经典例题分类汇总

1. 椭圆第一定义的应用

例1 椭圆的一个顶点为()02,

A ,其长轴长是短轴长的2倍,求椭圆的标准方程.

例2 已知椭圆

19822=++y k x 的离心率2

1

=e ,求k 的值.

例3 已知方程

1352

2-=-+-k

y k x 表示椭圆,求k 的取值范围.

例4 已知1c o s s i n 2

2=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.

例5 已知动圆P 过定点()03,

-A ,且在定圆()64322

=+-y x B :的内部与其相内切,求动

圆圆心P 的轨迹方程.

2.焦半径及焦三角的应用

例1 已知椭圆

13

42

2=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,

请说明理由.

例2 已知椭圆方程()0122

22>>=+b a b

y a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭

圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ?的面积(用a 、b 、α表示).

3.第二定义应用

例1 椭圆

112

162

2=+y x 的右焦点为F ,过点()

31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.

例2 已知椭圆1422

22=+b

y b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距

离.

例3 已知椭圆15

92

2=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.

(1) 求1PF PA +的最大值、最小值及对应的点P 坐标; (2) 求22

3

PF PA +的最小值及对应的点P 的坐标.

4.参数方程应用

例1 求椭圆13

22

=+y x 上的点到直线06=+-y x 的距离的最小值.

例2 (1)写出椭圆14

92

2=+y x 的参数方程;(2)求椭圆内接矩形的最大面积.

例3 椭圆122

22=+b

y a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使

AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.

5.相交情况下--弦长公式的应用

例1 已知椭圆142

2

=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为5

10

2,求直线的方程.

例2 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3

π的直线交椭圆于A ,B 两点,求弦AB 的长.

6.相交情况下—点差法的应用

例1 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为

AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.

例2 已知椭圆1222=+y x ,求过点??

?

??2121,P 且被P 平分的弦所在的直线方程.

例3 已知椭圆1222=+y x ,(1)求过点??

? ??2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程;

(3)过()12,

A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足2

1-

=?OQ OP k k , 求线段PQ 中点M 的轨迹方程.

例4 已知椭圆13

42

2=+

y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.

例5 已知)2,4(P 是直线l 被椭圆

19

362

2=+y x 所截得的线段的中点,求直线l 的方程.

椭圆经典例题分类汇总

1.椭圆第一定义的应用

例1 椭圆的一个顶点为()02,

A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置.

解:(1)当()02,

A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11

42

2=+y x ; (2)当()02,

A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:

116

42

2=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.

例2 已知椭圆

19822=++y k x 的离心率2

1

=e ,求k 的值. 分析:分两种情况进行讨论.

解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12

-=k c .由2

1

=e ,得4=k . 当椭圆的焦点在y 轴上时,92

=a ,82

+=k b ,得k c -=12

由21=

e ,得4191=-k ,即4

5-=k . ∴满足条件的4=k 或4

5

-=k .

说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.

例5 已知方程

1352

2-=-+-k

y k x 表示椭圆,求k 的取值范围. 解:由??

?

??-≠-<-<-,35,03,05k k k k 得53<

∴满足条件的k 的取值范围是53<

说明:本题易出现如下错解:由??

?<-<-,

03,

05k k 得53<

出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆.

例6 已知1c o s s i n 2

2=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.

分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的

取值范围.

解:方程可化为1cos 1sin 122=+α

αy x .因为焦点在y 轴上,所以0sin 1

cos 1>>-αα. 因此0sin >α且1tan -<α从而)4

3

,2(ππα∈.

说明:(1)由椭圆的标准方程知

0sin 1>α,0cos 1

>-α,这是容易忽视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,α

sin 12

=b . (3)求α的取值范围时,应注意题目

中的条件πα<≤0

例5 已知动圆P 过定点()03,

-A ,且在定圆()64322

=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程.

分析:关键是根据题意,列出点P 满足的关系式.

解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,

即定点()03,

-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,

半长轴为4,半短轴长为7342

2

=-=b 的椭圆的方程:

17

162

2=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.

2.焦半径及焦三角的应用

例1 已知椭圆

13

42

2=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.

解:假设M 存在,设()11y x M ,,由已知条件得

2=a ,3=b ,∴1=c ,2

1

=

e . ∵左准线l 的方程是4-=x ,

∴14x MN +=. 又由焦半径公式知:

111212x ex a MF -=-=,1122

1

2x ex a MF +=+=. ∵212

MF MF MN ?=,∴()??

? ??+??? ??

-

=+112

12122124x x x . 整理得04832512

1=++x x . 解之得41-=x 或5

12

1-

=x . ① 另一方面221≤≤-x . ② 则①与②矛盾,所以满足条件的点M 不存在.

例2 已知椭圆方程()0122

22>>=+b a b

y a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭

圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ?的面积(用a 、b 、α表示). 分析:求面积要结合余弦定理及定义求角α的两邻边,从而利用C ab S sin 2

1

=

?求面积.

解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第一象限.由余弦定理知: 2

2

1F F 2

221PF PF +=12PF -·2

24cos c PF =α.①

由椭圆定义知: a PF PF 221=+ ②,则-①②2

得 α

cos 122

21+=?b PF PF . 故αsin 21212

1PF PF S PF F ?=? ααsin cos 12212+=

b 2

tan 2α

b =. 3.第二定义应用

例1 椭圆

112

162

2=+y x 的右焦点为F ,过点()

31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.

分析:本题的关键是求出离心率2

1

=e ,把MF 2转化为M 到右准线的距离,从而得

最小值.一般地,求MF e

AM 1

+

均可用此法. 解:由已知:4=a ,2=c .所以2

1

=e ,右准线

8=x l :.

过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=

M y ,且M 在椭圆上.故32=M x .所以

()

332,M .

说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,2

1=

e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.

例2 已知椭圆1422

22=+b

y b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距

离.

分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.

解法一:由1422

22=+b

y b x ,得b a 2=,b c 3=,23=e .

由椭圆定义,b a PF PF 4221==+,得

b b b PF b PF 34421=-=-=.

由椭圆第二定义,

e d PF =1

1,1d 为P 到左准线的距离,

∴b e

PF d 3211==

即P 到左准线的距离为b 32. 解法二:∵

e d PF =2

2,2d 为P 到右准线的距离,2

3==

a c e , ∴

b e

PF d 33222==

.又椭圆两准线的距离为b c a 3

3

822=?.

∴P 到左准线的距离为

b b b 323

3

2338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.

椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.

例3 已知椭圆15

92

2=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.

(1) 求1PF PA +的最大值、最小值及对应的点P 坐标; (2) 求22

3

PF PA +

的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.

解:

(1)如上图,62=a ,)0,2(2F ,22=

AF ,设P 是椭圆上任一点,由

6

221==+a PF PF ,

2

2AF PF PA -≥,

26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.

由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.

建立A 、2F 的直线方程02=-+y x ,解方程组??

?=+=-+45

95,022

2

y x y x 得两交点

)2141575,2141579(1+-P 、)214

15

75,2141579(2

-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,

2PF PA +取最大值26+.

(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,

∴32=

e .由椭圆第二定义知3

2

2==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+

22

3

,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29

=x .

∴A 到右准线距离为

2

7

.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,5

5

6(

. 说明:求21

PF e

PA +

的最小值,

就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.

4.参数方程应用

例1 求椭圆13

22

=+y x 上的点到直线06=+-y x 的距离的最小值. 分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.

解:椭圆的参数方程为?

??==.sin cos 3θθy x ,

设椭圆上的点的坐标为

(

)

θθsin cos 3,,则点到

直线的距离为

2

63sin 226sin cos 3+??

? ??-=

+-=

θπθθd . 当13sin -=??

?

??-θπ时,22=最小值d . 说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.

例2 (1)写出椭圆14

92

2=+y x 的参数方程;(2)求椭圆内接矩形的最大面积. 分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆

的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.

解:(1) ?

??==θθ

sin 2cos 3y x )(R ∈θ.

(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y 轴,设

)sin 2,cos 3(θθ为矩形在第一象限的顶点,)2

0(π

<θ<,

则122sin 12sin 2cos 34≤=??=θθθS

故椭圆内接矩形的最大面积为12.

说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.

例3 椭圆122

22=+b

y a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使

AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.

分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.

解:设椭圆的参数方程是??

?==θ

θ

sin cos b y a x )0(>>b a ,

则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴

1cos sin cos sin -=-?a

a b a b θθ

θθ,

即0cos cos )(2

2

2

2

2

=+--b a b a θθ,解得1cos =θ或2

22

cos b

a b -=θ, ∵1cos 1<<-θ ∴1cos =θ(舍去),112

2

2

<-<-b a b ,又222c a b -= ∴2022

<

a ,∴22>e ,又10<

122<

2

(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?

5.相交情况下--弦长公式的应用

例1 已知椭圆142

2

=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为

5

10

2,求直线的方程. 解:(1)把直线方程m x y +=代入椭圆方程142

2=+y x 得 ()142

2=++m x x , 即01252

2=-++m mx x .()()

020*********

≥+-=-??-=?m m m ,解得

2

525≤≤-

m . (2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5

221m x x -=+,51221-=m x x .

根据弦长公式得 :5102514521122

2

=-?-??

?

??-?+m m .解得0=m .方程为x y =.

说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.

这里解决直线与椭圆的交点问题,一般考虑判别式?;解决弦长问题,一般应用弦长公式.

用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程. 例2 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3

π的直线交椭圆于A ,B 两点,求弦AB 的长.

分析:可以利用弦长公式]4))[(1(1212

212

212

x x x x k x x k AB -++=-+=求得, 也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.

解:(法1)利用直线与椭圆相交的弦长公式求解.

2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,

所以33=c .因为焦点在x 轴上,

所以椭圆方程为

19

362

2=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y .

由直线方程与椭圆方程联立得:0836372132

=?++x x .设1x ,2x 为方程两根,所以

13

37221-

=+x x ,

13

83621?=

x x ,

3

=k , 从而

13

48]4))[(1(1212212212=

-++=-+=x x x x k x x k AB .

(法2)利用椭圆的定义及余弦定理求解.

由题意可知椭圆方程为19

362

2=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122.

2

1F AF ?中,

3

c

o s

22112

212122π

F F AF F F AF AF -+=,即

2

1

362336)12(22???-?+=-m m m ;

所以3

46-=

m .同理在21F BF ?中,用余弦定理得346+=n ,所以1348

=+=n m AB .

(法3)利用焦半径求解.

先根据直线与椭圆联立的方程0836372132

=?++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标.

再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB +=

6.相交情况下—点差法的应用

例1 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为

AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.

解:由题意,设椭圆方程为12

22=+y a

x ,

由?????=+=-+1012

22y a

x y x ,得()0212

22=-+x a x a , ∴222112a a x x x M +=+=,2

11

1a x y M M +=-=, 41

12===

a

x y k M M OM ,∴42=a ,

∴14

22

=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.

例2 已知椭圆1222=+y x ,求过点??

?

??2121,P 且被P 平分的弦所在的直线方程. 分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为??? ?

?

-=-2121x k y .代入椭圆方程,并整理得

()()

02

3

21222122

2

2

=+-+--+k k x k k

x k .

由韦达定理得2

2212122k k

k x x +-=+.

∵P 是弦中点,∴121=+x x .故得2

1-=k . 所以所求直线方程为0342=-+y x .

分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:

2

12

1x x y y --.

解法二:设过??

? ??2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得

?

????????=+=+=+=+④

1.

③1②12

①1221212

2222

121y y x x y x y x ,,, ①-②得

02

2

2212

221=-+-y y x x . ⑤ 将③、④代入⑤得

212121-=--x x y y ,即直线的斜率为2

1

-.

所求直线方程为0342=-+y x .

说明:

(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.

(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率. (3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.

例3 已知椭圆1222=+y x ,(1)求过点??

? ??2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程;

(3)过()12,

A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足2

1

-

=?OQ OP k k , 求线段PQ 中点M 的轨迹方程.

分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.

解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则

??????

?=+=+=+=+④

,③,②,①,y y y x x x y x y x 2222222

1212

22

22121 ①-②得()()()()022*******=-++-+y y y y x x x x .

由题意知21x x ≠,则上式两端同除以21x x -,有

()()022

12

12121=-+++x x y y y y x x ,

将③④代入得022

12

1=--+x x y y y

x .⑤

(1)将21=

x ,2

1

=y 代入⑤,得212121-=--x x y y ,故所求直线方程为: 0342=-+y x . ⑥

将⑥代入椭圆方程222

2

=+y x 得041662

=-

-y y ,04

1

6436>??-=?符合题意,0342=-+y x 为所求.

(2)将

22

12

1=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .(椭圆内部分)

(3)将2

12121--=--x y x x y y 代入⑤得所求轨迹方程为: 02222

2=--+y x y x .(椭圆内

部分)

(4)由①+②得 :

()

22

2

2212

221=+++y y x x , ⑦, 将③④平方并整理得 212222124x x x x x -=+, ⑧, 2122

22124y y y y y -=+, ⑨

将⑧⑨代入⑦得:

()

2244

242122

12=-+-y y y x x x , ⑩ 再将212121x x y y -

=代入⑩式得: 221242212212=??

?

??--+-x x y x x x , 即 12

12

2

=+y x .

此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.

例4 已知椭圆13

42

2=+

y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.

分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.

利用上述条件建立m 的不等式即可求得m 的取值范围.

解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于)

,(00y x M 点.

∵l 的斜率4=l k ,∴设直线AB 的方程为n x y +-=41.由方程组???????

=++-=,134,41

22y

x n x y 消去y 得

0481681322=-+-n nx x ①。∴13821n x x =

+.于是13

42210n x x x =+=,13

124100n

n x y =

+-=, 即点M 的坐标为)1312,134(n n .∵点M 在直线m x y +=4上,∴m n

n +?=13

44.解得

m n 4

13

-=. ②

将式②代入式①得04816926132

2=-++m mx x ③

∵A ,B 是椭圆上的两点,∴0)48169(134)26(2

2

>-?-=?m m .解得

13

13

213132<<-

m .

(法2)同解法1得出m n 413-

=,∴m m x -=-=)4

13

(1340, m m m m x y 34

13

)(414134100-=--?-=--=,即M 点坐标为)3,(m m --.

∵A ,B 为椭圆上的两点,∴M 点在椭圆的内部,∴

13)3(4)(2

2<-+-m m .解得13

13

213132<<-

m . (法3)设),(11y x A ,),(22y x B 是椭圆上关于l 对称的两点,直线AB 与l 的交点M 的坐标为),(00y x .

∵A ,B 在椭圆上,∴1342121=+y x ,13

42

222=+y

x .两式相减得

0))((4))((321212121=-++-+y y y y x x x x ,

即0)(24)(23210210=-?+-?y y y x x x .∴

)(43210

0212

1x x y x x x y y ≠-=--.

又∵直线l AB ⊥,∴1-=?l AB k k ,∴14430

-=?-

y x ,即003x y = ①。 又M 点在直线l 上,∴m x y +=004 ②。由①,②得M 点的坐标为)3,(m m --.以下同解法2.

说明:涉及椭圆上两点A ,B 关于直线l 恒对称,求有关参数的取值范围问题,可以采用列参数满足的不等式:

(1)利用直线AB 与椭圆恒有两个交点,通过直线方程与椭圆方程组成的方程组,消元后得到的一元二次方程的判别式0>?,建立参数方程.

(2)利用弦AB 的中点),(00y x M 在椭圆内部,满足12

020<+b

y

a x ,将0x ,0y 利用参数表示,

建立参数不等式.

例5 已知)2,4(P 是直线l 被椭圆

19

362

2=+y x 所截得的线段的中点,求直线l 的方程.

分析:本题考查直线与椭圆的位置关系问题.通常将直线方程与椭圆方程联立消去y (或x ),

得到关于x (或y )的一元二次方程,再由根与系数的关系,直接求出21x x +,21x x (或

21y y +,21y y )的值代入计算即得.

并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法,在解析几何中是经常采用的.

解:方法一:设所求直线方程为)4(2-=-x k y .代入椭圆方程,整理得

036)24(4)24(8)14(222=--+--+k x k k x k ①

设直线与椭圆的交点为),(11y x A ,),(22y x B ,则1x 、2x 是①的两根,∴

1

4)

24(82

21+-=

+k k k x x ∵)2,4(P 为AB 中点,∴14)24(4242

21+-=+=

k k k x x ,2

1

-=k .∴所求直线方程为082=-+y x .

方法二:设直线与椭圆交点),(11y x A ,),(22y x B .∵)2,4(P 为AB 中点,∴821=+x x ,

421=+y y .

又∵A ,B 在椭圆上,∴3642

12

1=+y x ,3642

22

2=+y x 两式相减得

0)(4)(2

2212221=-+-y y x x ,

即0))((4))((21212121=-++-+y y y y x x x x .∴2

1

)(4)(21212121-=++-=--y y x x x x y y .∴直线方程

为082=-+y x .

方法三:设所求直线与椭圆的一个交点为),(y x A ,另一个交点)4,8(y x B --. ∵A 、B 在椭圆上,∴3642

2

=+y x ①。 36)4(4)8(2

2

=-+-y x ② 从而A ,B 在方程①-②的图形082=-+y x 上,而过A 、B 的直线只有一条,∴直线方程为082=-+y x .

说明:直线与圆锥曲线的位置关系是重点考查的解析几何问题,“设而不求”的方法是处理

此类问题的有效方法.

若已知焦点是)0,33(、)0,33(-的椭圆截直线082=-+y x 所得弦中点的横坐标是4,则如何求椭圆方程?

椭圆的常见题型及解法(一).

椭圆的常见题型及其解法(一) 椭圆是圆锥曲线的内容之一,也是高考的热点和重点,椭圆学习的好坏还直接影响后面的双曲线与抛物线的学习,笔者在这里就椭圆常见题型作简要的探讨,希望对学习椭圆的同学有所帮助. 一、椭圆的焦半径 椭圆上的任意一点到焦点F的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。 1.公式的推导 设P (,)是椭圆上的任意一点, 分别是椭圆的左、右焦点,椭圆 ,求证,。证法1: 。 因为,所以 ∴ 又因为,所以 ∴, 证法2:设P 到左、右准线的距离分别为,由椭圆的第二定义知1 1 PF e d ,又,所 以, 而 。

∴,。 2.公式的应用 例1 椭圆上三个不同的点A ()、B ()、C ()到焦点F (4, 0)的距离成等差数列,则 12 x x + . 解:在已知椭圆中,右准线方程为 25 4x = ,设A 、B 、C 到右准线的距离为 , 则、、。 ∵ , , ,而|AF|、|BF|、|CF|成等差数列。 ∴,即,。 例2.12,F F 是椭圆22 14x y +=的两个焦点,P 是椭圆上的动点,求 的最大值和最 小值。 解:设 ,则10202,2.PF x PF x =+ =-2 12034.4 PF PF x ?=- P 在椭圆上,022x ∴-≤≤,12PF PF ?的最大值为4,最小值为1. 变式练习1:. 求过椭圆的左焦点,倾斜角为的弦AB 的长度。 解:由已知 可得 ,所以直线AB 的方程 为 ,代入椭圆方程 得 设 ,则 ,从而 变式练习2. 设Q 是椭圆22 221(0)x y a b a b +=>>上任意一点,求证:以2QF (或1QF )为

高中数学椭圆经典例题(学生+老 师)

(教师版)椭圆标准方程典型例题 例1已知椭圆的一个焦点为(0,2)求的值. 分析:把椭圆的方程化为标准方程,由,根据关系可求出的值. 解:方程变形为.因为焦点在轴上,所以,解得. 又,所以,适合.故. 例2已知椭圆的中心在原点,且经过点,,求椭圆的标准方程.分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设 条件,运用待定系数法, 求出参数和(或和)的值,即可求得椭圆的标准方程.解:当焦点在轴上时,设其方程为. 由椭圆过点,知.又,代入得,,故椭圆的方程为. 当焦点在轴上时,设其方程为. 由椭圆过点,知.又,联立解得,,故椭圆的方程为. 例3 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹. 分析:(1)由已知可得,再利用椭圆定义求解. (2)由的轨迹方程、坐标的关系,利用代入法求的轨迹方程. 解:(1)以所在的直线为轴,中点为原点建立直角坐标系.设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点.因,, 有, 故其方程为. (2)设,,则.① 由题意有代入①,得的轨迹方程为,其轨迹是椭圆(除去轴上两点). 例4已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方 程. 解:设两焦点为、,且,.从椭圆定义知.即. 从知垂直焦点所在的对称轴,所以在中,, 可求出,,从而. ∴所求椭圆方程为或.

例5已知椭圆方程,长轴端点为,,焦点为,,是椭圆上一点,,.求:的面积(用、、表示). 分析:求面积要结合余弦定理及定义求角的两邻边,从而利用求面积.解:如图,设,由椭圆的对称性,不妨设在第一象限. 由余弦定理知:·.① 由椭圆定义知:②,则得. 故. 例6 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程. 分析:关键是根据题意,列出点P满足的关系式. 解:如图所示,设动圆和定圆内切于点.动点到两定点, 即定点和定圆圆心距离之和恰好等于定圆半径, 即.∴点的轨迹是以,为两焦点, 半长轴为4,半短轴长为的椭圆的方程:. 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标

椭圆知识点及经典例题

椭圆知识点 知识要点小结: 知识点一:椭圆的定义 平面内一个动点P 到两个定点1F 、2F 的距离之和等于常)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的标准方程 1.当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中2 22b a c -= 2.当焦点在y 轴上时,椭圆的标准方程:12222=+b x a y )0(>>b a ,其中2 22b a c -=; 3.椭圆的参数方程)(sin cos 为参数?? ? ?? ?==b y a x 注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和2 2 2 b a c -=; 3.椭圆的焦点总在长轴上. 当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质 椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、 或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆122 22=+b y a x 是以x 轴、y 轴为对称轴 的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

椭圆经典例题讲解

椭圆 1.椭圆的两种定义 (1) 平面内与两定点F 1,F 2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在. (2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 . 2.椭圆的标准方程 (1) 焦点在x 轴上,中心在原点的椭圆标准方程是: 12 22 2=+ b y a x ,其中( > >0,且 =2a ) (2) 焦点在y 轴上,中心在原点的椭圆标准方程是12 22 2=+ b x a y , 其中a ,b 满足: .(3)焦点在哪个轴上如何判断 3.椭圆的几何性质(对 12 22 2=+b y a x ,a > b >0进行讨论) (1) 范围: ≤ x ≤ , ≤ y ≤ (2) 对称性:对称轴方程为 ;对称中心为 . (3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: . (4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ; e 越接近 0,椭圆越接近于 . (5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则 =1PF ,122PF a PF -== 。 4.焦点三角形应注意以下关系(老师补充画出图形):(1) 定义:r 1+r 2=2a (2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c ) 2 (3) 面积:21F PF S ?=2 1 r 1r 2 sin θ=2 1·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)基础过关

高中数学-选修2-1-椭圆题型大全-(1)

高中数学-选修2-1-椭圆题型大全-(1)

椭圆题 1、命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分又不必要条件 2、已知1 F 、2 F 是两个定点,且4 2 1=F F ,若动点P 满足4 2 1 =+PF PF 则动点P 的轨迹是( ) A 、椭圆 B 、圆 C 、直线 D 、线段 3、已知1 F 、 2 F 是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长1 F P 到Q ,使得2 PF PQ =,那么动点Q 的轨迹是 ( ) A 、椭圆 B 、圆 C 、直线 D 、点 4、已知1 F 、2 F 是平面α内的定点,并且) 0(22 1>=c c F F ,M 是α 内的动点,且a MF MF 221 =+,判断动点M 的轨迹. 5、椭圆 19 252 2=+y x 上一点M 到焦点1 F 的距离为2,N 为1 MF 的中 点,O 是椭圆的中心,则ON 的值是 。 6、若方程13 52 2=-+-k y k x 表示椭圆,求k 的范围. 7、 轴上的椭圆”的 表示焦点在”是“方程“y ny mx n m 1022=+>>( ) A 、充分而不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分又不必要条件

8、已知方程 11 252 2=-+-m y m x 表示焦点在y 轴上的椭圆,则实数 m 的范围是 . 9、已知方程2 22 =+ky x 表示焦点在y 轴上的椭圆,则实数k 的范围是 . 10、方程2 31y x -= 所表示的曲线是 . 11、如果方程2 22 =+ky x 表示焦点在y 轴上的椭圆,求实数k 的取值范围。 12、已知椭圆0 6322 =-+m y mx 的一个焦点为)2,0(,求m 的值。 13、已知方程2 22 =+ky x 表示焦点在X 轴上的椭圆,则实数k 的范围是 . 14、根据下列条件求椭圆的标准方程: (1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点P 到两焦点的距离之和为26; (2)长轴是短轴的2倍,且过点(2,-6); (3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点) 2,3(),1,6( 21 --P P ,求椭圆方程. 15、以)0,2(1 -F 和)0,2(2 F 为焦点的椭圆经过点)2,0(A 点,则该椭 圆的方程为 。 16、如果椭圆:k y x =+22 4上两点间的最大距离为8,则k 的 值为 。 17、已知中心在原点的椭圆C 的两个焦点和椭圆 36 94:222=+y x C 的两个焦点一个正方形的四个顶点,且椭圆C

椭圆练习题(经典归纳)

初步圆锥曲线 感受:已知圆O 以坐标原点为圆心且过点1 3, 22?? ? ??? ,,M N 为平面上关于原点对称的两点,已知N 的坐标为30,3? ? - ? ??? ,过N 作直线交圆于,A B 两点 (1)求圆O 的方程; (2)求ABM ?面积的取值范围 二. 曲线方程和方程曲线 (1)曲线上点的坐标都是方程的解; (2)方程的解为坐标的点都在曲线上. 三. 轨迹方程 例题:教材P .37 A 组.T3 T4 B 组 T2 练习1.设一动点P 到直线:3l x =的距离到它到点()1,0A 的距离之比为3 3 ,则动点P 的轨迹方程是____ 练习2.已知两定点的坐标分别为()()1,0,2,0A B -,动点满足条件2MBA MAB ∠=∠,则动点M 的轨迹方程为___________ 总结:求点轨迹方程的步骤: (1)建立直角坐标系 (2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示) (3)列式:从已知条件中发掘,x y 的关系,列出方程 (4)化简:将方程进行变形化简,并求出,x y 的范围 四. 设直线方程 设直线方程:若直线方程未给出,应先假设. (1)若已知直线过点00(,)x y ,则假设方程为00()y y k x x -=-; (2)若已知直线恒过y 轴上一点()t ,0,则假设方程为t kx y +=; (3)若仅仅知道是直线,则假设方程为b kx y += 【注】以上三种假设方式都要注意斜率是否存在的讨论;

(4)若已知直线恒过x 轴上一点(,0)t ,且水平线不满足条件(斜率为0),可以假设 直线为x my t =+。【反斜截式,1 m k = 】不含垂直于y 轴的情况(水平线) 例题:圆C 的方程为:.0222=-+y x (1)若直线过点)(4,0且与圆C 相交于A,B 两点,且2=AB ,求直线方程. (2)若直线过点)(3,1且与圆C 相切,求直线方程. (3)若直线过点) (0,4且与圆C 相切,求直线方程. 附加:4)4(3:22=-+-y x C )(. 若直线过点)(0,1且与圆C 相交于P 、Q 两点,求CPQ S ?最大时的直线方程. 椭 圆 1、椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离c 2叫椭圆的焦距。若M 为椭圆上任意一点,则有 21||||2MF MF a +=. 注意:212F F a >表示椭圆;212F F a =表示线段21F F ;212F F a <没有轨迹; 2、椭圆标准方程 椭圆方程为12 2 222=-+c a y a x ,设2 2c a b -=,则化为()012222>>=+b a b y a x 这就是焦点在x 轴上的椭圆的标准方程,这里焦点分别是1F ()0,c -,2F ()0,c ,且22c a b -=. 类比:写出焦点在y 轴上,中心在原点的椭圆的 标准方程()22 2210y x a b a b +=>>. 椭圆标准方程:22 221x y a b +=(0a b >>)(焦点在x 轴上) 或122 22=+b x a y (0a b >>)(焦点在y 轴上)。 注:(1)以上方程中,a b 的大小0a b >>,其中222b a c =-; (2)要分清焦点的位置,只要看2x 和2y 的分母的大小,“谁大焦点在谁上”

椭圆典型题型归纳(供参考)

椭圆典型题型归纳 题型一. 定义及其应用 例1.已知一个动圆与圆22:(4)100C x y ++=相内切,且过点(4,0)A ,求这个动圆圆心M 的轨迹方程; 练习: 1.6=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 2.10=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 4.1m =+表示椭圆,则m 的取值范围是 5.过椭圆22941x y +=的一个焦点1F 的直线与椭圆相交于,A B 两点,则,A B 两点与椭圆的 另一个焦点2F 构成的2ABF ?的周长等于 ; 6.设圆22 (1)25x y ++=的圆心为C ,(1,0)A 是圆内一定点,Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点M ,则点M 的轨迹方程为 ; 题型二. 椭圆的方程 (一)由方程研究曲线 例1.方程22 11625 x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹; (二)分情况求椭圆的方程 例2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程; (三)用待定系数法求方程 例3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1P 、2(P ,求椭圆的方程; 例4.求经过点(2,3)-且与椭圆22 9436x y +=有共同焦点的椭圆方程; 注:一般地,与椭圆22221x y a b +=共焦点的椭圆可设其方程为22 2221()x y k b a k b k +=>-++; (四)定义法求轨迹方程; 例5.在ABC ?中,,,A B C 所对的三边分别为,,a b c ,且(1,0),(1,0)B C -,求满足b a c >>

直线与椭圆经典例题

【直线与椭圆】典例精讲 已知直线:1l y kx =+与椭圆2 2 :14y C x +=相交于两点,A B . (1)若AB 的中点的横坐标等于 14,求k 的值; (2)若AB 的中点在直线14x = 上,求k 的值; (3)若AB 的中点在直线12y = 上,求k 的值; (4)若AB 的中点的横坐标大于 15 ,求k 的取值范围;

(5)求AB 的中点横坐标的取值范围; (6)求A B x x 的取值范围; (7)若AB 的中点在圆2212 x y +=上,求k 的值; (8)若AB 的中点与短轴右顶点的连线斜率为1-,求k 的值;

(9)若0OA OB =,求k 的值; (10)设点(2,0)N ,若0NA NB =,求k 的值; (11)设点(2,0)N ,若ABN 为直角三角形,是否与(13)同解,为什么?

(12)设1(,0)2 P ,若PA PB =,求k 的值; (13)设过AB 的中点且与l 垂直的直线为m ,求直线m 与x 轴交点横坐标的取值范围; (14)设直线l 与y 轴交于点M ,若2AM MB =,求k 的值;

(15)若AB 求k的值; (16)求OAB面积的最大值及此时k的值;

1. 如图,,A B 是椭圆2 2:13 x W y +=的两个顶点,过点A 的直线与椭圆W 交于另一点C . (Ⅰ)当AC 的斜率为3 1时,求线段AC 的长; (Ⅱ)设D 是AC 的中点,且以AB 为直径的圆恰过点D . 求直线AC 的斜率. 2. 已知直线:l y x n =+与椭圆:G 22(3)(3)m x my m m -+=-交于两点,B C . (Ⅰ)若椭圆G 的焦点在y 轴上,求m 的取值范围; (Ⅱ)若(0,1)A 在椭圆上,且以BC 为直径的圆过点A ,求直线l 的方程. 3. 已知椭圆)0(12222>>=+b a b y a x 的长轴长为22,离心率22=e ,过右焦点F 的直线l 交椭圆于P ,Q 两点。(Ⅰ)求椭圆的方程;(Ⅱ)当直线l 的斜率为1时,求△POQ 的面积;(Ⅲ)若以OP ,OQ 为邻边的平行四边形是矩形,求满足该条件的直线l 的方程。 x y O A B C D

(完整版)椭圆常见题型总结

椭圆常见题型总结 1、椭圆中的焦点三角形:通常结合定义、正弦定理、余弦定理、勾股定理来解决; 椭圆 22 2 21(0)x y a b a b +=>>上一点00(,)P x y 和焦点1(,0)c F -,2(,0)c F 为顶点的12PF F ?中,12F PF α=∠,则当P 为短轴端点时α最大,且 ① 122PF PF a +=; ②22 2 12122cos 4c PF PF PF PF α=+-; ③12 121 sin 2PF F S PF PF α?= =2tan 2 b α?(b 短轴长) 2、直线与椭圆的位置关系:直线y kx b =+与椭圆22 221(0)x y a b a b +=>>交于 1122(,),(,)A x y B x y 两点,则12AB x =-=3、椭圆的中点弦:设1122(,),(,)A x y B x y 是椭圆22 221(0)x y a b a b +=>>上不同两点, 00(,)M x y 是线段AB 的中点,可运用点差法可得直线AB 斜率,且20 20 AB b x k a y =-; 4、椭圆的离心率 范围:01e <<,e 越大,椭圆就越扁。 求椭圆离心率时注意运用:c a e = ,222c b a += 5、椭圆的焦半径 若00(,)P x y 是离心率为e 的椭圆22 221(0)x y a b a b +=>>上任一点,焦点 为1(,0)c F -,2(,0)c F ,则焦半径10PF a ex =+,10PF a ex =-; 6、椭圆标准方程的求法 ⑴定义法:根据椭圆定义,确定2 a ,2 b 值,结合焦点位置直接写出椭圆方程; ⑵待定系数法:根据焦点位置设出相应标准方程,根据题中条件解出2 a ,2 b ,从而求出标准方程; ⑶在不知道焦点的情况下可设椭圆方程为221Ax By +=;

椭圆经典练习题两套(带答案)

椭圆练习题1 A组基础过关 一、选择题(每小题5分,共25分) 1.(2012·厦门模拟)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 ( ). A.1 2 B. 2 2 C. 2 D. 3 2 解析由题意得2a=22b?a=2b,又a2=b2+c2 ?b=c?a=2c?e= 2 2 . 答案B 2.(2012·长沙调研)中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ). A.x2 81 + y2 72 =1 B. x2 81 + y2 9 =1 C. x2 81 + y2 45 =1 D.x2 81+ y2 36 =1

解析 依题意知:2a =18,∴a =9,2c =1 3×2a ,∴c =3, ∴b 2 =a 2 -c 2 =81-9=72,∴椭圆方程为x 2 81 + y 2 72 =1. 答案 A 3.(2012·长春模拟)椭圆x 2+4y 2=1的离心率为( ). A. 32 B.34 C.22 D.23 解析 先将 x 2+4y 2=1 化为标准方程x 21+y 214 =1,则a =1,b =12,c =a 2-b 2=3 2 . 离心率e =c a =3 2. 答案 A 4.(2012·佛山月考)设F 1、F 2分别是椭圆x 24+y 2 =1的左、右焦点,P 是第一象 限内该椭圆上的一点,且PF 1⊥PF 2,则点P 的横坐标为( ). A .1 B.83 C .2 2 D.26 3 解析 由题意知,点P 即为圆x 2+y 2=3与椭圆x 24 +y 2=1在第一象限的交点, 解方程组???? ? x 2+y 2=3,x 24+y 2 =1,得点P 的横坐标为 26 3 . 答案 D 5.(2011·惠州模拟)已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 3 2 ,且椭圆G 上一点到其两个焦点的距离之和为12,则椭圆G 的方程为( ).

椭圆经典例题分类汇总

椭圆经典例题分类汇总 1.椭圆第一定义的应用 例1椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02, A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+y x ; (2)当()02, A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116 42 2=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 例2已知椭圆19822=++y k x 的离心率2 1=e ,求k 的值. 分析:分两种情况进行讨论. 解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由2 1= e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12. 由21= e ,得4191=-k ,即4 5-=k . ∴满足条件的4=k 或45-=k . 说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论. 例3 已知方程1352 2-=-+-k y k x 表示椭圆,求k 的取值范围. 解:由?? ???-≠-<-<-,35,03,05k k k k 得53<>b a 这个条件,当b a =时,并不表示椭圆.

椭圆常考题型汇总及练习进步

椭圆常考题型汇总及练习 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数 ()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距 ()c 2. 椭圆的几何性质:以 ()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用 于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e =,()10,0<<∴>>e c a Θ (2)22F OB Rt ?, 2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且 22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -= 越小, 椭圆越扁;当e 接近于0时,c 越接近于0,从而2 2c a b -=越大,椭圆越接近圆。

高考数学-直线和椭圆(圆锥曲线)常考题型

高考数学 直线和圆锥曲线常考题型 运用的知识: 1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-;两条直线垂直,则直线所在的向量120v v =r r g 2、韦达定理:若一元二次方程2 0(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a +=-=。 3、中点坐标公式:1212,y 22 x x y y x ++= =,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。 4、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上, 则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一, AB = 或者AB = 例题1、已知直线:1l y kx =+与椭圆22 : 14x y C m +=始终有交点,求m 的取值范围 解: 14m m ≤≠且。 例题2、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。 设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。 由2 (1)y k x y x =+?? =?消y 整理,得2222 (21)0k x k x k +-+= ① 由直线和抛物线交于两点,得 2242(21)4410k k k ?=--=-+> 即2 1 04 k << ② 由韦达定理,得:212221 ,k x x k -+=-121x x =。 则线段AB 的中点为22211 (,)22k k k -- 。 线段的垂直平分线方程为:2 21112()22k y x k k k --=--

特别解析:椭圆经典例题分类

特别解析:椭圆经典例题分类 题型一 .椭圆定义的应用 例1 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02, A 为长轴端点时,2=a ,1=b ,椭圆的标准方程为:1142 2=+y x ; (2)当()02, A 为短轴端点时,2=b ,4=a ,椭圆的标准方程为:116 42 2=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 例2 已知椭圆 19822=++y k x 的离心率2 1 =e ,求k 的值. 分析:分两种情况进行讨论. 解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12 -=k c .由2 1 =e ,得4=k . 当椭圆的焦点在y 轴上时,92 =a ,82 +=k b ,得k c -=12 . 由21= e ,得4191=-k ,即4 5-=k . ∴满足条件的4=k 或4 5 -=k . 说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论. 例3 已知方程 1352 2-=-+-k y k x 表示椭圆,求k 的取值范围. 解:由?? ? ??-≠-<-<-,35,03,05k k k k 得53<>b a 这个条件,当b a =时,并不表示椭圆. 例4 已知1cos sin 2 2 =-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围.

高中数学-椭圆经典练习题-配答案

椭圆练习题 一.选择题: 1.已知椭圆 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( D ) A .2 B .3 C .5 D .7 2.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( C ) A. B. C. D. 3.与椭圆9x 2 +4y 2 =36有相同焦点,且短轴长为4的椭圆方程是( B ) A 4.椭圆的一个焦点是,那么等于( A ) A. B. C. D. 5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( B ) A. B. C. D. 6.椭圆两焦点为 , ,P 在椭圆上,若 △的面积的最大值为12,则椭圆方程为( B ) A. B . C . D . 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2| 的等差中项,则该椭圆方程是( C )。 A +=1 B +=1 C +=1 D +=1 8.椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( C ) (A)450 (B)600 (C)900 (D)120 9.椭圆 上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为( A ) A. 4 B . 2 C. 8 D . 116 252 2=+y x 22143x y +=22134x y +=2214x y +=22 14 y x +=5185 8014520125201 20 252222222 2=+=+=+=+y x D y x C y x B y x 2 2 55x ky -=(0,2)k 1-1512 21(4,0)F -2(4,0)F 12PF F 221169x y +=221259x y +=2212516x y +=22 1254 x y +=16x 29y 216x 212y 24x 23y 23x 24 y 222 1259 x y +=2 3

高中数学椭圆题型完美归纳(经典)

椭圆题型归纳 一、知识总结 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形, 可设方程为221(0,0)mx ny m n +=>>不必考虑焦点位置,求出方程。 3.范围. 椭圆位于直线x =±a 和y =±b 围成的矩形里.|x|≤a ,|y|≤b . 4.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 5.顶点 椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ). 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴.。 长轴的长等于2a . 短轴的长等于2b .

|B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2,即c 2=a 2-b 2. 6.离心率 7.椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8.椭圆22 221x y a b +=(a >b >0)的焦半径公式10||MF a ex =+,20 ||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ). 9.AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2 OM AB b k k a ?=-,即0 2 02y a x b K AB -=。 )10(<<= e a c e

(完整版)椭圆练习题(含答案)

解析几何——椭圆精炼专题 一、 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆6322 2 =+y x 的焦距是( ) A .2 B .)23(2- C .52 D .)23(2+ 2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是( ) A .椭圆 B .直线 C .线段 D .圆 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)2 3,25(-,则椭圆方程是 ( ) A .14 8 2 2=+x y B .16102 2=+x y C .18 42 2=+x y D .16 102 2=+y x 4.方程22 2 =+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是( ) A .),0(+∞ B .(0,2) C .(1,+∞) D .(0,1) 5. 过椭圆1242 2 =+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ?,那么2 ABF ?的周长是( ) A . 22 B . 2 C . 2 D . 1 6.已知椭圆的对称轴是坐标轴,离心率为 3 1 ,长轴长为12,则椭圆方程为( ) A . 112814422=+y x 或114412822=+y x B . 14 62 2=+y x C . 1323622=+y x 或1363222=+y x D . 16422=+y x 或1462 2=+y x 7. 已知k <4,则曲线 14 92 2=+y x 和14922=-+-k y k x 有( ) A . 相同的短轴 B . 相同的焦点 C . 相同的离心率 D . 相同的长轴 8.椭圆 19 252 2=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( ) A .9 B .12 C .10 D .8 9.椭圆13 122 2=+y x 的焦点为1F 和2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,那么1PF 是2PF 的( ) A .4倍 B .5倍 C .7倍 D .3倍 10.椭圆144942 2 =+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( ) A .01223=-+y x B .01232=-+y x C .014494=-+y x D . 014449=-+y x 11.椭圆14 162 2=+y x 上的点到直线022=-+y x 的最大距离是 ( ) A .3 B .11 C .22 D .10 12.过点M (-2,0)的直线M 与椭圆12 22 =+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线M 的斜率为k 1(01≠k ) ,直线OP 的斜率为k 2,则k 1k 2的值为( ) A .2 B .-2 C . 21 D .-2 1 二、 填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.) 13.椭圆 2214x y m +=的离心率为1 2 ,则m = . 14.设P 是椭圆2 214 x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 ;最小值为 . 15.直线y =x -2 1被椭圆x 2+4y 2=4截得的弦长为 . 16.已知圆Q A y x C ),0,1(25)1(:2 2及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,则点M 的轨迹方程 为 .

椭圆经典例题答案版

椭圆标准方程典型例题 例1 已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值. 分析:把椭圆的方程化为标准方程,由2=c ,根据关系2 2 2 c b a +=可求出m 的值. 解:方程变形为 1262 2=+m y x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以2 262=-m ,5=m 适合.故5=m . 例2 已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程. 分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法, 求出参数a 和b (或2 a 和2 b )的值,即可求得椭圆的标准方程. 解:当焦点在x 轴上时,设其方程为()0122 22>>=+b a b y a x . 由椭圆过点()03,P ,知10922=+b a .又b a 3=,代入得12=b ,92 =a ,故椭圆的方程为19 22=+y x . 当焦点在y 轴上时,设其方程为()0122 22>>=+b a b x a y . 由椭圆过点()03,P ,知10922=+b a .又b a 3=,联立解得812=a ,92 =b ,故椭圆的方程为19 8122=+ x y . 例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹. 分析:(1)由已知可得20=+GB GC ,再利用椭圆定义求解. (2)由G 的轨迹方程G 、A 坐标的关系,利用代入法求A 的轨迹方程. 解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC , 知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b , 故其方程为 ()0136 1002 2≠=+y y x . (2)设()y x A ,,()y x G '',,则 ()0136 1002 2≠'='+'y y x . ① 由题意有??? ????='='33 y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).

椭圆与双曲线常见题型总结(附答案)

椭圆与双曲线常见题型总结(附答案)

椭圆与双曲线常见题型归纳 题型一:弦的垂直平分线问题 弦的垂直平分线问题和对称问题是一种解题思维,首先弄清楚哪个是弦,哪个是对称轴,用到的知识是:垂直(两直线的斜率之积为-1)和平分(中点坐标公式)。 例题1、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点, 在x 轴上是否存在一点E(0 x ,0),使得ABE ?是等边三角形,若存在,求出0 x ;若不存在,请说明理由。 分析:过点T(-1,0)的直线和曲线N :2 y x =相交A 、B 两点, 则直线的斜率存在且不等于0,可以设直线的方程,联立方程组,消元,分析类一元二次方程,看判别式,运用韦达定理,得弦的中点坐标,再由垂直和中点,写出垂直平分线的方程,得出E 3 倍。运用弦长公式求弦长。 解:依题意知,直线的斜率存在,且不等于0。设直线:(1)l y k x =+, k ≠,1 1 (,)A x y ,2 2 (,)B x y 。 由2 (1) y k x y x =+?? =? 消y 整理,得2 2 22(21)0 k x k x k +-+= ① 由直线和抛物线交于两点,得2 242(21)4410 k k k ?=--=-+>即2 104 k << ② 由韦达定理,得: 2122 21 ,k x x k -+=-121 x x =。则线段AB 的中点为

22 211(,)22k k k --。 线段的垂直平分线方程为:2 2 1112()22k y x k k k --=-- 令y=0,得0 211 22x k = -,则2 1 1 (,0)22E k -ABE ?Q 为正三角形,∴2 1 1(,0)22 E k -到 直线AB 的距离d 为 32 AB 。 2 2 1212()()AB x x y y =-+-Q 22141k k -= +g 212k d k +=222 23141122k k k k k -+∴+=g 解得39 13 k =± 满足②式此时0 53 x = 。 思维规律:直线过定点设直线的斜率k ,利用韦达定理法,将弦的中点用k 表示出来,再利用垂直关系将弦的垂直平分线方程写出来,求出了横截距的坐标;再利用正三角形的性质:高是边长的 3倍,将k 确定,进而求出0 x 的坐标。 例题2、已知椭圆 12 22 =+y x 的左焦点为F ,O 为坐标原点。 (Ⅰ)求过点O 、F ,并且与2x =-相切的圆的方程; (Ⅱ)设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围。

高考椭圆题型总结有答案

椭圆题型总结 一、 椭圆的定义和方程问题 (一) 定义: 1. 命题甲:动点P 到两点B A ,的距离之 2. 和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ( B ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 3. 已知1F 、2F 是两个定点,且421=F F ,若动点P 满足421=+PF PF 则动点P 的轨迹是( D ) A.椭圆 B.圆 C.直线 D.线段 4. 已知1F 、2F 是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长P F 1到Q ,使得2PF PQ =,那么动点Q 的轨迹 是( B ) A.椭圆 B.圆 C.直线 D.点 5. 椭圆19 252 2=+y x 上一点M 到焦点1F 的距离为2,N 为1MF 的中点,O 是椭圆的中心,则ON 的值是 4 。 6. 选做:F 1是椭圆15 92 2=+y x 的左焦点,P 在椭圆上运动,定点A (1,1),求||||1PF PA +的最小值。 解:26||2||2||||||221-=-≥-+=+AF a PF a PA PF PA (二) 标准方程求参数范围 1. 试讨论k 的取值范围,使方程13 52 2=-+-k y k x 表示圆,椭圆,双曲线。 (略) 2. 轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 102 2=+>>( C ) A.充分而不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 3. 若方程1cos sin 2 2=+ααy x 表示焦点在y 轴上的椭圆,α所在的象限是( A ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限 4. 方程2 31y x -=所表示的曲线是 椭圆的右半部分 . 5. 已知方程222 =+ky x 表示焦点在X 轴上的椭圆,则实数k 的范围是 k>1 (三) 待定系数法求椭圆的标准方程 1. 根据下列条件求椭圆的标准方程: (1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点P 到两焦点的距离之和为26; 1144 1692 2=+x y (2)长轴是短轴的2倍,且过点(2,-6); 137 148,113522 222=+=+y x x y 或 (3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点) 2,3(),1,6(21--P P ,求椭圆方程. 1 3 9 2 2=+ y x

相关文档
相关文档 最新文档