文档库 最新最全的文档下载
当前位置:文档库 › 实验六 小肠吸收和渗透压的关系

实验六 小肠吸收和渗透压的关系

实验六  小肠吸收和渗透压的关系
实验六  小肠吸收和渗透压的关系

实验六小肠吸收和渗透压的关系

[目的]

了解小肠吸收与肠内容物渗透压的关系

[原理]

肠内容物的渗透压是制约肠吸收的重要因素。同种溶液在一定浓度范围,浓度愈高吸收愈慢。过浓时可致反渗透现象,要在浓度降低至一定程度后,溶质才被吸收。而水的吸收是被动的渗透过程,即需待溶质被吸收后,溶液成低渗时,水再向肠壁、血液中转移。由于饱和硫酸镁溶液对肠壁具有反渗透作用,因此可用作泻盐。

[实验动物]

家兔

[实验材料]

家兔、解剖台、手术器械、注射器、棉线、酒精生理盐水合剂或戊巴比妥钠,饱和硫酸镁溶液、0.7氯化钠溶液

[实验步骤]

将家兔麻醉后,仰卧保定没,剖腹取出一段长约16厘米的空肠,用线将其扎成各为8厘米长的肠段A和B。在A段中注入5毫升饱和硫酸镁溶液,在B段中注入30毫升0.7%NaCl 溶液。将A、B肠段还纳腹腔闭腹,30分钟后检查两肠的变化。

[注意事项]

1 结扎肠段时,应防止把血管结扎

2 注意试验动物的保温

[思考题]

为什么可将饱和硫酸镁用作泻药?

附:家兔小肠结构图

小肠位于腹中,上端接幽门与胃相通,下端通过阑门与大肠相连。小肠与心互为表里。是食物消化吸收的主要场所,盘曲于腹腔内,上连胃幽门,下接盲肠,全长约3-5米,张开有半个篮球大,分为十二指肠、空肠和回肠三部分。空肠连接十二指肠,占小肠全长的2/5,位于腹腔的左上部。回肠位于右下腹,占小肠全长的3/5。空肠和回肠之间没有明显的分界线。

Welcome !!! 欢迎您的下载,资料仅供参考!

渗透压

排泄的概念:机体将物质代谢的终产物或机体不需要的、多余的水分、盐分及进入体内的某些药物、毒物等排出体外的过程称为排泄(excretion)。(不包括粪便) 一肾的血液循环 肾动脉血液在肾小球和髓袢处两次分成毛细血管,继而依次汇合成小叶间静脉、 弓形静脉、叶间静脉,最终汇入肾静脉。 肾动脉直接由腹主动脉垂直分出,粗而短,血流量大,血压较高; 入球小动脉口径粗于出球小动脉口径,有利于血浆成分透出肾小球进入肾小囊腔; 血液经肾小球滤过后,胶体渗透压升高,血液经过肾小球后,血流减慢,血压降低, 有利于小管液与血液之间进行物质转运(包括重吸收和分泌)。 二尿的生成 尿的生成包括三个过程:即肾小球的滤过作用,肾小管-集合管的重吸收作用, 以及肾小管-集合管的分泌作用。 (一)肾小球的滤过作用 A肾小球的滤过率:单位时间内从肾小球滤过的血浆毫升数,它反映了肾小球 滤过作用的强弱。 B影响肾小球滤过率的因素: 1.滤过膜的通透性 三层:肾小球毛细血管内皮、基膜和肾小囊脏层上皮。急性肾小球性肾炎:通透性过强2.有效滤过压 有效滤过压=肾小球毛细血管压-(血浆胶体渗透压+肾小囊内压) 3.肾血浆流量 (二)肾小管与集合管的重吸收作用 重吸收是指小管液流经肾小管和集合管时,小管液中的水分和各种溶质将全部或部分地被肾小管上皮细胞重新吸收并转运到管外返回血液的过程。 位置: 近球小管:多数物质;其它管段:少量 方式: 被动重吸收:水、尿素;主动重吸收:葡萄糖、氨基酸、Na+、蛋白质 结构基础:刷状缘、基底纹、线粒体 选择性:水分:99% 葡萄糖、蛋白质:全部 Na+、Cl-、Ca2+、Mg2+、K+:绝大部分 尿素、尿酸、SO42-、HPO3-、PO43-:大部分 肌酐:无 (三)肾小管和集合管的分泌作用(排泄作用) 此处,分泌作用指的是小管上皮细胞将新陈代谢产生的物质转运到管腔中的 过程,如H+、NH3等;排泄作用指的是小管上皮细胞将血液中某些物质 转运到管腔中的过程,如K+、肌酐、外来的药物和体内解毒产物等。 由于分泌物和排泄物都进入小管液中,事实上二者很难严格区分,所以把二者 统称为分泌,以免与总的排泄概念相混淆。

药典三部(版)-通则-0632渗透压摩尔浓度测定法复习过程

0632 渗透压摩尔浓度测定法 生物膜,例如人体的细胞膜或毛细血管壁,一般具有半透膜的性质,溶剂通过半透膜由低浓度向高浓度溶液扩散的现象称为渗透,阻止渗透所需要施加的压力,称为渗透压。在涉及溶质的扩散或通过生物膜的液体转运各种生物过程中,渗透压都起着极其重要的作用。因此,在制备注射剂、眼用液体制剂等药物制剂时,必须关注其渗透压。处方中添加了渗透压调节剂的制剂,均应控制其渗透压摩尔浓度。 静脉输液、营养液、电解质或渗透利尿药(如甘露醇注射液)等制剂,应在药品说明书上标明其渗透压摩尔浓度,以便临床医生根据实际需要对所用制剂进行适当的处置(如稀释)。正常人体血液的渗透压摩尔浓度范围为285~310mOsmol/kg,0.9%氯化钠溶液或5%葡萄糖溶液的渗透压摩尔浓度与人体血液相当。溶液的渗透压,依赖于溶液中溶质粒子的数量,是溶液的依数性之一,通常以渗透压摩尔浓度(Osmolality)来表示,它反映的是溶液中各种溶质对溶液渗透压贡献的总合。 渗透压摩尔浓度的单位,通常以每千克溶剂中溶质的毫渗透压摩尔来表示,可按下列公式计算毫渗透压摩尔浓度(mOsmol/kg): 毫渗透压摩尔浓度(mOsmol/kg) =×n×1000 式中,n为一个溶质分子溶解或解离时形成的粒子数。在理想溶液中,例如葡萄糖n=1,氯化钠或硫酸镁n=2,氯化钙n=3,枸橼酸

钠n=4。 在生理范围及很稀的溶液中,其渗透压摩尔浓度与理想状态下的计算值偏差较小;随着溶液浓度增加,与计算值比较,实际渗透压摩尔浓度下降。例如0.9%氯化钠注射液,按上式计算,毫渗透压摩尔浓度是2×1000×9/58.4=308 mOsmol/kg,而实际上在此浓度时氯化钠溶液的n稍小于2,其实际测得值是286 mOsmol/kg;这是由于在此浓度条件下,一个氯化钠分子解离所形成的两个离子会发生某种程度的缔合,使有效离子数减少的缘故。复杂混合物(如水解蛋白注射液)的理论渗透压摩尔浓度不容易计算,因此通常采用实际测定值表示。 1、渗透压摩尔浓度的测定 通常采用测量溶液的冰点下降来间接测定其渗透压摩尔浓度。在理想的稀释溶液中,冰点下降符合△T f=K f·m的关系,式中,△T f为冰点下降,K f.为冰点下降常数(当水为溶剂时为1.86),m为重量摩尔浓度。而渗透压符合P0=K0·m的关系,式中,P0为渗透压,K0为渗透压常数,m为溶液的重量摩尔浓度。由于两式中的浓度等同,故可以用冰点下降法测定溶液的渗透压摩尔浓度。 仪器采用冰点下降的原理设计的渗透压摩尔浓度测定仪通常 由制冷系统、用来测定电流或电位差的热敏探头和振荡器(或金属探针)组成。测定时将探头浸入供试溶液中心,并降至仪器的冷却槽中。启动制冷系统,当供试溶液的温度降至凝固点以下时,仪器采用振荡器(或金属探针)诱导溶液结冰,自动记录冰点下降的温度。仪器显示的测定值可以是冰点下降的温度,也可以是渗透压摩尔浓度。

试验六丙酮蒸汽吸收

实验六丙酮蒸汽吸收 一、实验目的 (1) 了解填料吸收塔的一般结构和工业吸收过程流程。 (2) 掌握吸收总传质系数K y a的测定方法。 (3) 考察吸收剂进口条件的变化对吸收效果的影响。 (4) 了解处理量变化对吸收效果的影响。 二、实验原理 1.概述 吸收过程是依据气相中各溶质组分在液相中的溶解度不同而分离气体混合物的单元操作。在化学工业中洗手操作广泛应用于气体原料净化、有用组分的回收、产品制取和废气治理等方面。在吸收研究过程中,一般可分为对吸收过程本身的特点或规律进行研究和对吸收设备进行开发研究两个方向。前者的研究内容包括吸收剂的选择、确定因影响吸收过程的因素、测定吸收速率等,研究的结果可为吸收工艺设计提供依据,或为过程的改进及强化指出方向;后者研究的重点为开发新型高效的吸收设备,如新型高效填料、新型塔板结构等。 吸收通常在塔设备内进行,工业上尤其以填料塔用的普遍。填料塔一般由以下几部分构成:(1)圆筒壳体;(2)填料;(3)支撑板;(4)液体预分布装置;(5)液体再分布器;(6)捕沫装置; (7)进、出口接管等等。其中,塔内放置的专用填料作为气液接触的媒介,其作用是使从塔顶流下的流体沿填料表面散布成大面积的液膜,并使从塔底上升的气体增强湍动,从而为气液接触传质提供良好条件。液体预分布装置的作用是使得液体在塔内有一良好的均匀分布。而液体在从塔顶向下流动的过程中,由于靠近塔壁处的空隙大,流体阻力小,液体有逐渐向塔壁处汇集的趋向,从而使液体分布变差。液体再分布器的作用是将靠近塔壁处的液体收集后再重新分布。填料时填料吸收塔最重要的部分。对于工业填料,按照其结构和形状,可以分为颗粒填料和规整填料两大类。其中,颗粒填料是一粒粒的具有一定几何形状和尺寸的填料颗粒体,一般以散装(乱堆)的方式堆积在塔内。常见的大颗粒填料有拉西环、鲍尔环、阶梯环、弧鞍环、矩鞍环等等。填料等材质可以使金属、塑料、陶瓷等。规整填料是由许多具有相同几何形状的填料单元组成,以整砌的方式装填在塔内。常见的规整填料有丝网波纹填料、孔板波纹填料等。填料的性能主要评价指标是填料的比表面积和孔隙率。一般地希望填料能提供达的气液接触面积和较小的流动压降。 2.吸收速率方程式和吸收传质系数 吸收传质速率吸收传质速率由吸收速率方程式决定 (1) 或 (2) 式(1)、(2)中N A——吸收速率,mol/s; K y a——气相吸收传质系数,mol/(m3·h); A——气液接触传质面积,m2; ——塔顶、塔底气象平均传质推动力; a——填料的比表面积,m2/m3; V p——填料体积,m3; 严格说来,a应为单位体积填料的有效润湿表面积。由于a的大小与物系对填料表面积的润湿性和气液流动状况有关,工程上为方便起见,将K y和a合并为一个常数,即K y a称为气相容积吸收传质系数,mol/(m3·h),这样,吸收传质速率式又可表为 (3) 气相平均传质推动力 由吸收过程物料衡算

生物药剂学与药物动力学试验指导

前言 本教材是在长沙医学院药学系领导下,由药剂学教研室组织编写,作为全国高等学校教材《生物药剂学与药物动力学》的配套实验教材,充分结合了本系教与学的实际情况,供药学专业教学使用。 实验课是生物药剂学与药物动力学课程中必不可少的重要的实践环节,通过实验,使课堂中讲授的重要理论和概念得到验证、巩固和充实,并适当地扩大知识面,加深学生对课堂教学内容的理解,掌握生物药剂学与药物动力学实验的设计及数据的处理方法,掌握实验方法在医药学相关领域的应用,掌握专业实验技能,培养学生独立思考和独立工作能力以及科学的工作态度和习惯。 一、实验方式与基本要求 1.由指导教师讲皆实验的基本原理、要求、实验目的,注意事项及主要设备的操作方法; 2.实验小组人数为3~5人,由学生独立操作完成实验。 3.学生完成规定的实验内容后,所记录的现象和数据、使用的仪器和负责的清洁工作,经指导教师检查,符合要求,方可离开实验室。 4.教学实验除验证课堂理论外,并要求掌握相关实验仪器的工作原理和使用方法。 二、实验报告 1.实验报告应包括:实验目的、实验内容、实验原始记录、结果、结论、讨论等部分的内容; 2.每个实验的实验报告应于实验结束后第三天,交实验指导老师处批改; 3.实验结束时,实验报告中的原始记录应由指导教师检查并签字。 三、考核与报告 1.实验完成后,由学生将实验过程、原理、目的及实验结果整理成报告。 2.指导教师对每个实验报告进行批改、评分。 3.每次实验成绩的平均成绩记为实验考试成绩,不另外进行实验考试。实验成绩占总评成绩的20%。 - 1 -

- 2 - 实验一 磺胺嘧啶在体小肠吸收实验 一、实验目的 1.掌握大鼠在体肠管泵循环法研究吸收的实验方法。 2.掌握药物肠管吸收的机理和计算吸收速度常数(ka)、吸收半衰期(t 1/2(a ))的方法。 二、实验原理 药物消化道吸收实验方法可分为体外法(in vitro )、在体法(in situ )和体内法(in vivo )等。在体法由于不切断血管和神经,药物透过上皮细胞后即被血液运走,能避免胃内容物排出及消化道固有运动等的生理影响,对溶解药物是一种较好的研究吸收的方法。但本法一般只限于溶解状态药物,并有可能将其他因素引起药物浓度的变化误作为吸收。 消化道药物吸收的主要方式为被动扩散。药物服用后,胃肠液中高浓度的药物向细胞内透过,又以相似的方式扩散转运到血液中。这种形式的吸收不消耗能量,其透过速度与膜两侧的浓度差成正比,可用下式表示: h C C DkS dt dC P GI -=- (1) 式中 dt dC 为分子型药物的透过速度;D 为药物在膜内的扩散系数;k 为药物在膜/水溶液中的分配系数;S 为药物扩散的表面积;C GI 为消化道内药物浓度;C p 为血液中药物浓度;h 为膜的厚度。令Dk =P ,则P 为透过常数。 一般药物进入循环系统后立即转运至全身各个部位,故药物在吸收部位循环液中的浓度相当低,与胃肠液中药物浓度相比,可忽略不计。若设 'k h PS =,式(1)可简化为: C k dt dC '=- (2) 式(2)说明药物透过速度属于表观一级速度过程。以消化液中药物量的变化率dX/dt 表示透过速度,则: X k dt dX a =- (3) 上式积分后两边取常用对数,变为: t k X X a 303 .2lg lg 0- = (4)

肠外营养配比及渗透压的计算

肠外营养配比及渗透压的计算 1.能量的计算:Harris-Bendeict公式至今一直作为临床上计算机体基础能量消耗(BEE)的经典公式: 男:BEE(kcal/d)=66.4730+13.7513W+ 5.0033H-6.7750A 女:BEE(kcal/d)=655.0955+9.5634W+ 1.8496H-4.6756A (W:体重,Kg; H:身高, cm A:年龄,年) 2.每日所需能量的粗略估算: 基础代谢:20kcal/kg 安静基础值:25~30kcal/kg 轻活动:30~40kcal/kg 发热或中等活动:35~45kcal/kg 3.肠外营养配比方案: 一般糖脂比=1:1 a.葡萄糖:占总热量的50%±1g:4Kcal b.氨基酸:氮源(合成蛋白质)1~1.5g/Kg 1g:4Kcal c.脂肪:①热量②必需脂肪酸0.5~1g/Kg(<3g/Kg)1g:9Kcal d.维生素和微量元素 水溶性:复合制剂不能满足需要,需要额外补充VitC及B族维生素 脂溶性:代谢慢,禁食时间>1周,应用 e.水:尿≥800ml,不显失水600ml,粪100ml 1000Kcal=1000-1500ml补水量

总结肠外营养每日推荐量 4.营养液渗透压的计算 营养液渗透压高于1200mOsm/LH2O应给予中心静脉,低于于1200mOsm/LH2O可给予外周静脉。 各种溶液渗透压数值: 1%GS渗透压值为50 mmol/L 5%GS为250 mmol/L

10% GS为500 mmol/L 12.5% GS为631 mmol/L 50% GS为2500 mmol/L 1%NaCl为340 mmol/L 0.9%NaCl 为308 mmol/L 10%NaCl 约为3400mmol/L 10%中型脂肪是129~158 mmol/L(以150 mmol/L计算)20%中型脂肪是258~315 mmol/L(可以300 mmol/L计算)30%长链脂肪酸310 mmol/L 1% 氨基酸为100 mmol/L 5% 氨基酸为500 mmol/L(6.74%AA大约600mmol/L)10%氯化钾为2666 mmol/L 25%硫酸镁约为4166 mmol/L 多种微量元素注射液约为1900 mmol/L 3.实例: 生理盐水13毫升,10%氯化钾1.5毫升,5%氨基酸20毫升,20%脂肪10毫升,10%葡萄糖40毫升,50%葡萄糖液15毫升。 上述液体每100毫升含葡萄糖11.5克、蛋白质1克、脂肪2克。 渗透压值计算: 50%葡萄糖15毫升=(2500 x 0.015)=37.5 mmol

实验六 吸收实验

实验六 吸收实验 一、实验目的 1. 了解填料吸收塔的基本构造、吸收过程的基本流程及其操作。 2. 掌握吸收总传质系数ya K 的测定方法。 二、实验原理 对低浓度气体吸收且平衡线为直线的情况,吸收传质速率由吸收方程决定: m ya y ?=填V K N A 则只要测出A N ,测出气相的出、入塔浓度,就可计算ya K ,而 )(21y y V N A -= 式中:V 为混合气体的流量,mol/s ,由转子流量计测定; 1y ,2y 分别为进塔和出塔气相的组成(摩尔分率),用气相色谱分析得到。 液相出塔浓度由全塔物料衡算得到。 计算Δym 时需用平衡数据,本实验的平衡数据如下所示: 丙酮、空气混合气体中丙酮的极限浓度*s y 与空气温度 t 的关系(压强为a 101.25 P ?) 丙酮的平衡溶解度:

三、实验流程及设备 实验装置包括空气 输送,空气和丙酮鼓泡 接触以及吸收剂供给和 气液两相在填料塔中逆 流接触等部分,其流程 示意如图所示。空气的 压力定为a 100.24 P ?。 1.熟悉实验流程,学习填料塔的操作。在空气流量恒定条件下,改变清水流量,测定气体进出口浓度1y 和2y ,计算组分回收率η、传质推动力m y ?和传质系数ya K 。 2.在清水流量恒定条件下,改变空气流量,测定气体进出口浓度1y 和2y , 计算组分回收率η、传质推动力m y ?和传质系数ya K 。 3.改变吸收液体的温度,重复实验。 4.在控制定值器的压强时应该注意干将空压机的出口阀门微开。 5.加热水时,要缓慢调节变压器的旋钮。 6.调节参数后要有一段稳定时间,直至出口水温基本恒定,取样时先取2y 再取1y 。 7. 转子流量计的读数要注意换算。 8.气体流量不能超过/h 600L 。液体流量不能超过/h 7L ,防止液泛。 五、实验数据记录及处理 1. 设备参数和有关常数 实验装置的基本尺寸: 塔内径:34mm ;填料层高度:24cm ; 自查丙酮—空气物系的平衡数据; 大气压:101.33 KPa ;室温:13.5 ℃。 2. 实验数据

磺胺嘧啶在体小肠吸收实验

实验一 磺胺嘧啶在体小肠吸收实验(验证性实验) 一、实验要求 1.掌握大鼠在体肠管泵循环法研究吸收的实验方法。 2.掌握药物肠管吸收的机理和计算吸收速度常数(ka)、吸收半衰期(t 1/2(a ))的方法。 二、实验原理 药物消化道吸收实验方法可分为体外法(in vitro )、在体法(in situ )和体内法(in vivo )等。在体法由于不切断血管和神经,药物透过上皮细胞后即被血液运走,能避免胃内容物排出及消化道固有运动等的生理影响,对溶解药物是一种较好的研究吸收的方法。但本法一般只限于溶解状态药物,并有可能将其他因素引起药物浓度的变化误作为吸收。 消化道药物吸收的主要方式为被动扩散。药物服用后,胃肠液中高浓度的药物向细胞内透过,又以相似的方式扩散转运到血液中。这种形式的吸收不消耗能量,其透过速度与膜两侧的浓度差成正比,可用下式表示: h C C DkS dt dC P GI -=- (1) 式中 dt dC 为分子型药物的透过速度;D 为药物在膜内的扩散系数;k 为药物在膜/水溶液中的分配系数;S 为药物扩散的表面积;C GI 为消化道内药物浓度;C p 为血液中药物浓度;h 为膜的厚度。令Dk =P ,则P 为透过常数。 一般药物进入循环系统后立即转运至全身各个部位,故药物在吸收部位循环液中的浓度相当低,与胃肠液中药物浓度相比,可忽略不计。若设 'k h PS =,式(1)可简化为: C k dt dC '=- (2) 式(2)说明药物透过速度属于表观一级速度过程。以消化液中药物量的变化率dX/dt 表示透过速度,则: X k dt dX a =- (3) 上式积分后两边取常用对数,变为: t k X X a 303 .2lg lg 0- = (4) 以小肠内剩余药量的对数lgX 对取样时间t 作图,可得一条直线,从直线的斜率可求得吸收速度常数k a ,其吸收半衰期t 1/2(a )为: a a k t 693 .0)(2/1= (5)

渗透压计算

渗透压:渗透压与溶液中可一元解离的离子浓度有关。如:0.1mol/LNaOH溶液可一元解离为0.1mol/L Na+和0.1mol/L OH-。他的渗透压就是0.2 Osm/L=2mOsm/L。 下面我将外文文献中膜提取液与本实验膜提取液以及戴天 明论文中血影蛋白提取液的渗透压进行比较如下: 1972年Separation and Some Properties of the Major Proteins of the Human Erythrocyte Membrane 0.155M-NaH2PO4 (iso-osmotic phosphate buffer,pH7.4) The cells were lysed into 37 litres of a stirred solution of iso osmotic phosphate buffer, pH7.4, diluted with 19.5vol. of deionized water (diluted phosphate buffer, pH7.4) maintained near 0°C with a cooling coil connected to a circulating refrigeration bath and a solution of 0.3ml of di-isopropyl phosphorofluoridate in 3ml of propanol was immediately added slowly to the lysate. 等渗缓冲液:0.155M-NaH2PO4,渗透压为0.155 M×2=0.155mol/L×2=310 mOsm/L(注:1 M NaH2PO4可一元解离为1 M Na+和M H2PO4-,1mol/L NaH2PO4的渗透压为2 Osm/L=2000 mOsm/L。等渗液的渗透压在280-320 mOsm/L范围内)低渗缓冲液:将等渗缓冲液用19.5倍体积的去离子水稀释而成。也就是稀释了20.5倍,渗透压上除以20.5即可。 渗透压为310 mOsm/L÷20.5=15 mOsm/L. 低渗液加入少量氟磷酸异丙酯<胆碱酯酶抑制药>和丙醇 本实验中等渗液 rPBS,PH=7.4(KCL137mM,NaCL2.7mM,Na2HPO4 8.1mM,KH2PO4 1.5 mM) 渗透压:137 mM×2+ 2.7 mM ×2+8.1mM×3+ 1.5 mM×2=306.7 mOsm/L PBS,PH=7.4 (NaCL137mM,KCL2.7mM,Na2HPO4 8.1mM,KH2PO4 1.5 mM,)渗透压同上计算为306.7 mOsm/L rPBS,PH=5.6 (KCL137mM,NaCL2.7mM,Na2HPO4 0.5mM,KH2PO4 9.5mM) 渗透压为137 mM×2+ 2.7 mM ×2+0.5mM×3+ 9.5 mM×2=299.9 mOsm/L PBS,PH=5.6 (NaCL137mM,KCL2.7mM,Na2HPO4 0.5mM,KH2PO4 9.5mM,)配制1L:渗透压同上计算为299.9 mOsm/L 低渗液由等渗液稀释30倍而成, PH=7.4的渗透压为306.7 mOsm/L /15=20.4 mOsm/L PH=5.6的渗透压为299.9mOsm/L /15=20 mOsm/L 戴天明论文中

吸收实验

实验七 吸收实验 一、实验目的 1. 了解填料吸收装置的基本流程及设备结构; 2. 测定填料层的压强降和空塔气速的关系; 3. 测定总体积吸收系数,并分析气体空塔气速及喷淋密度对总体积吸收系数的影响。 二、设备流程 吸收塔为玻璃塔,塔内径为0.1m ,填料为12×12×2.2mm 的拉西环,整个吸收实验装置由四部分组成: 1、空气系统: 空气由风机(旋涡气泵或容积式风机)供给,进入缓冲罐6,通过空气调节阀8调节流量,经空气转子流量计10计量后,在主管路上和氨气混合后由塔底进入,为保持一定的尾气压力(100~200mmH 2O )以通过尾气分析器,在尾气出口处装置有尾气调节阀22。 2、氨气系统: 氨气由氨气钢瓶供给,经减压阀降压至0.1Mpa 以下后,进入氨气缓冲罐(为确保安全,缓冲罐上装有安全阀,其排出经塑料管引到室外),由氨气调节阀3调节流量后,经氨气转子流量计5计量后(同时串联有孔板流量计)与空气混合进入塔底。转子流量计前装有压力计及温度计。 3、自来水系统: 自来水经过滤后,由调节阀15调节流量,经转子流量计16计量后,进入塔顶,经莲蓬式喷淋器均匀地喷洒在填料上,塔底吸收液经排出管17排出。 4、尾气分析系统: 由尾气分析器19及湿式气体流量计21组成(并联有质量流量计,使用质量流量计时要使用喷射管装置以补充尾气压力的不足)。 三、实验原理 1、填料层流体力学性能的测定: AES —II 型吸收实验装置流程示意图 1氨气缓冲罐;2氨气温度计;3流量调节阀;4氨表压计;5转子流量计;6空气缓冲罐;7空气温度计;8流量调节阀;9空气表压计;10转子流量计;11吸收塔;12喷淋器;13塔顶表压计;14压差计;15水流量调节阀;16转子流量计;17排液管;18尾气三通阀;19吸收盒;20尾气温度计;21湿式气体流量计;22尾气稳压阀;

小肠与结构与功能(图)

小肠的结构与功能(图) 小肠全长约3~5米,盘曲于腹腔内,上连胃幽门,下接盲肠。是食物消化吸收的主要场所。 小肠全长约3~5米,盘曲于腹腔内,上连胃幽门,下接盲肠。是食物消化吸收的主要场所。 结构 小肠,一般根据形态和结构变化分为三段,分别为十二指肠、空肠和回肠。 十二指肠位于腹腔的后上部,全长25厘米。它的上部(又称球部)连接胃幽门,是溃疡的好发部位。肝脏分泌的胆汁和胰腺分泌的胰液,通过胆总管和胰腺管在十二指肠上的开口,排泄到十二指肠内以消化食物。 空肠连接十二指肠,占小肠全长的2/5,位于腹腔的左上部。回肠位于右下腹,占小肠全长的3/5。空肠和回肠之间没有明显的分界线。

功能 小肠的功能主要分为四部分,分别是:消化功能、吸收功能、分泌功能和运动功能。 消化功能:小肠是食物消化的主要场所。 其消化过程为:肝脏分泌的胆汁和胰腺分泌的胰液经导管流入小肠,与分布在肠壁内的许多肠腺分泌的肠液,共同作用,将食物进一步消化。胆汁不含消化酶,但能将脂肪乳化成脂肪微粒,增加脂肪与消化酶的接触面积,有利于脂肪的消化。胰液和肠液中都含有消化糖类、蛋白质和脂肪的酶,能将食物中复杂的有机物分解成简单的营养成分。 吸收功能:小肠是营养吸收的主要部位。 小肠能吸收葡萄糖、氨基酸、甘油和脂肪酸,以及大部分的水分、无机盐和维生素。 各种营养物质在小肠内的吸收位置不同,一般地,糖类、蛋白质及脂肪的消化产物大部分在十二指肠和空肠内吸收,到达回肠时基本上吸收完毕,只有胆盐和维生素B12在回肠部分吸收。 分泌功能:小肠可以分泌小肠液。 小肠不仅具有吸收功能,而且还具有分泌功能—它能分泌小肠液。小肠的分泌功能主要是由小肠壁粘膜内的腺体(十二指肠腺和肠腺)完成的。正常人每天分泌1~3升小肠液。 小肠液的成分比较复杂,主要含有多种消化酶、脱落的肠上皮细胞以及微生物等。消化酶对于将各种营养成分进一步分解为最终可吸

在体小肠吸收实验

沖尢丿、象实验报告 课程名称: _________________________________ 指导老师: ____________________________________________ 实验名称: _________________________________ 实验类型: ____________________________________________ 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填) 一、实验目的 1掌握大鼠在体肠管泵循环法研究吸收的试验方法。 二、实验原理 1、 研究药物消化管吸收试验方法:体外试验法、在体试验法和体内试验法。 2、 消化管吸收药物主要方式是被动扩散。 这种形式的吸收不消耗能量,其透过速度与膜两侧的浓度差成 正比, 可用下式表示: -dQ/dt=DKS (C-C b )/h ( 1) ? -dQ/dt=PSC/h=k '(2) dQ/ dt :分子型药物的透过速度 D :药物在膜内的扩散系数 k :药物在膜/水溶液中的分散系数 C :消化管内药物浓度 C b :血液中的药物浓度 h :膜的厚度 式(2)说明药物透过速度属于表观一级速度过程:以消化液中药物量的变化率 dx/dt 表示透过速度, 则: -dX/dt=KaX ----------- lnX=lnXO-Kat lnX 对取样时间t 作图,可得一直线,从直线的斜率可求得吸收速度常数 k a ,其吸收半衰期t 1/2为: t1/2 = 0.693/Ka 小肠在吸收过程中,不仅吸收药物,也吸收水分,导致供试液体积减少,故不能用直接测定药物浓度 的方法计算剩余的药量。酚红不被小肠吸收,因此向供试液中加入定量的酚红,在一定间隔时间测定酚红 的浓度,就可以计算出不同时间供试液的体积,再根据测定的药物浓度,就可以得出不同时间小肠中剩余 的药量或被吸收的药量。 三、实验仪器及试剂 仪器:蠕动泵 试剂:供试液(SD 浓度:20ug/ml 、酚红浓度:20ug/ml )、酚红液(酚红浓度: 20ug/ml )、20%乌拉坦、 生理盐水、0.1%NaNO2 溶液、1mol/L 盐酸、0.2mol/L NaOH 、0.5%氨基磺酸铵(NH 2SO 3NH 4)溶液、0.1% 萘乙二胺溶液 四、实验步骤 1循环试验的操作 专业: __________________ 姓名: __________________ 学号: __________________ 日期: _________________ 地点: __________________ 成绩: ____________________ 同组学生姓名: ___________ 2、掌握药物肠管吸收的机理和计算吸收速度常数( ka )和吸收半衰期t i/2的方法。

病理生理--体液容量及渗透压的调节

病理生理--体液容量及渗透压的调节 细胞外液容量和渗透压的相对稳定是通过神经-内分泌系统的调节实现的。 1.渴感、抗利尿激素、醛固酮的作用 渗透压感受器主要分布在视上核和颈内动脉附近。正常渗透压感受器阈值为280mmol/L.当成 人细胞外液渗透压有1%~2%变动时,就可以影响抗利尿激素(antidiuretichormone,ADH)释放。精神紧张、疼痛、创伤以及某些药物和体液因子,如氯磺丙脲、长春新碱、环磷酰胺、血管紧张素Ⅱ等也能促进ADH分泌或增强ADH的作用。在细胞外液容量有较大幅度改变时,血容量和血压的变化(非渗透性剌激)可通过左心房和胸腔大静脉处的容量感受器和颈动脉窦、主动脉弓的压力感受器而影响ADH的分泌。 当细胞外液渗压升高时,则剌激下丘脑的视上核及颈内动脉的渗透压感受器和侧面的口渴中枢,也可反射性引起口渴的感觉,从而引起ADH释放及口渴。口渴主动饮水而补充水的不足;ADH可加强肾远曲小管和集合管对水的重吸收,减少水的排出;同时抑制醛固酮的分泌,减弱肾小管对Na+的重吸收,增加Na+的排出,降低了Na+在细胞外液的浓度。上述调节结果使体内水的容量增加,血浆渗透压恢复正常。若血浆渗透压降低则引起相反的反应,抑制渴感、ADH的释放和促进醛固酮分泌。 实验证明,细胞外液容量的变化可以影响机体对渗透压变化的敏感性。许多血容量减少的疾病,其促使ADH分泌的作用远超过血浆晶体渗透压降低对ADH分泌的抑制,说明机体优先维持正常的血容量。 2.心房肽的作用 心房肽(atriopeptin)是影响水Na+代谢的重要因素。心房肽或称心房利钠肽(ANP)是一 组由心房肌细胞产生的多肽,约由21~33个氨基酸组成。当心房扩展、血容量增加、血Na+增 高或血管紧张素增多时,将剌激心房肌细胞合成释放ANP.ANP释放入血影响水钠代谢的机制:①减少肾素的分泌;②抑制醛固酮的分泌;③对抗血管紧张素的缩血管效应;④拮抗醛固酮的滞 Na+作用。因此,有人认为体内可能有一个ANP系统与肾素血管紧张素-醛固酮系统一起担负着调节水钠代谢的作用。 3.水通道蛋白的作用 水通道蛋白(aquaporins,AQP)也是影响水Na+代谢的另一重要因素。AQP是一组构成水通道与水通透性有关的细胞膜转运蛋白,广泛存在于动物、植物及微生物界。目前在哺乳动物组织监定的AQP有8种(AQP0、AQP1、、AQP2、AQP3、AQP4、AQP5、AQP6、AQP7),统称为Aquaporins (AQPs),每种AQP有其特异性的组织分布。不同的AQP在肾和其它器官的水吸收和分泌过程中有着不同的作用和调节机制。水通过水通道转运与简单扩散不同,其渗透通透性远大于扩散通透性。水利用水通道蛋白可以向高渗方向移动,这一过程很快,不需要门控等调节。在生理情况下,基本上处于激活状态,且不受质膜分子组成及温度等的影响。 ①AQP1:位于红细胞膜上,生理状态下有利于红细胞在渗透压变化的情况下,如通过髓质高渗区时得以生存;也存在于淋巴管、毛细血管和小 静脉内皮细胞中,对水分迅速进入淋巴管和血管床,调控细胞间液体量、毛细血管流体静压和血浆胶体渗透压起着重要作用;也位于近曲小管享氏袢降支管腔膜和基膜以及降支直小血管管腔膜上和基膜,对水的运输和通透发挥调节作用。 ②AQP2:位于集合管,约有10%的肾小球滤过液流经集合管时在AQP2的参与下被重吸收,在 肾浓缩机制中起重要作用。当AQP2发生功能缺陷时,将导致尿崩症。 ③AQP3位于肾集合管、膀胱、皮肤、巩膜和胃肠道粘膜。AQP3不仅能转运水,而且也能转运尿素和甘油,对尿液浓缩起重要作用。拮抗AQP3可产生利尿反应。 :位于集合管主细胞基质侧,可能提供水流出通道。也分布于渴中枢,可能参与AQP4④

渗透压计算的常用公式

渗透压计算的常用公式 Prepared on 22 November 2020

用于渗透压计算的常用公式与参考值(mmol/L) -+20)×2=mmol/L ①(Cl-+HCO 3 正常值280~310mmol/L(平均300) <280mmol/L为低渗,>310mmol/L为高渗 ②(Na++K+)×2+BS+BUN=mmol/L (正常人:BS为~L BUN为~L) 正常值280~310mmol/L <280mmol/L为低渗,>310mmol/L为高渗 ③MCV(平均红细胞体积μm3)=红细胞比积×1000除以红细胞数(N/L)正常值82~96μm3,>96μm3为低渗,<82μm3为高渗 ④血清钠正常130~150mmol/L(平均140) <130mmol/L为低渗,>150mmol/L为高渗 ⑤(Na++10)×2,正常280~310mmol/L(平均300) <280mmol/L为低渗,>310mmol/L为高渗 -=120-140mmol/L ⑥Cl-+HCO 3

<120mmol/L为低渗,>140mmol/L为高渗 ⑦血浆胶体渗透压有关计算公式: 血浆总蛋白g/L××2=~L <L为低渗,>L为高渗 ×Ag/L+×Gg/L=85~L 例如白蛋白50g/L,则×50+220=307mmol/L (白蛋白50g/L,分子量为69000,渗透压=50×1000/69000=L) ×(A+G/L)除以= <为低渗 补充血浆ml数=血浆蛋白(正常值一病人值)×8×体重(kg) 按8ml/kg输入,可提高血浆蛋白10g/L。一般10~25g/d,可连续补给

实验六吸收实验

实验六 吸收实验 (一)丙酮填料吸收塔的操作及吸收传质系数的测定 一、实验目的 1、了解填料吸收塔的结构和流程; 2、了解吸收剂进口条件的变化对吸收操作结果的影响; 3、掌握吸收总传质系数Kya 的测定方法。 二、实验内容 1、测定吸收剂用量与气体进出口浓度y 1、y 2的关系; 2、测定气体流量与气体进出口浓度y 1、y 2的关系; 3、测定吸收剂及气体温度与气体进出口浓度y 1、y 2的关系; 三、实验原理 吸收是分离混合气体时利用混合气体中某组分在吸收剂中的溶解度不同而达到分离的一种方法。不同的组分在不同的吸收剂、吸收温度、液气比及吸收剂进口浓度下,其吸收速率是不同的。所选用的吸收剂对某组分具有选择性吸收。 1、吸收总传质系数K y a 的测定 传质速率式: N A =K y a ·V 填·△Ym (1) 物料衡算式: G 空(Y 1-Y 2)=L(X 1-X 2) (2) 相平衡式: Y=mX (3) (1)和(2)式联立得: K y a= 12() m G Y Y V Y -?空填 (4) 由于实验物系是清水吸收丙酮,惰性气体为空气,气体进口中丙酮浓度y 1>10%,属于高浓度气体吸收,所以: Y 1= 11 1y y - ; Y 2= 2 21y y - ; G 空—空气的流量(由装有测空气的流量计测定),Kmol/m 2·h ; V 填—与塔结构和填料层高度有关; 其中:22112211ln ) ()(mX Y mX Y mX Y mX Y Y m -----= ? (5) 02=X ; )(211Y Y L G X -=空 ; L —吸收剂的流量(由装有测吸收剂的流量计测定), Kmol/m 2·h ; m---相平衡常数(由吸收剂进塔与出塔处装的温度计所测温度确定),吸收温度: 附:流量计校正公式为: 2 出 进t t t +=

小肠的结构和功能

小肠得结构与功能(图) 小肠全长约3~5米,盘曲于腹腔内,上连胃幽门,下接盲肠、就是食物消化吸收得主要场所、 小肠全长约3~5米,盘曲于腹腔内,上连胃幽门,下接盲肠、就是食物消化吸收得主要场所、 结构 小肠,一般根据形态与结构变化分为三段,分别为十二指肠、空肠与回肠。 十二指肠位于腹腔得后上部,全长25厘米、它得上部(又称球部)连接胃幽门,就是溃疡得好发部位、肝脏分泌得胆汁与胰腺分泌得胰液,通过胆总管与胰腺管在十二指肠上得开口,排泄到十二指肠内以消化食物、 空肠连接十二指肠,占小肠全长得2/5,位于腹腔得左上部。回肠位于右下腹,占小肠全长得3/5、空肠与回肠之间没有明显得分界线。功能

小肠得功能主要分为四部分,分别就是:消化功能、吸收功能、分泌功能与运动功能。 消化功能:小肠就是食物消化得主要场所。 其消化过程为:肝脏分泌得胆汁与胰腺分泌得胰液经导管流入小肠,与分布在肠壁内得许多肠腺分泌得肠液,共同作用,将食物进一步消化。胆汁不含消化酶,但能将脂肪乳化成脂肪微粒,增加脂肪与消化酶得接触面积,有利于脂肪得消化。胰液与肠液中都含有消化糖类、蛋白质与脂肪得酶,能将食物中复杂得有机物分解成简单得营养成分。 吸收功能:小肠就是营养吸收得主要部位。 小肠能吸收葡萄糖、氨基酸、甘油与脂肪酸,以及大部分得水分、无机盐与维生素。 各种营养物质在小肠内得吸收位置不同,一般地,糖类、蛋白质及脂肪得消化产物大部分在十二指肠与空肠内吸收,到达回肠时基本上吸收完毕,只有胆盐与维生素B12在回肠部分吸收。 分泌功能:小肠可以分泌小肠液、 小肠不仅具有吸收功能,而且还具有分泌功能—它能分泌小肠液、小肠得分泌功能主要就是由小肠壁粘膜内得腺体(十二指肠腺与肠腺)完成得。正常人每天分泌1~3升小肠液。 小肠液得成分比较复杂,主要含有多种消化酶、脱落得肠上皮细胞以及微生物等、消化酶对于将各种营养成分进一步分解为最终可吸收得产物具有重要作用。

小肠的吸收

小肠的吸收 一.摘要 饲料在消化道内被消化后,其分解产物通过黏膜上皮细胞进入血液和淋巴的过程称为吸收。小肠吸收的物质种类多且量大,所以营养物质在消化道内吸收的主要部位是小肠。因此评价小肠的吸收能力对于生理具有重要意义,研究各种营养物质的小肠吸收动力学及吸收促进剂、ph值对其在小肠吸收速率的影响,探讨小肠吸收机制。 二.关键词:小肠吸收吸收机制吸收动力学 三.吸收特点 2.1 小肠有许多有利的吸收条件: (1).在小肠内,糖类、蛋白质、脂类消化为可收的物质。 (2).小肠的吸收面积大。小肠粘膜形成许多环行皱襞, 皱襞上有许多微绒毛,使小肠粘膜的表面积增加600倍。 (3).小肠绒毛的结构特殊,有利于吸收。绒毛内有毛细 血管、毛细淋巴管(乳糜管)、平滑肌纤维及神经纤维网, 消化期间小肠绒毛的节律性伸缩与摆动,可促进绒毛内的 血液和淋巴流动。 (4).食物在小肠内停留的时间较长,能被充分吸收。 2.2 小肠吸收的途径和机制 2.21 吸收途径 (1)跨细胞途径 腔肠内的营养物质通过绒毛上皮 细胞的腔面膜进入细胞,在经细胞 的基膜和侧膜进入血液和淋巴。 (2)旁细胞途径 腔肠内的营养物质通过上皮细胞 间的紧密连接进入细胞间隙,再进 入血液和淋巴。 2.22 吸收机制 吸收机制主要可分为被动转运、主 动转运、出胞和入胞。 四研究观点 综合对小肠吸收的研究,我准备从三个方面对小肠的吸收进行分析:1)小肠的吸收能力 2)小肠吸收机制 3)小肠吸收的动力学特征 3.1 小肠的吸收能力

3.11 小肠在口服药物的吸收中,药物浓度的时间曲线表明,小肠内药物浓度总体呈指数衰减,但有周期性波动,波动周期约为90 min,给药4 h 后,小肠内药物浓度在小肠蠕动后大幅下降至较低水平,提示在天麻素注入小肠后,小肠内天麻素溶液被小肠液所稀释,浓度急剧下降,而且小肠的分节运动或蠕动冲使天麻素在小肠内液体中不断重新分配,造成浓度的波动。药物在该小肠段内的排空时间约4h。静脉血液的药物浓度比动脉血液药物浓度高一个数量级,并随小肠内药物浓度变化而变化。 3.12 在对小肠吸收改善实验中,紫草素微乳和异甘草素微乳通过提高肠壁通透性一定程度地改善其吸收,在小肠的吸收主要以被动扩散方式吸收。在体单向灌流实验结果表明,微乳剂型可明显改善异甘草素的实验性肠吸收。药物在整个肠段都有吸收,结肠吸收最好,异甘草素微乳在各肠段的Ka均高于原型药物,差异具有显著性( P < 0. 05) ;异甘草素微乳在各质量浓度下的Ka均高于原型药物。 3.13 研究发现在热应激条件下,饲粮中添加Gln 有利于改善肉鸡的生长性能和小肠组织结构,并提高小肠的吸收能力,缓解热应激对肉鸡造成的危害,且对后期的影响优于前期,综合考虑可知前期添加2.0%较好,后期添加1.2%较好。 3.2 小肠吸收的机制 3.21 在羟基喜树碱细胞转运的试验中,当加入P-gp抑制剂环孢菌素A 和维拉帕米后,羟基喜树碱的跨膜转运明显增加; 当加入表面活性剂Cremophor EL后,羟基喜树碱的跨膜转运有所增加,但不够明显; 而加入TPGS 后,羟基喜树碱的跨膜转运明显增加,可能是因为Cremophor EL 的P-gp 抑制作用没有TPGS 的强而导致的。 3.22 在巴戟多糖在体肠吸收机制的研究中发现低浓度表面活性剂可促使膜脂质和蛋白质溶解,表面活性剂分子可插入脂质双分子层,提高膜通透性,促进药物吸收。结合实验结果,可以推测吸收促进剂主要通过改变小肠细胞膜结构来促进巴戟多糖的小肠吸收,通过考察不同吸收促进剂对巴戟多糖的吸收促进作用,启发我们利用吸收促进剂可以提高口服巴戟多糖的生物利用度,对于进一步研究巴戟多糖的口服剂型设计具有指导意义。 实验结果表明,在吸收面积不变的情况下,随着药物浓度的增加,巴戟多糖溶液在大鼠小肠内的Ka无显著性差异,符合Fick 扩散定律,表明巴戟多糖在大鼠小肠主要以被动扩散的方式吸收,所以确定吸收机制为被动扩散。 3.23在蝙蝠葛酚性碱在大鼠小肠吸收特性研究也确定了蝙蝠葛酚性碱的吸收机制为被动扩散;随着肠循环液pH 增大,蝙蝠葛酚性碱Ka 增大。 3.3小肠吸收的动力学特征 3.31 研究牛蒡子苷在大鼠小肠内的吸收动力学特征。实验方法是采用大鼠在体肠灌流方法建立牛蒡子苷大鼠肠吸收模型,考察牛蒡子苷在大鼠小肠的吸收情况。 动物给药后,小肠在吸收过程中不仅吸收药物,也吸收水分,从而导致供试液体积减少,故不能采用直接测定药物浓度的方法计算剩余药量。酚红为大分子络合物,不被小肠吸收,可用来测定被小肠吸收的水量。通常苷类药物在肠循环液中较不稳定,易水解代谢为苷元,实验分别考察牛蒡子苷在37.4 ℃条件下的稳定性,发现在肠吸收实验过程和样品储存过程中,牛蒡子苷较稳定,未发生水解。实验结果表明,牛蒡子苷10~50 μg/mL,在肠道的吸收动力学相关指标K a、t1/2、P、Papp的值不随质量浓度的变化而变化,基本保持恒定。3.32 药物在体内的溶解、吸收与药物的油水分配系数有关,体外油水分配系数测定试验可模拟药物在体内水相与生物相间的分配情况。根据经典理论,log P < 0 时药物在肠道中极不易被吸收,仅适于血管给药; 0 < log P < 3 时可经胃肠道给药吸收。试验结果表明,红景天苷是含酚羟基的酚类化合物,其log P 在不同pH 条件下均为负数,亲水性强,亲脂性弱,不易透过生物膜,口服不易吸收;酪醇的log P 在不同pH 条件下均在1 左右,说明其具有一定的亲水亲脂性,口服吸收较好,该结果与原位肠循环灌注试验中红景天苷和酪醇

相关文档
相关文档 最新文档