文档库 最新最全的文档下载
当前位置:文档库 › 后张预应力混凝土的抗压弹性模量和抗压强度

后张预应力混凝土的抗压弹性模量和抗压强度

后张预应力混凝土的抗压弹性模量和抗压强度
后张预应力混凝土的抗压弹性模量和抗压强度

后张预应力混凝土的抗压弹性模量和抗压强度

摘要:本文主要探讨了混凝土抗压弹性模量的增长与其强度增长的关系,并以此为

基础讨论了混凝土裂缝的预防和后张预应力混凝土张拉时机的确定等问题。

关键词:抗压弹性模量抗压强度张拉

混凝土的弹性模量是指混凝土发生单位应变所需的应力,混凝土的抗压弹性模量是计算混凝土在压力作用下所发生的变形量的重要参数。抗压强度是指岩体、土体在单向受压力作用破坏时,单向面积上所承受的荷载。

表1是一组不同龄期的C55预应力混凝土抗压弹性模量和对应混凝土强度的实测值。

龄期2d 3d 5d 7d 14d 28d

抗压强度

(Mpa)15*15*15cm

试件37.5 42.2 53.1 56.6 59.1 69.6

增长速度(%) 53.9 60.6 76.3 81.3 84.9 100

15*15*30cm

试件32.4 37.3 43.6 45.3 53.3 58.7

增长速度(%) 55.2 63.5 74.3 77.2 90.8 100 弹性模量

(103Mpa)15*15*30cm

试件28.0 29.1 30.1 31.8 32.3 36.2

增长速度(%) 77.3 80.4 83.1 87.8 89.2 100 表1

弹性模量与抗压强度关系

弹性模量验证及其与抗压强度关系 为了验证SCIT 所研发技术和设备(混凝土多功能检测仪(SCE-MATS ))的测试精度、测试效率和适用范围,本项目组或合作伙伴(包括清华大学、中国水利水电科学研究院、冶金建筑研究设计总院等)做了较多数量的验证试验。验证结果表明,本技术的测试精度和测试效率均已达到了实用水平。 混凝土的弹性模量不仅影响到桥梁的变形,而且也是反映混凝土质量、耐久性的重要指标。本技术体系的基础来源于SCIT 创始者在日本10余年的技术积累。同样,在混凝土弹性模量方面也积累了相当的验证数据。此外,我们在国内不同单位也进行了弹性模量验证试验。 图1 混凝土弹性模量验证结果图 从图中可以看出: 1) 测试精度高:本系统测出的Ec/Ed 与现行方法测出的值的之间的标准偏差小于 5%; 2) 适用范围广:不仅适合于试件(棱形、圆柱),还可以适合于现场结构。 混凝土强度是混凝土最重要的性能指标,本技术可以方便并且较高精度地测试混凝土结构的强度。但是,强度反映的是材料破坏时的承载力,因此难以用无损检测的方法进行测试。但是,对于配合比相对类似的混凝土,其弹性模量与抗压强度之间有很好的相关关系。因此,根据前述直接测试的弹性模量和标定的弹性模量~抗压强度关系,可以间接地推算混凝土的抗压强度。 为此,我们与合作伙伴一道,也在国内外十数个工程,分别对混凝土试件(包括标准立方体、棱柱体、圆柱体等)和构件(采用钻孔取芯验证)进行了弹性模量(由前述的弹性波波速计算)~抗压强度关系的研究。 研究结果表明: 1) 对于普通配比的混凝土结构或试件,由单面反射法得到的弹性模量c E ~抗压强 度c S 之间有非常良好的相关关系即: 2.9317 0016.0c c E S

弹性模量及刚度关系

1、弹性模量: (1)定义 弹性模量:材料在弹性变形阶段内,正应力和对应的正应变的比值。 材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。 “弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。所以,“弹性模量”和“体积模量”是包含关系。 一般地讲,对弹性体施加一个外界作用(称为“应力”)后,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除以应变。例如: 线应变——对一根细杆施加一个拉力F,这个拉力除以杆的截面积S,称为“线应力”,杆的伸长量dL除以原长L,称为“线应变”。线应力除以线应变就等于杨氏模量E=( F/S)/(dL/L) 剪切应变——对一块弹性体施加一个侧向的力f(通常是摩擦力),弹性体会由方形变成菱形,这个形变的角度a称为“剪切应变”,相应的力f除以受力面积S称为“剪切应力”。剪切应力除以剪切应变就等于剪切模量G=( f/S)/a 体积应变——对弹性体施加一个整体的压强p,这个压强称为“体积应力”,弹性体的体积减少量(-dV)除以原来的体积V称为“体积应变”,体积应力除以体积应变就等于体积模量: K=P/(-dV/V) 在不易引起混淆时,一般金属材料的弹性模量就是指杨氏模量,即正弹

性模量。单位:E(弹性模量)吉帕(GPa) (2)影响因素 弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗弹性变形能力大小的尺度,从微观角度来说,则是原子、离子或分子之间键合强度的反映。 凡影响键合强度的因素均能影响材料的弹性模量,如键合方式、晶体结构、化学成分、微观组织、温度等。因合金成分不同、热处理状态不同、冷塑性变形不同等,金属材料的杨氏模量值会有5%或者更大的波动。 但是总体来说,金属材料的弹性模量是一个对组织不敏感的力学性能指标,合金化、热处理(纤维组织)、冷塑性变形等对弹性模量的影响较小,温度、加载速率等外在因素对其影响也不大,所以一般工程应用中都把弹性模量作为常数。 (3)意义 弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。 弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。 2、刚度 (1)定义 刚度:结构或构件抵抗弹性变形的能力,用产生单位应变所需的力或力矩来量度。. 转动刚度(k):——k=M/θ 其中,M为施加的力矩,θ为旋转角度。 其他的刚度包括:拉压刚度(Tension and compressionstiffness)、轴

弹性模量计算方法

用户登录 新用户注册Array大学物理实验 第一层次 预备性实验 基础性实验 第二层次 综合与设计1 综合与设计2 第三层次 研究与创新 自学物理实验 近代物理实验 专业物理实验 光电子技术实验 传感器技术实验 单片机应用实验 物理光学实验 应用光学实验 现代光学实验

弯曲法等。 用力F作用在一立方形物体的上面,并使其下面固定(如图一),物体将发生 形变成为斜的平行六面体,这种形变称为切变,出现切变后,距底面不同距离 处的绝对形变不同(AA'>BB'),而相对形变则相等,即 (6-3) 式中称为切变角,当值较小时,可用代替,实验表明,一定限度内切 变角与切应力成正比,此处S为立方体平行于底的截面积,现以符号 表 示切应力 ,则 (6-4) 比例系数G称切变模量。 测量切变模量的方法有静态扭转法、摆动法。 实验目的 1. 掌握测量固体杨氏弹性模量的一种方法。 2. 掌握测量微小伸长量的光杠杆法原理和仪器的调节使用。 3. 学会一种数据处理方法——逐差法。 实验仪器 杨氏模量仪、尺读望远镜、光杠杆、水准仪、千分尺、游标卡尺(精度0.02m m )及1kg砝码9个。 实验的详细装置如图1所示。其中尺读望远镜由望远镜和标尺架组成,望 远镜的仰角可由仰角螺钉调节,望远镜的目镜可以调节,还配有调焦手轮。杨 氏模量仪是一个较大的三脚架,装有两根平行的立柱,立柱上部横梁中央可以 固定金属丝,立柱下部架有一个小平台,用于架设光杠杆。小平台的位置高低 可沿立柱升降、调节、固定。三脚架的三个脚上配有三个螺丝,用于调节小平 台水平。 光杠杆如图2所示,将一个小反射镜装在一个三脚架上,前两脚和镜子同

水泥混凝土棱柱体抗压弹性模量-要点

日期:2018年3月12日星期一 主题:水泥混凝土棱柱体抗压弹性模量试验 主讲人:李淑平 记录人:王丽 内容: 一、目的、适用范围 测定水泥混凝土在静力作用下的受压弹性模量。(水泥混凝土的受压弹性模量取轴心抗压强度1/3时对应的弹性模量) 适用于各类水泥混凝土的直角棱柱体试件。 二、试件制备 试件尺寸:150*150*300 mm 每组为同龄期同条件制作和养护的试件6根,其中3个根用于测定轴心抗压强度,3根做弹性模量试验。 三、试验步骤 详见JTG E30-2005《公路工程水泥及水泥混凝土试验规程》103-105页。其中注意事项: 1.加荷/卸荷速率:0.6MPa/s±0.4MPa/s(13.5kN/s±9kN/s) 2.弹性模量加荷方法:

F0=0.5MPa; Fa=1/3棱柱体轴心抗压强度值。 四、试验结果 1.混凝土抗压弹性模量Ec: 式中:Ec--混凝土抗压弹性模量(MPa),精确至100MPa; Fa--终荷载(N)(1/3轴心抗压强度对应的荷载值); F0--初荷载(N)(0.5MPa对应的荷载值,即11.25kN); L--测量标距(mm)(即150mm); A--试件承压面积(mm2)(即22500mm2); Δn--最后一次加荷时,试件两侧在Fa及F0作用下变形差平均值(mm): ?a--Fa时标距间试件变形(mm); ?b--F0时标距间试件变形(mm)。 2.以3根试件试验结果的算术平均值为测定值。如果其循环后的任一根与循环前轴心抗压强度之差超过后者的20%,则弹性模量值按另两根试件试验结果的算术平均值计算;如有两根试件试验结果超出循环前轴心抗压强度的20%,则试验结果无效。

混凝土抗压强度标准值计算

1 总 则 1.0.1~ 本规范系根据国家标准《水利水电工程结构可靠度设计统一标准(GB50199—94)》(简称《水工统标》)的规定,对《水工钢筋混凝土结构设计规范(SDJ20—78)》(简称原规范)的设计基本原则进行了修改,并依据科学研究和工程实践增补有关内容后,编制而成。其适用范围扩大到预应力混凝土结构和地震区的结构,其它与原规范相同。但不适用于混凝土坝的设计,也不适用于碾压混凝土结构。 当结构的受力情况、材料性能等基本条件与本规范的编制依据有出入时,则需要根据具体情况,通过专门试验或分析加以解决。 1.0.4 本规范的施行,必须与按《水工统标》制订、修订的水工建筑物荷载设计规范等各种水工建筑物设计标准、规范配套使用,不得与未按《水工统标》制订、修订的各种水工建筑物设计标准、规范混用。 3 材 料 混凝土 按照国际标准(ISO3893)的规定,且为了与其它规范相协调,将原规范混凝土标号的名称改为混凝土强度等级。在确定混凝土强度等级时作了两点重大修改; (1)混凝土试件标准尺寸,由边长200mm 的立方体改为边长150mm 的立方体; (2)混凝土强度等级的确定原则由原规范规定的强度总体分布的平均值减去倍标准差(保证率90%),改为强度总体分布的平均值减去倍标准差(保证率95%)。用公式表示,即: f cu,k =μfcu,15-σfcu =μfcu ,15(1-δfcu ) (3.1.2-1) 式中 f cu,k ──混凝土立方体抗压强度标准值,即混凝土强度等级值(N /mm 2); μfcu,15──混凝土立方体(边长150mm )抗压强度总体分布的平均值; σfcu ──混凝土立方体抗压强度的标准差; δfcu ──混凝土立方体抗压强度的变异系数。 混凝土强度等级由立方体抗压强度标准值确定,立方体抗压强度标准值是本规范混凝土 其他力学指标的基本代表值。 R (原规范的混凝土村号)与C (本规范的混凝土强度等级)之间的换算关系为: )1.0() 27.11(95.0645.1115,15,R C fcu fcu δδ--= (3.1.2-2) 式中为试件尺寸由200mm 立方体改为150mm 立方体的尺寸效应影响系数;为计量单位换算系数。 由此可得出R 与C 的换算关系如表3.1.2所列 表3.1.2 R 与C 换算表 注:表中混凝土立方体抗压强度的变异系数是取用全国28个大中型水利水电工程合格 水平的混凝土立方体抗压强度的调查统计分析的结果。 3.1.3 混凝土强度标准值 (1)混凝土轴心抗压强度标准值

弹性模量概念

https://www.wendangku.net/doc/c7832511.html,/question/50928693.html?fr=qrl&fr2=query 弹性模量 开放分类:工程力学 拼音:tanxingmoliang 英文名称:modulusofelasticity 说明:又称杨氏模量。弹性材料的一种最重要、最具特征的力学性质。是物体弹性t变形难易程度的表征。用E表示。定义为理想材料有小形变时应力与相应的应变之比。E以单位面积上承受的力表示,单位为牛/米^2。模量的性质依赖于形变的性质。剪切形变时的模量称为剪切模量,用G表示;压缩形变时的模量称为压缩模量,用K表示。模量的倒数称为柔量,用J表示。 拉伸试验中得到的屈服极限бb和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变形的能力,为了表示材料在弹性范围内抵抗变形的难易程度,在实际工程结构中,材料弹性模量E的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变形量来判断其刚度的。一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为: 式中A0为零件的横截面积。 由上式可见,要想提高零件的刚度E A0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此,构件的理论分析和设计计算来说,弹性模量E是经常要用到的一个重要力学性能指标。 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。 弹性模量在比例极限内,材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比,用牛/米^2表示。 https://www.wendangku.net/doc/c7832511.html,/view/30660.htm?fr=topic 最佳答案 - 由提问者2007-04-29 13:03:31选出 弹性模量反映固体对弹性形变的抵抗能力的物理量,对它的测量方法很多,这种方法测定弹性模量被国家标准总局推荐,该方法比静态法测量精度高,适用范围广。目的是让学生学会一种技能。

关于土体的弹性模量

关于土体的弹性模量、压缩模量与变形模量 2013-05-30 15:39:28| 分类:自然科学|举报|字号订阅根据土体学推算的结果,在弹性阶段,E=Eo=Es(1-2μ^2/(1-μ))。但在实际工程中,经常发现有弹性模量大于压缩模量的情况,并有经验说是E=(2~5)·Es,且有试验数据,但是没有理论上的推导,对试验数据也未实际去研究过。从网络上收集这方面的论述,本篇进行简要总结,并适当修改,今后再逐步去积累这方面的经验。 论述零(关于变形模量和压缩模量的关系,土力学教材) 土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标。为了建立变形模量和压缩模量的关系,在地基设计中,常需测量土的侧压力系数ξ 和侧膨胀系数μ(泊松比)。侧压力系数ξ:是指侧向压力δx 与竖向压力δz 之比值,即: ξ =δx/δz 土的侧膨胀系数μ (泊松比):是指在侧向自由膨胀条件下受压时,侧向膨胀的应变εx 与竖向压缩的应变εz 之比值,即μ=εx/εz 。根据材料力学广义胡克定律推导求得ξ 和μ 的相互关系,ξ=μ/(1-μ)或μ=ε/(1 +ε),土的侧压力系数可由专门仪器测得,但侧膨胀系数不易直接测定,可根据土的侧压力系数,按上式求得。 在土的压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量E0 和压缩模量Es 之间的关系。令β=1-2u*u/(1-u),则

Eo=βEs 。 当μ =0 ~0.5 时,β = 1 ~0 ,即Eo/Es 的比值在0 ~ 1 之间变化,即一般Eo 小于Es。但很多情况下Eo/Es 都大于1。其原因为:一方面是土不是真正的弹性体,并具有结构性;另一方面就是土的结构影响;三是两种试验的要求不同),μ、β 的理论换算值: 土的种类及其对应的μ、β 值: 碎石土0.15 ~0.20 ,0.95~0.90 砂土0.20 ~0.25 ,0.90 ~0.83 粉土0.23 ~0.31 ,0.86 ~0.726 粉质粘土0.25~0.35 ,0.83 ~0.62 粘土0.25 ~0.40 ,0.83 ~0.47 注:以上E0 与Es 之间的关系是理论关系。 E --弹性模量;Es --压缩模量;Eo--变形模量。由于土的侧膨胀系数μ(泊松比)是弹性力学的参数,土通常是弹塑性材料,所以μ>0.5 时,它就不能再成为泊松比了。 论述一(实际遇上的情况) 变形模量的定义在表达式上和弹性模量是一样的E=σ/ε ,对于变形模量ε是指应变,包括弹性应变εe和塑性应变εp。对于弹性模量而言,ε 就是指εe(计算变形模量时,应变ε 包括了弹性应变和塑性应变)。 岩土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量,即:弹性模量>压缩模量>变形模量。弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变的比值),压缩模量一般是有侧限的,杨氏模量

混凝土静力受压弹性模量试验检测细则

1.适用范围、检验参数及技术标准 1.1适用范围 普通混凝土、轻骨料混凝土 1.2检验参数 混凝土静力受压弹性模量 1.3技术标准 GB/T 50081-2002 《普通混凝土力学性能试验方法》 2.检测环境 1.1 实验室制作混凝土试件及静置时间,温度应保持在20℃±5℃。 1.2 混凝土力学性能试件标准养护条件:温度20℃±2℃,相对湿度95%以上。 1.3 混凝土抗压、混凝土抗折试验环境温度:10℃~35℃。 3.检测设备 压力试验机(DY2008型),量程为0.2000KN,最小分度值为±1%。 微变型测量仪(),最小分度值0.001mm。 4.试样数量、代表批量 见表1。 5.1混凝土静力受压弹性模量试验 5.1.1设备、标准、环境检查 检查核对所需设备正常与否,必要时做记录; 检查核对产品标准和试验方法标准,并记录; 记录环境温度,并记录。 5.1.2试件制备、检查 5.1.2.1试件制备

试件制备依据标准:GB/T 50081-2002。 环境条件:混凝土拌合、试件成型及静置期间试验室的温度应保持在20℃±5℃。 试件制备的细节,注意事项: a.混凝土力学性能试验应以三个试件为一组,每组试件所用的拌合物应从同一盘混凝土中取样。 b.成型前,应检查试模尺寸并符合GB/T 50081-2002中的技术要求的规定;试模内表面应涂一薄层矿物油或其他不与混凝土发生反应的脱模剂。 c.在实验室拌制混凝土时,其材料用量应以质量计,称量的精度:水泥、掺和料、水和外加剂为±0.5%;骨料为±0.1%。 d.取样或实验室拌制的混凝土应在拌制后尽短的时间内成型,一般不宜超过15min。 e.根据混凝土拌合物的稠度确定混凝土成型方法,坍落度不大于70mm的混凝土宜用振动振实;大于70mm的宜用捣棒人工捣实;检验现浇混凝土或预制构件的混凝土,试件成型方法宜与实际采用的方法相同。 f.取样或拌制好的混凝土拌合物应至少用铁锹再来回拌合三次。 g.按5.1.2.1e的规定,选择成型方法成型。 1)用振动台振实制作试件应按下述方法进行: ⅰ.将混凝土拌合物一次装入试模,装料时应用抹刀沿各试模壁插捣,并使混凝土拌合物高出试模口; ⅱ.试模应附着或固定在符合GB/T 50081-2002第4.2节要求的振动台上,振动时试模不得有任何跳动,振动应持续到表面出浆为止,不得过振。 2)用人工插捣制作试件应按下述方法进行: ⅰ.混凝土拌合物应分两层装入模内,每层的装料厚度大致相等; ⅱ.插捣应按螺旋方向从边缘向中心均匀进行。在插捣底层混凝土时,捣棒应达到试模底部;插捣上层时,捣棒应贯穿上层后插入下层20~30mm;插捣时捣棒应保持垂直,不得倾斜。然后应用抹刀沿试模内壁插拔数次; ⅲ.每层插捣次数按在100002 mm截面积内不得少于12次; ⅳ.插捣后应用橡皮锤轻轻敲击试模四周,直至插捣棒留下的空洞消失为止。

混凝土抗压强度标准值计算

1 总则 1.0.1~本规范系根据国家标准《水利水电工程结构可靠度设计统一标准(GB50199—94)》(简称《水工统标》)的规定,对《水工钢筋混凝土结构设计规范(SDJ20—78)》(简称原规范)的设计基本原则进行了修改,并依据科学研究和工程实践增补有关内容后,编制而成。其适用范围扩大到预应力混凝土结构和地震区的结构,其它与原规范相同。但不适用于混凝土坝的设计,也不适用于碾压混凝土结构。 当结构的受力情况、材料性能等基本条件与本规范的编制依据有出入时,则需要根据具体情况,通过专门试验或分析加以解决。 1.0.4 本规范的施行,必须与按《水工统标》制订、修订的水工建筑物荷载设计规范等各种水工建筑物设计标准、规范配套使用,不得与未按《水工统标》制订、修订的各种水工建筑物设计标准、规范混用。 3 材料 混凝土 按照国际标准(ISO3893)的规定,且为了与其它规范相协调,将原规范混凝土标号的名称改为混凝土强度等级。在确定混凝土强度等级时作了两点重大修改; (1)混凝土试件标准尺寸,由边长200mm的立方体改为边长150mm的立方体; (2)混凝土强度等级的确定原则由原规范规定的强度总体分布的平均值减去倍标准差(保证率90%),改为强度总体分布的平均值减去倍标准差(保证率95%)。用公式表示,即: f cu,k=μfcu, 15-σfcu =μfcu, 15 (1-δfcu) (3.1.2-1)

式中 f cu,k ──混凝土立方体抗压强度标准值,即混凝土强度等级值(N /mm 2); μfcu,15──混凝土立方体(边长150mm )抗压强度总体分布的平均值; σfcu ──混凝土立方体抗压强度的标准差; δfcu ──混凝土立方体抗压强度的变异系数。 混凝土强度等级由立方体抗压强度标准值确定,立方体抗压强度标准值是本规范混凝土 其他力学指标的基本代表值。 R (原规范的混凝土村号)与C (本规范的混凝土强度等级)之间的换算关系为: )1.0() 27.11(95.0645.1115,15,R C fcu fcu δδ--= (3.1.2-2) 式中为试件尺寸由200mm 立方体改为150mm 立方体的尺寸效应影响系数;为计量单位换算系数。 由此可得出R 与C 的换算关系如表3.1.2所列 表3.1.2 R 与C 换算表

弹性模量定义与公式定稿版

弹性模量定义与公式 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

弹性模量 开放分类:基本物理概念工程力学物理学自然科学 “弹性模量”的一般定义是:应力除以应变,即弹性变形区的应力-应变曲线的斜率:其中λ是弹性模量,【stress应力】是引起受力区变形的力,【strain应变】是应力引起的变化与物体原始状态的比,通俗的讲对弹性体施加一个外界作用,弹性体会发生形状的改变称为“应变”。材料在弹性变形阶段,其应力和应变成正比例关系(即胡克定律),其比例系数称为弹性模量。弹性模量的单位是达因每平方厘米。“弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。所以,“弹性模量”和“体积模量”是包含关系。 编辑摘要 基本信息?编辑信息模块 中文名:弹性模量其他外文名:Elastic Modulus 定义:应力除以应变类型:定律 目录 1定义 2线应变 3体积应变 4意义 5说明

6单位指标 定义/弹性模量?编辑 混凝土弹性模量测定仪图册 弹性模量modulusofelasticity,又称弹性系数,杨氏模量。 弹性材料的一种最重要、最具特征的力学性质。是物体变形难易程度的表征。用E表示。定义为理想材料在小形变时应力与相应的应变之比。 根据不同的受力情况,分别有相应的拉伸弹性模量?(杨氏模量)、剪切弹性模量?(刚性模量)、体积弹性模量?等。它是一个材料常数,表征材料抵抗弹性变形的能力,其数值大小反映该材料弹性变形的难易程度。 对一般材料而言,该值比较稳定,但就高聚物而言则对温度和加载速率等条件的依赖性较明显。 对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。 线应变/弹性模量?编辑

弹性模量定义与公式

弹性模量 开放分类: “弹性模量”的一般定义是:应力除以应变,即弹性变形区的应力-应变曲线的斜率:其中λ是弹性模量,【stress应力】是引起受力区变形的力,【strain应变】是应力引起的变化与物体原始状态的比,通俗的讲对弹性体施加一个外界作用,弹性体会发生形状的改变称为“应变”。材料在弹性变形阶段,其应力和应变成正比例关系(即胡克定律),其比例系数称为弹性模量。弹性模量的单位是达因每平方厘米。“弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。所以,“弹性模量”和“体积模量”是包含关系。 中文名:弹性模量其他外文名:Elastic Modulus 定义:应力除以应变类型:定律

混凝土弹性模量测定仪 弹性模量modulusofelasticity,又称弹性系数,杨氏模量。 弹性材料的一种最重要、最具特征的力学性质。是物体变形难易程度的表征。用E 表示。 定义为理想材料在小形变时应力与相应的应变之比。 根据不同的受力情况,分别有相应的?(杨氏模量)、?(刚性模量)、?等。它是一个材料常数,表征材料抵抗弹性变形的能力,其数值大小反映该材料弹性变形的难易程度。 对一般材料而言,该值比较稳定,但就高聚物而言则对温度和加载速率等条件的依赖性较明显。 对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。 线应变/弹性模量?

弹性模量? 对一根细杆施加一个拉力F,这个拉力除以杆的截面积S,称为“线应力”,杆的伸长量dL除以原长L,称为“线应变”。线应力除以线应变就等于E=(?F/S)/(dL/L) 剪切应变: 对一块弹性体施加一个侧向的力f(通常是摩擦力),弹性体会由方形变成菱形,这个形变的角度a称为“剪切应变”,相应的力f除以受力面积S称为“剪切应力”。剪切应力除以剪切应变就等于剪切模量G=(?f/S)/a 体积应变/弹性模量? 对弹性体施加一个整体的压强p,这个压强称为“体积应力”,弹性体的体积减少量(-dV)除以原来的体积V称为“体积应变”,体积应力除以体积应变就等于体积模量:?K=P/(-dV/V) 在不易引起混淆时,一般金属材料的弹性模量就是指杨氏模量,即。 单位:E(弹性模量)兆帕(MPa) 意义/弹性模量? 弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗能力大小的尺度,从微观角度来说,则是原子、或之间键合强度的反映。凡影响键合强度的因素均能影响材料的弹性模量,如键合方式、、、微观、温度等。

弹性模量定义与公式

弹性模量 开放分类: 弹性模量”的一般定义是:应力除以应变,即弹性变形区的应力一应变曲线的斜率:其中入 是弹性模量,【stress应力】是引起受力区变形的力,【strain应变】是应力引起的变化与 物体原始状态的比,通俗的讲对弹性体施加一个外界作用,弹性体会发生形状的改变称为应 变”材料在弹性变形阶段,其应力和应变成正比例关系(即胡克定律),其比例系数称为弹性模量。弹性模量的单位是达因每平方厘米。弹性模量”是描述物质弹性的一个物理量, 是一个总称,包括杨氏模量”、剪切模量”、体积模量”等。所以,弹性模量”和体积模量” 是包含关系。 基本信息 中文名:弹性模量其他外文名:Elastic Modulus 定义:应力除以应变类型:定律 目录 1 2 3 4 5 6 定义/弹性模量 弹性模量modulusofelasticity ,又称弹性系数,杨氏模量。 弹性材料的一种最重要、最具特征的力学性质。是物体变形难易程度的表征。用E表示。

定义为理想材料在小形变时应力与相应的应变之比。 根据不同的受力情况,分别有相应的(杨氏模量)、(刚性模量)、等。它是一个材料常 数,表征材料抵抗弹性变形的能力,其数值大小反映该材料弹性变形的难易程度。 对一般材料而言,该值比较稳定,但就高聚物而言则对温度和加载速率等条件的依赖性较明显。 对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。 对一根细杆施加一个拉力F,这个拉力除以杆的截面积S,称为“线应力”,杆的伸长量dL 除以原长L,称为“线应变”。线应力除以线应变就等于E=( F/S)/(dL/L) 剪切应变: 对一块弹性体施加一个侧向的力 f (通常是摩擦力),弹性体会由方形变成菱形,这个形变 的角度a称为“剪切应变”,相应的力f除以受力面积S称为“剪切应力”。剪切应力除以剪切应变就等于剪切模量G=( f/S)/a 体积应变/弹性模量 对弹性体施加一个整体的压强p,这个压强称为“体积应力”,弹性体的体积减少量(-dV) 除以原来的体积V称为“体积应变”,体积应力除以体积应变就等于体积模量:K=P/(-dV/V)在不易引起混淆时,一般金属材料的弹性模量就是指杨氏模量,即。 单位:E (弹性模量)兆帕(MPa 意义/弹性模量 弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗能力大小 的尺度,从微观角度来说,则是原子、或之间键合强度的反映。凡影响键合强度的因素均能 影响材料的弹性模量,如键合方式、、、微观、温度等。因合金成分不同、热处理状态不同、

水泥混凝土棱柱体抗压弹性模量试验

水泥混凝土棱柱体抗压弹性模量试验 弹性模量的定义 弹性模量又称杨氏模量。是指材料形变时应力与相应的应变之比,是弹性材料的一种重要、最具特征的力学性质,是物体变形难易程度的表征。用E 表示,单位为M p a 。 试验目的 测定水泥混凝土在静力作用下的受压弹性模量,水泥混凝土的受压弹性模量取轴心抗压强度1/3时对应的弹性模量。 适用范围 适用于各类水泥混凝土的直角棱柱体试件。 引用标准 G B /T 261 l 一1992《试验机通用技术要求》 G B /T 3722—1992《液压式压力试验机》 J B /T 54251—1994《杠杆千分表产品质量分等》 T 055l 一2005《水泥混凝土试件制作与硬化水泥混凝土现场取样方法》 T 0555—2005《水泥混凝土棱柱体轴心抗压强度试验方法》 试验仪器设备 (1)压力机或万能试验机:应符合T 0551中2.3的规定。 (2)球座:应符合T 0551的2.4规定。 (3)微变形测量仪:符合《杠杆千分表产品质量分等》中技术要求,千分表2个(0级或1级);或精度不低于0.001m m 的其它仪表,如引伸仪。 (4)微变形测量仪固定架两对,标距为150m m 。 (5)钢尺(量程600m m ,分度值为1m m )、502胶水、铅笔和秒表等。 试件制备 1.试件尺寸与棱柱体轴心抗压强度试件尺寸相同,符合J T G E 30—2005 T 0551中表T 055l 一1规定(集料公称最大粒径为31.5m m 标准试件的尺寸为150m m ×150m m ×300m m )。 2.每组为同龄期同条件制作和养护的试件6根,其中3根用于测定轴心抗压强度,提出弹性模量试验的加荷标准,另3根则作弹性模量试验。 试验步骤 1.试件取出后,用湿毛巾覆盖并及时进行试验,保持试件干湿状态不变。 2.擦净试件,量出尺寸并检查外形,尺寸量测精确至l m m ,试件不得有明显缺损,端面不平时须预先抹平。 3.取3根试件按T 0554规定进行轴心抗压强度试验,计算棱柱体轴心抗压强度值f c p 。 4.取另3根试件作抗压弹性模量试验,微变形量测仪应安装在试件两侧的中线上并对称于试件两侧。 5.将试件移于压力机球座上,几何对中。 6.调整试件位置,开动压力机,当上压板与试件接近时,调整球座,使接触均衡。加荷至基准应力为0.5M P a 对应的初始荷载值F o ,保持恒载60s 并在以后的30s 内记录两侧变形量测仪的读数ε0(左),ε0(右)。应立即以0.6M P a /s ±0.4M P a / s 的加荷速率连续均匀加荷至1/3轴心抗压强度f c p 对应的荷载值F a ,保持恒载60s

弹性模量E 和泊松比μ的测定

00EA A P ==ε σε弹性模量E 和泊松比μ的测定 拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为: 式中 A 0为零件的横截面积。 由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。 因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比μ。 (一) 试验目的 1.用电测方法测定低碳钢的弹性模量E 及泊松比μ; 2.验证虎克定律; 3.掌握电测方法的组桥原理与应用。 (二) 试验原理 1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为: 0EA PL L ?= ? (1) 若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E。 (2) 由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即 (3) 所以(2)成为: (4) 式中: ΔP——载荷增量,kN; A 0-----试件的横截面面积,cm 为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 0 )(A L PL E ???=0 ) (L L ??=?εε ???=10A P E

几个基本常数弹性模量-泊松比-应力应变曲线

几个基本常数弹性模量-泊松比-应力应变曲线

全应力-应变曲线 测量岩石的应力应变曲线一般可以有两中试验机:一种是,柔性试验机,使用这种试验机测量时,容易发发生“岩爆”现象,导致试验中不能得到峰值以后的应力应变信息。另种是,刚性试验机,这种试验机刚度比较高,有“让压”的特点,就不会有“岩爆”现象发生,可以得到全应力-应变曲线用以研究岩石破裂的性质。 刚度矩阵的物理意义: 单元刚度矩阵的物理意义,一句话概括说来就是各个节点在广义力的作用下节点的位移变化量。 强度是零件的抗应力程度,反映的是什么时候断裂,破损等 刚度反映的是变形大小,就是零件受力后的变形。 刚度矩阵和柔度矩阵的物理意义: 一般将刚度矩阵记为[D],柔度矩阵为[C],二者互为逆矩阵。 [C]矩阵中任一元素Cij的物理意义为:当微小单元体上仅作用有j方向的单位应力增加,而其他方向无应力增量时,i方向的应变增量分量就等于Cij。 [D]矩阵中任一元素Dij的物理意义为:要使微小单元体只在j方向发生单位应变,而其他方向不允许发生应变,则必须造成某种应力组合,在这种应力组合中,i方向应力分量为Dij。 对于各向异性材料,[D]和[C]都是非对称矩阵,从机理上来说是合理的,然而它给数学模型带来复杂性,也增加了有限元计算的困难。从工程实用的角度来考虑,往往忽略这种非对称性,而处理为对称矩阵。 物理概念:杨氏模量和泊松比 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。而横向应变与

纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。 杨氏模量(Young's modulus)是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量。1807年因英国医生兼物理学家托马斯·杨(Thomas Young, 1773-1829) 所得到的结果而命名。根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。 FL/EA=△L,其中F是力,L是长度,E是弹性模量,A是截面积,△L 是长度变化量,也就是形变。弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。力学里没有弹性系数这个物理量。 杨氏弹性模量是选定机械零件材料的依据之一是工程技术设计中常用的参数。杨氏模量的测定对研究金属材料、光纤材料、半导体、纳米材料、聚合物、陶瓷、橡胶等各种材料的力学性质有着重要意义,还可用于机械零部件设计、生物力学、地质等领域。 测量杨氏模量的方法一般有拉伸法、梁弯曲法、振动法、内耗法等,还出现了利用光纤位移传感器、莫尔条纹、电涡流传感器和波动传递技术(微波或超声波)等实验技术和方法测量杨氏模量。 胡克定律和杨氏弹性模量 固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。如果外力后仍有残余形变,这种形变称为范性形变。 应力(σ)单位面积上所受到的力(F/S)。 应变(ε ):是指在外力作用下的相对形变(相对伸长DL/L)它反映了物体形变的大小。 胡克定律:在物体的弹性限度内,应力与应变成正比,其比例系数称为杨氏模量(记为Y)。用公式表达为: Y=(F·L)/(S·△L) Y在数值上等于产生单位应变时的应力。它的单位是与胁力的单位相同。杨氏弹性模量是材料的属性,与外力及物体的形状无关。 杨氏模数(Young's modulus )是材料力学中的名词,弹性材料承受正向应力时会产生正向应变,定义为正向应力与正向应变的比值。公式记为 E = σ / ε 其中,E 表示杨氏模数,σ 表示正向应力,ε 表示正向应变。 杨氏模量大,说明压缩或拉伸该材料,材料的形变小。 一般的如楼上所说但是有些是各向异性的及各个方向的弹性模量不同用矩阵表示 弹性模量 英文名称:Elastic Modulus,又称Young 's Modulus(杨氏模量) 定义:材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克

板式橡胶支座抗压弹性模量试验分析

板式橡胶支座抗压弹性模量试验分析 1.概述近年来我国交通事业发展迅速,桥梁作为我国重要社会基础设施的 地位愈显突出,在国民经济和居民日常生活中发挥着重要作用。桥梁支座是桥粱结构的重要组成部分,直接影响桥梁的使用寿命和结构安全,其中板式橡胶支座由于其具有构造简单、性能可靠、安装更换方便、造价低等优点,被广泛应用于公路、城市桥梁建设中。桥梁支座的作用,一方面是将上部结构的作用力传递给桥墩;另一方面则应适应梁体因温度、混凝土的收缩徐变及荷载作用下引起的水平位移和挠曲引起的梁体转动。橡胶支座能很好地满足这方面的要求,因此得到普遍推广。 2.设计问题 板式橡胶支座是由橡胶层和钢板层叠加在一起构成的,其设计应符合JTG D62-2004《公路钢筋混凝土及预应力混凝土桥涵设计规范》中8.4要求。支座使用阶段平均压应力限值为10MPa,常温下支座的剪变模量为1.0MPa。橡胶支座的弹性模量和形状系数按下式计算: 弹性模量 E=5.4GS2 矩形支座 S= l a l b/2t e(l a+l b) 圆形支座 S=d0/4t e 支座的形状系数取5≤S≤12使用。 形状系数S的定义为:S=有效承压面积÷单层橡胶侧表面积。 板式支座的分类、技术要求、试验方法、及检验规则同时要满足行

业标准JT/T 4-2004《公路桥梁板式橡胶支座》中要求同时行业JT/T 663-2006《公路桥梁板式橡胶支座规格系列》作为前者的补充配套其使用。 JT/T 4-2004《公路桥梁板式橡胶支座》4.6节支座内在质量描述道: 表1 支座剖面要求 可见支座的中间胶层厚度应分别为5mm、8mm、11mm及15mm。同时JT/T 663-2006《公路桥梁板式橡胶支座规格系列》所给出的参数中,中间胶层也是这几个数据,只是做了详细的划分,橡胶支座边长或直径为100mm≤l(d0)≤200mm时,中间胶层厚度为5mm,钢板厚度为2mm,支座边长或直径为250mm ≤l(d0)≤350mm时,中间胶层厚度为8mm,钢板厚度为3mm,支座边长或直径为400mm≤l(d0)≤450mm时,中间胶层厚度为11mm,钢板厚度为4mm,支座边长或直径为500mm≤l(d0)≤650mm时,中间胶层厚度为15mm,钢板厚度为5mm,支座边长或直径为700mm≤l(d0)≤800mm时,中间胶层厚度为18mm,钢板厚度为5mm。而这些数据正是影响支座形状系数,进而影响支座弹性模量。 常用支座的参数及计算结果统计如下表1: 表2 常用支座参数及计算结果

混凝土弹性模量试验

检测参数标准化流程 1 参数名称 水泥混凝土棱柱体抗压弹性模量 2 名称解释 水泥混凝土棱柱体抗压弹性模量是在静力作用下,应力有应变的比值,应力取混凝土棱柱体轴心抗压强度的三分之一。 3 标准规范 《试验机通用技术要求》(GB/T2611-1992 ) 《液压式压力试验机》(GB/T3722-1992) 《水泥混凝土试件制作与硬化水泥混凝土现场取样方法》(T0521-2005) 《水泥混凝土棱柱体轴心抗压强度试验方法》(T0555-2005) 《杠杆千分表产品质量分等》(JB/T 54251-1994) 4目的和适用范围 本方法是测定水泥混凝土在静力作用下的受压弹性模量方法,水泥混凝土的受压弹性模量取轴心抗压强度1/3的对应的弹性模量。 5 设备与要求 (1)压力试验机或万能试验机应符合《液压式压力试验机》(GB/T3722-1992)及《试验机通用技术要求》(GB/T 2611-1992),其测量精度为±1%,试件破坏荷载应大于压力机全量程的20%且小于压力机全量程的80%。 (2)球座:应符合T0551的2.4要求。 (3)微变形测定仪:符合《杠杆千分表产品质量分等》中技术要求,千分表2个(0级或1级),或精度不低于0.001mm的其他仪表。 (4)微变形测量仪固定架二对:标距150mm,金属刚性框架,正中为千分表插座,两端有三个圆头长螺杆,可以调整高度。 (5)其它:502胶水、平口刮刀、小一字螺丝刀、直尺、铅笔等 6 环境要求 (1)实验室温湿度要求应满足:温度10℃~30℃,相对湿度大于50% (2)砼标准养护温度20℃±2℃,相对湿度大于95%;标准养护室内的试件应放在支架上,彼此间隔10-20mm,试件表面应保持潮湿,并不得用水直接冲淋。 7样品要求

水泥混凝土棱柱体抗压弹性模量试验方法

水泥混凝土棱柱体抗压弹性模量试验方法 1 目的、适用范围和引用标准 本方法规定了测定水泥混凝土圆柱体抗压弹性模量的方法,水泥混凝土的受压弹性模量取轴心抗压强度1/3时对应的弹性模量。 引用标准: GB/T 2611—1992《试验机通用技术要求》 GB/T 3722—1992《液压式压力试验机》 T0551—2005《水泥混凝土试件制作与硬化水泥混凝土现场取样方法》 2仪器设备 (1)压力机或万能试验机:应符合T0551中2.3的规定。 (2)球座:应符合T0551的2.4规定。 (3)混凝土强度等级大于等于C60时,试验机上、下压板之间应各垫一钢垫板,平面尺寸应不小于试件的承压面,其厚度至少为25mm。钢垫板应机械加工,其平面度允许偏差±0.04mm,表面硬度大于等于55HRC;硬化层厚度约5mm。试件周围应设置防崩裂网罩。 3 试件制备和养护 3.1试件制备和养护应符合T0551中相关规定。 3.2混凝土抗压强度试件尺寸符合T 0551中表T0551-1规定。 3.3集料公称最大粒径符合T0551中表T0551-1规定。

3.4 对于现场芯样,长径比大于等于1。适宜的长径比为1.9-2.1,最大长径比不能超过2.1。芯样最小直径为100mm,直径至少是公称最大粒径的2倍。 3.5混凝土抗压强度试件要求同龄期者为一组,每组为三个同条件制作和养护的混凝土试块。 4试验步骤 4.1圆柱试件在试验前,务必进行端面整平。 4.2在破型前,保持试件原有湿度,在试验时擦干试件。测量其尺寸及外观。首先测量沿试件高度中央部位相互垂直的两个方向的直径,分别记为d1、d2。再分别测量相互垂直两个方向直径端点的四个高度。 4.3将试件置于上下压板之间,试件轴中心应与压力机几何对中。 4.4强度等级小于C30的混凝土取0.3MPa/s—0.5MPa/s的加荷速度;强度等级大于C30小于C60时,则取0.5MPa/ s—0.8MPa/s 的加荷速度;强度等级大于C60的混凝土取0.8MPa/s—1.0MPa/s 的加荷速度。当试件接近破坏而开始迅速变形时,应停止调整试验机油门,直至试件破坏,记下破坏极限荷载F(N)。 5试验结果 5.1圆柱体试件抗压强度按下式计算:Fcc=4F/πd2 其中d按下式计算:d=(d1+d2)/2 5.2以3个试件测值的算术平均值为测定值,计算精确至0.1M Pa。三个测值中的最大值或最小值中如有一个与中间值之差超过

相关文档
相关文档 最新文档