文档库 最新最全的文档下载
当前位置:文档库 › 贝叶斯网络推理的一种高精度仿真算法

贝叶斯网络推理的一种高精度仿真算法

贝叶斯网络推理的一种高精度仿真算法
贝叶斯网络推理的一种高精度仿真算法

如何使用贝叶斯网络工具箱

如何使用贝叶斯网络工具箱 2004-1-7版 翻译:By 斑斑(QQ:23920620) 联系方式:banban23920620@https://www.wendangku.net/doc/c78533404.html, 安装 安装Matlab源码 安装C源码 有用的Matlab提示 创建你的第一个贝叶斯网络 手工创建一个模型 从一个文件加载一个模型 使用GUI创建一个模型 推断 处理边缘分布 处理联合分布 虚拟证据 最或然率解释 条件概率分布 列表(多项式)节点 Noisy-or节点 其它(噪音)确定性节点 Softmax(多项式 分对数)节点 神经网络节点 根节点 高斯节点 广义线性模型节点 分类 / 回归树节点 其它连续分布 CPD类型摘要 模型举例 高斯混合模型 PCA、ICA等 专家系统的混合 专家系统的分等级混合 QMR 条件高斯模型 其它混合模型

参数学习 从一个文件里加载数据 从完整的数据中进行最大似然参数估计 先验参数 从完整的数据中(连续)更新贝叶斯参数 数据缺失情况下的最大似然参数估计(EM算法) 参数类型 结构学习 穷举搜索 K2算法 爬山算法 MCMC 主动学习 结构上的EM算法 肉眼观察学习好的图形结构 基于约束的方法 推断函数 联合树 消元法 全局推断方法 快速打分 置信传播 采样(蒙特卡洛法) 推断函数摘要 影响图 / 制定决策 DBNs、HMMs、Kalman滤波器等等

安装 安装Matlab代码 1.下载FullBNT.zip文件。 2.解压文件。 3.编辑"FullBNT/BNT/add_BNT_to_path.m"让它包含正确的工作路径。 4.BNT_HOME = 'FullBNT的工作路径'; 5.打开Matlab。 6.运行BNT需要Matlab版本在V5.2以上。 7.转到BNT的文件夹例如在windows下,键入 8.>> cd C:\kpmurphy\matlab\FullBNT\BNT 9.键入"add_BNT_to_path",执行这个命令。添加路径。添加所有的文件夹在Matlab的路 径下。 10.键入"test_BNT",看看运行是否正常,这时可能产生一些数字和一些警告信息。(你可 以忽视它)但是没有错误信息。 11.仍有问题?你是否编辑了文件?仔细检查上面的步骤。

贝叶斯网络构建算法

3.1 贝叶斯网络构建算法 算法3.1:构建完全连接图算法 输入:样本数据D ;一组n 个变量V={V l ,V 2,…,V n }变量。 输出:一个完全连接图S 算法: 1、 连接任意两个节点,即连接边 L ij=1,i ≠j 。 2、 为任一节点V i 邻接点集合赋值,B i= V\{V i }。 算法3.2:构建最小无向图算法 输入:样本数据D ;一组n 个变量V={V l ,V 2,…,V n }变量。及算法3.1中得到的邻接点集B i ,连接边集 L ij 先验知识:节点V i ,V j 间连接边是否存在 变量说明:L 为连接边,|L|=n(n –1)/2为连接边的数量,B i 表示变量V i 的直接邻近集,|B i |表示与变量B i 相邻的变量数。(V i ⊥V j |Z)表示V i 和V j 在Z 条件下条件独立,设∧(X ,Y)表示变量X 和Y 的最小d-分离集。 输出:最小无向图S 1、根据先验知识,如果V i 和V j 不相连接,则L ij =0 . 2、对任一相连接边,即L ij ≠0,根据式(3-12)计算互信息I (V i ,V j ) ),(Y X I =))()(|),((y p x P y x p D =????? ?)()(),(log ),(Y p X p Y X p E y x P (3-12) if I (V i ,V j )ε≤ then { L ij =0 //V i 和V j 不相连接 B i= V\{V j }, B j= V\{V i } //调整V i 和V j 邻接集 } else I ij = I (V i ,V j ) //节点V i 和V j 互信息值 3、对所有连接边,并按I ij 升序排序 4、如果连接边集L ij 不为空,那么按序选取连接边L ij ,否则 goto 10 if |B i |≥ |B j |,令Z= B i else Z= B j //为后面叙述方便,这里先假设|B i |≥ |B j | 5、逐一计算L ij 的一阶条件互信息I(V i ,V j |Z 1),Z 1={Y k }, Y k ∈Z, if I(V i ,V j |Z 1)ε≤ then { L ij =0 //V i 和V j 关于Z 1条件独立 B i= V\{V j }, B j= V\{V i } //调整V i 和V j 邻接集 d ij = Z 1 //L ij 最小d 分离集为Z 1 goto 4

比较简单的贝叶斯网络总结

贝叶斯网络 贝叶斯网络是一系列变量的联合概率分布的图形表示。 一般包含两个部分,一个就是贝叶斯网络结构图,这是一个有向无环图(DAG),其中图中的每个节点代表相应的变量,节点之间的连接关系代表了贝叶斯网络的条件独立语义。另一部分,就是节点和节点之间的条件概率表(CPT),也就是一系列的概率值。如果一个贝叶斯网络提供了足够的条件概率值,足以计算任何给定的联合概率,我们就称,它是可计算的,即可推理的。 3.5.1 贝叶斯网络基础 首先从一个具体的实例(医疗诊断的例子)来说明贝叶斯网络的构造。 假设: 命题S(moker):该患者是一个吸烟者 命题C(oal Miner):该患者是一个煤矿矿井工人 命题L(ung Cancer):他患了肺癌 命题E(mphysema):他患了肺气肿 命题S对命题L和命题E有因果影响,而C对E也有因果影响。 命题之间的关系可以描绘成如右图所示的因果关系网。 因此,贝叶斯网有时也叫因果网,因为可以将连接结点的弧认为是表达了直接的因果关系。 图3-5 贝叶斯网络的实例 图中表达了贝叶斯网的两个要素:其一为贝叶斯网的结构,也就是各节点的继承关系,其二就是条件概率表CPT。若一个贝叶斯网可计算,则这两个条件缺一不可。 贝叶斯网由一个有向无环图(DAG)及描述顶点之间的概率表组成。其中每个顶点对应一个随机变量。这个图表达了分布的一系列有条件独立属性:在给定了父亲节点的状态后,每个变量与它在图中的非继承节点在概率上是独立的。该图抓住了概率分布的定性结构,并被开发来做高效推理和决策。 贝叶斯网络能表示任意概率分布的同时,它们为这些能用简单结构表示的分布提供了可计算优势。 假设对于顶点xi,其双亲节点集为Pai,每个变量xi的条件概率P(xi|Pai)。则顶点集合X={x1,x2,…,xn}的联合概率分布可如下计算: 。 双亲结点。该结点得上一代结点。

贝叶斯网络

贝叶斯网络 一.简介 贝叶斯网络又称信度网络,是Bayes方法的扩展,目前不确定知识表达和推理领域最有效的理论模型之一。从1988年由Pearl提出后,已知成为近几年来研究的热点.。一个贝叶斯网络是一个有向无环图(Directed Acyclic Graph,DAG),由代表变量节点及连接这些节点有向边构成。节点代表随机变量,节点间的有向边代表了节点间的互相关系(由父节点指向其后代节点),用条件概率进行表达关系强度,没有父节点的用先验概率进行信息表达。节点变量可以是任何问题的抽象,如:测试值,观测现象,意见征询等。适用于表达和分析不确定性和概率性的事件,应用于有条件地依赖多种控制因素的决策,可以从不完全、不精确或不确定的知识或信息中做出推理。 二. 贝叶斯网络建造 贝叶斯网络的建造是一个复杂的任务,需要知识工程师和领域专家的参与。在实际中可能是反复交叉进行而不断完善的。面向设备故障诊断应用的贝叶斯网络的建造所需要的信息来自多种渠道,如设备手册,生产过程,测试过程,维修资料以及专家经验等。首先将设备故障分为各个相互独立且完全包含的类别(各故障类别至少应该具有可以区分的界限),然后对各个故障类别分别建造贝叶斯网络模型,需要注意的是诊断模型只在发生故障时启动,因此无需对设备正常状态建模。通常设备故障由一个或几个原因造成的,这些原因又可能由一个或几个更低层次的原因造成。建立起网络的节点关系后,还需要进行概率估计。具体方法是假设在某故障原

因出现的情况下,估计该故障原因的各个节点的条件概率,这种局部化概率估计的方法可以大大提高效率。 三. 贝叶斯网络有如下特性 1. 贝叶斯网络本身是一种不定性因果关联模型。贝叶斯网络与其他决策模型不同,它本身是将多元知识图解可视化的一种概率知识表达与推理模型,更为贴切地蕴含了网络节点变量之间的因果关系及条件相关关系。 2. 贝叶斯网络具有强大的不确定性问题处理能力。贝叶斯网络用条件概率表达各个信息要素之间的相关关系,能在有限的,不完整的,不确定的信息条件下进行学习和推理。 3. 贝叶斯网络能有效地进行多源信息表达与融合。贝叶斯网络可将故障诊断与维修决策相关的各种信息纳入网络结构中,按节点的方式统一进行处理,能有效地按信息的相关关系进行融合。 目前对于贝叶斯网络推理研究中提出了多种近似推理算法,主要分为两大类:基于仿真方法和基于搜索的方法。在故障诊断领域里就我们水电仿真而言,往往故障概率很小,所以一般采用搜索推理算法较适合。就一个实例而言,首先要分析使用那种算法模型: a.)如果该实例节点信度网络是简单的有向图结构,它的节点数目少的情况下,采用贝叶斯网络的精确推理,它包含多树传播算法,团树传播算法,图约减算法,针对实例事件进行选择恰当的算法; b.)如果是该实例所画出节点图形结构复杂且节点数目多,我们可采用近似推理算法去研究,具体实施起来最好能把复杂庞大的网络进行化简,然后在与精确推理相结合来考虑。

路由算法分类比较

路由算法是路由协议必须高效地提供其功能,尽量减少软件和应用的开销。 路由器使用路由算法来找到到达目的地的最佳路由。 关于路由器如何收集网络的结构信息以及对之进行分析来确定最佳路由,有两种主要的路由算法:总体式路由算法和分散式路由算法。采用分散式路由算法时,每个路由器只有与它直接相连的路由器的信息——而没有网络中的每个路由器的信息。这些算法也被称为DV(距离向量)算法。采用总体式路由算法时,每个路由器都拥有网络中所有其他路由器的全部信息以及网络的流量状态。这些算法也被称为LS(链路状态)算法。 收敛是在最佳路径的判断上所有路由器达到一致的过程。当某个网络事件引起路由可用或不可用时,路由器就发出更新信息。路由更新信息遍及整个网络,引发重新计算最佳路径,最终达到所有路由器一致公认的最佳路径。收敛慢的路由算法会造成路径循环或网络中断。 路由算法的核心是路由选择算法,设计路由算法时要考虑的技术要素有: 1、选择最短路由还是最佳路由; 2、通信子网是采用虚电路操作方式还是采用数据报的操作方式; 3、采用分布式路由算法还是采用集中式路由算法; 4、考虑关于网络拓扑、流量和延迟等网络信息的来源; 5、确定采用静态路由还是动态路由。 各路由算法的区别点包括:静态与动态、单路径与多路径、平坦与分层、主机智能与路由器智能、域内与域间、链接状态与距离向量。 链接状态算法(也叫做短路径优先算法)把路由信息散布到网络的每个节点,不过每个路由器只发送路由表中描述其自己链接状态的部分。 距离向量算法(也叫做 Bellman-Ford算法)中每个路由器发送路由表的全部或部分,但只发给其邻居。 也就是说,链接状态算法到处发送较少的更新信息,而距离向量算法只向相邻的路由器发送较多的更新信息。 metric是路由算法用以确定到达目的地的最佳路径的计量标准,如路径长度。

贝叶斯网络

贝叶斯网络 2007-12-27 15:13 贝叶斯网络 贝叶斯网络亦称信念网络(Belief Network),于1985 年由Judea Pearl 首先提出。它是一种模拟人类推理过程中因果关系的不确定性处理模型,其网络拓朴结构是一个有向无环图(DAG)。它的节点用随机变量或命题来标识,认为有直接关系的命题或变量则用弧来连接。例如,假设结点E 直接影响到结点H,即E→H,则建立结点E 到结点H 的有向弧(E,H),权值(即连接强度)用条件概率P(H/E)来表示,如图所示: 一般来说,有 n 个命题 x1,x2,,xn 之间相互关系的一般知识可用联合概率分布来描述。但是,这样处理使得问题过于复杂。Pearl 认为人类在推理过程中,知识并不是以联合概率分布形表现的,而是以变量之间的相关性和条件相关性表现的,即可以用条件概率表示。如 例如,对如图所示的 6 个节点的贝叶斯网络,有 一旦命题之间的相关性由有向弧表示,条件概率由弧的权值来表示,则命题之间静态结构关系的有关知识就表示出来了。当获取某个新的证据事实时,要对每个命题的可能取值加以综合考查,进而对每个结点定义一个信任度,记作 Bel(x)。可规定 Bel(x) = P(x=xi / D) 来表示当前所具有的所有事实和证据 D 条件下,命题 x 取值为 xi 的可信任程度,然后再基于 Bel 计算的证据和事实下各命题

的可信任程度。 团队作战目标选择 在 Robocode 中,特别在团队作战中。战场上同时存在很多机器人,在你附近的机器人有可能是队友,也有可能是敌人。如何从这些复杂的信息中选择目标机器人,是团队作战的一大问题,当然我们可以人工做一些简单的判断,但是战场的信息是变化的,人工假定的条件并不是都能成立,所以让机器人能自我选择,自我推理出最优目标才是可行之首。而贝叶斯网络在处理概率问题上面有很大的优势。首先,贝叶斯网络在联合概率方面有一个紧凑的表示法,这样比较容易根据一些事例搜索到可能的目标。另一方面,目标选择很容易通过贝叶斯网络建立起模型,而这种模型能依据每个输入变量直接影响到目标选择。 贝叶斯网络是一个具有概率分布的有向弧段(DAG)。它是由节点和有向弧段组成的。节点代表事件或变量,弧段代表节点之间的因果关系或概率关系,而弧段是有向的,不构成回路。下图所示为一个简单的贝叶斯网络模型。它有 5 个节 点和 5 个弧段组成。图中没有输入的 A1 节 点称为根节点,一段弧的起始节点称为其末节点的母节点,而后者称为前者的子节点。 简单的贝叶斯网络模型 贝叶斯网络能够利用简明的图形方式定性地表示事件之间复杂的因果关系或概率关系,在给定某些先验信息后,还可以定量地表示这些关系。网络的拓扑结构通常是根据具体的研究对象和问题来确定的。目前贝叶斯网络的研究热点之一就是如何通过学习自动确定和优化网络的拓扑结构。 变量 由上面贝叶斯网络模型要想得到理想的目标机器人,我们就必须知道需要哪些输入变量。如果想得到最好的结果,就要求我们在 Robocode 中每一个可知的数据块都要模拟为变量。但是如果这样做,在贝叶斯网络结束计算时,我们会得到一个很庞大的完整概率表,而维护如此庞大的概率表将会花费我们很多的系统资源和计算时间。所以在开始之前我们必须要选择最重要的变量输入。这样从比赛中得到的关于敌人的一些有用信息有可能不会出现在贝叶斯网络之内,比如速

贝叶斯网络结构学习及其应用研究_黄解军

收稿日期:2004-01-23。 项目来源:国家自然科学基金资助项目(60175022)。 第29卷第4期2004年4月武汉大学学报#信息科学版 Geomatics and Information Science of Wuhan U niversity V ol.29No.4Apr.2004 文章编号:1671-8860(2004)04-0315-04文献标识码:A 贝叶斯网络结构学习及其应用研究 黄解军1 万幼川1 潘和平 1 (1 武汉大学遥感信息工程学院,武汉市珞喻路129号,430079) 摘 要:阐述了贝叶斯网络结构学习的内容与方法,提出一种基于条件独立性(CI)测试的启发式算法。从完全潜在图出发,融入专家知识和先验常识,有效地减少网络结构的搜索空间,通过变量之间的CI 测试,将全连接无向图修剪成最优的潜在图,近似于有向无环图的无向版。通过汽车故障诊断实例,验证了该算法的可行性与有效性。 关键词:贝叶斯网络;结构学习;条件独立性;概率推理;图论中图法分类号:T P18;T P311 贝叶斯网络学习是贝叶斯网络的重要研究内容,也是贝叶斯网络构建中的关键环节,大体分为结构学习和参数学习两个部分。由于网络结构的空间分布随着变量的数目和每个变量的状态数量呈指数级增长,因此,结构学习是一个NP 难题。为了克服在构建网络结构中计算和搜索的复杂性,许多学者进行了大量的探索性工作[1~5]。至今虽然出现了许多成熟的学习算法,但由于网络结构空间的不连续性、结构搜索和参数学习的复杂性、数据的不完备性等特点,每种算法都存在一定的局限性。本文提出了一种新算法,不仅可以有效地减少网络结构的搜索空间,提高结构学习的效率,而且可避免收敛到次优网络模型的问题。 1 贝叶斯网络结构学习的基本理论 1.1 贝叶斯网络结构学习的内容 贝叶斯网络又称为信念网络、概率网络或因果网络[6] 。它主要由两部分构成:1有向无环图(directed acyclic graph,DAG),即网络结构,包括节点集和节点之间的有向边,每个节点代表一个变量,有向边代表变量之间的依赖关系;o反映变量之间关联性的局部概率分布集,即概率参数,通常称为条件概率表(conditional probability table,CPT),概率值表示变量之间的关联强度或置信度。贝叶斯网络结构是对变量之间的关系描 述,在具体问题领域,内部的变量关系形成相对稳定的结构和状态。这种结构的固有属性确保了结构学习的可行性,也为结构学习提供了基本思路。贝叶斯网络结构学习是一个网络优化的过程,其目标是寻找一种最简约的网络结构来表达数据集中变量之间的关系。对于一个给定问题,学习贝叶斯网络结构首先要定义变量及其构成,确定变量所有可能存在的状态或权植。同时,要考虑先验知识的融合、评估函数的选择和不完备数据的影响等因素。 1.2 贝叶斯网络结构学习的方法 近10年来,贝叶斯网络的学习理论和应用取得了较大的进展。目前,贝叶斯网络结构学习的方法通常分为两大类:1基于搜索与评分的方法,运用评分函数对网络模型进行评价。通常是给定一个初始结构(或空结构),逐步增加或删减连接边,改进网络模型,从而搜索和选择出一个与样本数据拟合得最好的结构。根据不同的评分准则,学习算法可分为基于贝叶斯方法的算法[3,7]、基于最大熵的算法[8]和基于最小描述长度的算法[1,2]。o基于依赖关系分析的方法,节点之间依赖关系的判断通过条件独立性(CI )测试来实现,文献[9,10]描述的算法属于该类算法。前者在DAG 复杂的情况下,学习效率更高,但不能得到一个最优的模型;后者在数据集的概率分布与DAG 同构的条件下,通常获得近似最优的模型[11],

JAVA贝叶斯网络算法

贝叶斯网络 提纲: 最近工作: B-COURSE工具学习 BNT研究与学习 BNT相关实验及结果 手动建立贝叶斯网及简单推理 参数学习 结构学习 下一步工作安排 最近工作: 1. B-COURSE 工具学习 B-COURSE是一个供教育者和研究者免费使用的web贝叶斯网络工具。主要分为依赖关系建模和分类器模型设计。输入自己的研究数据,就可以利用该工具在线建立模型,并依据建立好的模型进行简单推理。 B-COURSE要求数据格式是ASCII txt格式的离散数据,其中第一行是各种数据属性变量,其余各行则是采集的样本,属性变量值可以是字符串也可以是数据,属性变量之间用制表符分割,缺失属性变量值用空格代替。读入数据后,在进行结构学习前,可以手动的选择需

要考虑的数据属性!生成过程中,可以手动确定模型,确定好模型后,可以选择JAVA playgroud,看到一个java applet程序,可以手动输入相应证据,从而进行简单推理。 B-COURSE的详细使用介绍,可详见 [url]http://b-course.cs.helsinki.fi/obc/[/url]。 B-COURSE工具隐藏了数据处理,算法实现等技术难点,所以对初学者来说,容易上手。但是却不能够针对不同的应用进行自主编程,缺乏灵活性。 2.贝叶斯网工具箱BNT的研究与学习 基于matlab的贝叶斯网络工具箱BNT是kevin p.murphy基于matlab语言开发的关于贝叶斯网络学习的开源软件包,提供了许多贝叶斯网络学习的底层基础函数库,支持多种类型的节点(概率分布)、精确推理和近似推理、参数学习及结构学习、静态模型和动态模型。 贝叶斯网络表示:BNT中使用矩阵方式表示贝叶斯网络,即若节点i到j有一条弧,则对应矩阵中(i,j)值为1,否则为0。 结构学习算法函数:BNT中提供了较为丰富的结构学习函数,都有: 1. 学习树扩展贝叶斯网络结构的TANC算法learn_struct_tan(). 2. 数据完整条件下学习一般贝叶斯网络结构的K2算法 learn_struct_k2()、贪婪搜索GS(greedy search)算法

2020年计算机四级网络工程师复习要点:路由选择算法的分类(最新)

2020年计算机四级网络工程师复习要点:路由选择算法的分类 在INTERNET中,路由器采用表驱动的路由选择算法。路由表存储了可能的目地地址与如何到达目的地址的信息。 报考路由选择算法也称为自适应路由选择算法,其特点是能较好地适应网络状态的变化,但实现起来较为复杂,开销也比较大。路由表可以分为静态路由表和报考路由表: 1、静态路由表:是由人工方式建立的,网络管理人员将每一个目的地址的路径输入到路由表中。网络结构发生变化时,路由表无法自动地更新。 2、报考路由表:大型互联网网络通常采用报考路由表。在网络系统运行时,系统将自动运行报考路由选择协议,建立路由表。 一个自治系统重要的特点就是它有权决定在本系统内应采用何种路由选择协议。自治系统内部的路由选择称为域内路由选择,自治系统之间的路由选择称为域间路由选择。作为一个自治系统,其核心是路由寻址的“自治”。 INTERNET将路由选择协议分为两大类:内部网关协议IGP和外部网关协议EGP。 内部网关协议是在一个自治系统内部使用的路由选择协议,这与INTERNET 中其他自治系统选用什么路由选择协议无关。目前内部网关协议主要有:路由信息协议RIP和开放短路径优先协议OSPF。外部网关协议主要是边界网关协议BGP,路由选择算法和路由选择协议在概念上是不同的。网络上的主机、路由器通过路由选择算法去形成路由表,以确定发送分组的传输路径。而路由选择协议是路由器用来完成路由表建立和路由信息更新的通信协议。 路由信息协议是内部网关协议中使用广泛的一种协议,它是一种分布式、基于距离向量的路由选择协议,其特点是协议简单。路由信息协议是用于TCP/IP 系统和其他网络环境的距离矢量路由选择协议。路由信息协议RIP适用于相对较小的自治系统,它们的直径“跳数”一般小于15.因为每一个自治系统里的路由器都要与同一系统里的其他路由器交换路由表信息,当内部路由器的数目增加时,网络的RIP信息交换量会大幅度地增加。 短路径优先协议OSPF的主要特点: 1、使用分布式链路状态协议,而RIP使用距离向量协议。 2、OSPF协议要求路由器发送的信息是本路由器与哪些路由器相邻,以及链路状态的度量。链路状态度量主要是指费用、距离、延时、带宽等。

D2D网络中基于强化学习的路由选择与资源分配算法研究

D2D网络中基于强化学习的路由选择与资源分配算法研究 随着通信网络的发展,终端直连通信技术(Device-to-Devic,D2D)被广泛关注,它的应用将满足用户日益增长的流量需求。然而,D2D技术的引入使得蜂窝网络内部的干扰冲突加剧,用户难以满足服务质量(Quality-of-Service,QoS)的需求。 一些传统算法基于网络“抓拍”信息可以计算得到各采样时刻的网络控制策略,却难以适应复杂多变、高度动态的网络环境。因此,本文着手于动态环境下的D2D网络中的通信问题进行了深入地研究,并结合正在兴起的机器学习技术,提出了更加智能化的解决方案。 在本文中我们将分别研究“多跳D2D网络”与“D2D直连通信”两类D2D应用场景的通信问题,提出了在两种场景下基于强化学习的在线学习方法,从而解决多跳网络中的路由问题与D2D直连网络中的资源分配问题。而随着问题复杂程度的增加,强化学习算法也相应由浅入深。 在路由问题中,因问题复杂程度较低,我们利用传统强化学习算法中的值迭代算法求解,而在资源分配问题中因问题规模变大,本文依次提出了基于深度Q 学习(Deep Q-Learning,DQN)的资源分配算法和深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)的资源分配算法分别解决了问题中状态空间连续与动作空间连续的问题,而这两种算法都是深度强化学习(Deep Reinforcement Learning,DRL)中的经典算法。在多跳D2D网络路由问题中,我们考虑了三类随网络动态变化的QoS指标,并利用值迭代算法求解,同时提出了分布式的强化学习算法解决了集中式算法学习周期过长的问题。 仿真发现,在动态环境中,所提算法在性能与时间复杂度方面相较于传统算

贝叶斯网络的建造训练和特性

贝叶斯网络建造 贝叶斯网络的建造是一个复杂的任务,需要知识工程师和领域专家的参与。在实际中可能是反复交叉进行而不断完善的。面向设备故障诊断应用的贝叶斯网络的建造所需要的信息来自多种渠道,如设备手册,生产过程,测试过程,维修资料以及专家经验等。首先将设备故障分为各个相互独立且完全包含的类别(各故障类别至少应该具有可以区分的界限),然后对各个故障类别分别建造贝叶斯网络模型,需要注意的是诊断模型只在发生故障时启动,因此无需对设备正常状态建模。通常设备故障由一个或几个原因造成的,这些原因又可能由一个或几个更低层次的原因造成。建立起网络的节点关系后,还需要进行概率估计。具体方法是假设在某故障原因出现的情况下,估计该故障原因的各个节点的条件概率,这种局部化概率估计的方法可以大大提高效率。 贝叶斯网络训练 使用贝叶斯网络必须知道各个状态之间相关的概率。得到这些参数的过程叫做训练。和训练马尔可夫模型一样,训练贝叶斯网络要用一些已知的数据。比如在训练上面的网络,需要知道一些心血管疾病和吸烟、家族病史等有关的情况。相比马尔可夫链,贝叶斯网络的训练比较复杂,从理论上讲,它是一个NP-complete 问题,也就是说,对于现在的计算机是不可计算的。但是,对于某些应用,这个训练过程可以简化,并在计算上实现。 贝叶斯网络具有如下特性:

1。贝叶斯网络本身是一种不定性因果关联模型。贝叶斯网络与其他决策模型不同,它本身是将多元知识图解可视化的一种概率知识表达与推理模型,更为贴切地蕴含了网络节点变量之间的因果关系及条件相关关系。 2。贝叶斯网络具有强大的不确定性问题处理能力。贝叶斯网络用条件概率表达各个信息要素之间的相关关系,能在有限的,不完整的,不确定的信息条件下进行学习和推理。 3。贝叶斯网络能有效地进行多源信息表达与融合。贝叶斯网络可将故障诊断与维修决策相关的各种信息纳入网络结构中,按节点的方式统一进行处理,能有效地按信息的相关关系进行融合。 目前对于贝叶斯网络推理研究中提出了多种近似推理算法,主要分为两大类:基于仿真方法和基于搜索的方法。在故障诊断领域里就我们水电仿真而言,往往故障概率很小,所以一般采用搜索推理算法较适合。就一个实例而言,首先要分析使用那种算法模型: a.)如果该实例节点信度网络是简单的有向图结构,它的节点数目少的情况下,采用贝叶斯网络的精确推理,它包含多树传播算法,团树传播算法,图约减算法,针对实例事件进行选择恰当的算法; b.)如果是该实例所画出节点图形结构复杂且节点数目多,我们可采用近似推理算法去研究,具体实施起来最好能把复杂庞大的网络进行化简,然后在与精确推理相结合来考虑。 在日常生活中,人们往往进行常识推理,而这种推理通常是不准确的。例如,你看见一个头发潮湿的人走进来,你可能会认为外面下雨了,那你也许错了;如果你在公园里看到一男一女带着一个小孩,你可能会认为他们是一家人,你可能也犯了错误。在工程中,我们也同样需要进行科学合理的推理。但是,工程实际中的问题一般都比较复杂,而且存在着许多不确定性因素。这就给准确推理带来了很大的困难。很早以前,不确定性推理就是人工智能的一个重要研究领域。尽管许多人工智能领域的研究人员引入其它非概率原理,但是他们也认为在常识推理的基础上构建和使用概率方法也是可能的。为了提高推理的准确性,人们引入了概率理论。最早由Judea Pearl于1988年提出的贝叶斯网络(Bayesian Network)实质上就是一种基于概率的不确定性推理网络。它是用来表示变量集合连接概率的图形模型,提供了一种表示因果信息的方法。当时主要用于处理人工智能中的不确定性信息。随后它逐步成为了处理不确定性信息技术的主流,并且在计算机智能科学、工业控制、医疗诊断等领域的许多智能化系统中得到了重要的应用。 贝叶斯理论是处理不确定性信息的重要工具。作为一种基于概率的不确定性推理方法,贝叶斯网络在处理不确定信息的智能化系统中已得到了重要的应用,已成功地用于

贝叶斯网络结构学习总结

贝叶斯网络结构学习总结 一、 贝叶斯网络结构学习的原理 从数据中学习贝叶斯网络结构就是对给定的数据集,找到一个与数据集拟合最好的网络。 首先定义一个随机变量h S ,表示网络结构的不确定性,并赋予先验概率分布()h p S 。然后计算后验概率分布(|)h p S D 。根据Bayesian 定理有 (|)(,)/()()(|)/()h h h h p S D p S D p D p S p D S p D == 其中()p D 是一个与结构无关的正规化常数,(|)h p D S 是边界似然。 于是确定网络结构的后验分布只需要为每一个可能的结构计算数据的边界似然。在无约束多项分布、参数独立、采用Dirichlet 先验和数据完整的前提下,数据的边界似然正好等于每一个(i ,j )对的边界似然的乘积,即 1 1 1 () ()(|)()() i i q r n ij ijk ijk h i j k ij ij ijk N p D S N ===Γ?Γ?+=Γ?+Γ?∏∏ ∏ 二、 贝叶斯网络完整数据集下结构学习方法 贝叶斯网络建模一般有三种方法:1)依靠专家建模;2)从数据中学习;3)从知识库中创建。在实际建模过程中常常综合运用这些方法,以专家知识为主导,以数据库和知识库为辅助手段,扬长避短,发挥各自优势,来保证建模的效率和准确性。但是,在不具备专家知识或知识库的前提下,从数据中学习贝叶斯网络模型结构的研究显得尤为重要。 常用的结构学习方法主要有两类,分别是基于依赖性测试的学习和基于搜索评分的学习。 第一类方法是基于依赖性测试的方法,它是在给定数据集D 中评估变量之间的条件独立性关系,构建网络结构。基于条件独立测试方法学习效率最好,典型的算法包括三阶段分析算法(TPDA )。基于依赖性测试的方法比较直观,贴近贝叶斯网络的语义,把条件独立性测试和网络结构的搜索分离开,不足之处是对条件独立性测试产生的误差非常敏感。且在某些情况下条件独立性测试的次数相对于变量的数目成指数级增长。 第二类方法是基于评分搜索的方法,其原理是在所有节点的结构空间内按照一定的搜索策略及评分准则构建贝叶斯网络结构,这种算法虽然能够搜索到精确的网络结构,但是由于结构空间很大,从所有可能的网络结构空间搜索最佳的贝叶斯网络结构被证明为NP-hard 问题,所以一般需要使用启发式算法,代表性算法有K2算法等。基于搜索评分的方法是一种统计驱动的方法,试图在准确性、稀疏性、鲁棒性等多个因素之间找个平衡点。但由于搜索方法的先天弱点,导致用搜索评分的方法不一定能找到最好的结构,但是应用范围很广。 当观察到的数据足够充分且计算次数足够多时,基于搜索评分的方法和基于依赖性测试的方法都可以学到“正确”的网络结构。 此外,有人结合上述两种方法,提出了一些混合算法,这类算法首先利用独立性测试降

算法杂货铺——分类算法之贝叶斯网络(Bayesian networks)

算法杂货铺——分类算法之贝叶斯网络(Bayesian networks) 2010-09-18 22:50 by EricZhang(T2噬菌体), 2561 visits, 网摘, 收藏, 编辑 2.1、摘要 在上一篇文章中我们讨论了朴素贝叶斯分类。朴素贝叶斯分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立)。当这个条件成立时,朴素贝叶斯分类法的准确率是最高的,但不幸的是,现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分类的能力。这一篇文章中,我们接着上一篇文章的例子,讨论贝叶斯分类中更高级、应用范围更广的一种算法——贝叶斯网络(又称贝叶斯信念网络或信念网络)。 2.2、重新考虑上一篇的例子 上一篇文章我们使用朴素贝叶斯分类实现了SNS社区中不真实账号的检测。在那个解决方案中,我做了如下假设: i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。 ii、日志密度、好友密度和是否使用真实头像在账号真实性给定的条件下是独立的。 但是,上述第二条假设很可能并不成立。一般来说,好友密度除了与账号是否真实有关,还与是否有真实头像有关,因为真实的头像会吸引更多人加其为好友。因此,我们为了获取更准确的分类,可以将假设修改如下: i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。 ii、日志密度与好友密度、日志密度与是否使用真实头像在账号真实性给定的条件下是独立的。 iii、使用真实头像的用户比使用非真实头像的用户平均有更大的好友密度。

比较简单的贝叶斯网络总结

比较简单的贝叶斯网络总结

贝叶斯网络 贝叶斯网络是一系列变量的联合概率分布的图形表示。 一般包含两个部分,一个就是贝叶斯网络结构图,这是一个有向无环图(DAG),其中图中的每个节点代表相应的变量,节点之间的连接关系代表了贝叶斯网络的条件独立语义。另一部分,就是节点和节点之间的条件概率表(CPT),也就是一系列的概率值。如果一个贝叶斯网络提供了足够的条件概率值,足以计算任何给定的联合概率,我们就称,它是可计算的,即可推理的。 3.5.1 贝叶斯网络基础 首先从一个具体的实例(医疗诊断的例子)来说明贝叶斯网络的构造。 假设: 命题S(moker):该患者是一个吸烟者 命题C(oal Miner):该患者是一个煤矿矿井工人 命题L(ung Cancer):他患了肺癌 命题E(mphysema):他患了肺气肿

这两个条件缺一不可。 贝叶斯网由一个有向无环图(DAG)及描述顶点之间的概率表组成。其中每个顶点对应一个随机变量。这个图表达了分布的一系列有条件独立属性:在给定了父亲节点的状态后,每个变量与它在图中的非继承节点在概率上是独立的。该图抓住了概率分布的定性结构,并被开发来做高效推理和决策。 贝叶斯网络能表示任意概率分布的同时,它们为这些能用简单结构表示的分布提供了可计算优势。 假设对于顶点xi,其双亲节点集为Pai,每个变量xi的条件概率P(xi|Pai)。则顶点集合X={x1,x2,…,xn}的联合概率分布可如下计算: 。 双亲结点。该结点得上一代结点。 该等式暗示了早先给定的图结构有条件独立语义。它说明贝叶斯网络所表示的联合分布作为一些单独的局部交互作用模型的结果具有因式分解的表示形式。

基于贝叶斯网络

基于贝叶斯网络 的大坝病害诊断研究 徐耀张利民贾金生 中国水利水电科学研究院 中国大坝协会 1香港科技大学

研究背景 截止2007年,全国病险水库座占所有水库数目有37000座,占所有水库数目(85000)的43%。(Chen 2007) 病险水库安全水库 上述病险水库大坝一般为三类坝,抗御洪水标准低,或工程有严重安全隐患不能按设计正常运行或工程有严重安全隐患,不能按设计正常运行。需要解决两个问题 需要解决两个问题: 诊断病害,查找原因;提出合适的除险加固措施2 提出合适的除险加固措施。

大坝病害 坝体-基础结构的病害: 渗流病害 渗流病害; 结构病害(变形、稳定等); … 辅助结构的病害: 1)多样性;2)相关性。 溢洪道病害; 涵管病害; … 大坝病害多样性及相关性的特征要求我们对病险大3 坝进行系统全局的病害诊断。

贝叶斯网络 贝叶斯网络定义为一个由若干变量(节点)构成的有其中变量(节点)之间的关系强度用向无环图,其中变量(节点)之间的关系强度用条件概率表达。(Pearl 1988) A 因果关系图 B + ?P(A) & P(B); P(C|A)P(C|B)P(C|A B)概率表 1 2 C ?P(C|A), P(C|B), P(C|A, B).?节点A,B,C代表变量; ?箭头1,2代表因果关系;?定量评价各个原因可能性;敏感性分析找出重要因子;应用 4 ? A,B称为父节点,C称为子节点. ?敏感性分析找出重要因子; ? 动态分析更新结果.

研究目标 建立一个基于贝叶斯网络的病险大坝病建立个基于贝叶斯网络的病险大坝病害诊断系统: 基于数据库的大坝病害的群体性诊断 基于数据库的大坝病害的群体性诊断;某一特定大坝病害的个体化诊断。 某特定大坝病害的个体化诊断。 5

5计算机网络复习提纲-第五章

第5章网络层 5.1网络层概述 网络层负责数据包经过多条链路、由信源到信宿传递过程,并保证每个数据包能够成功和有效率地从出发点到达目的地。为实现端到端的传递,网络层提供了两种服务:线路交换和路由选择。线路交换是在物理链路之间建立临时的连接,每个数据包都通过这个临时链路进行传输;路由选择是选择数据包传输的最佳路径,在这种情况下,每个数据包都可以通过不同的路由到达目的地,然后再在目的地重新按照原始顺序组装起来。 网络层是通信子网的最高层,对上层用户屏蔽了子网通信的细节,如子网类型、拓扑结构、子网数目,向上层提供一致的服务、统一的地址。 5.1.1网络层功能 (1)为传输层提供建立、维持和释放网络连接的手段,完成路由选择、拥塞控制、网络

互联等功能。 (2)根据传输层的要求选择网络服务质量。服务质量的参数主要包括:残留差错率、服 务可用性、可靠性、吞吐量、传输延迟等。 (3)对数据传输过程实现流量控制、差错控制以及顺序控制。 (4)提高资源子网主机节点与通信子网的接口,向传输层提供虚电路服务和数据报服务。 网络层的主要功能是完成网络中主机间的报文传输,其关键问题之一是使用数据链路层服务将每个报文从源端传输到目的端。 基本功能:实现端到端的网络连接,屏蔽不同子网技术的差异,向上层提供一致的服务。 主要功能: 路由选择和转发 通过网络连接在主机之间提供分组交换功能 分组的分段与成块,差错控制、顺序化、流量控制

5.1.2网络层服务的特点 网络层的服务有如下特点: (1)最重要的特点是无连接 (2)服务是不可靠的,传送过程中可能延迟、不按顺序到达或者丢失等 (3)服务是尽力而为的。 网络层实现这种无连接服务的分组传送机制称为网际协议,通称IP协议。 网络层服务应遵循以下三个原则: (1)服务应与通信子网技术无关。 (2)通信子网的数量、类型和拓扑结构对传输层是隐蔽的。 (3)传输层能获得的网络地址应采用统一的编号形式,即使跨越多个LAN和WAN。 5.2路由算法 路由算法是网络层软件的一部分,它负责确定一个进来的分组应该被传送到哪条输出线路上。 5.2.1路由算法选择的参考标准 路由算法选择有以下参考标准: (1)正确性:沿着路由表所指引的路由,分组一定能够传输到最终到达的目的网络和目 的主机。

人工智能原理教案03章 不确定性推理方法3.5 贝叶斯网络

3.5贝叶斯网络 贝叶斯网络是一系列变量的联合概率分布的图形表示。 一般包含两个部分,一个就是贝叶斯网络结构图,这是一个有向无环图(DAG),其中图中的每个节点代表相应的变量,节点之间的连接关系代表了贝叶斯网络的条件独立语义。另一部分,就是节点和节点之间的条件概率表(CPT),也就是一系列的概率值。如果一个贝叶斯网络提供了足够的条件概率值,足以计算任何给定的联合概率,我们就称,它是可计算的,即可推理的。 3.5.1贝叶斯网络基础 首先从一个具体的实例(医疗诊断的例子)来说明贝叶斯网络的构造。 假设: 命题S(moker):该患者是一个吸烟者 命题C(oal Miner):该患者是一个煤矿矿井工人 命题L(ung Cancer):他患了肺癌 命题E(mphysema):他患了肺气肿 命题S对命题L和命题E有因果影响,而C对E也有因果影响。 命题之间的关系可以描绘成如右图所示的因果关系网。

因此,贝叶斯网有时也叫因果网,因为可以将连接结点的弧认为是表达了直接的因果关系。 图3-5贝叶斯网络的实例 tp3_5_swf.htm 图中表达了贝叶斯网的两个要素:其一为贝叶斯网的结构,也就是各节点的继承关系,其二就是条件概率表CPT。若一个贝叶斯网可计算,则这两个条件缺一不可。 贝叶斯网由一个有向无环图(DAG)及描述顶点之间的概率表组成。其中每个顶点对应一个随机变量。这个图表达了分布的一系列有条件独立属性:在给定了父亲节点的状态后,每个变量与它在图中的非继承节点在概率上是独立的。该图抓住了概率分布的定性结构,并被开发来做高效推理和决策。 贝叶斯网络能表示任意概率分布的同时,它们为这些能用简单结构表示的分布提供了可计算优势。 假设对于顶点x i,其双亲节点集为P ai,每个变量x i的条件概率P(x i|P ai)。则顶点集合X={x1,x2,…,x n}的联合概率分布可如下计算: 双亲结点。该结点得上一代结点。 该等式暗示了早先给定的图结构有条件独立语义。它说明贝叶斯网络所表示的联合分布作为一些单独的局部交互作用模型

目前主要存在两类贝叶斯网络学习方法

1贝叶斯网络参数学习 (1)目标是:给定网络拓扑结构S和训练样本集D,利用先验知识,确定贝叶斯网络模型各结点处的条件概率密度,记为:p(?/D,s)。 (2)常见的数学习方法有最大似然估计算法、贝叶斯估计算法、不完备数据下参数学习等。即用MLE公式和BE公式、EM来求参数。 ?最大似然估计方法中,参数是通过计算给定父结点集的值时,结点不同取值的出现频率, 并以之作为该结点的条件概率参数;最大似然估计的基本原理就是试图寻找使得似然函数最大的参数。 ?贝叶斯估计方法假定一个固定的未知参数?,考虑给定拓扑结构S下,参数?的所有 可能取值,利用先验知识,寻求给定拓扑结构S和训练样本集D时具有最大后验概率的参数取值。由贝叶斯规则,可以得出: ?不完备数据下参数学习:数据不完备时参数学习的困难在于参数之间不是相互独立的, MLE方法的似然函数和贝叶斯估计方法的后验概率都无法分解成关于每个参数独立计算的因式。EM算法的实质是设法把不完备数据转化为完备数据。 在不完全数据集上学习贝叶斯网络,Fhedma 提出了structural EM算法,该算法结合了EM 算法和结构搜索的方法,EM算法用于优化网络参数,结构搜索用于模型选择。 2贝叶斯网络结构学习 目前主要存在两类贝叶斯网络学习方法:基于搜索和评分的方法(Search and Score based Method)和基于独立性测试的方法(Conditional Independence Testing based Method). 2.1基于搜索和评分的方法 主要由两部分组成(评分函数和搜索算法)。 2.1.1常用的评分函数 有贝叶斯评分函数和基于信息论的评分函数。 (1)贝叶斯评分函数(MAP测度)

相关文档