文档库 最新最全的文档下载
当前位置:文档库 › 纤维增强水泥基复合材料研究进展

纤维增强水泥基复合材料研究进展

纤维增强水泥基复合材料研究进展
纤维增强水泥基复合材料研究进展

陶瓷基复合材料综述

浅论陶瓷复合材料的研究现状及应用前景 董超2009107219金属材料工程 摘要 本文主要对陶瓷复合材料的研究现状及应用前景进行了研究,并对当今陶瓷复合材料发展面临的问题进行了概括,希望对陶瓷复合材料的进一步发展起到一定的作用。 本文首先对Al2O3陶瓷复合材料和玻璃陶瓷复合材料的研究进展及发展前景进行了详细的研究。然后对整个陶瓷复合材料的发展趋势及存在的问题进行了分析,得出了在新的时期陶瓷复合材料主要向功能、多功能、机敏、智能复合材料、纳米复合材料、仿生复合材料方向发展;目前复合材料面临的主要问题是基础理论研究问题和新的设计和制备方法问题。 关键词:Al2O3陶瓷复合材料玻璃陶瓷复合材料研究现状应用前景 1. 前言 以粉体为原料,通过成型和烧结等所制得的无机非金属材料制品统称为陶瓷。陶瓷的种类繁多,根据陶瓷的化学组成、性能特点、用途等不同,可将陶瓷分为普通陶瓷和特殊陶瓷两大类。而在许多重要的应用及研究领域,特殊陶瓷是主要研究对象。 陶瓷复合材料是特殊陶瓷的一种。在高技术领域内,对结构材料要求具有轻质高强、耐高温、抗氧化、耐腐蚀和高韧性的特点。陶瓷具有优良的综合机械性能,耐磨性好、硬度高、以及耐热性和耐腐蚀性好等特点。但是它的最大缺点是脆性大。近年来,通过往陶瓷中加入或生成颗粒、晶须、纤维等增强材料,使陶瓷的韧性大大地改善,而且强度及模量也有一定提高。因此引起各国科学家的重视。本文主要介绍了各种陶瓷复合材料的研究现状及其应用前景,并对陶瓷复合材料近年来的发展进行综述。 2.研究现状 随着现代科学技术快速发展,新型陶瓷材料的开发与生产发展异常迅速,新理论、新工艺、新技术和新装备不断出现,形成了新兴的先进无机材料领域和新兴产业。科学技术的发展对材料的要求日益苛刻,先进复合材料已成为现代科学技术发展的关键,它的发展水平是衡量一个国家科学技术水平的一个重要指标,因此世界各国都高度重视其研究和发展。 复合材料的可设计性大,能满足某些对材料的特殊要求,特别是在航空航天技术领域的应用得到迅速发展。陶瓷复合材料的研究,根本目的在于提高陶瓷材料的韧性,提高其可靠性,发挥陶瓷材料的优势,扩大应用领域。本文就几类典型的陶瓷复合材料介绍其研究现状。 2.1Al2O3陶瓷复合材料的研究进展及发展前景 Al2O3陶瓷作为常见陶瓷材料,既具有普通陶瓷耐高温、耐磨损、耐腐蚀、

铝基复合材料综述

铝基复合材料综述 XXXXXXXXXXX 摘要铝基复合材料凭借密度小、耐磨、热性能好等优点在航天航空等领域占有优势地位。文中综述了铝基复合材料的种类、铝基复合材料性能、各种铝基复合材料的制备和应用以及发展前景。 关键词铝基复合材料种类性能制备应用 Abstract Al-based alloys have advantages in the field of the aerospace by the advantages of small density , anti-function ,good thermal performance and so on. This article discussed the kinds ,performance ,approach , use and development prospect of Al-based alloys. Key words Al-based alloys kind performance approach use

1.引言 自20世纪80年代金属基复合材料大规模研究与开发以来,铝基复合材料在航空,航天,电子,汽车以及先进武器系统等领域得到迅速发展。铝基复合材料的制备工艺设计高温、增强材料的表面处理、复合成型等复杂工艺,而复合材料的性能、应用、成本等在很大程度上取决于其制造技术。因此,研究和开发心的制造技术,在提高铝基复合材料性能的同时降低成本,使其得到更广泛的应用,是铝基复合材料能否得到长远发展的关键所在。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨,阻尼性能好,热膨胀系数低。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。2.铝基复合材料分类 按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等。 3.铝基复合材料的基本成分 铝及其合金都适于作金属基复合材料的基体,铝基复合材料的增强物可以是连续的纤维,也可以是短纤维,也可以是从球形到不规则形状的颗粒。目前铝基复合材料增强颗粒材料有SiC、AL2O3、BN等,金属间化合物如Ni-Al,Fe-Al和Ti-Al也被用工作增强颗粒。 4.铝基复合材料特点 在众多金属基复合材料中,铝基复合材料发展最快且成为当前该类材料发展和研究的主流,这是因为铝基复合材料具有密度低、基体合金选择范围广、热处理性好、制备工艺灵活等许多优点。另外,铝和铝合金与许多增强相都有良好的接触性能,如连续状硼、AL2O3\ 、

复合材料综述

金属基陶瓷复合材料制备技术研究进展与应用* 付鹏,郝旭暖,高亚红,谷玉丹,陈焕铭 (宁夏大学物理电气信息工程学院,银川750021) 摘要综述了国内外在金属基陶瓷复合材料制备技术方面的最新研究进展与应用现状,展望了 国内金属基陶瓷复合材料的未来发展。 关键词金属基陶瓷复合材料制备技术应用 Development and Future Applications of Metal Matrix Composites Fabrication Technique FU Peng, HAO Xunuan, GAO Yahong, GU Yudan, CHEN Huanming (School of Physics & Electrical Information Engineering, Ningxia University, Yinchuan 750021) Abstract Recent development and future applications of metal matrix compositesfabrication technique are reviewed and some prospects of the development in metal matrix composites at home are put forward. Key words metal-based ceramic composites, fabrication technique, applications 前言:现代高技术的发展对材料的性能日益提高,单料已很难满足对性能的综合要求,材料的复合化是材料发展的必然趋势之一。陶瓷的高强度、高硬度、高弹性模量以及热化学性稳定等优异性能是其主要特点,但陶瓷所固有的脆性限制着其应用范围及使用可靠性[1—3]。因此,改善陶瓷的室温韧性与断裂韧性,提高其在实际应用中的可靠性一直是现代陶瓷研究的热点。与陶瓷基复合材料相比,通常金属基复合材料兼有陶瓷的高强度、耐高温、抗氧化特性,又具有金属的塑性和抗冲击性能,应用范围更广,诸如摩擦磨损类材料、航空航天结构件、耐高温结构件、汽车构件、抗弹防护材料等。 1 金属基陶瓷复合材料的制备 金属基陶瓷复合材料是20世纪60年代末发展起来的,目前金属基陶瓷复合材料按增强体的形式可分为非连续体增强(如颗粒增强、短纤维与晶须增强)、连续纤维增强(如石墨纤维、碳化硅纤维、氧化铝纤维等)[4—6]。实际制备过程中除了要考虑基体金属与增强体陶瓷之间的物性参数匹配之外,液态金属与陶瓷间的浸润性能则往往限制了金属基陶瓷复合材料的品种。目前,金属基陶瓷复合材料的制备方法主要有以下几种。 1.1 粉末冶金法 粉末冶金法制备金属基陶瓷复合材料即把陶瓷增强体粉末与金属粉末充分混合均匀后进行冷压烧结、热压烧结或者热等静压,对于一些易于氧化的金属,烧结时通入惰性保护气体进行气氛烧结。颗粒增强、短纤维及晶须增强的金属基陶瓷复合材料通常采用此种方法,其主要优点是可以通过控制粉末颗粒的尺寸来实现相应的力学性能,而且,粉末冶金法制造机械零件是一种终成型工艺,可以大量减少机加工量,节约原材料,但粉末冶金法的生产成本并不比熔炼法低[7]。 1.2 熔体搅拌法 熔体搅拌法是将制备好的陶瓷增强体颗粒或晶须逐步混合入机械或电磁搅拌的液态或半

陶瓷基复合材料的研究现状与发展前景

——碳化物陶瓷基复合材料课程名称:复合材料 学生姓名:舒顺启 学号:200910204123 班级:材料091班 日期:2012年12月22日

——碳化物陶瓷基复合材料 摘要:本文综述了陶瓷基复合材料的发展历史,介绍了陶瓷基复合材料的制备工艺,详细阐述了陶瓷基复合材料的性能与应用,分析了陶瓷基复合材料存在的问题,并展望了陶瓷基复合材料未来发展趋势。 关键词:陶瓷基复合材料、制备工艺、性能、应用 Ceramic matrix composites research present situation and the development prospect --Carbide ceramic matrix composites Abstract:This paper reviews the ceramic base composite material, the development history of ceramic matrix composites is introduced the preparation process, elaborated the ceramic matrix composites, the properties and the application of the analysis of the ceramic base composite material existing problems, and prospects the ceramic matrix composites future development trend. Key words:Ceramic matrix composites, preparation process, performance and application 1 引言 陶瓷基复合材料是近二十年来发展起来的新型材料,由于该类材料具有良好的高温性能。因此它作为耐高温结构材料在航空航天工业和能源工业等领域的应用具有巨大的潜力。如航空发动机的推重比为lO时,涡轮前进口温度达1650℃,在这样高的温度下,传统的高温合金材料已经无法满足要求【1】,因此国内外的材料研究者纷纷把研究的重点转向陶瓷基复合材料。研究者通过大量的实验发现,陶瓷基复合材料不仅具有良好的高温稳定性和高温抗氧化能力,而且材料在断裂

陶瓷基复合材料的研究进展及其在航空发动机上的应用

陶瓷基复合材料的研究进展及其在航空发动机上 的应用 摘要:综述了陶瓷基复合材料(CMCs) 的研究进展。就CMCs的增韧机理、制备工艺和其在航空发动机上的应用进展作了详细介绍。阐述了CMCs研究和应用中存在的问题。最后,指出了CMCs的发展目标和方向。 关键词:陶瓷基复合材料;航空发动机;增韧机理;制备工艺 The Research Development of Ceramic Matrix Compositesand Its Application on Aeroengine Abstract:The development and research status of ceramic matrix compositeswerereviewed in this paper. The main topics include the toughening mechanisms, the preparation progressand the application on aeroengine were introduced comprehensively. Also, the problems in the research and application of CMCswere presented. Finally, the future research aims and directions were proposed. Keywords: Ceramic matrix composites, Aeroengine, Fiber toughening,Preparation progress 1引言 推重比作为发动机的核心参数,其直接影响发动机的性能,进而直接影响飞机的各项性能指标。高推重比航空发动机是发展新一代战斗机的基础,提高发动机的工作温度和降低结构重量是提高推重比的有效途径[1]。现有推重比10一级的发动机涡轮进口温度达到了1500~1700℃,如M88-2型发动机涡轮进口温度达到1577℃,F119型发动机涡轮进口温度达到1700℃左右,而推重比15~20一级发动机涡轮进口温度将达到1800~2100℃,这远远超过了发动机中高温合金材料的熔点温度。目前,耐热性能最好的镍基高温合金材料工作温度达到1100℃左右,而且必须采用隔热涂层,同时设计先进的冷却结构。在此需求之下,迫切需要发展新一代耐高温、低密度、低膨胀、高性能的结构材料[2]。在各类型新型耐高温材料中,

纤维增强水泥基复合材料

纤维增强型水泥基复合材料 一、纤维增强型水泥基复合材料的概述 纤维增强型水泥基复合材料是以水泥与水发生水化、硬化后形成的硬化水泥浆体作为基体,以不连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。 普通混凝土是脆性材料,在受荷载之前内部已有大量微观裂缝,在不断增加的外力作用下,这些微裂缝会逐渐扩展,并最终形成宏观裂缝,导致材料破坏。 加入适量的纤维之后,纤维对微裂缝的扩展起阻止和抑制作用,因而使复合材料的抗拉与抗折强度以及断裂能较未增强的水泥基体有明显的提高。 二、纤维增强型水泥基复合材料的力学性能 在纤维增强水泥基复合材料中,纤维的主要作用在于阻止微裂缝的扩展,具体表现在提高复合材料的抗拉、抗裂、抗渗及抗冲击、抗冻性等。 ? 2.1 抗拉强度 ?在水泥基复合材料受力过程中纤维与基体共同受力变形,纤维的牵连作用使基体裂而不断并能进一步承受载荷,可使水泥基材料的抗拉强度得到充分保证;当所用纤维的力学性能、几何尺寸与掺量等合适时,可使复合材料的抗拉强度有明显的提高。 ? ? 2.2 抗裂性

在水泥基复合材料新拌的初期,增强纤维就能构成一种网状承托体系,产生有效的二级加强效果,从而有效的减少材料的内分层和毛细腔的产生; 在硬化过程中,当基体内出现第一条隐微裂缝并进一步发展时,如果纤维的拉出抵抗力大于出现第一条裂缝时的荷载,则纤维能承受更大的荷载,纤维的存在就阻止了隐微裂缝发展成宏观裂缝的可能。 ? 2.3 抗渗性 纤维作为增强材料,可以有效控制水泥基复合材料的早期干缩微裂以及离析裂纹的产生及发展,减少材料的收缩裂缝尤其是连通裂缝的产生。另外,纤维起了承托骨料的作用,降低了材料表面的析水现象与集料的离析,有效地降低了材料中的孔隙率,避免了连通毛细孔的形成,提高了水泥基复合材料的抗渗性。 2.4 抗冲击及抗变形性能 在纤维增强水泥基复合材料受拉(弯)时,即使基体中已出现大量的分散裂缝,由于增强纤维的存在,基体仍可承受一定的外荷并具有假延性,从而使材料的韧性与抗冲击性得以明显提高。 2.5 抗冻性 纤维可以缓解温度变化而引起的水泥基复合材料内部应力的作用,从而防止水泥固化过程中微裂纹的形成和扩散,提高材料的抗冻性;同时,水泥基复合材料抗渗能力的提高也有利于其抗冻能力的提高。 ?纤维的纤维掺量对混凝土强度的影响很大 ?合成纤维可有效地控制由混凝土内应力产生的裂缝,使混凝土早期收缩裂缝减少50~90%,显著提高混凝土的抗渗性和耐久性,使混凝 土内钢筋锈蚀时间推迟2.5倍。除抗裂外,合成纤维还能提高混凝土的粘 聚性和抗碎裂性。 ?以聚丙烯合成纤维为例 ?掺入聚丙烯合成纤维后,混凝土的性能将发生变化,当纤维含量适当时,混凝土抗压强度、抗弯强度等均有不同程度的提高。纤维掺量对混凝土强 度的影响见下表。 三、几种主要增强型水泥基复合材料的应用现状

浅谈水泥基混凝土材料

浅谈水泥基混凝土复合材料 姓名:陈聪学号:S11085213015 专业:建筑与土木工程44班 摘要: 随着社会快速发展,单一的水泥材料已经不能满足人们日常工程需求,高性能水泥基复合材料既是在近代科技成就的基础上发展起来的,又将在高新技术工程领域中开发应用。本文结合相关论文资料[1]对近年来出现的几种高性能水泥基复合材料进行了初步阐述。 关键词: 高性能水泥基功能复合材料发展状况困惑展望 Abstract:With the development of society, single cement material already can't satisfy people's daily engineering requirements, high performance cement-based composite materials is developed on the basis of modern scientific and technological achievements, and in the development of new and high technology in the field of engineering application. Based on the related papers [1] to the trend in recent years several high performance cement-based composite material has carried on the preliminary in this paper. Keywords:High performance cement-based functional composites; status of development ; Perplexity; Prospect; 第一章前言 论文[1]介绍了国内外水泥基功能复合材料的研究进展及应用,重点对几种重要的水泥基功能复合材料,如导电、压电、介电、磁性、屏蔽等材料的组成、特性、工艺及发展状况进行了综述。 通过查询相关资料[4],对水泥基功能复合材料有了初步的了解,功能材料是指通过光、电、磁、力、热、化学、生物化学等作用后,具有特定功能(导电性、压电性、热电性、磁性和防辐射性)的新材料[1]。随着科学技术的迅速发展,功能单一的传统水泥材料,已不能适应日新月异的多功能工程需要,现代建筑对水泥基复合材料提出了新的挑战,不仅要求水泥基复合材料要有高强度,而且还应具有声、光、电、磁、热等功能,以适应多功能和智能

铝基复合材料的研究发展现状与发展前景

铝基复合材料的研究发展现状与发展前景摘要:铝基复合材料具有很高的比强度、比模量和较低的热膨胀系数,兼具结构材料和功能材料的特点。介绍了铝基复合材料的分类、制造工艺、性能及应用等几个方面,最后对铝基复合材料的研究状况及其发展趋势。做了简单的介绍。 关键词:铝基复合材料,制造工艺,性能,应用 Abstract:Aluminum matrix composite was in capacity of structure materials and function materials for its high specific strength and high specific modulus and low coefficient of thermal expansion.The classification of aluminum matrix composite were introduced and the preparation process、properties and application of aluminum matrix composite was expounded,and then the domestic research status and future development trends of the composite were summed up. Key words:aluminum matrix composites,preparation process,properties,application. 1.发展历史 1.1概述 复合材料是由两种或两种以上物理和化学性质不同的材料通过先进的材料制备技术组合而成的一种多相固体材料。根据基体材料不同,复合材料包括三类:聚合物基复合材料(PMC)、金属基复合材料(MMC)和陶瓷基复合材料(CMC)[1]。金属基复合材料在20世纪60年代末才有较快的发展,是复合材料的一个新分支,其以高比强、高比模和耐磨蚀等优异的综合性能,在航空、航天、先进武器系统和汽车等领域有广泛的应用,已成为国内外十分重视发展的先进复合材料。 在金属基复合材料中,铝基复合材料具有密度低、基体合金选择范围广、可热处理性好、制备工艺灵活、比基体更高的比强度、比模量和低的热膨胀系数,尤其是弥散增强的铝基复合材料,不仅具有各向同性特征,而且具有可加工性和价格低廉的优点,更加引起人们的注意[2]。铝基复合材料具有很大的应用潜力,并且已有部分铝基复合材料成功地进入了商业化生产阶段。 铝基复合材料是以金属铝及其合金为基体,以金属或非金属颗粒、晶须或纤维为增强相的非均质混合物。按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等[3]。 然而不管增强物的类型和形状尺寸如何,大多数铝基复台材料具有以优点: ①重量轻、比强度、比刚度高。 ②具有高的剪切强度。 ③热膨胀系数低,热稳定性高,并有良好的导热性和导电性。 ④具有卓越的抗磨耐磨性。 ⑤能耐有机液体,如燃料和溶剂的侵蚀。 ⑥可用常规工艺和设备进行成型和处理。 1.2分类

水泥基复合材料

水泥基复合材料 艾ai青摘要: 本文论述了水泥基材料改性用聚合物种类、聚合物改性机理、聚合物改性水泥基材料研究进展和发展趋势。加入了聚合物材料后,水泥基材料的性能,如强度、变形能力、粘结性能、防水性能、耐久性能等都会有所改善,改善的程度与聚灰比、聚合物的品种和性能有很大关系。但也存在不足之处,如抗压强度提高不大,有时还降低,最高使用温度不如普通混凝土等。笔者认为,研究如何大幅度提高聚合物改性水泥基材料的抗压强度和最高使用温度很有意义。 关键词: 关键词聚合物改性水泥基材料进展机理性能 1.引言 普通混凝土因抗压比低,干缩变形大,抗渗性、抗裂性、耐腐蚀性差,密度大,其使用范围受到很大限制。随着工业的发展,出现了钢筋混凝土、自应力混凝土和纤维混凝土。但在这些改进中,胶结材料水泥的性能没有发生改变,因此也限制了混凝土性能的提高。水泥混凝土(砂浆)的一个新动向就是水泥混凝土(砂浆)与有机高分子材料复合,这样可以有效地改善混凝土(砂浆)的性能。因为有机高分子聚合物的长分子链结构以及大分子中的键节或链段的自旋转性,决定其具有与无机非金属材料不同的性质—弹性和塑性[1]。所以在水泥混凝土(砂浆)中加入少量有机高分子聚合物,既可以使混凝土获得高密实度,又不至于使混凝土(砂浆)的脆性加大,这样便可制得高强度、高抗渗和高耐腐蚀性的混凝土。如今,聚合物改性砂浆和混凝土不仅在混凝土结构的修补和维护方面成为一种非常重要的材料,就是在新的建筑中也获得越来越广泛的应用,尤其是在桥面、停车场、码头、瓷砖和石材粘结、建筑防水、防腐等工程领域。 2. 聚合物改性水泥基复合材料 1.1. 改性用聚合物种类 聚合物改性水泥基复合材料是指在水泥混合时加入了分散在水中或者可以在水中分散的聚合物材料,包括掺和不掺骨料的复合材料、水泥浆、砂浆和混凝土。用于水泥混凝土(砂浆)改性的聚合物有四类,即水溶性聚合物、聚合物乳液(或分散体)、可再分散的粉料和液体聚合物。聚合物乳液通常是将可聚合单体在水中进行乳液聚合而获得的,但也有一些聚合物乳液不是通过单体乳液聚合而获得的,如天然橡胶胶乳是直接从橡胶树上获得,再经适当浓缩制成的;环氧乳液则一般是用乳化剂将环氧树脂乳化而成的。可再分散的聚合物粉料一般是由聚合物乳液经喷雾干燥而成的,聚合物粉末与聚合物乳液就像是奶粉与牛奶一样。它对水泥砂浆和混凝土的改性机理与聚合物乳液是相同的,只不过它往往是先与水泥和骨料进行干混,再加水湿拌才重新乳化成乳液。水溶性聚合物品种很多,可以分为三大类:天然水溶性、半合成水溶性和合成水溶性。一般说,水溶性聚合物的用量非常小,通常在水泥质量的0。5%以下,对硬化砂浆和混凝土的强度没有大的影响[2]。因此,水溶性聚合物主要用来改善水泥砂浆和混凝土的工作特性,有时候也可以把其归类为增黏剂。用于水泥改性用的液体聚合物有环氧树脂和不饱和聚脂,在与水泥混合时还要加入固化剂。与聚合物乳液改性相比,使用液体聚合物时聚合物用量要更多,因为聚合物不亲水,分散不是很容易,所以用液体聚合物改性混凝土的情形要比其他类型聚合物少得多。聚合物水泥砂浆的配比一般为,水泥∶砂=1∶2~3(质量比);聚灰比=5%~20%;

陶瓷基复合材料综述报告

陶瓷基复合材料综述报告 陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料,具有优异的耐高温性能,主要用作高温及耐磨制品。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。 迄今,陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。有些发达国家已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得了不错的使用效果[1]。 一、陶瓷基复合材料增强体 用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种[2-4] : 1.1纤维类增强体 纤维类增强体有连续长纤维和短纤维。连续长纤维的连续长度均超过数百。纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。 1.2颗粒类增强体 颗粒类增强体主要是一些具有高强度、高模量。耐热、耐磨。耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。细金刚石、高岭土、滑石、碳酸钙等。主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末 1.3晶须类增强体 晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为0.2~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。 1.4金属丝 用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。 1.5片状物增强体 用于复合材料的片状增强物主要是陶瓷薄片。将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。 二、陶瓷基的界面及强韧化理论 陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。界面作为陶瓷基复合材料重要的组成相,其细观结构、力学性能和失效规律直接影响到复合材料的整体力学性能,因此研究界面特性对陶瓷基复合材料力学性能的影响具有重要的意义。 2.1界面的粘结形式 (1)机械结合(2)化学结合 陶瓷基复合材料往往在高温下制备,由于增强体与基体的原子扩散,在界面上更易形成固溶体和化合物。此时其界面是具有一定厚度的反应区,它与基体和

铝基复合材料的发展现状与研究

铝基复合材料的发展现状与研究 摘要:随着现代生产技术的发展,对材料的性能要求越来越高,目前,铝基复合材料由于其优良的性能已经成为现时研究的热点。阐述了铝基复合材料的基本性能及应用情况,总结了近几年关于铝基复合材料的主要研究成果与发展趋势。 关键词:铝基复合材料,材料性能,研究成果,趋势 Development and progress of aluminium matrix composites Tang nong-j Abstract:With the development of modern manufacturing technology, The material performance requirements more and more high,The development of aluminum matrix composite materials was reviewed with their properties. Espectively in accordance with the classes to which they belong. The fundamental property and application field of aluminum matrix composite were briefly introduced. The main research achievements and development were summarized in recent years. Meanwhile, the outlook of its development was put forward. Key words:aluminium matrix composites,material properties,research findings,trend

钢纤维复合材料

钢纤维增强水泥基复合材料的研究进展 唐猛 (材料科学与工程学院,无机非金属材料专业,12材1,201214030116) 摘要: 纤维增强水泥基复合材料是由水泥净浆、砂浆或水泥混凝土作基材,以非连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。和钢材、木材等其它的建筑材料比较,社会上应用范围最大的建筑材料是水泥砂浆、混凝土等水泥复合材料,具有耐久耐磨、不易燃烧、成本低廉、抗压能力强、稳定安全等优点,但水泥复合材料也有着严重的缺点,例如:容易断裂外、加剂影响混凝土质量、自重大、抗拉强度低、对基础要求高、养护周期长、影响建筑速度、施工过程对结构影响较大、韧性差等等。目前,掺加一定的纤维在水泥复合材料中,是在建筑工业界逐渐推广的水泥复合材料的增强手段。而钢纤维水泥基复合材料的影响现在抗拉、抗弯、抗剪强度和耐久性等方面,对抗压强度的提高效果不明显。钢纤维混凝土是将一种由短的不连续的且有一定长径比的钢纤维均匀乱向地分散于普通水泥混凝土中所构成的复合材料。与普通水泥混凝土相比,强度和重量的比值增大;另外,抗裂性、抗变形性、抗剪切性、抗疲劳性等都有明显的提高。 关键词:水泥基复合材料;钢纤维;混杂纤维;增强作用。 1.钢纤维在水泥基复合材料中的作用及其增强机理 1.1钢纤维在水泥基复合材料中的作用 纤维加入水泥基材有三个主要作用[1]: (1)使水泥基材抗拉强度得以保证或提高; (2)在水泥基材中有阻断作用; (3)水泥基材的形变能力得到提高 因为水泥基材的极限延伸率远小于纤维增强材料,所以在拉力作用下,水泥基材在达到其极限延伸率时发生开裂。在纤维增强水泥基复合材料中纤维的主要作用在于吸收水泥基材开裂时释放的能量,并因而阻止基材中裂缝的扩展。水泥基材中出现裂缝后,纤维可以与基材脱黏而从基材中拔出、或在应力达到最大值时拉断、或跨越裂缝承受拉力,使复合材料的抗拉强度得到提高。 1.2钢纤维混凝土增强机理的基本理论[2] 主要有两种思想对纤维增强复合材料产生重要影响:一种是复合力学理论;另一种是纤维间距理论(或称为纤维阻裂理论)。 1.2.1 纤维间距理论 纤维间距理论是由线弹性断裂力学来说明纤维对于裂缝发生和发展的约束作用,这个理论认为要想使混凝土这样本身带有内部缺陷的脆性材料提高抗拉强

高性能水泥基复合材料的性能分析及应用研究概述

高性能水泥基复合材料的性能分析及应用研究概述 发表时间:2019-04-02T11:08:48.373Z 来源:《防护工程》2018年第35期作者:夏春强 [导读] 关系到整个建筑的施工和质量。本文主要针对水泥基复合材料的性能和应用进行分析。 胜利油田营海集团山东东营 257087 摘要:我国建筑业正处于快速发展时期,为提高建筑施工质量,保障建筑使用性能,各种新材料和新工艺不断引入到建筑行业,水泥是建筑施工中使用最多的材料之一,关系到整个建筑的施工和质量。本文主要针对水泥基复合材料的性能和应用进行分析。 关键词:水泥基复合材料;性能;应用 引言 21世纪以来,科学技术高速发展,社会时代飞速进步,伴随着环境恶化、资源紧缺和能源危机问题日益凸显。这些问题的出现对人类的可持续发展提出了新的挑战,同样也对我们材料科学提出了更高的要求。因此,高性能水泥基复合材料的出现和应用将会存在巨大潜力。 1水泥基复合材料的发展 混凝土作为一种力学性能优良的建筑材料,已广泛应用于在土木工程的各个领域。但其仍存在以下两方面的问题:1)由混凝土开裂引起的耐久性问题。结构中的混凝土往往处于裂缝状态。裂缝的形成会引起钢筋锈蚀,降低混凝土的承载能力。同时,外界的有害影响也会侵入结构部件内部,降低结构的耐久性能。2)极端荷载条件下的脆性破坏问题。已有的研究工作表明,在爆炸与冲击等高速动荷载作用下,混凝土材料往往呈现脆性破坏模式,导致结构破坏具有突然性,不利于人员避险。同时混凝土材料失效时会产生飞散的破片从而对结构内部的人员与设备造成伤害。混凝土材料在正常工作荷载下的开裂及在高速动荷载作用下的破碎与剥落的原因在于其本身断裂韧性和抗拉强度的不足。因此,有必要采用一定的方法改善和优化混凝土材料的力学性能,增加其断裂韧性,从而提高其抗拉强度。 近年来,国内展开了对水泥复合材料材料的研究,徐世烺团队的研究成果具有代表性,该团队定义了一种超高韧性水泥基复合材料(UHTCC),使用的纤维体积掺量不超过2.5%,并且硬化后具有应变-硬化的特性。UHTCC在直接拉伸荷载条件下可以观察到多条细小的裂纹,通过测量可发现达到峰值应力时,对应的裂缝宽度能稳定在100μm以内,对应极限拉应变达到3%以上。对纤维体积掺量为2%的PVA-水泥复合材料进行单轴抗压应力-应变曲线分析。结果显示,PVA-水泥复合材料的极限压缩应变(强度下降到峰值应力的20%时对应的应变)是混凝土的5~10倍,峰值应变是混凝土的4~7倍,由此可显示出PVA-水泥复合材料极强的压缩韧性;通过单轴抗拉伸试验,三点/四点弯曲试验和单轴压缩试验探究了UHTCC的力学性能,试验结果证实了UHTCC在不同破坏荷载作用下会通过产生多缝消散能量,具有明显的延性,不会发生脆性破坏,具有良好的整体性。此外,对低收缩率的水泥复合材料单轴抗拉伸、抗压缩性能、弹性模量及极限压缩应变等进行研究,试验结果表明该种水泥复合材料在拉伸时表现出明显的塑性变形,其极限应变、裂缝宽度都有明显的改善;采用快速冻结法将高韧性水泥复合材料与混凝土和砂浆的抗冻融性能进行对比,并且还深入探究了国产PVA纤维与进口PVA纤维对水泥复合材料抗冻融性能的影响,通过300次冻融循环试验,发现国产PVA-水泥复合材料的质量损失率要比进口PVA-水泥复合材料高1%左右。 2水泥基复合材料基本性能 纤维增强水泥基材料一般可划分为变形硬化和变形软化两类,其中变形硬化材料又可细分为应变硬化和应变软化。应变硬化材料具有裂缝形成后的材料强度会大于初裂强度,试件应变均匀且多缝开裂的典型特点。UHTCC材料在直接拉伸和弯曲荷载作用下均表现出应变硬化材料的受力和变形特点。 水泥基复合材料在单轴拉伸试验过程中表现出应变硬化的本构特性,极限抗拉强度可稳定达到6.0MPa,峰值拉应变接近3.6%;且该材料裂缝无害化分散能力突出,即便在峰值荷载作用下,裂缝宽度仍可以有效控制在100μm以内,有些甚至可以控制在50μm以内。 水泥基复合材料的压缩性能试验研究表明,在水泥基体材料中添加适当比例的纤维能改善材料的应力应变关系,使其具有的开裂后的荷载承受能力、压缩韧性和塑性变形性能明显优于混凝土。水泥基复合材料和混凝土的多轴压缩试验发现,与普通混凝土相比,在侧向压力存在的情况下,强度和延性改善幅度更明显。 水泥基复合梁构件承受横向荷载作用时表现出应变硬化和多缝开裂的特点,但与直接拉伸性能并不完全相同。试件受弯出现第一条裂缝后,裂缝宽度可以稳定在非常细窄的水平,此时材料的开裂强度与单向开裂强度几乎相等。随荷载增加,在梁截面弯矩作用较大的范围内先后出现与初始裂缝宽度相当的大量细微裂缝,载荷达到峰值后,某条微裂缝开始局部扩展导致试件失效破坏,破坏时刻材料的极限抗弯强度约为开裂强度的五倍。 3水泥基复合材料研究现状 3.1对矿物掺合料的研究 矿物掺合料,是为了改善混凝土工作性能,节约用水量,调节混凝土强度等级,而在混凝土拌合时掺入天然的或人工的能够改善混凝土力学性能和工作性能的粉状矿物质。活性掺合料是在掺入减水剂的情况下,能够增加新拌混凝土的工作性能,并能提高混凝土的力学性能和耐久性。在高强混凝土中掺入适量的硅灰,在一定程度上增强了混凝土的抗压强度和抗折强度。硅灰能够显著改善混凝土的工作性和耐久性,过量的硅灰的自收缩性大,会降低混凝土的抗压强度。超细石灰石粉具有微集料效应,微显核效应等,能够促进C3S的水化,显著提高混凝土抗压强度。超细高含硅质矿粉增强了集料与胶结料界面的粘结力。通过研究指出,掺10%粉煤灰或矿渣粉不会影响低水胶比浆体的水化进程,粉煤灰对水化进程的延缓效果要优于同等掺量的矿渣粉。双掺超细磨粉煤灰和硅灰能够显著提高混凝土的早期强度。以上研究表明,不同的矿物掺合料单掺、双掺和三掺作用机理不一样,对抗压强度的影响也就会产生不同。矿物掺合料的掺入可以替代部分水泥,降低成本,最根本的是可以降低水化热,优化孔洞结构,增强各相间的粘结,从而提高强度。矿物掺合料在降低水泥水化热的同时,也对水泥水化起到一定促进作用。 3.2对纤维掺量的研究 通过纤维技术与混凝土技术结合,可研制出能够改善混凝土力学性能,提高土建工程质量的高性能混凝土。不同纤维对于混凝土的作用不同,影响程度也不同。例如,钢纤维对于机场、大坝、高速公路等工程可起到抗渗、防裂、抗冲击和抗折性能,合成纤维可以起到预

石墨烯增强铝基复合材料的研究进展

Material Sciences 材料科学, 2019, 9(8), 803-812 Published Online August 2019 in Hans. https://www.wendangku.net/doc/c18621126.html,/journal/ms https://https://www.wendangku.net/doc/c18621126.html,/10.12677/ms.2019.98100 Research Progress on Graphene Reinforced Aluminum-Based Composites Jiangyu Li1, Shourong Zhao2, Wei Zhang1,2, Yunlai Deng2, Keda Jiang2 1Guangxi Liuzhou Yinhai Aluminum Co., Ltd., Liuzhou Guangxi 2Light Alloy Research Institute, Central South University, Changsha Hunan Received: July 29th, 2019; accepted: August 13th, 2019; published: August 20th, 2019 Abstract Graphene possesses excellent mechanical properties, high thermal conductivity and low density. It is recognized as an ideal reinforcing material for metal matrix composites (MMC). In this paper, the preparation methods of graphene reinforced aluminum matrix composites are reviewed, the research status of powder metallurgy, stir casting process and other methods is summarized. Casting process effects of different preparation methods on the microstructure and properties of graphene reinforced aluminum matrix composites were discussed. Its application prospect is also predicted at last. Keywords Grapheme, Aluminum-Based Composites, Manufacturing Methods, Properties 石墨烯增强铝基复合材料的研究进展 李江宇1,赵寿荣2,张伟1,2,邓运来2,姜科达2 1广西柳州银海铝业股份有限公司,广西柳州 2中南大学轻合金研究院,湖南长沙 收稿日期:2019年7月29日;录用日期:2019年8月13日;发布日期:2019年8月20日 摘要 石墨烯具有优异的力学性能、高导热系数和低密度,被公认为金属基复合材料(MMC)的理想增强材料。 本文综述了石墨烯增强铝基复合材料的制备方法,归纳了粉末冶金法、搅拌鋳造法及其他多种方法的研

水泥基复合材料的制备

水泥基复合材料的制备 一、实验目的 (1)了解水泥各种技术性质定义,进一步理解水泥胶凝和硬化的原理,水灰比、掺合料对水泥强度的影响; (2)掌握玻璃纤维增强水泥基复合材料的制备工艺和操作方法; (3)学习水泥相关仪器,例如胶砂搅拌机、振实机等的使用。 二、实验内容 以水泥为基体材料、玻璃纤维为增强材料,制备水泥基复合材料。 三、实验原理 水泥,粉状水硬性无机胶凝材料,加水搅拌后成浆体,能在空气中硬化或者在水中更好的硬化,并能把砂、石等材料牢固地胶结在一起。用它胶结碎石制成的混凝土,硬化后不但强度较高,而且还能抵抗淡水或含盐水的侵蚀。长期以来,它作为一种重要的胶凝材料,广泛应用于土木建筑、水利、国防等工程。 硅酸盐水泥的化学成分:硅酸三钙(3CaO·SiO2,简式C3S),硅酸二钙(2CaO·SiO2,简式C2S),铝酸三钙(3CaO·Al2O3,简式C3A),铁铝酸四钙(4CaO·Al2O3·Fe2O3,简式C4AF)。 水泥的胶凝和硬化: 1)、3CaO·SiO2+H2O→CaO·SiO2·YH2O(凝胶)+Ca(OH)2; 2)、2CaO·SiO2+H2O→CaO·SiO2·YH2O(凝胶)+Ca(OH)2; 3)、3CaO·Al2O3+6H2O→3CaO·Al2O3·6H2O(水化铝酸钙,不稳定); 3CaO·Al2O3+3CaSO4·2 H2O+26H2O→3CaO·Al2O3·3CaSO4·32H2O(钙矾石,三硫型水化铝酸钙); 3CaO·Al2O3·3CaSO4·32H2O+2(3CaO·Al2O3)+4 H2O→3(3CaO·Al2O3·CaSO4·12H2O)(单硫型水化铝酸钙); 4)、4CaO·Al2O3·Fe2O3+7H2O→3CaO·Al2O3·6H2O+CaO·Fe2O3·H2O。 当水泥拌水后,半水石膏迅速水化为二水石膏,形成针状结晶网状结构,从而引起浆体固化。 本实验采用短玻璃纤维为增强材料,将其混合在水泥胶砂里,入模成型,经过养护固化之后,形成复合材料,得到产品。 四、实验仪器和药品 1、原材料:水泥(PC32.5)、河沙、玻璃纤维等; 2、仪器:水泥胶砂搅拌机、水泥胶砂振实机、水泥板块标准模具、天平等。 五、实验步骤 1、模具准备 将水泥板块标准模具表面擦洗干净、拼装、涂抹脱模剂,备用。 2、水泥胶砂原料称量 分别称量水292.5g,水泥450g,河沙1350g,备用。 3、玻璃纤维称量 各组按照配比要求,分别称取20g、30g、40g玻璃纤维,备用。 4、胶砂的搅拌与振实

相关文档
相关文档 最新文档