文档库 最新最全的文档下载
当前位置:文档库 › 电动机轴承故障分析处理

电动机轴承故障分析处理

电动机轴承故障分析处理
电动机轴承故障分析处理

电动机轴承故障分析处理

在各个企业的生产过程中,电动机担负着主要的动力,一旦发生故障,可严重影响到整个生产过程。随着电机产品的不断发展,绝缘强度的提高,电机的电气故障也大大减少。但是根据电机故障的统计,因轴承损坏而造成的电机故障,约占了电机故障的70%以上。因为大、中型高压电机轴承故障对生产的影响较大,损失也较大,所以以下为重点分析。

1、电机的轴承种类:

一般电动机所使用的轴承,种类不是太多。大多是采用的《深沟球轴承》和《圆柱滚子轴承》,某些大型电机的定位端采用了《调心滚子轴承》,立式电机的承载端,一般是采用《角接触球轴承》或《推力调心滚子轴承》。部分的大、中型电机采用了《滑动轴承》,还有特殊的电机,例减速电机、湿式电机等,采用了比较特殊的轴承。

2、轴承的损坏原因:

根据多方面的资料以及对电机多年来的检修统计、总结,电机轴承如在良好的条件下运行,一般可达到连续使用5~10年,部分轴承经过维护、保养可达到15~20年。但是,怎样才能使轴承运行在一个良好的条件下,则是保证轴承使用寿命的一个最重要的问题。关于轴承的损坏,大致由以下几个原因造成:

(1)、电机负载过大;(2)、轴承允许转速不够;(3)、轴向力过大损坏定位端轴承;(4)、电机振动过大;(5)、环境温度及电机运行温度过高;(6)、轴承润滑不良;(7)、轴承本身质量缺陷;(8)、人员因素。

3、电机轴承故障分析:

根据轴承的损坏因素,分析到电机轴承的损坏原因,认为电机轴承故障的发生主要有以下几类原因:(1)、轴承的选用问题;(2)、轴承附件的结构问题;(3)、轴承与润滑的问题;(4)、轴承的检修与安装问题;(5)、电机缺陷或机械对轴承的影响问题;(6)、轴承运行中的维护问题。

根据以上电机轴承故障发生的主要原因以及在实际工作中解决轴承故障的经验认为,往往看似同样的故障现象,但是导致轴承故障发生的主要因素则是不同的,可以说既有共性也有特殊性。所以,只有根据发生轴承故障电机的具体分析,找出其主要的原因进行解决。

3.1、轴承的选用问题:

用于滑动轴承作为支撑的电机,一般是大、中型电机。这一类电机的缺点,主要是轴瓦

漏油和发热的问题,有些电机还需配装“润滑油泵站”,增加了设备投资。但滑动轴承的优点主要是,适用于高速和功率大的电机。所以根据电机的功率、转速及滚动轴承的性能对照认为:一般电机功率超过1000KW以上2极的,和2000KW以上4极的电机,不适用滚动轴承作为支撑。如果须用滚动轴承,则需采用结构上的特殊设计,来满足电机和轴承的允许条件。

目前,大部分电机的支撑是滚动轴承,而滚动轴承的使用寿命、运行状况以及故障的发生,与轴承的选用则是主要的。

,运行中因温度的变化,转子的长度也在变化,而转子长度的变化即由负侧的“滚子轴承”予以调整。如果电机与机械的连接为“刚性联轴器”时,则容易造成电机的振动,并且产生较大的轴向力而造成空侧轴承的损坏。

,在轴承的选用设计时,如果轴承的允许转速与电机的转速相差很少或不够,则是造成电机轴承损坏的一个主要原因。例如,2极电机采用的#6222深沟球轴承,4极电机采用的#N332(#NU332)圆柱滚子轴承,6极电机采用的#23044双列调心式滚子轴承和#3038单列满圆柱滚子轴承,甚至比以上型式还大的轴承。这就使轴承的允许转速与电机的实际转速基本相同甚至不够,造成了轴承的发热、损坏。

,大部分运行中轴承的温度偏高。因双轴承结构的电机,其端盖、轴承套等部件的轴向尺寸较大。在零部件的制造时,如果形位公差过大,即可使轴承在旋转中承受额外的力而损坏。这种结构的电机,在小修时是无法对轴承进行检查的,而在大修时,轴承也是无法清洗、检查,只有更换,从而造成检修费用的增加。另外发现,此类电机往往是经过的检修次数越多,轴承发热损坏的故障就越多。经分析,其主要的原因就是,多次检修造成零部件的形位超差,组装时位置的变动等因素,使轴承额外受力而损坏。

,该轴承的优点是,可消除电机端盖、轴承套等部件所产生的形位差。但是,该轴承只能承受较轻的轴向负荷。电机在制造中,静、转子轴向尺寸的误差,电机运行时温度的变化使转子造成的轴向位移,加上机械对电机的影响等原因,都可造成电机转子轴向力的产生。在轴向力大于了该轴承所承担的范围,即可造成轴承的损坏。

3.2、轴承附件的结构问题:

一般小容量的低压电机,轴承附件的结构比较简单。由端盖、轴承盖组成,轴承的定位一般采用轴用弹性挡圈。但大、中型高压电机的轴承附件,则是生产厂家的不同而存在结构设计上的不同。根据不同电机的运行与故障分析发现,不同的轴承附件结构,是直接影响到电机轴承的使用寿命、运行状况以及故障的发生。

2021三相异步电动机常见故障分析与排除

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 2021三相异步电动机常见故障分 析与排除

2021三相异步电动机常见故障分析与排除导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 三相异步电动机应用广泛,但通过长期运行后,会发生各种故障,及时判断故障原因,进行相应处理,是防止故障扩大,保证设备正常运行的一项重要的工作。 一、通电后电动机不能转动,但无异响,也无异味和冒烟。 1.故障原因①电源未通(至少两相未通);②熔丝熔断(至少两相熔断);③过流继电器调得过小;④控制设备接线错误。 2.故障排除①检查电源回路开关,熔丝、接线盒处是否有断点,修复;②检查熔丝型号、熔断原因,换新熔丝;③调节继电器整定值与电动机配合;④改正接线。 二、通电后电动机不转,然后熔丝烧断 1.故障原因①缺一相电源,或定干线圈一相反接;②定子绕组相间短路;③定子绕组接地;④定子绕组接线错误;⑤熔丝截面过小; ⑤电源线短路或接地。 2.故障排除①检查刀闸是否有一相未合好,可电源回路有一相断

风力发电机组轴承常见故障诊断与振动检测 王健

风力发电机组轴承常见故障诊断与振动检测王健 摘要:随着环境污染问题的日益突出,同时为了克服能源危机,风能作为一种 绿色可再生能源越来越受到世界各国的重视,风力发电机组(简称风电机组)作 为将风能转化为电能的关键装备得到了迅猛的发展。风电机组通常坐落于偏僻的、交通不便的、环境恶劣的远郊地区以及沿海或近海区域,且机舱一般安装在离地 面几十米甚至上百米的高空,因此风电机组日常运行状态检测困难,维护成本昂贵。有统计资料表明,陆上和海上风电机组的维护费用占到各自风场收入的10%~15%和20%~35%左右,因此风电机组在恶劣环境下的运行可靠性问题特别 受到关注。 关键词:风力发电机组;轴承故障;诊断;振动检测 轴承故障与齿轮箱故障几乎占据了风力发电机组故障的大多数。发电机组的 各种检测传感器均安装在轴承座上,而各种轴承故障都是通过传感器才发现的, 所以我们通过传感器所采集的信息就可以准确的判断整个发电机组的工作状况。 然而在实际安装中,轴承故障诊断与振动识别也是作为优先部分处理,科研投入 也是占据了成本投入的一半以上。本文就风力发电机组轴承常见故障特征及原因 进行详细阐述,然后就轴承的振动检测进行深入研究。 1风力发电机组轴承常见故障特征及原因 1.1风力发电机组轴承结构 轴承一般分为外圈、保持架、滚动体(滚珠)和内圈4个部分。轴承内部充 满油脂类物质,用于减少轴承滚动的阻力,也能分离轴承与其他部件的接触,从 而减少摩擦阻力。油脂还可以起到散热与防止腐蚀的作用。所以为了防止外物对 油脂的影响,我们一般会在保持架的两端加装防尘装置,以免外物减弱油脂的各 种作用。 1.2风力发电机组轴承常见故障及诊断 支撑主轴轴承的外圈固定在轴承座上,机械传动轴从主轴轴承内圈经过。风 力带动叶轮转动,通过传动链将动力传输给主轴,当主轴达到一定的载荷转速时,由轴承和轴承座组成的振动系统就会产生激励,也就是风机发电机组振动的产生。这种激励振动一般是周期性振动,对受载体产生的撞击力或摩擦力也会周期性的 出现,长期疲劳极大可能产生轴承的局部损伤,因此需要加强对轴承振动频率的 监测。根据长期的实践经验及理论知识的积累,从故障程度上可将轴承的故障类 型分为初级损坏与中级损坏两类。通常我们所见到的电流损害、磨损以及表面损 坏等都是初级磨损;还有一些像破裂和散裂属于中级损坏。我们还可以从损坏的 位置来区分故障,可将其类型分成外圈故障、内圈故障、滚动体故障以及支撑部 件的故障。结合轴承结构示意图,可将风电机组轴承的常见故障特征及产生原因 归纳罗列如下:(1)疲劳故障:故障特征表现为滚动体或者滚道表面脱落或者 脱皮。故障产生原因为轴、保持架等支撑装置制造工艺较低使得其精度不能保证,轴向长期过高负荷条件工作,对其性能产生很大的影响。(2)磨损故障:我们 可以从外观来观察故障的产生原因,一般磨损故障会产生色泽的变化,形成磨痕。故障产生原因为在微小间隙间的滑动磨损和长期恶劣环境中的长期使用。(3) 缺口或凹痕故障:分为过载及安装或外来颗粒引起的缺口或凹痕。过载及安装引 起的特征表现为细小的缺口或凹痕分布在两圈的滚道周围和滚动元件里,是由于

电机轴承问题

电机轴承常见问题 (2012-06-15 20:52:37) 转载▼ 分类:业系轴承 标签: 杂谈 1.电机轴窜问题,导致轴承过热? 第一,电机的轴窜问题:一般的电机,用得最多的是深沟球轴承和圆柱滚子轴承。安装时,一端做轴向定位,另一端做轴向浮动。你说的窜动,首先我觉得你应该查一下,你的轴向定位做得怎么样?定位是否可靠?如果可靠,对于深沟球轴承来说,它的轴向窜动量就应该是它的轴向游隙。一般不会太大,但是取决于你选的径向游隙。对于圆柱棍子轴承,对于N和NU系列的,不能作为定位轴承,如果你用他 们做定位,那一定窜动过大。 第二:你说的轴窜动轴承着了,我想,如果定位轴承承受了过大的轴向负荷,会 导致轴承烧毁。所以,选择定位轴承的时候要看看轴向负荷有多大。你选的轴承是否承受得了。如果是NJ系列的圆柱棍子轴承,这种轴向负荷完全是由滑动部分承受的,所以不行。对于深沟球轴承,它的轴向能力最多有径向的四分之一,对于不同的轴承各有不同。 2.如果用深沟球轴承,有没必要把一端轴承与轴固定死,然后轴承又固定在端盖上以限制轴窜动?现在很多都是轴可以来回窜动的,靠一个波纹垫片来垫,但是还是能够窜动轴系一般会要求轴向定位。所以会需要有一段作为定位端,一端作为游动端。你说的靠波形弹簧来垫,那个波形弹簧不是用于定位的,是用于加轴向预负

荷的。所以,对于交叉定位得电机,一定会存在这个由于弹簧垫圈引起的轴向窜动。如果你要控制,那就该做传统的一个定位端,一个非定位端。然后再非定为段加弹簧垫圈,就好了! 4.小功率直流有刷电机中,一端采用滚珠轴承,另一端采用球形含油轴承,请问这样的结构如何选用滚珠轴承以及与轴、轴承室的配合的松紧。(轴径8mm,轴承厚8mm,两轴承档开档约90mm,电机噪声要求很高) 一般而言,j5\6用于内圈, H7用于外圈,但这不是绝对的,我只是大略的给你说。另外,控制电机噪声,从轴承而言,你已经需要选择特殊的游隙和润滑脂了(如果噪声要求很高的话)。游隙可以选小一点的,不要太小否则抱死。润滑脂选粘度低一些的。不知道你用的是不是进口轴承,如果是的话,我可以给你些他们的推荐。对于国产轴承,如果谈到噪声,他们恐怕没有什么特殊的解决方案,除非你提出来。 5. 轴承跑外圈的情况? 分两种情况说:第一,你用的是铝轴承室,第二,一般的铸铁,或者别的铁质轴承室。 对于第一条,由于铝的膨胀系数比铁的大一倍,所以,你在安装的时候使用的正确配合,在温度升高以后就变松了,跑圈也就产生了。办法两个,第一,在安装的时候加紧配合,这个办法我不推荐,虽然可以解决,但是,安装的时候比较烦人,那么紧工人要叫的。第二、使用一个橡胶圈,在轴承室内开个槽,槽深是橡胶圈厚度的0.8倍,宽1.4倍。这样就好了。记住,我给的数据不能变,要不会有问题,

设备轴承故障高温原因分析及处理方法

设备轴承温度的原因分析及处理方法轴承是生产线设备上常用的支撑轴零件,它可以引导轴的旋转,也可以承受轴上空转的零件,由于其使用量大,生产过程中经常出现故障,给车间生产的连续性和产品质量的保障带来严重影响。因此,迅速判断故障产生的原因,采取得当的解决措施,保证设备的连续运行是确保产品质量的重要基础和保证。 一、轴承故障原因分析: 导致轴承故障率升高的常见原因: 1、润滑不良,如润滑不足或过分润滑,润滑油质量不符合要求,变质或有杂物。 2、轴承异常,如轴承损坏,轴承装配工艺差,轴承各部位间隙调整不符合要求。 3、振动大,如联轴器找正工艺差不符合要求,转子存在动、静不平衡,基础刚性差、地脚空虚以及旋转失衡,喘振。 二、轴承发生故障时的处理方法: 轴承出现故障时,应从以下几个方面解决问题 1、加油不恰当,润滑油加的过多或过少。应当按工作的的要求定期给轴承加油。轴承加油后有时也会出现温度高的情况,这主要是加油过多。 2、轴承所加油脂不符号要求或被污染。润滑油脂选用不合适,不易形成均匀的润滑油膜。无法减少轴承内部的摩擦和磨损,润滑不足,轴承温度升高。当不同型号的油脂混合时可能发生化学反应,造

成油脂变质,结块,降低润滑效果。加注油脂的过程中落入灰尘,造成油脂污染,会导致油脂劣化破坏轴承润滑,进而使轴承损坏。因此应选用合适的油脂,检修中对轴承清洗,对加油油嘴进行检查疏通,不同型号的油脂不能混合使用,若更换其他型号的油脂时,应先将原来的油脂清理干净;运行维护中定期加油,油脂应妥善保管做好防潮防尘措施。 3、确认不存在上面的问题后再检查联轴器找正情况和轴承质量。联轴器的找正要符合工艺标准。在设备维修检查时看轴承有无咬坏和磨损;检查轴承的内外圈,滚动体,保持架其表面光洁度以及有无裂痕和锈蚀,凹坑,过热变色等现象。检查轴承的游隙是否超标,若有以上情况要立即更换新的轴承。轴承的配合,轴承在安装时内径与轴,外径与外壳的配合非常重要,配合过松时,配合面会产生相对滑动称做蠕变。蠕变一但产生会磨损破坏面,损伤轴或外壳,而且磨损粉末会侵入轴承内部,造成发热,振动或损坏轴承。过盈过大时,会导致外圈外径变小或内圈内径变大,减少轴承内部的游隙。轴承各部配合间隙的调整,间隙过小时由于油脂在间隙内摩擦损失过大也会引起轴承发热。同时,间隙过小时,油量减小,来不及带走摩擦产生的热量,会进一步提高轴承的温度。但是间隙过大会改变轴承的动力特性,引起转子运动不稳定,因此要选择合适的轴承间隙。为选择合适用途的配合,要考虑轴承负荷的性质,大小,温度条件等各种情况来选用合适的轴承。减少轴承的更换频率,节省维护费用,保证设备的正常运行。 煤磨工段 2012.11.6

电机轴承常见7种异常声音的分析与解决

电机轴承常见7种异常声音的分析与解决 交流电机轴承声音异常的分析与解决 1、连续蜂鸣声“嗡嗡……” 原因分析: 电机无负荷运转是发出类似蜂鸣一样的声音,且电动机发生轴向异常振动,开或关机时有“嗡”声音 具体特点: 多发润滑状态不好,冬天且两端用球轴承的电机多发,主要是轴调心性能不好时,轴向振动影响下产生的一种不稳定的振动 解决方法 A、用润滑性能好的油脂 B、提高马达轴承座钢性 C、选用径向游隙小的轴承 D、加预负荷,减少安装误差 E、加强轴承的调心性 注:第五点起到根本改善的作用,采用02小沟曲率,01大沟曲率。 2、保持器声“唏利唏利……” 原因分析: 由保持器与滚动体振动、冲撞产生,不管润滑脂种类如何都可能产生,承受力矩、负荷或径向游隙大的时候更容易产生 解决方法: A、提高保持器精度 B、降低力矩负荷,减少安装误差 C、选用好的油脂 D、选用游隙小的轴承或对轴承施加预负荷 3、高频、振动声“哒哒…...” 具体特点: 声音频率随轴承转速而变化,零件表面波纹度是引起噪音的主要原因。 解决方法: A、改善轴承滚道表面加工质量,降低波纹度幅值

B、减少碰伤 C、修正游隙预紧力和配合,检查自由端轴承的运转,改善轴与轴承座的精度安装方法 4、杂质音 原因分析: 由轴承或油脂的清洁度引起,发出一种不规则的异常音 具体特点: 声音偶有偶无,时大时小没有规则,在高速电机上多发 解决方法: A、选用好的油脂 B、加强轴承的密封性能 C、提高注脂前清洁度 D、提高安装环境的清洁度 5、漆锈 原因分析: 由于电机轴承机壳漆油后干,挥发出来的化学成分腐蚀轴承的端面、外沟及沟道,使沟道被腐蚀后发生的异常音 具体特点: 被腐蚀后轴承表面生锈比第一面更严重 解决方法: A、把转子、机壳、晾干或烘干后装配 B、降低电机温度 C、用适应的油脂,脂油引起锈蚀少,硅油、矿油最易引起 D、改善电机轴承放置的环境温度 E、采用真空浸漆工艺 具体特点: 轴承运转后,温度超出要求的范围 原因分析: A、润滑脂过多,润滑剂的阻力增大 B、游隙过小引起内部负荷过大 C、安装误差

风电机组轴承的状态监测和故障诊断与运行维护王利

风电机组轴承的状态监测和故障诊断与运行维护王利 发表时间:2019-12-11T15:06:41.297Z 来源:《中国电业》2019年第16期作者:王利 [导读] 风能作为一种清洁可再生能源,受到世界各国的关注。 摘要:风能作为一种清洁可再生能源,受到世界各国的关注。作为风能储量较多的国家,自然需要合理的利用风能,使得国家能够得到迅速的发展。随着我国可持续发展政策的落实以及风力发电技术的进步,使我国风力发电产业得到迅速发展。目前我国的风力发电在商业上已经可以与燃煤发电相竞争。在这一市场大环境下,风力发电产业应当加强核心技术的发展。在风力发电机组中轴承作为核心零部件,风电轴承的范围涉及从叶片、主轴和偏航所用的轴承,到发电机中所用的高速轴承。轴承既是风力机械中最为薄弱的部分,也是最为重要的部分。由此看来对于风电机组轴承的状态检测、故障诊断、运行维护等工作的深入研究就显得尤为重要,直接关系到我国电力事业的发展。 关键词:风电机组状态监测故障诊断运行维护风电轴承 二、风电机组传动系统的日常维护 (一)主轴轴承的日常维护及保养(以金风S48/750风力发电机组为例) 轴承在工作的时候,会受到外界的影响,当受到一定量频率的震荡或者载荷重量增高,即使低速运行,都会影响到风电机组的安全运行。温度过高、过低,润滑不均匀、缺少润滑脂或者其他物质入侵轴承,就会导致主轴轴承的失效而无法继续运行,一般情况下,主轴承轴被磨损锈蚀都会导致轴承运转的不流畅,使运转的阻力增大直至卡死甚至引起风机着火的严重后果。就目前的形式来看,滚动式的轴承仍旧是风力发电场最主要的选择,因为其具有很大的优势,节约成本而且效率很高,但与此同时因结构构造较为简单也容易受到损伤,轴承中出现故障的原因有很多,故进行维护人员要特别重视这项内容,大部分故障最后都导致主轴轴承卡死。如果出现主轴轴承卡死情况,首先考虑的就是轴承的质量问题,或者是安装的过程中出现了装配上的错误,大部分都是滚轴在润滑中受天气的影响导致了污染。所以在日常维护和保养中,要全方位、多角度分析和考虑。第一就是外观检查有无油脂溢出,清理主轴轴承处溢出油脂和集油盒中的油脂,如果发现润滑油脂变质,油脂碳化或者凝固等都要及时疏通或更换,妥当处理,不能造成风机附近环境污染。正常运行的主轴轴承在没有堵塞的情况下,润滑油脂可以作为介质正常的在轴承内起到润滑的作用。还要检查轴承内的卫生情况,不能有其他杂物,保持轴承之间的接触面的整洁,日常维护过程中要借助工具对轴承进行清理,一旦杂物在里面堆积,就不能使轴承正常运转工作。第二则是检查轴承是否存在松动的情况,或者轴承之间型号不相符,就会导致轴承之间的错位,发现松动后要利用工具将其恢复成原本使用的状态。第三就是给轴承进行注油操作时,必须将机组切至维护状态打开叶尖气动刹车扰流板,使发电机、主轴空转后,才可进行注油。定期维护时主轴每次加注油脂950g,发电机因厂家不同分别加注不同油量(株洲发电机前后轴承各加:70g,永济发电机前后轴承各加:100g)。第四则是检查主轴温度,不同工况下都可以影响主轴轴承的运行温度。例如:夏冬季节同输出功率条件下,主轴运行温度夏季平均高出冬季15-20℃左右。因此判断主轴损坏要综合考虑。根据现场运行维护情况在满足风机运行技术要求的前提下,在主轴上加装温度传感器设定停机报警温度后可有效防止主轴卡死等现象发生。将注油口处的主轴PT100温度经SM331模块传回中央监控系统,实现风机主轴温度的在线监测功能。第五则是定期对主轴轴温高的主轴油脂进行取样化验,根据理化指标滴点、锥入度、水分等指标信息和元素含量进行分析。指标如有超标现象则应重点关注加强风机的巡检次数,必要时更换主轴轴承。还可以利用小风天气盘车,监听主轴有无异音。 (二)齿轮箱的维护与保养 作为传动系统中非常重要的零件之一,齿轮箱相对来说也容易产生故障,齿轮箱的使用范围是长期不间断运行的,如果没有及时进行保养,极易影响风机正常的运行,因此要对齿轮箱进行定期的有效的维护和保养,这样能够降低齿轮箱故障的发生率,还能够增加齿轮箱使用的年限,节约生产成本。对齿轮箱的检查是较为方便的,主要根据齿轮箱的声音是否正常以及齿轮箱内的润滑油脂的状态来判断的。齿轮箱正常的声音的频率是稳定没有较大的起伏的,如果声音过快或者过缓,声音频率不稳定,噪音较大,就说明箱内的齿轮可能出现了齿轮断裂,齿轮表面点蚀或者齿轮松动等问题,要及时进行维修和更换,并且使齿轮重新安装后能够重新运转。其次就是润滑油对齿轮的影响,油箱是否存在漏油的问题,或者齿轮箱油的质量问题对其造成的影响。 金风S48/750风机齿轮箱传动形式为一级行星齿和两级平行轴圆柱齿啮合传动,各齿轮采取强制润滑方式,增速比为i=67.57。在日常维护要及时补充油箱内的润滑油,发现油箱泄露要进行更换修复等。润滑油的质量也决定了油箱内齿轮运转的状况,油脂可能因为天气的原因凝固或者碳化,都要进行清理和更换润滑油。在闭式传动中,当齿轮硬度不高,且润滑油稀薄时尤其容易发生齿轮点蚀。齿轮的点蚀是齿轮传动的失效形式之一,即齿轮在传递动力时,在两齿轮的工作面上将产生很大的压力,随着使用时间的增加,在齿面上便产生细小的疲劳裂纹。当裂纹中渗入润滑油,在另一轮齿的挤压下被封闭在裂纹中的油压力就随之增高,加速裂纹的扩展,直致轮齿表面有小块金属脱落,形成小坑。轮齿表面点蚀后,造成传动不平稳和噪声增大。在日常保养中,也要防止齿轮箱的异常高温,要检查润滑油供应是否充分,特别是在各主要润滑点处,必须要有足够的油液润滑和冷却;再次要检查各传动零部件有无卡滞现象,还要检查机组的振动情况,前后连接接头是否松动等。防止因长期使用而出现零件老化以及破损的问题,如果发现这类问题发生,要及时进行零件的更换与维修。及时发现问题并进行合理的解决,提高风机可利用率。 三、风电机组轴承的状态监测与故障诊断 基于SCADA的方法 SCADA系统能够将运行参数发送到中央数据库,对发电机组的运行状态信息实时的监测。但是需要的传感和采集通信的数据较多,增加了供电技术的成本和监测复杂性,也因此没有得到良好的普及。对于发电机的机械故障,可以通过感应电动机的终端发电机输出反应出来。通过对电流和功率的稳定功率谱进行分析,对发电机轴承的故障进行监测。在缺少振动传感器的情况下,将震动平均数据和参数相结合,从而判断风电机组的运行状态。 四、发电机组轴承的运行维护 对于主轴轴承齿轮箱、低速轴轴承、偏航和变桨轴承的运行维护来说。由于轴承是低速而且不完全旋转,限制了振动监测效果。齿轮箱低速轴轴承可以采用润滑油液进行维护,并实施在线监测的方法。但对于主轴轴承与偏航和变桨轴承由于采用润滑脂、润滑油液混合液

轴承常见故障分析

轴承常见故障分析 1 轴承的种类: 表1-1滚动轴承类型与适用精度等级。 轴承形式适用标 准 适用精度等级 深沟球轴 承 GB307 0 级 6 级 5 级 4 级 2级 角接触球轴承0 级 6 级 5 级 4 级 2级 调心球轴 承0级 圆柱滚子轴承0 级 6 级 5 级 4 级 2级 圆锥滚子轴承公制系 列 (单 列) GB307 级 6 级 6 级 5 级 4 级 公制系 列(双 列、四 列) SB/T534 1994 级

英制系列SB/CO/ T1089 Cla ss4 Cla ss2 Cla ss3 Cla ss0 Cla ss0 调心滚子 轴承 GB307 0级 推力球轴 承0 级 6 级 5 级 4 级 推力调心滚子轴承0级 2 轴承使用中常见问题及对策 2.1 强金属音 1、异常载荷:选择合适的装配游隙和预紧力 2、组装不良:提高轴的加工精度,改善安装方法 3、润滑剂不足:补充或使用合适润滑剂 2.2 规则音 1、异物引起沟道锈蚀、压痕、伤痕:清洗相关零件,使用干净润滑脂 2、沟道剥落:疲劳磨损,更换轴承 2.3 不规则异音 1、异物侵入:清洗相关零件,使用干净润滑脂 2、游隙过大:注意配合及选择合适游隙 3、钢球伤痕:钢球疲劳剥落或异物卡伤,更换轴承

2.4 异常温升 1、润滑剂过多:减少润滑剂。 2、润滑剂不足,或不适合:增加润滑剂或选择合适润滑剂。 3、配合面蠕变或密封装置过大:轴承外径或内径配合面修正,密封形式进行变更。 2.5 轴的回转振动大 1、剥落:疲劳剥落,更换轴承 2、组装不良:提高轴的加工精度,改善安装方法 3、异物侵入:清洗相关零件,使用干净润滑脂 2.6 润滑剂泄漏大变色 1、润滑剂过多:减少润滑剂 2、异物入侵:清洗相关零

电机轴承常见故障

电机轴承常见故障 1. 电机轴窜问题,导致轴承过热? 第一,电机的轴窜问题:一般的电机,用得最多的是深沟球轴承和圆柱滚子轴承。安装时,一端做轴向定位,另一端做轴向浮动。你说的窜动,首先我觉得你应该查一下,你的轴向定位做得怎么样?定位是否可靠。如果可靠,对于深沟球轴承来说,它的轴向窜动量就应该是它的轴向游隙。一般不会太大。但是取决于你选的径向游隙。对于圆柱棍子轴承,对于N和NU系列的,不能作为定位轴承,如果你用他们做定位,那一定窜动过大。 第二:你说的轴窜动轴承着了,我想,如果定位轴承承受了过大的轴向负荷,会导致轴承烧毁。所以,选择定位轴承的时候要看看轴向负荷有多大。你选的轴承是否承受得了。如果是NJ系列的圆柱棍子轴承,这种轴向负荷完全是由滑动部分承受的,所以不行。对于深沟球轴承,它的轴向能力最多有径向的四分之一,对于不同的轴承各有不同。 2. 如果用深沟球轴承,有没必要把一端轴承与轴固定死,然后轴承又固定在端盖上以限制轴窜动?现在很多都是轴可以来回窜动的,靠一个波纹垫片来垫,但是还是能够窜动 轴系一般会要求轴向定位。所以会需要有一段作为定位端,一端作为游动端。 你说得靠波形弹簧来垫,那个波形弹簧不是用于定位的,是用于加轴向预负荷的。所以,对于交叉定位得电机,一定会存在这个由于弹簧垫圈引起的轴向窜动。如果你要控制,那就该做传统的一个定位端,一个非定位端。然后再非定为段加弹簧垫圈,就好了! 4. 小功率直流有刷电机中,一端采用滚珠轴承,另一端采用球形含油轴承,请问这样的结构如何选用滚珠轴承以及与轴、轴承室的配合的松紧。(轴径8mm,轴承厚8mm,两轴承档开档约90mm,电机噪声要求很高) 一般而言,j5\6用于内圈, H7用于外圈,但这不是绝对的,我只是大略的给你说。另外,控制电机噪声,从轴承而言,你已经需要选择特殊的游隙和润滑脂了(如果噪声要求很高的话)。游隙可以选小一点的,不要太小否则抱死。润滑脂选粘度低一些的。不知道你用的是不是进口轴承,如果是的话,我可以给你些他们的推荐。对于国产轴承,如果谈到噪声,他们恐怕没有什么特殊的解决方案,除非你提出来。 5. 轴承跑外圈的情况? 分两种情况说:第一,你用的是铝轴承室,第二,一般的铸铁,或者别的铁质轴承室。 对于第一条,由于铝的膨胀系数比铁的大一倍,所以,你在安装的时候使用的正确配合,在温度升高以后就变松了,跑圈也就产生了。办法两个,第一,在安装的时候加紧配合,这个办法我不推荐,虽然可以解决,但是,安装的时候比较烦人,那么紧工人要叫的。第二、使用一个橡胶圈,在轴承室内开个槽,槽深是橡胶圈厚度的0.8倍,宽1.4倍。这样就好了。记住,我给的数据不能变,要不会有问题,有兴趣的话再细说。 第二条,铁质轴承室,建议你查查轴承室的配合,这个问题比上面的简单多了,多数是配合松了! 6. 据有些轴承(NSK、SKF)资料上介绍:轴承外圈与轴承室的配合程度是轴承外圈能够在轴承室内蠕动,这样就会使轴承外圈得到均匀的磨损从而延长轴承的使用寿命,请问是否合理? 你说的蠕动,是指轴向的蠕动,这种蠕动是为了吸收轴向膨胀。(绝不是周向蠕动,周向肯定是不好的,它破坏了轴承的滚动状态。)但是外圈受到均匀磨损的说法,我个人不是很认同。蠕动的目的不是为了磨损。磨损之后,轴承的相对位置和受载会变,不见得好。如果蠕动磨损是好的,就不用发明可以调整轴向伸长的轴承了。 7. 能谈谈震动电机用的轴承问题么?振动电机选用什么型号系列的好?安装时怎样更好的安装? 保养和维修要注意哪几个方面?

滚动轴承故障诊断分析

滚动轴承故障诊断分析 学院名称:机械与汽车工程学院专业班级: 学生姓名: 学生学号: 指导教师姓名:

摘要 滚动轴承故障诊断 本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述, 关键词:滚动轴承;故障诊断;特征参数;特征; ABSTRACT : The Rolling fault diagnosis In the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this pa

电机轴承故障处理及分析

电机轴承故障处理及分析 一、保持器声“唏利唏利……” 原因分析:由保持器与滚动体振动、冲撞产生,不管润滑脂种类如何都可能产生,承受力矩、负荷或径向游隙大的时候更容易产生。 解决方法: 1、提高保持器精; 2、选用游隙小的轴承或对轴承施加预负荷; 3、降低力矩负荷,减少安装误差; 4、选用好的油脂。 二、连续蜂鸣声“嗡嗡……” 原因分析:马达无负荷运转是发出类似蜂鸣一样的声音,且马达发生轴向异常振动,开或关机时有“嗡”声音。 具体特点:多发润滑状态不好,冬天且两端用球轴承的马达多发,主要是轴调心性能不好时,轴向振动影响下产生的一种不稳定的振动。 解决方法: 1、用润滑性能好的油脂; 2、加预负荷,减少安装误差; 4、提高马达轴承座刚性; 5、加强轴承的调心性。 注:第五点起到根本改善的作用,采用02小沟曲率,01大沟曲率。 三、漆锈 原因分析:由于电机轴承机壳漆油后干,挥发出来的化学成分腐蚀轴承的端面、外沟及沟道,使沟道被腐蚀后发生的异常音。 具体特点:被腐蚀后轴承表面生锈比第一面更严重。 解决方法: 1、把转子、机壳、晾干或烘干后装配; 3、选用适应漆的型号; 4、改善电机轴承放置的环境温度; 5、用适应的油脂,脂油引起锈蚀少,硅油、矿油最易引起; 6、采用真空浸漆工艺。 四、杂质音 原因分析:由轴承或油脂的清洁度引起,发出一种不规则的异常音。 具体特点:声音偶有偶无,时大时小?有规则,在高速电机上多发。 解决方法: 1、选用好的油脂; 2、提高注脂前清洁度; 3、加强轴承的密封性能; 4、提高安装环境的清洁度。 五、高频、振动声“哒哒......” 具体特点:声音频率随轴承转速而变化,零件表面波纹度是引起噪音的主要原因。 解决方法: 1、改善轴承滚道表面加工质量,降低波纹度幅值; 2、减少碰伤;

风电机组故障诊断综述

风电机组故障诊断综述 对风电机组故障诊断技术进行综述,按照基于定性诊断、定量诊断的分类方式,针对现有风电机组故障诊断方法并结合故障诊断系统进行分析。对每一类故障诊断方法归类,指出这些方法的基本思想、适用条件和应用范围以及优缺点,并探讨了风电机组故障诊断技术未来可能的主要发展方向。 关键字:风力发电;风电机组;传动系统;维护检测 一、风机传动系统主要结构及部件 风机传动系统就安装的结构而言,一般分为两种情况:一种是水平轴风机传动,叶片是安装在水平面的轴承上;另一种是垂直轴风机传动,风轮与叶片是垂直摆放的,风使叶片转动,再带动与之垂直的轴承,发动机被带动以后就可以发电了。但目前大多都是水平轴风机,叶轮与轮毂通过轴承相连接,虽然结构较复杂,但能获得较好的性能,而且叶轮承受的载荷较小、重量轻。传动链主要由主轴、主轴承、偏航轴承、齿轮箱、联轴器、发电机和机座等组成。这些构成了风机中最重要的一个部分,同时因为风机传动系统带动的风叶,所以压力、温度过高都容易导致故障。维护时要特别注意受力铰链和传动机构的润滑、磨损及腐蚀情况,及时进行处理,以免影响机组的正常运行。 二、风电机组传动系统的日常维护 (一)主轴轴承的日常维护及保养(以大唐华创风能CCWE—3000/122.HD 风力发电机组为例) 轴承在工作的时候,会受到外界的影响,当受到一定量频率的震荡或者载荷重量增高,即使低速运行,都会影响到风电机组的安全运行。温度过高、过低,润滑不均匀、缺少润滑脂或者其他物质入侵轴承,就会导致主轴轴承的失效而无法继续运行,一般情况下,主轴承轴被磨损锈蚀都会导致轴承运转的不流畅,使运转的阻力增大直至卡死造成严重的后果。就目前的形式来看,滚动式的轴承仍旧是风力发电场最主要的选择,因为其具有很大的优势,节约成本而且效率很高,但与此同时因结构构造较为简单也容易受到损伤,轴承中出现故障的原因有很多,故进行维护人员要特别重视这项内容,大部分故障最后都导致主轴轴承卡死。如果出现主轴轴承卡死情况,首先考虑的就是轴承的质量问题,或者是安装的过程中出现了装配上的错误,大部分都是滚轴在润滑的中受天气的影响导致了污染。所以在日常维护和保养中,要全方位、多角度分析和考虑。第一就是外观检查有无油脂溢出,清理主轴轴承处溢出油脂和集收盘中的油脂,如果发现润滑油脂变质,油脂碳化或者凝固等都要及时疏通或更换,妥当处理,不能造成风机附近环境污染。正常运行的主轴轴承在没有堵塞的情况下,润滑油脂可以作为介质正常的在轴承内起到润滑的作用。还要检查轴承内的卫生情况,不能有其他杂物,保持轴承之间的接触面的整洁,日常维护过程中要借助工具对轴承进行清理,一旦杂物在里面堆积,就不能使轴承正常运转工作。第二则是检查轴承是否存在松

滚动轴承常见故障及原因分析

滚动轴承常见故障及原因分析 1.故障形式 (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析 (1)装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,

轴承座孔与轴承外座圈采用j6,j7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴径和轴承座孔的配合表面上发生滚动和滑动。 滚动轴承常见故障原因分析 但有时由于轴径和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大挤压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在按装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈)发生严重磨损,而出现摩擦使轴承发热、振动。 B.装配方法不当 轴承和轴径或轴承座孔的过盈较小时,多采用压入法装配。最简单的方法是利用铜棒和手锤,按一定的顺序对称地敲打轴承带过盈配合的座圈,使轴承顺利压入。另外,也可用软金属制的套管借手锤打入或压力机压入。若操作不当,则会使座圈变形开裂,或者手锤打在非过盈配合的座圈上,则会使滚道和滚动体产生压痕或轴承间接被破坏。 C.装配时温度控制不当 滚动轴承在装配时,若其与轴径的过盈较大,一般采用热装法装配。

轴承故障原因分析及处理方法

轴承故障原因分析及处理方法 [摘要]: 本文介绍了轴承常见故障和处理办法,总结了避免故障发生的几种办法,保证生产的连续性。 [关键字]:轴承;故障率高;处理措施; 一、前言: 轴承是生产线设备上常用的支撑轴零件,它可以引导轴的旋转,也可以承受轴上空转的零件,由于其使用量大,生产过程中经常出现故障,给车间生产的连续性和产品质量的保障带来严重影响。因此,迅速判断故障产生的原因,采取得当的解决措施,保证设备的连续运行是确保产品质量的重要基础和保证。 二、轴承故障原因分析: 导致轴承故障率升高的常见原因: 1、润滑不良,如润滑不足或过分润滑,润滑油质量不符合要求,变质或有杂物。 2、轴承异常,如轴承损坏,轴承装配工艺差,轴承各部位间隙调整不符合要求。 3、振动大,如联轴器找正工艺差不符合要求,转子存在动、静不平衡,基础刚性差、地脚空虚以及旋转失衡,喘振。 三、轴承发生故障时的处理方法: 轴承出现故障时,应从以下几个方面解决问题

1、加油不恰当,润滑油加的过多或过少。应当按工作的的要求定期给轴承加油。轴承加油后有时也会出现温度高的情况,这主要是加油过多。 2、轴承所加油脂不符号要求或被污染。润滑油脂选用不合适,不易形成均匀的润滑油膜。无法减少轴承内部的摩擦和磨损,润滑不足,轴承温度升高。当不同型号的油脂混合时可能发生化学反应,造成油脂变质,结块,降低润滑效果。加注油脂的过程中落入灰尘,造成油脂污染,会导致油脂劣化破坏轴承润滑,进而使轴承损坏。因此应选用合适的油脂,检修中对轴承清洗,对加油油嘴进行检查疏通,不同型号的油脂不能混合使用,若更换其他型号的油脂时,应先将原来的油脂清理干净;运行维护中定期加油,油脂应妥善保管做好防潮防尘措施。 3、确认不存在上面的问题后再检查联轴器找正情况和轴承质量。联轴器的找正要符合工艺标准。在设备维修检查时看轴承有无咬坏和磨损;检查轴承的内外圈,滚动体,保持架其表面光洁度以及有无裂痕和锈蚀,凹坑,过热变色等现象。检查轴承的游隙是否超标,若有以上情况要立即更换新的轴承。轴承的配合,轴承在安装时内径与轴,外径与外壳的配合非常重要,配合过松时,配合面会产生相对滑动称做蠕变。蠕变一但产生会磨损破坏面,损伤轴或外壳,而且磨损粉末会侵入轴承内部,造成发热,振动或损坏轴承。过盈过大时,会导致外圈外径变小或内圈内径变大,减少轴承内部的游隙。轴承各部配合间隙的调整,间隙过小时由于油脂在间隙内摩擦损失过大也会引起轴承发热。同时,间隙过小时,油量减小,来不及带走摩擦产生的热

电动机轴承异响故障分析及应对措施

电动机知识 电动机轴承异响故障分析及应对措施 1.电动机轴承声音异常 一台给水泵高压(6kV)电动机YKK400-2,功率450kW,转速2975r/min.轴伸端用深沟柱NU3E222型轴承,非负荷端用深沟球6222型轴承。运行中轴伸端声音尖锐刺耳,不像是电磁噪声,也不像轴承缺油干磨的声音,噪声持续约2min,然后间歇2min.用测振仪(VA-80A)测出轴承的振动幅值为0.021mm,声响异常时,测得振动速度值为53.6m/s,有时甚至达到97m/s,远远超过标准值28 m/s,且电流波动较大。 由于轴伸端采用间隙配合,无法调整轴承的轴向定位尺寸。在检修过程中发现内油盖有不均匀的磨损痕迹,轴承有两个深沟柱损伤。测量轴承、端盖和内外挡油小盖的定位尺寸,并经过计算,轴承的允许间隙为0.7mm,当电动机的轴承温度达到100℃,轴承的膨胀值约0.9mm,不能满足电动机正常运行要求。多次更换深沟柱轴承后,电动机噪声不仅没有消失,而且异响周期变为4min. 2.故障分析与处理 根据轴承的特点分析:由于电动机原来采用NU型深沟柱轴承,允许电动机轴向窜动。轴承内圈两侧有挡边,外圈无挡边,因此允许轴相对轴承双向位移,可以承受轴热膨胀引起的伸长。同时轴承的间隙相对深沟球轴承来说偏大,但轴承的受力为线形,比深沟球轴承的点受力好。轴承运动轨迹不是一个圆形而是一个椭圆,这是由干深沟柱(或深沟球)和滚道之间存在间隙,运行时受力的不同,使得运动轨迹成椭圆形。轴承的受力主要是在下部,对于深沟柱轴承其受力点为一条直线,高速运转中,由于轴承的间隙,受力点改变,受力运动轨迹变

成抛物曲线形。 给水泵电动机运行时主要受轴向力作用,且拖动的负载平稳,深沟柱轴承允许的径向窜动必要性减弱,因此将前轴承更换为深沟球轴承,轴承的间隙仍为C3,约0.04mm,可以满足运行要求。同时考虑轴承的膨胀,在挡油环小盖处加一块厚度约0.8mm垫片,克服来自于给水泵和轴承温度升高引起的窜动。 轴承滚动体及滚道的微观表曲是粗糙不平的,运动中会发生一定的冲击,但这种冲击产生的脉冲是高频的,因而使用测振仪测量电动机运行的高频干扰的参数值比标准的大。深沟柱轴承与滚道的接触较多,产生的高频冲击就大,而深沟球轴承与滚道的接触是点,产生的高频冲击相对较小,因而本例的电动机可以使用深沟球轴承代替深沟柱轴承,解决设备出现的异响。 将深沟柱轴承更换为深沟球轴承后,轴承异响消失。运行一段时间噪声没有再出现,测电动机的振动幅值为0.013mm,加速度值为2.8m/s2,带负荷性能稳定,电流也没有较大波动。·基于UC3637的直流电动机PWM控制电路图_ ·多台电动机逐一星形三角形起动电路_电 ·变频器的暂停减速功能 ·变频器过压类故障的分析 ·变频器启动前的直流制动功能 ·变频器与电动机的距离 ·变频调速控制方式的选择 ·变频器常见故障原因及处理方法 ·变频器为什么要求可靠接地? ·变频器怎样利用多功能输出控制端? ·NDJ-79旋转粘度计仪器的工作原理

电动机常见故障分析及处理方法_万萍英

摘要:针对电机出现故障各种现象和相应对策做一分析和研究。 关键词:电动机故障维护检修 0引言 运作中的电动机要严格按照国家相关质量标准进行检查维护以确保电动机的正常使用,运作的电动机与被拖动的设备位置要恰当,保证运行的稳定性,不能有震动、窜轴,保证通风性能良好。有些电动机因为各种原因需要经常的挪动,搬运等,对于这种电动机要加强日常的维护和检查,保证电动机运转的稳定性。 1电动机电气常见故障的分析和处理 1.1电动机接通电源起动,电动机不转但有嗡嗡声音可能原因: ①由于电源的接通问题,造成单相运转;②电动机的运载量超载;③被拖动机械卡住;④绕线式电动机转子回路开路成断线;⑤定子内部首端位置接错,或有断线、短路。处理方法:第一种情况需检查电源线,主要检查电动机的接线与熔断器,是否有线路损坏现象;第二种情况将电机卸载后空载或轻载起动;第三种情况估计是由于被拖动器械的故障,卸载被拖动机械,从被拖动机械上找故障;第四种情况检查电刷,滑环和起动电阻各个接触器的接合情况;第五种情况需重新判定三相的首尾端,并检查三相绕组是否有断线和短路。 1.2电动机启动后发热超过温升标准或冒烟可能原因:①电源电压达不到标准,电动机在额定负载下升温过快;②电动机运转环境的影响,如湿度高等原因;③电动机过载或单相运行;④电动机启动频繁、正反转过多。处理方法:第一种情况调整电动机电网电压,使电机尽量在额定电压下运行;第二种情况检查风扇运行情况,加强对环境的检查,保证环境的适宜;第三种情况检查电动机启动电流,发现问题及时处理;第四种情况减少电动机正反转的次数,及时更换适应正反转的电动机。 1.3绝缘电阻低可能原因:①电动机内部进水,受潮;②绕组上有杂物,粉尘影响;③电动机内部绕组老化。处理方法:第一种情况电动机内部烘干处理;第二种情况处理电动机内部杂物;第三种情况需检查并恢复引出线绝缘或更换接线盒绝缘线板;第四种情况及时检查绕组老化情况,及时更换绕组。 1.4电动机外壳带电可能原因:①电动机引出线的绝缘或接线盒绝缘线板损坏;②绕组端盖接触电动机机壳;③电动机接地问题。处理方法:第一种情况恢复电动机引出线的绝缘或更换接线盒绝缘板;第二种情况如卸下端盖后接地现象即消失,可在绕组端部加绝缘后再装端盖;第四种情况按规定重新接地。 1.5电动机运行时声音异常主要是因为:①电动机内部一相绕组突然断路,造成电机单相运行,电流不稳引起噪音;②电动机内部轴承磨损严重、间隙不合格,或轴承里面有杂物。处理措施:如果是第一种情况,则要进行全面检查;如果是第二种情况,必须将轴承内的杂物清理干净,或更换新轴承。 1.6电动机振动可能原因:①电动机安装的地面不平;②电动机内部转子不稳定;③皮带轮或联轴器不平衡;④内部转头的弯曲;⑤电动机风扇问题。处理方法:第一种需将电动机安装平稳底座,保证平衡性;第二种情况需校对转子平衡;第三种情况需进行皮带轮或联轴器校平衡;第四种情况需校直转轴,将皮带轮找正后镶套重车;第五种情况对风扇校静。 2电动机机械常见故障的分析和处理 2.1定子和转子铁芯故障检修。 相互绝缘的硅钢片叠成了定子和转子,并由此构成了电动机的磁路部分。导致定子和转子铁芯出现故障的因素有:①经长时间的使用轴承出现严重的磨损,进而使定子和转子相互摩擦,损坏铁芯表面,导致硅钢片之间发生短路,加大了电动机的铁损程度,使其温度快速上升,这时要通过细锉等工具将毛刺搓掉,消除硅钢片短接,然后将绝缘漆涂刷在表面,再加热烘干。②对旧绕组进行拆除的过程中,由于用力较大,造成倒槽出现歪斜现象并向外张开。可使用木榔头、小嘴钳等工具纠偏,使齿槽恢复原位,有的存在缝隙的硅钢片难以复位,可将硬质绝缘材料(如胶木板或青壳纸)夹在钢片之间。③由于空气潮湿或受其他因素的影响,铁芯表面如果锈蚀,则要使用砂纸打磨干净,再将绝缘漆涂刷在铁芯表面。④若是高热的绕组接地会将齿部和铁芯烧毁,则要通过刮刀、凿子之类的工具剔除熔积物,并将绝缘漆涂刷在其表面,然后烘干。⑤机座和铁芯之间连接不紧密,则必须重新固定。用于定位的螺钉若是无法二次利用,则重新定位,并将定位螺钉旋紧。 2.2电机轴承故障检修。 转轴在轴承的支撑下才能转动,是负载最重的部分,但极易磨损。 2.2.1故障检查运行中检查:若滚动轴承缺油,则可按照以往经验对注意其声音的变化,如果轴承断裂,运行时的声音肯定是异常的。轴承中若是有沙子等杂物,运行时会产生杂音。拆卸后检查:查看轴承的磨损程度,用手将轴承内圈捏紧,同时利用轴承摆平,然后用另一只手用力推外钢圈,如果一切正常,则轴承的外钢圈是平稳运转的,且运转时不会卡滞或振动;当轴承停止运行时也不会倒退,说明轴承彻底坏掉了,应该及时更换。用左手将外圈卡住,右手则捏住内钢圈,稍稍施加推力,如果轴承转动,则说明磨损程度较大。 2.2.2故障修理通过砂布处理轴承表面的锈斑,再在上面涂抹一层汽油;当轴承的磨损程度太深或轴承表面产生裂纹时,就要选用符合标准的新的轴承进行更换。 2.3转轴故障检修。 2.3.1对于弯曲程度较小的轴弯曲,可通过打磨的方式进行修整;若弯曲程度在0.2mm以上,则要利用压力机来修整,修整后将表面磨光,使其还原成原样即可;若肘弯曲程度超过了修整的范围,则要考虑及时更换。 2.3.2如果轴颈处未出现较大的磨损,则可将一层铬涂刷在轴颈处之后,再根据设计尺寸进行打磨;如果磨损过大,可先堆焊,再按照标准尺寸通过车床进行修整;如果轴颈处的磨损超出了可修整的程度,就必须予以更换。 2.3.3轴裂纹或断裂轴的横向裂纹深度不到轴直径的10%~15%,纵向裂纹不大于轴长的10%,则在堆焊之后再修整,直至满足设计要求。若裂纹或断裂超过了了修整的范围,则要及时更换。 2.4端盖、机壳的检修。 如果端盖与机壳之间的缝隙太大,则可采取先堆焊后修整的途径进行处理,如端盖与轴承之间配合不紧密,可先通过冲子进行修整,再在端盖上打入轴承,若采用的电动机是大功率的,则可利用电镀加以修整。 3故障的诊断及处理 3.1我厂生产8#泵站300S-90水泵,用Y2-355L1-4280KW电机拖动的故障。 3.1.1故障的现象 生产8#泵站300S-90水泵,原是用JO系列的电机拖动,JO系列的电机是老产品,能耗较高,最近几年随着老产品的淘汰,几乎买不到这种型号的电机,同时也为了节能降耗,改用节能型Y132M-4280KW电机拖动。在冬季还好,特别是天气稍热,电机就不断的出现故障,曾经一月电机故障三台,解体后统一现象都定子绕组整体过热,匝间短路。 3.1.2故障原因的分析 ①电源电压过高。从解体状况来看,是由于绕组过热造成的电机故障;由于生产8#泵站供电电源来源于垣曲县828#线路,并且828#线路供电电压略高于国家标准电压,二次线电压经常在410V以上;电压过高导致电动机的定子磁通接近饱和状态,出现电流急剧增大,电机效率下降而发热严重。导致定子绕组过热而超过允许范围国家标准规定。电动机只有在电源电压波动范围正负5%之内,才能 电动机常见故障分析及处理方法 万萍英(中条山北方铜业股份有限公司热电厂) 科学实践 297

相关文档
相关文档 最新文档