文档库 最新最全的文档下载
当前位置:文档库 › 哈夫曼树与哈夫曼编码 实验五

哈夫曼树与哈夫曼编码 实验五

哈夫曼树与哈夫曼编码  实验五
哈夫曼树与哈夫曼编码  实验五

实验四哈夫曼树与哈夫曼编码

[问题描述]

已知n个字符在原文中出现的频率,求它们的哈夫曼编码。

[基本要求]

1. 初始化:从键盘读入n个字符,以及它们的权值,建立Huffman 树。(具体算法可参见教材P147的算法6.12)

2. 编码:根据建立的Huffman树,求每个字符的Huffman编码。对给定的待编码字符序列进行编码。

三、测试数据

四、程序代码:

#include

#include

#include

int m,s1,s2;

typedef struct {

unsigned int weight;

unsigned int parent,lchild,rchild;

}HTNode,*HuffmanTree; //动态分配数组存储哈夫曼树

typedef char *HuffmanCode; //动态分配数组存储哈夫曼编码表

void Select(HuffmanTree HT,int n) {

int i,j;

for(i = 1;i <= n;i++)

if(!HT[i].parent){s1 = i;break;}

for(j = i+1;j <= n;j++)

if(!HT[j].parent){s2 = j;break;}

for(i = 1;i <= n;i++)

if((HT[s1].weight>HT[i].weight)&&(!HT[i].parent)&&(s2!=i))s1=i;

for(j = 1;j <= n;j++)

if((HT[s2].weight>HT[j].weight)&&(!HT[j].parent)&&(s1!=j))s2=j;

}

void HuffmanCoding(HuffmanTree HT, HuffmanCode HC[], int *w, int n) { // 算法6.13

// w存放n个字符的权值(均>0),构造哈夫曼树HT,

// 并求出n个字符的哈夫曼编码HC

int i, j;

char *cd;

int p;

int cdlen;

if (n<=1) return;

m=2*n-1;

HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode)); // 0号单元未用for (i=1; i<=n; i++)

{ //初始化

HT[i].weight=w[i-1];

HT[i].parent=0;

HT[i].lchild=0;

HT[i].rchild=0;

}

for (i=n+1; i<=m; i++) { //初始化

HT[i].weight=0;

HT[i].parent=0;

HT[i].lchild=0;

HT[i].rchild=0;

}

puts("\n哈夫曼树的构造过程如下所示:");

printf("HT初态:\n 结点 weight parent lchild rchild");

for (i=1; i<=m; i++)

printf("\n%4d%8d%8d%8d%8d",i,HT[i].weight,

HT[i].parent,HT[i].lchild, HT[i].rchild);

printf(" 按任意键,继续 ...");

getchar();

for (i=n+1; i<=m; i++) { // 建哈夫曼树

// 在HT[1..i-1]中选择parent为0且weight最小的两个结点,

// 其序号分别为s1和s2。

Select(HT, i-1);

HT[s1].parent = i; HT[s2].parent = i;

HT[i].lchild = s1; HT[i].rchild = s2;

HT[i].weight = HT[s1].weight + HT[s2].weight;

printf("\nselect: s1=%d s2=%d\n", s1, s2);

printf(" 结点 weight parent lchild rchild");

for (j=1; j<=i; j++)

printf("\n%4d%8d%8d%8d%8d",j,HT[j].weight,

HT[j].parent,HT[j].lchild, HT[j].rchild);

printf(" 按任意键,继续 ...");

getchar();

}

//------无栈非递归遍历哈夫曼树,求哈夫曼编码

cd = (char *)malloc(n*sizeof(char)); // 分配求编码的工作空间

p = m; cdlen = 0;

for (i=1; i<=m; ++i) // 遍历哈夫曼树时用作结点状态标志

HT[i].weight = 0;

while (p) {

if (HT[p].weight==0) { // 向左

HT[p].weight = 1;

if (HT[p].lchild != 0) { p = HT[p].lchild; cd[cdlen++] ='0'; } else if (HT[p].rchild == 0) { // 登记叶子结点的字符的编码

HC[p] = (char *)malloc((cdlen+1) * sizeof(char));

cd[cdlen] ='\0'; strcpy(HC[p], cd); // 复制编码(串)

}

} else if (HT[p].weight==1) { // 向右

HT[p].weight = 2;

if (HT[p].rchild != 0) { p = HT[p].rchild; cd[cdlen++] ='1'; } } else { // HT[p].weight==2,退回退到父结点,编码长度减1

HT[p].weight = 0; p = HT[p].parent; --cdlen;

}

}

} // HuffmanCoding

void main() {

HuffmanTree HT;HuffmanCode *HC;int *w,n,i;

puts("输入结点数:");

scanf("%d",&n);

HC = (HuffmanCode *)malloc(n*sizeof(HuffmanCode));

w = (int *)malloc(n*sizeof(int));

printf("输入%d个结点的权值\n",n);

for(i = 0;i < n;i++)

scanf("%d",&w[i]);

HuffmanCoding(HT,HC,w,n);

puts("\n各结点的哈夫曼编码:");

for(i = 1;i <= n;i++)

printf("%2d(%4d):%s\n",i,w[i-1],HC[i]); getchar();

}

哈夫曼树 实验报告

计算机科学与技术学院数据结构实验报告 班级2014级计算机1班学号20144138021 姓名张建华成绩 实验项目简单哈夫曼编/译码的设计与实现实验日期2016.1.5 一、实验目的 本实验的目的是进一步理解哈夫曼树的逻辑结构和存储结构,进一步提高使用理论知识指导解决实际问题的能力。 二、实验问题描述 利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码,此实验即设计这样的一个简单编/码系统。系统应该具有如下的几个功能: 1、接收原始数据。 从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树,并将它存于文件hfmtree.dat中。 2、编码。 利用已建好的哈夫曼树(如不在内存,则从文件hfmtree.dat中读入),对文件中的正文进行编码,然后将结果存入文件codefile.dat中。 3、译码。 利用已建好的哈夫曼树将文件codefile.dat中的代码进行译码,结果存入文件textfile.dat中。 4、打印编码规则。 即字符与编码的一一对应关系。 5、打印哈夫曼树, 将已在内存中的哈夫曼树以直观的方式显示在终端上。 三、实验步骤 1、实验问题分析 1、构造哈夫曼树时使用静态链表作为哈夫曼树的存储。 在构造哈夫曼树时,设计一个结构体数组HuffNode保存哈夫曼树中各结点的信息,根据二叉树的性质可知,具有n个叶子结点的哈夫曼树共有2n-1个结点,所以数组HuffNode的大小设置为2n-1,描述结点的数据类型为: Typedef strcut { Int weight;/*结点权值*/ Int parent; Int lchild; Int rchild; }HNodeType; 2、求哈夫曼编码时使用一维结构数组HuffCode作为哈夫曼编码信息的存储。 求哈夫曼编码,实质上就是在已建立的哈夫曼树中,从叶子结点开始,沿结点的双亲链域回退到根结点,没回退一步,就走过了哈夫曼树的一个分支,从而得到一位哈夫曼码值,由于一个字符的哈夫曼编码是从根结点到相应叶子结点所经过的路径上各分支所组成的0、1序列,因此先得到的分支代码为所求编码的低位码,后得到的分支代码位所求编码的高位码,所以设计如下数据类型:

哈夫曼编码实验报告

哈夫曼编码实验报告: 数据结构的某项实验 ①问题描述:给定n个字符的权值数组w,根据哈夫曼编码与译码规则,实现一个哈夫曼编/译码系统(利用实验指导书上的27个字符的数据进行实验)。 ②利用顺序表存储Huffman树,编码结果的存储方式采用书上的结构。 ③Huffman树的构造约定如下: 根的权值较小的子树作为左子树,当权值相等时,则先生成的子树是左子树; 按照结点的生成次序选择权值较小的两棵子树构造Huffman 树; 从叶子结点到根结点逆向求出每个字符的Huffman编码,不采用递归方法; 从根结点开始实现译码,要求被译码的字符数大于20个字符。 ④采用文件方式存储n个权值和待翻译的二进制代码,其余数据均不采用文件存储。 序号字符权值双亲结点左孩子右孩子 1□186 0 0 0 2 A 64 0 0 0 3 B 13 0 0 0 4 C 22 0 0 0

6 E 103 0 0 0 7 F 21 0 0 0 8 G 15 0 0 0 9 H 47 0 0 0 10 I 57 0 0 0 11 J 1 0 0 0 12 K 5 0 0 0 13 L 32 0 0 0 14 M 20 0 0 0 15 N 57 0 0 0 16 O 63 0 0 0 17 P 15 0 0 0 18 Q 1 0 0 0 19 R 48 0 0 0 20 S 51 0 0 0 21 T 80 0 0 0 22 U 23 0 0 0 23 V 8 0 0 0 24 W 18 0 0 0 25 X 1 0 0 0 26 Y 16 0 0 0

1.实验过程与结果 完整代码:(实验环境codeblock) #include #include #include //左0右1 typedef struct { unsigned int weight; unsigned int parent,lchild,rchild; char c; int length; }HTNode,*HuffmanTree; typedef char**HuffmanCode; void save(int n,int w[],char code[],char ch[]) { FILE*fp; char filename[20]; int i; printf("请输入要保存的文件名称:\n"); scanf("%s",filename);

哈夫曼树及其应用(完美版)

数据结构课程设计设计题目:哈夫曼树及其应用 学院:计算机科学与技术 专业:网络工程 班级:网络 131 学号:1308060312 学生姓名:谢进 指导教师:叶洁 2015年7 月12 日

设计目的: 赫夫曼编码的应用很广泛,利用赫夫曼树求得的用于通信的二进制编码称为赫夫曼编码。树中从根到每个叶子都有一条路径,对路径上的各分支约定:指向左子树的分支表示“0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或“1”的序列作为和各个叶子对应的字符的编码,这就是赫夫曼编码。哈弗曼译码输入字符串可以把它编译成二进制代码,输入二进制代码时可以编译成字符串。 1、熟悉树的二叉树的存储结构及其特点。 2、掌握建立哈夫曼树和哈夫曼编码的方法。 设计内容: 欲发一封内容为AABBCAB ……(共长 100 字符,字符包括A 、B 、C 、D 、E 、F六种字符),分别输入六种字符在报文中出现的次数(次数总和为100),对这六种字符进行哈夫曼编码。 设计要求: 对输入的一串电文字符实现赫夫曼编码,再对赫夫曼编码生成的代码串进行译码,输出电文字符串。通常我们把数据压缩的过程称为编码,解压缩的过程称为解码。电报通信是传递文字的二进制码形式的字符串。但在信息传递时,总希望总长度能尽可能短,即采用最短码。假设每种字符在电文中出现的次数为Wi,编码长度为Li,电文中有n种字符,则电文编码总长度为∑WiLi。若将此对应到二叉树上,Wi为叶结点的权,Li为根结点到叶结点的路径长度。那么,∑WiLi 恰好为二叉树上带权路径长度。因此,设计电文总长最短的二进制前缀编码,就是以n种字符出现的频率作权,构造一棵赫夫曼树,此构造过程称为赫夫曼编码。设计实现的功能: 1.以二叉链表存储, 2.建立哈夫曼树; 3.求每个字符的哈夫曼编码并显示。

哈夫曼树的实验报告1

一、需求分析 1、本演示程序实现Haffman编/译码器的作用,目的是为信息收发站提供一个编/译系统, 从而使信息收发站利用Haffman编码进行通讯,力求达到提高信道利用率,缩短时间,降低成本等目标。系统要实现的两个基本功能就是:①对需要传送的数据预先编码; ②对从接收端接收的数据进行译码; 2、本演示程序需要在终端上读入n个字符(字符型)及其权值(整形),用于建立Huffman 树,存储在文件hfmanTree.txt中;如果用户觉得不够清晰还可以打印以凹入表形式显示的Huffman树; 3、本演示程序根据建好的Huffman树,对文件的文本进行编码,结果存入文件CodeFile 中;然后利用建好的Huffman树将文件CodeFile中的代码进行译码,结果存入文件TextFile中;最后在屏幕上显示代码(每行50个),同时显示对CodeFile中代码翻译后的结果; 4、本演示程序将综合使用C++和C语言; 5、测试数据: (1)教材例6-2中数据:8个字符,概率分别是0.05,0.29,0.07,0.08,0.14,0.23,0.03, 0.11,可将其的权值看为5,29,7,8,14,23,3,11 (2)用下表给出的字符集和频度的实际统计数据建立Haffman树,并实现以下报文的编码和 一、概要设计 1、设定哈夫曼树的抽象数据类型定义 ADT Huffmantree{ 数据对象:D={a i| a i∈Charset,i=1,2,3,……n,n≥0} 数据关系:R1={< a i-1, a i >| a i-1, a i∈D, i=2,3,……n} 基本操作: Initialization(&HT,&HC,w,n,ch) 操作结果:根据n个字符及其它们的权值w[i],建立Huffman树HT,用字符数组ch[i]作为中间存储变量,最后字符编码存到HC中; Encodeing(n) 操作结果:根据建好的Huffman树,对文件进行编码,编码结果存入到文件CodeFile 中 Decodeing(HT,n) 操作结果:根据已经编译好的包含n个字符的Huffman树HT,将文件的代码进行翻译,结果存入文件TextFile中 } ADT Huffmantree

霍夫曼树实验报告

实验二二叉树的遍历及霍夫曼编码 班级:计科1101班 学号:0909101605 姓名:杜茂鹏 2013年5月22日

一、实验目的 掌握二叉树的建立及遍历操作,霍夫曼编码基本操作及存储结构表示 二、实验内容 1. 系统要求包含以下功能 1)初始化:从终端读入字符集大小n,以及n个字符和n个权值(或者读入字符集和频度数据文件),建立哈夫曼树,并将哈夫曼树存入到文件HfmTree 中。 2)编码:利用已建好的哈夫曼树(如果不在内存中,则从文件中读入),从文件ToBeTran中读入原文,对原文进行编码,将编码后的结果存入文件CodeFile 中。 3)译码:利用已建好的哈夫曼树将文件CodeFile中的代码进行译码,结果存入文件TextFile中。 4)打印:打印输出哈夫曼树,显示ToBeTran, TextFile和CodeFile文件的内容。 三、实验要求 1.在上机前写出全部源程序; 2.能在机器上正确运行程序; 3.用户界面友好。 四、概要设计 1)首先动态分配数组存储霍夫曼树及存储霍夫曼编码表,然后从终端或文件读入霍夫曼树的字符变量及其频度,初始化建立霍夫曼树并将其写入文件HfmTree.txt中。 2)从指定的文件succe.txt中读入原文,利用已经编好的霍夫曼树对其编码,将编码结果写入文件Coding.txt保存。 3)利用已建好的哈夫曼树将文件Coding.txt中的代码进行译码,结果存入文件decoding.txt中。

五、测试数据: 2.原文内容“THIS IS MY PROGRAM” 六、详细设计 实验内容(原理、操作步骤、程序代码) //建立霍夫曼树,对原文进行编码、译码 #include #include #include #include typedef struct tree { char ch; int weight;//权值 int parent,lchild,rchild; }HTNode,*HuffmanTree;//动态分配数组存储霍夫曼树typedef char **HuffmanCode;//动态分配数组存储霍夫曼编码表void Select(HuffmanTree &HT,int* s1,int* s2,int n) { int j; int min1=10000; for(j=1;j<=n;j++) { if(HT[j].parent==0&&min1>HT[j].weight)

数据结构 哈夫曼编码实验报告

实验报告 实验课名称:数据结构实验 实验名称:文件压缩问题 班级:20132012 学号:姓名:时间:2015-6-9 一、问题描述 哈夫曼编码是一种常用的数据压缩技术,对数据文件进行哈夫曼编码可大大缩短文件的传输长度,提高信道利用率及传输效率。要求采用哈夫曼编码原理,统计文本文件中字符出现的词频,以词频作为权值,对文件进行哈夫曼编码以达到压缩文件的目的,再用哈夫曼编码进行译码解压缩。 二、数据结构设计 首先定义一个结构体: struct head { unsigned char b; //记录字符 long count; //权重 int parent,lch,rch; //定义双亲,左孩子,右孩子 char bits[256]; //存放哈夫曼编码的数组 } header[512],tmp; //头部一要定设置至少512个,因为结 点最多可达256,所有结点数最多可 达511 三、算法设计 输入要压缩的文件读文件并计算字符频率根据字符的频率,利用Huffman 编码思想创建Huffman树由创建的Huffman树来决定字符对应的编码,进行文件的压缩解码压缩即根据Huffman树进行译码 设计流程图如图1.1所示。

图1.1 设计流程图 (1)压缩文件 输入一个待压缩的文本文件名称(可带路径)如:D:\lu\lu.txt 统计文本文件中各字符的个数作为权值,生成哈夫曼树;将文本文件利用哈夫曼树进行编码,生成压缩文件。压缩文件名称=文本文件名.COD 如:D:\lu\lu.COD 压缩文件内容=哈夫曼树的核心内容+编码序列 for(int i=0;i<256;i++) { header[i].count=0; //初始化权重 header[i].b=(unsigned char)i; //初始化字符 } ifstream infile(infilename,ios::in|ios::binary); while(infile.peek()!=EOF) { infile.read((char *)&temp,sizeof(unsigned char)); //读入一个字符 header[temp].count++; //统计对应结点字符权重 flength++; //统计文件长度 } infile.close(); //关闭文件 for(i=0;i<256-1;i++) //对结点进行冒泡排序,权重大的放在上面,编码时效率高 for(int j=0;j<256-1-i;j++) if(header[j].count

哈夫曼树

目录 一、程序设计目的与要求 (3) 1.1程序设计目的 (3) 1.2程序设计要求 (3) 二、需求分析 (4) 三、概要设计 (4) 3.1哈夫曼树的构造过程 (4) 3.2译码过程是编码过程的逆过程 (5) 3.3 构造哈夫曼树和哈夫曼编码类的描述 (5) 四、详细设计 (6) 五、调试分析 (11) 5.1程序编译界面 (11) 5.2程序运行界面 (12) 六、测试结果 (13) 七、附录 (15) 7.1设计心得 (15) 7.2参考文献 (15)

一、程序设计的目的与要求 1.1程序设计目的 课程设计是《数据结构》课程教学必不可缺的一个重要环节,通过课程设计,使学生对整个课程的知识体系有较深入的理解,在运用本课程的知识解决实际问题方面得到锻炼,对锻炼学生的实践能力以及运用本课程的知识、方法解决更为复杂的实际问题有较好的启发和指导作用,从而为后续课程的学习,毕业设计环节以及将来的实际工作打好坚实的基础。本课程设计的目是: 1.培养学生将所学的算法知识应用于程序设计过程中,设计出运行效率更高的 程序; 2.了解数据的三种逻辑结构(线性结构、树结构、图结构)和四种存储结构(顺 序、链接、索引、散列)的基本特性和相互关系; 3.掌握算法知识,学会设计算法并对算法进行分析和评价。 1.2程序设计要求 在设计时严格按照题意独立进行设计,不得随意更改。要求熟悉C、C++等某一种高级程序设计语言。通过本课程的学习与实践,学生应做到: 1.掌握数据结构的基本概念和基本理论。 2.熟练掌握顺序表、链表、队列、栈、树以及二叉树、图等基本数据结构的设 计和分析。 3.熟练地掌握常用算法(递归、遍历、查找、排序)的知识。 4.能对所求解的问题进行分析,抽象出逻辑结构,选择合适的存储结构,定义 所需的运算,设计相应的算法。 5.对算法进行分析和评价。

实验三哈夫曼树实验报告

数据结构实验报告 实验名称:实验三树 学生姓名: 班级: 班内序号: 学号: 日期:2012年12月7号 1、实验要求 利用二叉树结构实现赫夫曼编/解码器。 基本要求: 1、初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个字符的频 度,并建立赫夫曼树 2、建立编码表(CreateT able):利用已经建好的赫夫曼树进行编码,并将每个字符 的编码输出。 3、编码(Encoding):根据编码表对输入的字符串进行编码,并将编码后的字符串 输出。 4、译码(Decoding):利用已经建好的赫夫曼树对编码后的字符串进行译码,并输 出译码结果。 5、打印(Print):以直观的方式打印赫夫曼树(选作) 6、计算输入的字符串编码前和编码后的长度,并进行分析,讨论赫夫曼编码的压 缩效果。 测试数据: I love data Structure, I love Computer。I will try my best to study data Structure. 提示: 1、用户界面可以设计为“菜单”方式:能够进行交互。 2、根据输入的字符串中每个字符出现的次数统计频度,对没有出现的

字符一律不用编码。 2、程序分析 2.1存储结构 (1)二叉树 template class BiTree { public: BiTree(); //构造函数,其前序序列由键盘输入 ~BiTree(void); //析构函数 BiNode* Getroot(); //获得指向根结点的指针protected: BiNode *root; //指向根结点的头指针}; //声明类BiTree及定义结构BiNode Data: 二叉树是由一个根结点和两棵互不相交的左右子树构成。 二叉树中的结点具有相同数据类型及层次关系。 示意图: lchild parent rchild

数据结构哈夫曼编码实验报告

数据结构实验报告 ――实验五简单哈夫曼编/译码的设计与实现本实验的目的是通过对简单哈夫曼编/译码系统的设计与实现来熟练掌握树型结 构在实际问题中的应用。此实验可以作为综合实验,阶段性实验时可以选择其中的几 个功能来设计和实现。 一、【问题描述】 利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码,此实验即设计这样的一个简单编/码系统。系统应该具有如下的几个功能: 1、接收原始数据。 从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树,并将它存于文件nodedata.dat中。 2、编码。 利用已建好的哈夫曼树(如不在存,则从文件nodedata.dat中读入),对文件中的正文进行编码,然后将结果存入文件code.dat中。 3、译码。利用已建好的哈夫曼树将文件code.dat中的代码进行译码,结果存入文件textfile.dat中。 4、打印编码规则。 即字符与编码的一一对应关系。 二、【数据结构设计】 1、构造哈夫曼树时使用静态链表作为哈夫曼树的存储。 在构造哈夫曼树时,设计一个结构体数组HuffNode保存哈夫曼树中各结点的信息,根据二叉树的性质可知,具有n个叶子结点的哈夫曼树共有2n-1个结点,所以数组HuffNode的大小设置为2n-1,描述结点的数据类型为: typedef struct { int weight;//结点权值 int parent; int lchild; int rchild; char inf; }HNodeType; 2、求哈夫曼编码时使用一维结构数组HuffCode作为哈夫曼编码信息的存储。 求哈夫曼编码,实质上就是在已建立的哈夫曼树中,从叶子结点开始,沿结点的双亲链域回退到根结点,没回退一步,就走过了哈夫曼树的一个分支,从而得到一位哈夫曼码值,由于一个字符的哈夫曼编码是从根结点到相应叶子结点所经过的路径上各分支所组成的0、1序列,因此先得到的分支代码为所求编码的低位码,后得到的分支代码位所求编码的高位码,所以设计如下数据类型: #define MAXBIT 10 typedef struct

构建哈夫曼树及输出哈夫曼代码及算法思想

哈夫曼树描述文档 一、思路 通过一个argv[]数组存储从test文件中读取字母,然后利用ascal 码循环计算每个字母的权值,利用weight[]是否为零,确定叶子节点,节点个数为count,传入到构建哈夫曼树的子程序中,然后利用cd[]数组存储每一个叶子节点的哈夫曼代码.输出代码时,通过与argv[]数组的比对,扫描ht数组,进而读出所有的数据。 二、截图 三、代码 #include #include #include typedefstruct { char data; int weight; int parent; intlchild;

intrchild; }HTNode; typedefstruct { char cd[50]; int start; }HCode; using namespace std; int enter(char argv[])//进行读入操作 { fstream in; ofstream out; char c; int number=0;//字母个数置为0 in.open("test.txt",ios::in); //打开文件test.txt out.open ("code.txt",ios::trunc); //打开文件code.txt,如果不存在就新建一个,如果存在就清空 if(!in.eof()) in>>c; //从test.txt中读取一个字符存入c printf("原文本是:\n"); while(! in.eof()){ //文件不为空,循环读取一个字符 cout<>c; //从test.txt中读取一个字符存入c } argv[number]='\0'; printf("\n"); in.close; out.close; //使用完关闭文件 return(number);//返回叶子节点数目 } voidCreateHT(HTNodeht[],int n) { inti,j,k,lnode,rnode; double min1,min2; for(i=0;i<2*n-1;i++) ht[i].parent=ht[i].lchild=ht[i].rchild=-1;//置初值 for(i=n;i<2*n-1;i++) { min1=min2=32167; lnode=rnode=-1; for(k=0;k<=i-1;k++) if(ht[k].parent==-1) {

哈夫曼编码算法实现完整版

实验三树的应用 一.实验题目: 树的应用——哈夫曼编码 二.实验内容: 利用哈夫曼编码进行通信可以大大提高信道的利用率,缩短信息传输的时间,降低传输成本。根据哈夫曼编码的原理,编写一个程序,在用户输入结点权值的基础上求哈夫曼编码。 要求:从键盘输入若干字符及每个字符出现的频率,将字符出现的频率作为结点的权值,建立哈夫曼树,然后对各个字符进行哈夫曼编码,最后打印输出字符及对应的哈夫曼编码。 三、程序源代码: #include #include #include #include typedef struct{ char data; int weight; int parent,lchild,rchild; }HTNode,*HuffmanTree; typedef char * * HuffmanCode; void Select(HuffmanTree &HT,int n,int m) {HuffmanTree p=HT; int tmp; for(int j=n+1;j<=m;j++) {int tag1,tag2,s1,s2; tag1=tag2=32767;

for(int x=1;x<=j-1;x++)

{ if(p[x].parent==0&&p[x].weights2) //将选出的两个节点中的序号较小的始终赋给s1 { tmp=s1; s1=s2; s2=tmp;} p[s1].parent=j; p[s2].parent=j; p[j].lchild=s1; p[j].rchild=s2; p[j].weight=p[s1].weight+p[s2].weight; } } void HuffmanCoding(HuffmanTree &HT,int n,char *w1,int*w2) { int m=2*n-1; if(n<=1) return; HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode)); HuffmanTree p=HT; for(int i=1;i<=n;i++) { p[i].data=w1[i-1]; p[i].weight=w2[i]; p[i].parent=p[i].lchild=p[i].rchild=0; } for(;i<=m;i++) { p[i].weight=p[i].parent=p[i].lchild=p[i].rchild=0; } Select(HT,n,m); ofstream outfile; //生成hfmTree文件 outfile.open("hfmTree.txt",ios::out); for (i=1;i<=m;i++)

哈夫曼树

******************* 实践教学 ******************* 兰州理工大学 计算机与通信学院 2007年春季学期 算法与数据结构课程设计 题目:赫夫曼编译码器设计 专业班级:软件工程05-1班 姓名:张龙 学号:05350507 指导教师:王燕 成绩:

目录 摘要 (1) 前言 (2) 正文 (3) 1.采用类C语言定义相关的数据类型 (3) 2.各模块的伪码算法 (7) 3.函数的调用关系图 (13) 4.调试分析 (13) 5.测试结果 (14) 6.源程序(带注释) (14) 总结 (20) 参考文献 (20) 附件Ⅰ部分源程序代码 (21)

摘要 哈夫曼编译码器主要用于通信领域,能够实现数据的快速,有效的传输。它利用哈夫曼树对数据进行编码,形成前缀编码,实现数据的有效压缩存放。然后又通过某种遍历实现译码,从而达到快速远距离通信的目的。 关键词:哈夫曼树;前缀编码;译码

前言 利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码(复原)。对于双工信道(即可以双向传输信息的信道),每端都需要一个完整的编/译码系统。试为这样的信息收发站写一个哈夫曼码的编/译码系统。通过该题目的设计过程,可以加深理解树及二叉树的逻辑结构、存储结构,掌握树及二叉树上基本运算的实现。进一步理解和熟练掌握课本中所学的各种数据结构,学会如何把学到的知识用于解决实际问题,培养学生的动手能力。

正文 1.采用类c语言定义相关的数据类型 (1)结构体定义 typedef struct { int weight; char ch; int parent,lchild,rchild; }HTNode,*HuffmanTree; //动态分配数组存贮哈夫曼树。 typedef struct { char ch; char *chs; }HuffmanCode; typedef struct { char ch; int weight; }sw; typedef struct { HuffmanTree HT; HuffmanCode *HC; }huf;//哈夫曼树结构体。 从HT[i-1]选择parent为零且weight最小的两个节点,分别编号为n1,n2. (2)调用函数 1)在给定权值中选择权值最小的两个节点。 void select(HTNode * HT,int n,int *n1,int *n2) { int i=1; int n3; while(HT[i].parent!=0) i++;

2021年哈夫曼树实验报告 (1)之令狐采学创编

实验报告 欧阳光明(2021.03.07) 实验名称 Huffman 编码 专业班级 计科三班 姓名 学号 指导教师 日期 .12.20 一、实验目的 熟练掌握二叉树应用(Huffman 编码)的基本算法实现。 二、实验内容 ● 1.对输入的一串电文字符实现Huffman 编码,再对Huffman 编码生成的代码串进行译码, 输出电文字符串。实现功能如下: ? Huffman 树的建立 ? Huffman 编码的生成 编码文件的译码 三、实验要求 设计思路: 数据结构: #define n 100 //叶子结点数 #define m 2*n1 //Huffman 树中结点总数 typedef struct { int weight; //权值 int lchild , rchild , parent; //左右孩子及双亲指针 }HTNode; //树中结点类型 typedef HTNode HuffmanTree[m+1]; //0号单元不用 主要实现函数: ? 统计字符串中字符的种类以及各类字符的个数的函数 ? 构造Huffman 树的函数 ? Huffman 编码的函数 ? 建立正文的编码文件的函数 ? 代码文件的译码函数 ? 主函数 四、实验概要设计 1)功能框图 五. 使用说明 1.运行环境:VC++ 6.0 2.首先选择主控菜单中的操作1,即建表,然后进行其它操作. 六.实验截图 Huffman 编码程序 Huffman 树的建立 从叶子到根逆向求编码Huffman 编码的生成 编码文件的译码 退出

七实验体会 1、构建哈夫曼树的关键在于找最小树;在F中选择两棵根结点权值最小的树作为左右子树构造一棵新的二叉树,且至新的二叉树的根结点的权值为其左右子树上根结点的权值之和。 2、由于学习的不足没有实现编码文件的译码,今后会加以改进 (╯﹏╰) 3、在逆向求编码的for循环里犯了一个逻辑错误导致求出来的3、4位编码串行,尝试了多钟数据输入才找到原因所在,并加以改正,编写程序需一步一步的去调试并找到错误所在。 附源程序: #include #include #include #include typedef struct { char data; //结点字符 int weight; //结点权值 int parent,lchild,rchild; //父子结点 }HTNode,* HuffmanTree; typedef char * *HuffmanCode; void Select(HuffmanTree HT, int m, int& s1, int& s2) { int i; s1 = s2 = 1; for(i=1; i<=m; i++) { if (HT[i].parent==0) { s1=i; break; } } for(i=i+1; i<=m; i++) { if (HT[i].parent==0 && HT[s1].weight>HT[i].weight) s1=i; } for(i=1; i<=m; i++) { if(HT[i].parent==0&&i!=s1) {

哈夫曼树实验报告

哈夫曼树实验报告 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

计算机科学与技术学院数据结构实验报告 班级 2014级计算机1班学号姓名张建华成绩 实验项目简单哈夫曼编/译码的设计与实现实验日期一、实验目的 本实验的目的是进一步理解哈夫曼树的逻辑结构和存储结构,进一步提高使用理论知识指导解决实际问题的能力。 二、实验问题描述 利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码,此实验即设计这样的一个简单编/码系统。系统应该具有如下的几个功能: 1、接收原始数据。 从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树,并将它存于文件中。 2、编码。 利用已建好的哈夫曼树(如不在内存,则从文件中读入),对文件中的正文进行编码,然后将结果存入文件中。 3、译码。 利用已建好的哈夫曼树将文件中的代码进行译码,结果存入文件中。 4、打印编码规则。 即字符与编码的一一对应关系。 5、打印哈夫曼树, 将已在内存中的哈夫曼树以直观的方式显示在终端上。 三、实验步骤 1、实验问题分析 1、构造哈夫曼树时使用静态链表作为哈夫曼树的存储。 在构造哈夫曼树时,设计一个结构体数组HuffNode保存哈夫曼树中各结点的信息,根据二叉树的性质可知,具有n个叶子结点的哈夫曼树共有2n-1个结点,所以数组HuffNode的大小设置为2n-1,描述结点的数据类型为: Typedef strcut { Int weight;/*结点权值*/ Int parent; Int lchild; Int rchild; }HNodeType; 2、求哈夫曼编码时使用一维结构数组HuffCode作为哈夫曼编码信息的存储。 求哈夫曼编码,实质上就是在已建立的哈夫曼树中,从叶子结点开始,沿结点的双亲链域回退到根结点,没回退一步,就走过了哈夫曼树的一个分支,从而得到一位哈夫曼码值,由于一个字符的哈夫曼编码是从根结点到相应叶子结点所经过的路

(完整word版)实验七 哈夫曼编码实验

实验七哈夫曼编码 哈夫曼编码 1. 问题描述 设某编码系统共有n个字符,使用频率分别为{w1, w2,…, w n},设计一个不等长的编码方案,使得该编码系统的空间效率最好。 2. 基本要求 ⑴设计数据结构; ⑵设计编码算法; ⑶分析时间复杂度和空间复杂度。 3. 编码 #include #include using namespace std; const int Size=10,Size1=50; struct element { int weight; int lchild,rchild,parent; }; char s[Size];int w[Size],w1[Size]; int getW(char T1[]) //统计字母频率,获得权值 { char T[Size1]; strcpy(T,T1); char c;int count,k=0; for(int i=0;T[i]!='\0';i++) { count=0; if(T[i]>='a'&&T[1]<='z') { c=T[i]; s[k]=c;s[k+1]='\0'; }

if(c!='\0') { for(int j=0;T[j]!='\0';j++) { if(T[j]==c) { count++; T[j]='$'; } } } if(c!='\0') { w1[k]=count; w[k++]=count; } c='\0'; } return k; } void Select(element h[],int &i3,int &i4)//获得哈夫曼数组中权值最小的两个下标{ int c; i3=-1;i4=-1; for(int i=0;i3==-1;i++) if(h[i].parent==-1) i3=i; for(i;i4==-1;i++) if(h[i].parent==-1) i4=i; if(h[i3].weight>h[i4].weight) { c=i3; i3=i4; i4=c; } for(i;h[i].weight>0;i++) { if(h[i].parent==-1)

哈夫曼树建立、哈夫曼编码算法的实现

#include /*2009.10.25白鹿原*/ #include /*哈夫曼树建立、哈夫曼编码算法的实现*/ #include typedef char* HuffmanCode;/*动态分配数组,存储哈夫曼编码*/ typedef struct { unsigned int weight ; /* 用来存放各个结点的权值*/ unsigned int parent, LChild,RChild ; /*指向双亲、孩子结点的指针*/ }HTNode, * HuffmanTree; /*动态分配数组,存储哈夫曼树*/ void select(HuffmanTree *ht,int n, int *s1, int *s2) { int i; int min; for(i=1; i<=n; i++) { if((*ht)[i].parent == 0) { min = i; i = n+1; } } for(i=1; i<=n; i++) { if((*ht)[i].parent == 0) { if((*ht)[i].weight < (*ht)[min].weight) min = i; } } *s1 = min; for(i=1; i<=n; i++) { if((*ht)[i].parent == 0 && i!=(*s1)) { min = i; i = n+1; } } for(i=1; i<=n; i++) { if((*ht)[i].parent == 0 && i!=(*s1)) {

if((*ht)[i].weight < (*ht)[min].weight) min = i; } } *s2 = min; } void CrtHuffmanTree(HuffmanTree *ht , int *w, int n) { /* w存放已知的n个权值,构造哈夫曼树ht */ int m,i; int s1,s2; m=2*n-1; *ht=(HuffmanTree)malloc((m+1)*sizeof(HTNode)); /*0号单元未使用*/ for(i=1;i<=n;i++) {/*1-n号放叶子结点,初始化*/ (*ht)[i].weight = w[i]; (*ht)[i].LChild = 0; (*ht)[i].parent = 0; (*ht)[i].RChild = 0; } for(i=n+1;i<=m;i++) { (*ht)[i].weight = 0; (*ht)[i].LChild = 0; (*ht)[i].parent = 0; (*ht)[i].RChild = 0; } /*非叶子结点初始化*/ /* ------------初始化完毕!对应算法步骤1---------*/ for(i=n+1;i<=m;i++) /*创建非叶子结点,建哈夫曼树*/ { /*在(*ht)[1]~(*ht)[i-1]的范围内选择两个parent为0且weight最小的结点,其序号分别赋值给s1、s2返回*/ select(ht,i-1,&s1,&s2); (*ht)[s1].parent=i; (*ht)[s2].parent=i; (*ht)[i].LChild=s1; (*ht)[i].RChild=s2; (*ht)[i].weight=(*ht)[s1].weight+(*ht)[s2].weight; } }/*哈夫曼树建立完毕*/ void outputHuffman(HuffmanTree HT, int m) { if(m!=0) {

哈夫曼树及其操作-数据结构实验报告(2)

电子科技大学 实验报告 课程名称:数据结构与算法 学生姓名:陈*浩 学号:************* 点名序号: *** 指导教师:钱** 实验地点:基础实验大楼 实验时间: 2014-2015-2学期 信息与软件工程学院

实验报告(二) 学生姓名:陈**浩学号:*************指导教师:钱** 实验地点:科研教学楼A508实验时间:一、实验室名称:软件实验室 二、实验项目名称:数据结构与算法—树 三、实验学时:4 四、实验原理: 霍夫曼编码(Huffman Coding)是一种编码方式,是一种用于无损数据压缩的熵编码(权编码)算法。1952年,David A. Huffman在麻省理工攻读博士时所发明的。 在计算机数据处理中,霍夫曼编码使用变长编码表对源符号(如文件中的一个字母)进行编码,其中变长编码表是通过一种评估来源符号出现机率的方法得到的,出现机率高的字母使用较短的编码,反之出现机率低的则使用较长的编码,这便使编码之后的字符串的平均长度、期望值降低,从而达到无损压缩数据的目的。 例如,在英文中,e的出现机率最高,而z的出现概率则最低。当利用霍夫曼编码对一篇英文进行压缩时,e极有可能用一个比特来表示,而z则可能花去25个比特(不是26)。用普通的表示方法时,每个英文字母均占用一个字节(byte),即8个比特。二者相比,e使用了一般编码的1/8的长度,z则使用了3倍多。倘若我们能实现对于英文中各个字母出现概率的较准确的估算,就可以大幅度提高无损压缩的比例。 霍夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树。所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数)。树的路径长度是从树根到每一结点的路径长度之和,记为WPL=(W1*L1+W2*L2+W3*L3+...+Wn*Ln),N个权值Wi(i=1,2,...n)构成一棵有N个叶结点的二叉树,相应的叶结点的路径长度为Li(i=1,2,...n)。 可以证明霍夫曼树的WPL是最小的。

哈夫曼编码实验报告

中南大学数据结构课程 姓名:刘阳 班级:信息0703 学号:0903070312 实验时间: 08.11.14 指导老师:赵颖

一、实验内容 根据输入的n 个带权结点,构造出哈夫曼树,并且把构造结果输出到屏幕。 二、实验说明 哈夫曼数,也称最优二叉树,是指对于一组带有确定权值的叶结点,构造的具有最小带权路径长度的二叉树。 设二叉树具有n 个带权值的叶结点,那么从根结点到各个叶结点的路径长度与相应结点权值的乘积之和叫做二叉树的带权路径长度WPL ,记作: WPL=k n k k L W *∑=1。在给定一组具有确定权值的叶结点,可以构造出不同的带权二 叉树。根据哈夫曼树的定义,一棵二叉树要使其WPL 值最小,必须使权值越大的叶结点越靠近根结点,而权值越小的叶结点越远离根结点。 在数据通讯中,经常需要将传送的文字转换成由二进制字符0,1组成的二进制串,我们称之为编码。例如,假设要传送的电文为ABACCDA ,电文中只含有A ,B ,C ,D 四种字符,若这四种字符采用下表所示的编码,则电文的代码为000010000100100111 000,长度为21。 在传送电文时,我们总是希望传送时间尽可能短,这就要求电文代码尽可能短。如果在编码时考虑字符出现的频率,让出现频率高的字符采用尽可能短的编码,出现频率低的字符采用稍长的编码,构造一种不等长编码,则电文的代码就可能更短。并且在建立不等长编码时,必须使任何一个字符的编码都不是另一个字符编码的前缀,以避免反译成原文时,编码出现多义性。 在哈夫曼编码树中,树的带权路径长度的含义是各个字符的码长与其出现次数的乘积之和,也就是电文的代码总长,所以采用哈夫曼树构造的编码是一种能使电文代码总长最短的不等长编码。 采用哈夫曼树进行编码,也不会产生上述二义性问题。因为,在哈夫曼树中,每个字符结点都是叶结点,它们不可能在根结点到其它字符结点的路径上,所以一个字符的哈夫曼编码不可能是另一个字符的哈夫曼编码的前缀,从而保证了译码的非二义性。

相关文档