文档库 最新最全的文档下载
当前位置:文档库 › 脱硫液硫容计算经验关联式

脱硫液硫容计算经验关联式

脱硫液硫容计算经验关联式

脱硫液硫容计算经验关联式 在碱液湿式氧化法脱硫过程中,溶液循环量的大小由硫容确定,而溶液的硫容多少又与气相中H 2S 和CO 2分压和液相中Na 2CO 3含量密切相关。当气相中H 2S 和CO 2分压发生变化时,会直接影响液相中Na 2CO 3与气相中H 2S 的吸收传质推动力,

而液相中Na 2CO 3含量的大小也关系着溶液硫容的多少。通过研究和实践证明,H 2S 分压越高脱硫吸收推动力越强,溶液的硫容就越大,H 2S 含量与硫容成正比;CO 2分压越高脱硫吸收传质推动力越低,溶液的硫容就越小,CO 2含量与硫容成反比;

而溶液中总碱度和Na 2CO 3含量越大,脱硫吸收推动力就会相应增强。

经研究,脱硫液硫容大小由Zhao wei Sulfur capacity 经验关联式获得: 0.6

-0.550.38r n s S N L c ??= ??? 式中:系数—0.38(系数与温度有关,35~40℃范围取值)

S r —硫容(g/L )

N —溶液总碱度;(L N =溶液中碳酸钠当量含量g/一个钠离子的碳酸钠含量g/L

) L n —溶液中碳酸钠含量(g/L )

S —煤气中硫化氢含量(g/Nm 3 )

C —煤气中二氧化碳含量(g/Nm 3)

常见流出杯式粘度计计算和换算表

在检测粘度的诸多仪器中, 最经济实用且操作方便的, 当推目前涂料界使用最为广泛的流出型粘度计———流出杯。其设计原理是在毛细管粘度计基础上进行改制及放大, 各国型号繁多且互不统一。如美国的福特杯( Ford Cup) 、赛波特(Say Bolt) 粘度计; 德国的DIN 杯、恩格拉( Engler) 粘度计; 法国的Afnor 杯、巴贝(Bar2bey) 粘度计; 英国的BS 杯、雷德伍德( Red2wood) 粘度计, 以及蔡恩杯(Zahn Cup) 、歇尔杯(Shell Cup) 等均属此类。我国国家标准则是涂21 杯和涂24 杯, 国际标准化组织推荐的是ISO流出杯。 流出型粘度计是利用试样本身重力而产生流动,通常以一定量的试样在一定温度下从粘度杯流出的时间来表示,以秒作单位。根据其操作原理,可将试样的流出时间(秒) 通过特性曲线换算成运动粘度值mm2/ s。 下面将重点讨论国内涂料工业中接触最多的涂24 杯和ISO 流出杯。 1.涂24 粘度杯 2.运动粘度法 3.此法是按国家标准“GB 265 运动粘度测定法”,采用毛细管粘度计测得各种 标准油的运动粘度,通过公式求出涂24 杯的标准流出时间T。 4.T = 0. 223 V + 6 (23 s ≤T < 150 s) (1) 5.T = 0. 154 V + 11 ( T < 23 s) (2) 6.式中: 7. 8.T ———流出时间,s ; 9.V ———运动粘度,mm2/ s。 10. 11.标准流出时间T 与测定的流出时间t 之比值即为该粘度杯的修正系数 K。K = T/ t (3) 12. 13.由式(3) 可求出一系列K1 、K2 、K3 ,取其算术平均值, 即为该粘度杯 的修正系数K。若K 在0. 95~1. 05 的范围内,则该粘度杯合格仍可使用,

落球法测定液体的粘度预习报告

物理实验预习报告 化学物理系 XX 级 姓名 XXX 学号 XXXXXXX 一、实验题目:落球法测定液体的粘度 二、实验目的:通过用落球法测量油的粘度,学习并掌握测量的原理和方法 三、实验原理: 实验原理 1. 斯托克斯公式的简单介绍 粘滞阻力是液体密度、温度和运动状态的函数。从流体力学的基本方程出发 可导出斯托克斯公式: 粘滞阻力vr F πη6= (1) 2. η的表示 在一般情况下粘滞阻力F 是很难测定的。还是很难得到粘度η。为此,考虑一种特殊情况:小球的液体中下落时,重力方向向下,而浮力和粘滞阻力向上,阻力随着小球速度的增加而增加。最后小球将以匀速下落,由式得 ...) 1080 1916 31)(3 .31)(4 .21(6)(3 42 03 +- + ++=-e e R R h r R r rv g r πηρρπ (2) 式中ρ是小球的密度,g 为重力加速度,由式(2)得 ...) 1080 1916 31)(3 .31)(4 .21()(9 22 2 0+- + ++-= e e R R h r R r v gr ρρη ...) 1080 1916 3 1)(23 .31)(24 .21()(18 12 2 0+- + ++-= e e R R h d R d v gd ρρ (3) 由对R e 的讨论,我们得到以下三种情况: (1) 当R e <0.1时,可以取零级解,则式(3)成为 ) 23 .31)(24 .21()(18 12 00h d R d v gd ++-= ρρη (4 即为小球直径和速度都很小时,粘度η的零级近似值。 (2)0.1

脱硫系统常用计算公式

1)由于烟气设计资料,常常会以不同的基准重复出现多次,(如:干基\湿基,标态\实际态,6%O2\实际O2等),开始计算前一定要核算统一,如出现矛盾,必须找出正确的一组数据,避免原始数据代错。 常用折算公式如下: 烟气量(dry)=烟气量(wet)×(1-烟气含水量%) 实际态烟气量=标态烟气量×气压修正系数×温度修正系数 烟气量(6%O2)=(21-烟气含氧量)/(21-6%) SO2浓度(6%O2)=(21-6%)/(21-烟气含氧量) SO2浓度(mg/Nm3)=SO2浓度(ppm)×2.857 物料平衡计算 1)吸收塔出口烟气量G2 G2=(G1×(1-mw1)×(P2/(P2-Pw2))×(1-mw2)+G3×(1-0.21/K))×(P2/(P2-Pw2)) G1:吸收塔入口烟气流量 mw1:入口烟气含湿率 P2:烟气压力 Pw2:饱和烟气的水蒸气分压 说明:Pw2为绝热饱和温度下的水蒸气分压,该值是根据热平衡计算的反应温度,由烟气湿度表查得。(计算步骤见热平衡计算) 2)氧化空气量的计算 根据经验,当烟气中含氧量为6%以上时,在吸收塔喷淋区域的氧化率为50-60%。采用氧枪式氧化分布技术,在浆池中氧化空气利用率ηo2=25-30%,因此,浆池内的需要的理论氧气量为: S=(G1×q1-G2×q2)×(1-0.6)/2/22.41 所需空气流量Qreq Qreq=S×22.4/(0.21×0.3) G3=Qreq×K G3:实际空气供应量 K:根据浆液溶解盐的多少根据经验来确定,一般在2.0-3左右。 3)石灰石消耗量计算 W1=100×qs×ηs W1:石灰石消耗量 qs::入口SO2流量 ηs:脱硫效率 4)吸收塔排出的石膏浆液量计算 W2=172××qs×ηs/Ss W2:石膏浆液量 Ss:石膏浆液固含量 5)脱水石膏产量的计算 W3=172××qs×ηs/Sg W3:石膏浆液量 Sg:脱水石膏固含量(1-石膏含水量) 6)滤液水量的计算 W4=W3-W2 W3:滤液水量 7)工艺水消耗量的计算 W5=18×(G4-G1-G3×(1-0.21/K))+W3×(1-Sg)+36×qs×ηs +WWT 蒸发水量石膏表面水石膏结晶水排放废水

石灰石-石膏湿法脱硫系统的设计计算解析

石灰石 - 石膏湿法脱硫系统 设计 (内部资料) 编制: x xxxx 环境保护有限公司 2014年 8 月 1.石灰石 - 石膏法主要特点 ( 1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达 95%以上。(2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。

(3)对燃料变化的适应范围宽,煤种适应性强。无论是含硫量大于 3%的高硫燃料,还是含 硫量小于 1%的低硫燃料,湿法脱硫工艺都能适应。 (4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。(5)脱硫副产物便于综合利用。副产物石膏的纯度可达到 90%,是很好的建材原料。 (6)技术进步快。近年来国外对石灰石 - 石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2.反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触 ,循环浆液吸收大部分 SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→ H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3- +2H2O→ CaSO3·2H2O+H+(结晶) H+ +HCO3-→ H2CO3(中和) H2CO3→ CO 2+H2O 总反应式: SO2+ CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分 HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的 HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→ CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) 4)其他污染物

液体粘度的测定 实验报告

六、数据处理 由(4)可知,待 ,则 标 25时, 待标待 时, 待标待 时, 待标待 时, 待标待 表3黏度实验数据处理I 实验温度/25 30 35 40 水的密度 0.9970 0.9959 0.9940 0.9922 水 水的黏度 0.8904 0.7975 0.7194 0.6529 水 0.7852 0.7809 0.7767 0.7720 乙醇的密度 乙 水的流经时间 104.6 93.10 83.27 75.85 水 乙醇的流经时间154.9 141.6 130.6 117.2

乙 乙醇的黏度 乙 1.039 0.9507 0.8815 0.7981 以对作图,根据式(5)的直线关系求出无水乙醇的温度特性常数A 和B ,将数据处理结果列表 0.00318 0.003200.003220.003240.003260.003280.00330 0.003320.00334 0.003361/T (K -1 ) lg (Pa s) 表4 黏度实验数据处理II 实验温度 25 30 35 40

/ 乙0.01645 -0.02196 -0.05478 -0.09794 (1/T)/K 0.003356 0.003300 0.003247 0.003195 A/K 0.00142 B 0.00333 七、思考题 (1)液体黏度与温度有何关系? 温度越高,黏度越低。 (2)简述测定流体黏度的原理和方法。 测定黏度通常测定一定体积的流体经一定长度垂直的毛细管所需的时间,然后根据泊赛耳公式计算其黏度,然而直接由实验测定液体黏度的黏度是比较困难的,通常采用测定液体对标准液体的相对黏度,用已知的标准流体的黏度来求出待测流体的黏度。 方法:奥氏黏度计、乌氏黏度计。

液体粘度测量

6 液体液体、、浆体粘度测定 6.1 实验目的意义 在科研和生产过程中我们经常会碰到液体、浆体,特别是用液相法合成某种材料时更是如此。在液体、浆体的物理性能中粘度是一个重要的参考指标,该参数在无机材料的制备过程中同样具有指导作用。在玻璃成型过程中,高温玻璃液体的粘度控制直接影响玻璃的成型工艺。水泥浆体的粘度直接影响施工的进程和产品的质量。在陶瓷生产过程中,泥浆的粘度指标对陶瓷坯体的制备工艺产生重大影响。 本实验的目的本实验的目的:: (1) 了解粘度、流动度以及其他相关参数的基本定义。 (2) 了解高温玻璃液体粘度的基本概念。 (3) 掌握液体、泥浆粘度的基本测试方法。 6.2 实验基本原理 液体、泥浆在流动过程中其剪切应力与剪切速率的比值为常数时该常数被称为塑性粘度(或简称为粘度)。粘度的倒数为流动度。 相对粘度相对粘度:: 采用恩格勒粘度计测定方法得到的粘度,即用同体积泥浆(液体)的流出时间与同体积水的流出时间的比值。 绝对粘度绝对粘度:: 采用旋转粘度计测定方法得到的粘度,即旋转粘度计的测定值与旋转粘度计系数表上的特定系数的乘积值。 液体的流动性液体的流动性:: 液体中的分子在内外力(势能、热能、其他能量)作用下的迁移能力。 液体(浆体)的触变性的触变性:: 在剪切速率恒定的条件下,随着时间的延长其剪切应力值逐渐变小。液体的触变性也可以被称为稠化性,稠化的程度用厚化度表示,也可被称为稠化度。 高温玻璃液体粘度高温玻璃液体粘度:: 高温玻璃液体中的分子结构单元在内外力(势能、热能、其他能量)作用下相互之间产生

流动。这种流动通过分子结构单元依次占据结构空位的方式进行,其作用力大于分子的内摩擦阻力,该现象被称为粘滞流动。粘滞流动用粘度表示,即以面积为S 的两平行液体层,当一定的速度梯度dV / dX 移动时需克服的内摩擦阻力f 。 f = ηS ?dV / dX 其中η为粘度,或粘度系数,单位为:帕?秒。 玻璃液体的粘度随温度的下降而增大,在玻璃的液态到固态的转变过程中,其粘度是连续变化的,当中不发生数值上的突变,但是晶体会产生数值上的突变。 影响玻璃液体粘度的各种因素影响玻璃液体粘度的各种因素:: (1) 粘度与温度粘度与温度、、时间的关系 以Na-Ca-Si 玻璃为例(其他玻璃的变化规律基本相同),在107帕?秒至1011帕?秒的粘度范围内,玻璃的粘度取决于温度以及化学组成。在1011帕?秒至 1015帕?秒的粘度范围内,玻璃的粘度是时间的函数。 图(19)表达了Na-Ca-Si 玻璃的弹性模量(杨氏模量)、粘度、温度之间的关系: 图9 Na-Ca-Si 玻璃的弹性模量(杨氏模量)、粘度、温度关系 图(19)有三个温度区间。A 区温度比较高,玻璃为粘性液体,其弹性性能很弱,玻璃的粘度取决于玻璃的组成。B 区(玻璃的转变区), 粘度取决于温度以及化学组成,同时还与时间相关。C 区玻璃的粘度仅取决于化学组成和温度,与时间无关。 (2) 粘度与玻璃熔体结构的关系 玻璃熔体结构比较复杂,熔体结构取决于化学组成和温度。就硅酸盐玻璃而论,熔体结构取决于氧硅比。硅氧四面体的种类有多种,如岛状、链状(环状)、层状和架状。熔体中可能同时出现多种结构,硅氧四面体本身以及硅氧四面体之间存在一定的空隙。在高温状态下,硅氧四面体群的空隙较大,各种网络间隙离子和小型四面体群受热移动加速,从而导致玻璃

电厂脱硫化学分析方案

烟气脱硫工程化学分析方案 1.分析目的 为了顺利完成烟气脱硫工程的整体调试,节能降耗,做好各项化学分析工作,特制定本方案。 2.分析项目 2.1 常规分析:pH,导电率。 2.2 石灰石分析:CaCO3,MgCO3,Fe,粒径分布等。 2.3 浆液分析(包括石灰石浆液,脱硫塔内浆液): 2.3.1 常规分析:pH,粒径分布,密度等。 2.3.2 液态分析:溶解性SO3,Cl-等。 2.3.3 固态分析:CaCO3,CaSO3·0.5H2O,Fe2O3,AL2O3, 2.4 石膏分析:含水量(45℃),粒径分布,CaCO3,CaSO4·2H2O,CaSO3·0.5H2O,Fe2O3,Cl等。 3.采样方法和分析频次 3. 1 采样方法: 3.1.1 石灰石的采样:按GB/T15057.1-94进行 一个车厢为一个采样单元。每个车厢采集一个样品。采样点应离车壁、底部不小于0.3米。离表面不小于0.2米。采集的样品充分混合成一个样品,再进行制样。采样点布置图如下: 汽车车厢 3.1.2 浆液的采样(包括石灰石浆液,脱硫塔内浆液): 在各设备设计安装的采样点处采样:石灰石浆液采样点在0米石灰石浆液罐旁;石膏浆液采样点在14米平台石膏脱水机旁;脱硫塔内浆液采样点在脱硫塔罐旁0米处。3.1.3 石膏采样:石膏采样在0米石膏储罐旁。 所有样品采样前,都必须把采样点内的残留物冲洗掉,是采集的样品具有到表性。3.2 采样与分析频次: 3.2.1 无论调试还是运行,石灰石的采样和分析以车厢为单元,每车厢石灰石采样一次并进行分析。分析项目为:pH,电导率,CaCO3,MgCO3,Fe,粒径分布。 3.2.2 调试时,根据需要,随时进行浆液(包括石灰石浆液,脱硫塔内浆液)和石膏的采样和分析。分析项目根据调试需要决定。否则按3.2.3项进行。 3.2.3 运行:每8小时进行一次采样与分析。 3.3 烟气监测频次 3.3.1 调试时,根据需要,随时进行烟气的采样和分析。分析项目根据调试需要确定。3.3.2 运行:每2小时通过系统安装的在线监测仪表对脱硫塔进出口烟气进行一次检

脱硫系统常用计算公式

1) 由于烟气设计资料,常常会以不同的基准重复出现多次,(如:干基湿基,标态实际态,实际O2 等),开始计算前一定要核 算统一,如出现矛盾,必须找出正确的一组数据,避免原始数据代错。 常用折算公式如下: 烟气量(dry)=烟气量(wet) >(1-烟气含水量%) 实际态烟气量=标态烟气量>气压修正系数x温度修正系数 烟气量(6%02) = ( 21-烟气含氧量)/ ( 21 -6%) S02 浓度(6%02 ) = ( 21 - 6%) / (21 -烟气含氧量) S02 浓度( mg/Nm3 ) =S02 浓度( ppm) x2.857 物料平衡计算 1 )吸收塔出口烟气量G2 G2= (G1 x (1 - mw1) X(P2/(P2-Pw2)) (X —mw2 )+ G3X (1- 0.21/K) ) >(P2/(P2-Pw2)) G1: 吸收塔入口烟气流量 mw1: 入口烟气含湿率 P2:烟气压力 Pw2 :饱和烟气的水蒸气分压 说明: Pw2 为绝热饱和温度下的水蒸气分压,该值是根据热平衡计算的反应温度,由烟气湿度表查得。(计算步骤见热平衡计 算) 2) 氧化空气量的计算 根据经验,当烟气中含氧量为6%以上时,在吸收塔喷淋区域的氧化率为50 - 60 %。采用氧枪式氧化分布技术,在浆池中氧化 空气利用率n 02=25-30%,因此,浆池内的需要的理论氧气量为: S=(G1 x q1-G2 x q2) x(1-0.6)/2/22.41 所需空气流量Qreq Qreq=S x22.4/(0.21 0.x3) G3= Qreq >K G3:实际空气供应量 K :根据浆液溶解盐的多少根据经验来确定,一般在 2.0-3左右。 3) 石灰石消耗量计算 W1=100x qs xns W1: 石灰石消耗量 qs: :入口S02 流量 n S兑硫效率 4) 吸收塔排出的石膏浆液量计算 W2=172xx qs xn s/Ss W2:石膏浆液量 Ss石膏浆液固含量 5) 脱水石膏产量的计算 W3=172xx qs xn s/Sg W3: 石膏浆液量 Sg:脱水石膏固含量(1-石膏含水量) 6) 滤液水量的计算 W4=W3-W2 W3: 滤液水量 7) 工艺水消耗量的计算 W5=18x (G4-G1-G3 x(1-0.21/K))+W3 (1x-Sg)+36x qs x n+W s WT

脱硫系统问题分析及处理方式

脱硫系统问题分析及处理方式 脱硫效率低 1.脱硫效率低的原因分析: (1)设计因素 设计是基础,包括L/G、烟气流速、浆液停留时间、氧化空气量、喷淋层设计等。应该说,目前国内脱硫设计已经非常成熟,而且都是程序化,各家脱硫公司设计大同小异。 (2)烟气因素 其次考虑烟气方面,包括烟气量、入口SO2浓度、入口烟尘含量、烟气含氧量、烟气中的其他成分等。是否超出设计值。 (3)脱硫吸收剂 石灰石的纯度、活性等,石灰石中的其他成分,包括SiO2、镁、铝、铁等。特别是白云石等惰性物质。 (4)运行控制因素 运行中吸收塔浆液的控制,起到关键因素。包括吸收塔PH值控制、吸收塔浆液浓度、吸收塔浆液过饱和度、循环浆液量、Ca/S、氧化风量、废水排放量、杂质等。 (5)水 水的因素相对较小,主要是水的来源以及成分。 (7)其他因素 包括旁路状态、GGH泄露等。 2.改进措施及运行控制要点 从上面的分析看出,影响FGD系统脱硫率的因素很多,这些因素叉相互关联,以下提出了改进FGD系统脱硫效率的一些原则措施,供参考。 (1)FGD系统的设计是关键。

根据具体工程来选定合适的设计和运行参数是每个FGD系统供应商在工程系统设计初期所必须面对的重要课题。特别是设计煤种的问题。太高造价大,低了风险大。 特别是目前国内煤炭品质不一,供需矛盾突出,造成很多电厂燃烧煤种严重超出设计值,脱硫系统无法长期稳定运行,同时对脱硫系统造成严重的危害。(2)控制好锅炉的燃烧和电除尘器的运行,使进入FGD系统的烟气参数在设计范围内。必须从脱硫的源头着手,方能解决问题。 (3)选择高品位、活性好的石灰石作为吸收剂。 (4)保证FGD工艺水水质。 (5)合理使用添加剂。 (6)根据具体情况,调整好FGD各系统的运行控制参数。特别是PH值、浆液浓度、CL/Mg离子等。 (7)做好FGD系统的运行维护、检修、管理等工作。 除雾器结垢堵塞 1.除雾器结垢堵塞的原因分析 经过脱硫后的净烟气中含有大量的固体物质,在经过除雾器时多数以浆液的形式被捕捉下来,粘结在除雾器表面上,如果得不到及时的冲洗,会迅速沉积下来,逐渐失去水分而成为石膏垢。由于除雾器材料多数为PP,强度一般较小,在粘结的石膏垢达到其承受极限的时候,就会造成除雾器坍塌事故。 沉积在除雾器表面的浆液中所含的物质是引起结垢的原因。如果这些污垢不能得到及时的冲洗,就会在除雾器叶片上沉积,进而造成除雾器堵塞。 结垢主要分为两种类型: (1)湿-干垢: 多数除雾器结垢都是这种类型。因烟气携带浆液的雾滴被除雾器折板捕捉后,在环境温度,粘性力和重力的作用下,固体物质与水分逐渐分离,堆积形成结垢。这类垢较为松软,通过简单的机械清理以及水冲洗方式即可得到清除。(2)结晶垢:

脱硫计算公式比较全

湿法脱硫系统物料平衡 一、计算基础数据 (1)待处理烟气 烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry) 烟气温度:114℃ 烟气中SO2浓度:3600mg/Nm3 烟气组成: 组分分子量V ol% mg/Nm3 SO264.06 0.113 3600(6%O2) O232 7.56(dry) H2O 18.02 4.66 CO244.01 12.28(dry) N228.02 80.01(dry) 飞灰200 石灰石浓度:96.05% 二、平衡计算 (1)原烟气组成计算 组分V ol%(wet) mg/Nm3kg/h Kmol/h SO20.108 3226 (7.56%O2) 3797 59.33 O27.208 127116 3972.38 H2O 4.66 46214 2564.59 CO211.708 283909 6452.48 N276.283 1177145 42042.89 飞灰200(dry)235 合计1638416 55091.67 平均分子量(0.108×64.06+7.208×32+4.66×18.02+11.708×44.01+76.283×2 8.02)/100=29.74 平均密度 1.327kg/m3

(2)烟气量计算 1、①→②(增压风机出口→ GGH出口): 取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h×(1-0.5%)=1228324Nm3/h=1629634kg/h 泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。 温度为70℃。 组分V ol%(wet) mg/Nm3kg/h Kmol/h SO20.108 3226 (7.56%O2) 3778 59.03 O27.208 126480 3952.52 H2O 4.66 45983 2551.78 CO211.708 282489 6420.22 N276.283 1171259 41832.68 飞灰200 234 合计1630224 54816.21 2、⑥→⑦(氧化空气): 假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。 取O/S=4 需空气量=56.43×4/2/0.21=537.14kmol/h×28.86(空气分子量)=15499.60kg/h,约12000Nm3/h。 其中氧气量为537.14 kmol/h×0.21=112.80 kmol/h×32=3609.58kg/h 氮气量为537.14 kmol/h×0.79=424.34 kmol/h×28.02=11890.02kg/h。 氧化空气进口温度为20℃,进塔温度为80℃。 3、②→③(GGH出口→脱硫塔出口): 烟气蒸发水量计算: 1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。由物性数据及烟气中的组分,可计算出进口烟气的比热约为0.2536kcal/kg.℃,Cp (40℃) =0.2520 kcal/kg.℃。 Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃ 氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg.℃,Cp(40℃)

石灰石-石膏湿法脱硫系统的设计计算解析

石灰石-石膏湿法脱硫系统 设计 (内部资料) 编制:xxxxx环境保护有限公司 2014年8月

1.石灰石-石膏法主要特点 (1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。 (2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。 (3)对燃料变化的适应范围宽,煤种适应性强。无论是含硫量大于3%的高硫燃料,还是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。 (4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。(5)脱硫副产物便于综合利用。副产物石膏的纯度可达到90%,是很好的建材原料。 (6)技术进步快。近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2.反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。(2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3-+2H2O→ CaSO3·2H2O+H+ (结晶) H+ +HCO3-→H2CO3(中和) H2CO3→CO2+H2O 总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) (4)其他污染物

粘度及换算公式 2

粘度及换算公式 2 2006-12-06 16:38 (3)相对粘度。相对粘度是以相对于蒸馏水的粘性的大小来表示该液体的粘性的。相对粘度又称条件粘度。各国采用的相对粘度单位有所不同。有的用赛氏粘度,有的用雷氏粘度,我国采用恩氏粘度。恩氏粘度的测定方法如下:测定200cm3某一温度的被测液体在自重作用下流过直径2.8mm小孔所需的时间t A,然后测出同体积的蒸馏水在20℃时流过同一孔所需时间t B(t B=50~52s),t A与t B的比值即为流体的恩氏粘度值。恩氏粘度用符号°E表示。被测液体温度t℃时的恩氏粘度用符号°Et表示。 °Et = t A/t B (1-4) 工业上一般以20℃、50℃和100℃作为测定恩氏粘度的标准温度,并相应地以符号 °E20、°E50和°E100来表示。 知道恩氏粘度以后,利用下列的经验公式,将恩氏粘度换算成运动粘度。 ν=7.31°E-6.31/°E×10-6 (1-5) 为了使液体介质得到所需要的粘度,可以采用两种不同粘度的液体按一定比例混合,混合后 的粘度可按下列经验公式计算。 °E=[a°E1+b°E2-c(°E1-°E2)]/100 (1-6) 式中:°E为混合液体的恩氏粘度;°E1,°E2分别为用于混合的两种油液的恩氏粘度, °E1>°E2;a,b分别为用于混合的两种液体°E1、°E2各占的百分数,a+b=100;c为与a、b有关的实验系数,见表1-2。 表1-2 系数 c 的值 (4)压力对粘度的影响。在一般情况下,压力对粘度的影响比较小,在工程中当压力低于5MPa时,粘度值的变化很小,可以不考虑。当液体所受的压力加大时,分子之间的距离缩小,内聚力增大,其粘度也随之增大。因此,在压力很高以及压力变化很大的情况下,粘度值的变化就不能忽视。在工程实际应用中,当液体压力在低于50MPa的情况下,可用下式计算其粘度: νp=ν0(1+αp) (1-7) 式中:νp为压力在p(Pa)时的运动粘度;ν0为绝对压力为1个大气压时的运动粘度;p为压力(Pa);α 为决定于油的粘度及油温的系数,一般取α=(0.002~0.004)×10-5,1/Pa。 (5)温度对粘度的影响。液压油粘度对温度的变化是十分敏感的,当温度升高时,其分子之间的内聚力减小,粘度就随之降低。不同种类的液压油,它的粘度随温度变化的规律也不同。我国常用粘温图表示油液粘度随温度变化的关系。对于一般常用的液压油,当运动粘度不超过76mm2/s,温度在30~150℃范围内时,可用下述近似公式计算其温度为t℃的运动粘度: νt=ν50(50/t)n (1-8) 式中:νt为温度在t℃时油的运动粘度;ν50为温度为50℃时油的运动粘度;n为粘温指数。粘温指数n 随油的粘度而变化,其值可参考表1-3。 表1-3 粘温指数

电厂脱硫化学分析方案

电厂脱硫化学分析方案 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

烟气脱硫工程化学分析方案 1.分析目的 为了顺利完成烟气脱硫工程的整体调试,节能降耗,做好各项化学分析工作,特制定本方案。2.分析项目 2.1 常规分析:pH,导电率。 2.2 石灰石分析:CaCO3,MgCO3,Fe,粒径分布等。 2.3 浆液分析(包括石灰石浆液,脱硫塔内浆液): 2.3.1 常规分析:pH,粒径分布,密度等。 2.3.2 液态分析:溶解性SO3,Cl-等。 2.3.3 固态分析:CaCO3,CaSO3·,Fe2O3,AL2O3, 2.4 石膏分析:含水量(45℃),粒径分布,CaCO3,CaSO4·2H2O,CaSO3·,Fe2O3,Cl等。3.采样方法和分析频次 3. 1 采样方法: 3.1.1 石灰石的采样:按GB/进行 一个车厢为一个采样单元。每个车厢采集一个样品。采样点应离车壁、底部不小于0.3米。离表面不小于0.2米。采集的样品充分混合成一个样品,再进行制样。采样点布置图如下: 3.1.2 浆液的采样(包括石灰石浆液,脱硫塔内浆液): 在各设备设计安装的采样点处采样:石灰石浆液采样点在0米石灰石浆液罐旁;石膏浆液采样点在14米平台石膏脱水机旁;脱硫塔内浆液采样点在脱硫塔罐旁0米处。 3.1.3 石膏采样:石膏采样在0米石膏储罐旁。

所有样品采样前,都必须把采样点内的残留物冲洗掉,是采集的样品具有到表性。 3.2 采样与分析频次: 3.2.1 无论调试还是运行,石灰石的采样和分析以车厢为单元,每车厢石灰石采样一次并进行分析。分析项目为:pH,电导率,CaCO3,MgCO3,Fe,粒径分布。 3.2.2 调试时,根据需要,随时进行浆液(包括石灰石浆液,脱硫塔内浆液)和石膏的采样和分析。分析项目根据调试需要决定。否则按3.2.3项进行。 3.2.3 运行:每8小时进行一次采样与分析。 3.3 烟气监测频次 3.3.1 调试时,根据需要,随时进行烟气的采样和分析。分析项目根据调试需要确定。 3.3.2 运行:每2小时通过系统安装的在线监测仪表对脱硫塔进出口烟气进行一次检测。检测项目为脱硫塔进出口烟气温度,SO2,水分,烟尘浓度,烟气流量等。每3个月对在线监测仪表进行一次对比试验,对比试验项目为烟气温度,SO2,水分,烟尘浓度,烟气流量等。 脱硫用石灰石粉化学分析方法 试样溶液的制备 石灰石试样溶液制备:按GB/T 进行,称取约0.2g试样,精确至0.0001g,置于100ml 聚四氟乙烯烧杯中,用少许水润湿试样,盖上表面皿,沿烧杯嘴滴加1+1的盐酸溶液,待 反应停止后,过量1ml冲洗表面皿和烧杯壁。加4ml氢氟酸和2ml高氯酸,置于电热板上 低温加热近干。取下烧杯,稍冷,用少许水冲洗烧杯壁,继续加热白烟冒尽至干。稍冷, 加3ml盐酸,加热溶解至清亮,冷却至室温,移入250ml容量瓶中,用水稀释至刻度,摇 匀。此即为分析用式样。 二氧化硅的测定 1 硅钼蓝比色法 当二氧化硅含量小于7%时可采用此法。

脱硫石灰石耗量分析

湿法脱硫系统石灰石耗量分析 经过“十一五”的大力推进,烟气脱硫技术已在我国活 力发电行业得到了广泛的应用,对于脱硫系统的研究也日渐深入细致,在“十二五”大力倡导节能减排的背景下,通过 运行优化,实现脱硫系统的经济运行,就成了目前的一个重要研究领域I 。 石灰石是脱硫反应的吸收剂,耗量较大,是脱硫系统运 行成本的主要组成部分,石灰石耗量与设计值发生较大偏差,不仅会直接造成脱硫运行成本的攀升,而且也会对吸收塔浆液品质、脱水系统运行工况等产生一定影响,因此石灰石耗量分析也就成为了石灰石.石膏脱硫系统节能优化运行的要重点研究的问题。 为了分析实际运行中石灰石耗量偏差情况,找出影响石 灰石消耗量的主要因素,进而提高石灰石在脱硫反应中的利用率,降低运行成本,因此在某2×600 Mw 机组配套脱硫系统上进行了石灰石耗量分析的相关试验。 1 石灰石耗量计算 理论上,石灰石中所含的有效脱硫成分,即CaCO,在 脱硫反应中与烟气中的SO:按照理论钙硫比发生反应,因此 理论石灰石耗量是指脱硫系统在设计Ca/S比条件下,按照脱除SO2量计算得出的所需石灰石量。计算公式如下:

M~:—Qsnd~(C— sl-Cs2)×× ?l000000 64 式中:Mcaco3——理论石灰石耗量,kg/ll;Q5 d——标干烟 气量,Nm ha(6%02);csl一一原烟气s02浓度, mg/Nm (6%02);Cs2一一净烟气SO2浓度,mg/Nm (6%O2); 收稿日期:2012.12-10 戴新(1970一),男,高级工程师。丰镇,012100 n一一石灰石纯度,试验期间为89.4%;——设计钙硫比,1.03。 实际脱硫反应中,由于石灰石反应活性、杂质含量等因 素影响,石灰石实际耗量会与理论值存在一定偏差,通常实际石灰石消耗量是通过实际脱硫反应中投加到吸收塔内的 石灰石浆液量和浆液密度计算得出,计算公式如下: M c 川 式中:^ aCO3——实际石灰石耗量,kg/h;P ——石灰石 密度,P =2.6 g/cm ;P ——石灰石浆液密度,g/cm ;——每小时石灰石浆液量,m /h。 理论石灰石耗量和实际石灰石耗量之差,可以在一定程

粘度换算列表

关于粘度测试单位与单位换算: 粘度单位直接读数:帕·秒(Pa·s)或毫帕·秒(mPa. ·s) 或(dPa ·S) 。 粘度单位换算关系:Pa.s=1000cP=1000mPa.s=10P=10dPa.s dpa.s 是decipascal-seconds 的缩写,是粘度单位 P(poise),cP(centi poise) Pa.s(pascal-seconds),dPa.s(decipascal-seconds) mPa.s(millipascal-seconds) 流体在流动时,相邻流体层间存在着相对运动,则该两流体层间会产生摩擦阻力,称为粘滞力。粘度是用来衡量粘滞力大小的一个物性数据。其大小由物质种类、温度、浓度等因素决定。 粘度一般是动力粘度的简称,其单位是帕·秒(Pa·s)或毫帕·秒(mPa·s)。 粘度分为动力粘度、运动粘度、相对粘度,三者有区别,不能混淆。 粘度还可用涂—4或涂—1杯测定,其单位为秒(s)。 (动力)粘度符号是μ,单位是帕斯卡秒(Pa·s) 由下式定义:L=μ·μ0/h μ0——平板在其自身的平面内作平行于某一固定平壁运动时的速度 h——平板至固定平壁的距离。但此距离应足够小,使平板与固定平壁间的流体的流动是层流 L——平板运动过程中作用在平板单位面积上的流体摩擦力 运动粘度符号是v ,运动粘度是在工程计算中,物质的动力粘度与其密度之比,单位是二次方米每秒(m2/s) v=μ/p 在石油工业中还使用"恩氏粘度",它不是上面介绍的粘度概念。而是流体在恩格拉粘度计中直接测定的读数。 粘度的度量方法分为绝对粘度和相对粘度两大类。绝对粘度分为动力粘度和运动粘度两种;相对粘度有恩氏粘度、赛氏粘度和雷氏粘度等几种表示方法。 1、动力粘度η在流体中取两面积各为1m2,相距1m,相对移动速度为1m/s时所产生的阻力称为动力粘度。单位Pa.s(帕.秒)。过去使用的动力粘度单位为泊或厘泊,泊(Poise)或厘泊为非法定计量单位。 单位关系:1Pa.s=1N.s/m2=10P泊=10的3次方cp=1Kcps ASTM D445标准中规定用运动粘度来计算动力粘度,即η=ρ.υ式中η-动力粘度,Pa.s期目标制ρ-密度,kg/m3 υ-运动粘度,m2/s 我国国家标准GB/T506-82为润滑油低温动力粘度测定法。该法使用于测定润滑油和深色石油产品的低温(0~-60℃)动力粘度。在严格控制温度和不同压力条件下,测定一定体积的试样在已标定常数的毛细管粘度计内流过所需的时间,秒。由试样在毛细管流过的时间与毛细管标定常数和平均压力的乘积,计算动力粘度,单位为Pa.s。该方法重复测定两个结果的差数不应超过其算术平均值的±5%。 2、运动粘度υ流体的动力粘度η与同温度下该流体的密度ρ的比值称为运动粘度。它是这种流体在重力作用下流动阻力的度量。在国际单位制(SI)中,运动粘度的单位是m2/s。过去通常使用厘斯(cSt)作运动粘度的单位,它等于10-6m2/s,(即1cSt=1mm2/s。 运动粘度通常用毛细管粘度计测定。在严格的温度和可再现的驱动压头下,测定一定体积的液体在重力作用下流

石灰石石膏湿法烟气脱硫工艺液相系统分析与计算

基金项目: 十一五!国家科技支撑计划资助项目(2006BAA01B04);新世纪优秀人才支持计划资助项目(NCE T 06 0513)作者简介: 钟毅(1977 ),男,江西新余人,浙江大学能源清洁利用国家重点实验室博士研究生,研读方向为大气污染控制技术。E mail: zhongyi77@https://www.wendangku.net/doc/c29507145.html, 石灰石石膏湿法烟气脱硫工艺 液相系统分析与计算 钟 毅,高 翔,林永明,骆仲泱,岑可法 浙江大学,浙江杭州 310027 [摘要] 石灰石 石膏湿法烟气脱硫(WFGD)工艺是我国电站锅炉烟气脱硫的最主要技术,其液相 系统的设计对于整个工艺的设计具有非常重要的意义。结合系统能量平衡与液相平衡对石灰石 石膏喷淋塔WFGD 液相系统进行了分析,并给出了计算方法。采用该方法对4个实际WFGD 项目进行了计算,计算结果与国外WFGD 技术提供商给出的计算结果比较吻合。所提出的计算方法可以用于石灰石 石膏喷淋塔WFGD 项目的设计与运行优化。 [关键词] 电站锅炉;湿法烟气脱硫(WFGD);石灰石 石膏法;液相系统;喷啉塔[中图分类号] X701[文献标识码] A [文章编号] 10023364(2007)12001103 石灰石 石膏湿法烟气脱硫(WFGD)工艺具有脱硫率高、运行可靠、吸收剂利用率高等特点,目前已成为我国燃煤电站脱硫的主流技术。石灰石 石膏喷淋脱硫系统中液相系统的设计不仅对气相系统、固相系统的设计有影响,而且还与整个WFGD 系统的能量平衡有很大的关系。 1 液相系统分析与计算 由于烟气中含有腐蚀性的酸性气体和水蒸气,因此烟气温度的高低对系统烟道的防腐有非常重大的影响。液相系统中的蒸发水是系统的主要水耗,且蒸发水又与系统的热平衡有较大关联,故计算水耗必须进行热平衡分析。脱硫塔热平衡如图1所示。 系统中其它组分均仅有温度的变化而无相变,故只表现出显热,而蒸发水不仅发生温度变化,还会发生相变,故有潜热表现。鉴于吸收塔内水的蒸发既有温升,又有相变,为简化计算,用水的焓变来表征水蒸发 图1 WFGD 脱硫塔热平衡示意 消耗的能量。 根据相应温度范围内不同温度的焓的实际数据分别拟合出水和水蒸气焓的计算公式如式(1)和式(2):h w =101.07+7.483?(t w -297.25)(1) 式中:h w 为水的焓值,kJ/kg;t w 为水温,K 。式(1)适用于水温在(290.15~303.15)K 范围内水的焓值计算。 h s =2583.72+6.577?(t s -318.95) (2)

液体粘度的测定26962

实验报告 课程名称: 过程工程原理实验(甲) 指导老师: 叶向群 成绩:__________________ 实验名称: 液体粘度的测定 实验类型: 同组学生姓名: 邵培培 李欣雨 黄宏亮 张雨晨 江孙磊 一、实验目的和内容 二、实验装置与流程示意图 三、实验的理论依据(实验原理) 四、实验步骤及注意事项 五、实验数据记录及处理 六、实验结果及分析 七、思考题 一、实验目的和内容 1、掌握旋转式黏度计测量液体粘度的基本原理。 2、学会使用旋转式黏度计测定液体粘度的方法。 二、实验装置与流程示意图 整个旋转式黏度计的装箱图主要包括电机、刻度盘机构和从大到小排列的0~4号五个 转子,电机有调速机构,可产生6、12、30、60转/分四种转速,刻度盘机构和测量方法见图1。测定过程中指针在刻度盘上指示的读数乘以系数表上的特定系数即为被测液体的粘度(以厘泊表示)。不同转子、不同转速对应的测量系数不同,其量程也不一样。本实验配备的转子黏度计系数表和量程表如表1和表2。

图1旋转式黏度计示意图 表1系数表 表2量程表

三、实验的理论依据(实验原理) 图2 旋转黏度计工作原理图 如图2.半径R 长L 的圆柱体转子浸没于盛有液体的圆筒形容器中心,并以角速度ω作 匀速转动。假设容器是半径为kR 的圆柱形,液体是牛顿流体,忽略端效应的影响,则再两圆柱形成的缝隙中,速度分布为: //() ()1/kR r r kR u R k k ω-=- 这时转子所受的扭矩M : 222r |2()4/(1)r R M RL R L R k k θπτπμω===- 一般容器比转子大得多,可认为k →∞,从而 24M L R πμω= 式中 r ——半径,m; τr θ——剪应力,N/m 2; μ——粘度,kg/(m ·s)。 转子选定后,M ∝μω,在一定的转速ω下,M 与被测液体的粘度μ成正比,藉此原理可 以测定液体的粘度。 当同步电机以恒定速度旋转时,连接的刻度圆盘、游丝和转轴将带动转子旋转。若转 子未受到任何液体阻力,则游丝、指针和刻度盘将同速转动,指针刻度盘读数为0;反之 若转子受到液体的粘滞阻力,则游丝产生扭矩,与粘滞阻力达到平衡,这时与游丝连接的

海水法烟气脱硫排水水质的估算和分析

海水法烟气脱硫排水水质的估算和分析 骆锦钊 (厦门华夏电力公司,福建厦门361026) 摘要:对海水法烟气脱硫的排水水质进行定量估算,并讨论工艺排水对附近海域水质的影响。 关键词:海水脱硫;海域水质影响 The estimate and analysis on discharged water quality for flue gas de-sulfurization technology by sea-water Luo jinzhao (Xiamen Huaxia Electric Power Company,Xiamen China 361026) Abstract:The paper estimates and analyzes the discharged water quality for flue gas de-sulfurization technology by sea-water, the effect of discharge water from FGD system on surrounding sea water quality also discussed. Key words:Flue gas seawater FGD;effect on surrounding sea water quality 1 海水脱硫原理 海水法烟气脱硫工艺是利用天然海水脱除烟 气中SO2的一种湿式脱硫方法。 天然海水中含有大量的可溶性盐类,其主要成份是氯化物和硫酸盐,此外,海水中还溶存着相当数量的HCO3-、CO32-、H2BO3-及H2PO4-、SiO3-等弱酸阴离子,其中主要为HCO3-,它们都是氢离子的接受体。这些氢离子接受体的浓度总和在海洋学上称为“碱度”(海水的碱度约为2mmol/L,其中的HCO3-的浓度约为1.8mmol/L),海水的pH值一般在8.0-8.2的范围内。因此,纯海水具有天然的弱碱性可用于吸收烟气中的酸性气体,从而达到烟气脱硫的目的。2004年7月厦门嵩屿电厂所在的河口海域的水质检测结果见表1。 表1 海水水质调查结果

相关文档
相关文档 最新文档