文档库 最新最全的文档下载
当前位置:文档库 › 金属离子掺杂改性纳米TiO2的能带结构及其光催化性能

金属离子掺杂改性纳米TiO2的能带结构及其光催化性能

金属离子掺杂改性纳米TiO2的能带结构及其光催化性能
金属离子掺杂改性纳米TiO2的能带结构及其光催化性能

硅酸盐学报

? 402 ?2013年

DOI:10.7521/j.issn.0454–5648.2013.03.22 金属离子掺杂改性纳米TiO2的能带结构及其光催化性能

刘子传,郑经堂,赵东风,吴明铂

(中国石油大学(华东),重质油国家重点实验室,山东青岛 266580)

摘要:为了研究纳米TiO2金属离子掺杂的改性机理,使用Materials Studio软件的Dmol3模块分别对Fe3+、Ag+、Pt4+、La3+ 4种金属离子掺杂纳米TiO2的能带结构进行分析。分子模拟表明,金属离子掺杂使TiO2的禁带宽度、Fermi能级和禁带偏移发生变化,影响了TiO2的光催化性能。光催化反应表明,Ag+掺杂后TiO2的禁带宽度为1.09eV、Fermi能级为–0.294eV、禁带向下偏移0.28eV,纳米TiO2光催化剂对聚乙二醇模拟废水的处理效果最好。关键词:二氧化钛;分子模拟;光催化;金属离子掺杂

中图分类号:TQ134 文献标志码:A 文章编号:0454–5648(2013)03–0402–07

网络出版时间:网络出版地址:

Band Structure of Metal Ions Doped Modified Nano-TiO2 and Its Photocatalytic Performance

LIU Zichuan,ZHENG Jingtang,ZHAO Dongfeng,WU Mingbo

(State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, Shandong, China)

Abstract: In order to investigate the modified mechanism of the TiO2 nanoparticles doped with metal ions, the band structure of TiO2 nanoparticles doped with Fe3+, Ag+, Pt4+, and La3+ ions, respectively, was analyzed by a Dmol 3 module of Materials Studio software. The molecular simulation showed that metallic ion doping changed the forbidden bandwidth, the Fermi energy level and the forbidden band offset of TiO2 nanoparticles. The changes affected the photocatalytic ability of TiO2. The Ag+-doped TiO2 has the forbidden bandwidth of 1.09eV and the Fermi energy of –0.294eV, and the forbidden band offset downward to 0.28eV. The TiO2 nanoparticles showed a superior photocatalytic ability in the process of polyethylene glycol (PEG) simulated wastewater.

Key words: titania; molecular simulation; photocatalysis; metallic ion doping

有机废水尤其是高浓度有机废水水质复杂,使用传统方法很难有效处理[1]。用纳米TiO2光催化可以实现对废水中有机污染物的深度氧化,将其矿化为二氧化碳和水等简单无机物,在废水处理中有广阔的应用前景[2–3]。前期对纳米TiO2光催化技术的研究多采用悬浮体系,即纳米TiO2粉体与处理溶液直接混合[4],该体系虽然与反应物接触充分、效率较高[5–7],但存在难以回收、容易中毒等缺点。因此,目前研究多使用负载体系[8–9],将纳米TiO2固定到载体上以达到回收目的,并通过改变载体形状改进反应设备,常用载体有钛板[10–12]、玻璃[13–15]、不锈钢[11,16]等。但将纳米TiO2负载到载体上后,其光催化处理效果会降低[17]。研究表明,使用改性技术可以提高负载后纳米TiO2的光催化处理效果[18–19],比较成熟的改性方法有离子掺杂改性[20–22]、表面贵金属沉积改性[23]、半导体材料复合改性[24]等,其中利用金属离子掺杂进行改性的研究较多,但尚未见对金属离子掺杂改性机理的研究报道。

本工作以溶胶–凝胶法制备纳米TiO2/Ti负载体系,分别用Fe3+、Ag+、La3+、Pt4+金属离子对TiO2/Ti 进行掺杂改性,以聚乙二醇2000 (PEG-2000)模拟废水为光催化处理对象,对不同改性条件下TiO2/Ti

收稿日期:2012–08–28。修订日期:2012–10–18。

基金项目:国家自然科学基金(20776159,21176260);山东省自然科学基金(ZR2009FL028);中央高校基本科研业务专项资金

(09CX05009A)资助项目。

第一作者:刘子传(1982—),男,博士研究生。

通信作者:郑经堂(1955—),男,教授。Received date:2012–08–28. Revised date: 2012–10–18.

First author: LIU Zichuan (1982–), male, Doctorial candidate.

E-mail: upclzc@https://www.wendangku.net/doc/c812259215.html,

Correspondent author: ZHENG Jingtang (1955–), male, Professor. E-mail: jtzheng03@https://www.wendangku.net/doc/c812259215.html,

第41卷第3期2013年3月

硅酸盐学报

JOURNAL OF THE CHINESE CERAMIC SOCIETY

Vol. 41,No. 3

March,2013

2013-02-28 11:08https://www.wendangku.net/doc/c812259215.html,/kcms/detail/11.2310.TQ.20130228.1108.201303.402_022.html

影响纳米材料光催化性能的因素教学文案

影响纳米材料光催化性能的因素

二、影响纳米材料光催化活性的因素。 1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H2O(-0.41eV)的氧化还原势负,才能产生H2,价带顶必须比 O2/H2O(+0.82eV)的氧化还原势正,才能产生O2,。因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半导体禁带宽度Eg应至少大于1.8eV。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO2是目前认为最好的光催化剂之一。TiO2主要有两种晶型—锐钛矿和金红石,两种晶型结构均可由相互连接的TiO6八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙(3.2eV)略大于金红石(3.1eV),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在对光催化活性可能起着非常重要的影响。有的缺陷可能会成为电子或空

金属纳米晶体的表面与其催化效应

金属纳米晶体的表面与其催化效应 沈正阳 (浙大材料系1104 3110103281) 摘要:概括纳米材料的表面与界面特性,从金属纳米晶体表面活性与结构介绍其的催化性能,简要概述金属纳米晶体形状与晶面的关系以及金属纳米晶体的成核与生长。 关键词:纳米金属;表面活性;催化;高指数晶面 1.纳米材料的表面与界面 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。强烈的表面效应,使超微粒子具有高度的活性。如将刚制成的金属超微粒子暴露在大气中,瞬时就会氧化,若在非超高真空环境,则不断吸附气体并发生反应。[1] 纳米晶体是至少有一个维度介于1到100纳米之间的晶体。纳米材料主要由晶粒和晶粒界面2部分组成,二者对纳米材料的性能有重要影响。纳米材料微观结构与传统晶体结构基本一致,但因每个晶粒仅包含着有限个晶胞,晶格点阵必然会发生一定程度的弹性畸变,其内部同样会存在各种缺陷,如点缺陷、位错、孪晶界等。纳米金属粒子的形状、粒径、颗粒间界、晶面间界、杂质原子、结构缺陷等是影响其催化性能的重要因素。纳米材料中,晶界原子质量分数达15%~50%,晶界上的原子排列极为复杂,尤其三相或更多相交叉区,原子几乎是自由的、孤立的,其量子力学状态和原子、电子结构已非传统固体物理、晶体理论所能解释。金属纳米晶体研究中,发现面心立方结构纳米金属如 Al、Ni、Cu 和密排六方结构Co都存在孪晶和层错缺陷,Cu纳米金属中存在晶界滑移。 2.金属纳米晶体的催化性能 近年来,关于纳米微粒催化剂的大量研究表明,纳米粒子作为催化剂,表现出非常高的催化活性和选择性。这是因为纳米微粒尺寸小,位于表面的原子或分子所占的比例非常大,并随纳米粒子尺寸的减小而急剧增大,同时微粒的比表面积及表面结合能迅速增大。纳米颗粒表面原子数的增加、原子配位的不足必然导致了纳米结构表面存在许多缺陷。从化学角度看,表面原子所处的键合状态或键

影响纳米材料光催化性能的因素

二、影响纳米材料光催化活性的因素。 1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H 2 O的氧化 还原势负,才能产生H 2,价带顶必须比O 2 /H 2 O(+的氧化还原势正,才能产生O 2 ,。 因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半 导体禁带宽度Eg应至少大于。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO 2 是目前认为最 好的光催化剂之一。TiO 2 主要有两种晶型—锐钛矿和金红石,两种晶型结构均可 由相互连接的TiO 6 八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙()略大于金红石(),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在对光催化活性可能起着非常重要的影响。有的缺陷可能会成为电子或空穴的捕获中心,抑制了两者的复合,以至于光催化活性有所提高,但也有的缺陷可能成为

纳米金属材料的进展与挑战

纳米金属材料进展和挑战 1 引言 40多年以前,科学家们就认识到实际材料中的无序结构是不容忽视的。许多新发现的物理效应,诸如某些相转变、量子尺寸效应和有关的传输现象等,只出现在含有缺陷的有序固体中。事实上,如果多晶体中晶体区的特征尺度(晶粒或晶畴直径或薄膜厚度)达到某种特征长度时(如电子波长、平均自由程、共格长度、相关长度等),材料的性能将不仅依赖于晶格原子的交互作用,也受其维数、尺度的减小和高密度缺陷控制。有鉴于此,HGleitCr认为,如果能够合成出晶粒尺寸在纳米量级的多晶体,即主要由非共格界面构成的材料。 例如,由50%(invol.)的非共植晶界和50%(in vol.)的晶体构成],其结构将与普通多晶体(晶粒大于lmm)或玻璃(有序度小于2nm)明显不同,称之为纳米晶体材料(nanocrystalline materials)。后来,人们又将晶体区域或其它特征长度在纳米量级范围(小于100nn)的材料广义定义为纳米材料或纳米结构材料(nanostructuredmaterials)。由于其独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,其领域涉及物理、化学、生物、微电子等诸多学科。目前,广义的纳米材料的主要l)清洁或涂层表面的金属、半导体或聚合物薄膜;2)人造超晶格和量子讲结构;功半结晶聚合物和聚合物混和物;3)纳米晶体和纳米玻璃材料;4)金属键、共价键或分子组元构成的纳米复合材料。 经过最近十多年的研究与探索,现已在纳米材料制备方法、结构表征、物理和化学性能、实用化等方面取得显著进展,研究成果日新月异,研究范围不断拓

宽。本文主要从材料科学与工程的角度,介绍与评述纳米金属材料的某些研究进展。 2纳米材料的制备与合成材料的纳米结构化可以通过多种制备途径来实现。 这些方法可大致归类为两步过程和一步过程.两步过程是将预先制备的孤立纳米颗粒因结成块体材料。制备纳米颗粒的方法包括物理气相沉积(PVD)、化学气相沉积(CVD)、微波等离子体、低压火焰燃烧、电化学沉积、溶胶一凝胶过程、溶液的热分解和沉淀等,其中,PVD法以惰性气体冷凝法最具代表性。一步过程则是将外部能量引入或作用于母体材料,使其产生相或结构转变,直接制备出块体纳米材料。诸如,非晶材料晶化、快速凝固、高能机械球磨、严重塑性形变、滑动磨损、高能粒子辐照和火花蚀刻等。目前,关于制备科学的研究主要集中于两个方面:l)纳米粉末制备技术、理论机制和模型。目的是改进纳米材料的品质和产量; 2)纳米粉末的固结技术。以获得密度和微结构可控的块体材料或表面覆层。 3 纳米材料的奇异性能 1)原子的扩散行为原子扩散行为影响材料的许多性能,诸如蠕变、超塑性、电性能和烧结性等。纳米晶Co的自扩散系数比Cu的体扩散系数大14~16个量级,比Cu的晶界自扩散系数大3个量级。Wurshum等最近的工作表明:Fe在纳米晶N中的扩散系数远低于早期报道的结果。纳米晶Pd的界面扩散数据类似于普通的晶界扩散,这很可能是由于纳米粒子固结成的块状试样中的残留疏松的影响。他们还报道了Fe在非晶FeSiBNbCu(Finemete)晶化形成的复相纳米合金(由Fe3Si纳米金属间化合物和晶间的非晶相构成)中的扩散要比在非晶合金中快10~14倍,这是由于存在过剩的热平衡空位。Fe在Fe-Si纳米晶中的扩散由空位调节控制。 2)力学性能目前,关于纳米材料的力学性能研究,包括硬度、断裂韧性、压缩和拉伸的应力一应变行为、应变速率敏感性、疲劳和蠕变等已经相当广泛。所研究的材料涉及不同方法制备的纯金属、合金、金属间化合物、复合材料和陶瓷。研究纳米材料本征力学性能的关键是获得内部没有(或很少)孔隙、杂质或裂纹的块状试样。由于试样内有各种缺陷,早期的许多研究结果已被最近取得的结果所否定。样品制备技术的日臻成熟与发展,使人们对纳米材料本征力学性能的认识不断深入。

纳米材料在光催化中的应用

纳米材料在光催化中的应用 姓名:杨明学号:5400209157 班级:工管093班 摘要: 纳米技术是当今世界最有前途的决定性技术。以半导体材料为催化剂光催化氧化水中有机污染物在近年来受到广泛关注,许多研究工作者在有机物光催化氧化方面进行了大量研究工作,发现卤代芳香烃、卤代脂肪烃、有机酸类、染料、硝基芳烃、取代苯胺、多环芳烃、杂环化合物、烃类、酚类、表面活性剂、农药等都能有效地进行光催化反应,除毒、脱色、生成无机小分子物质,最终消除对环境的污染。纳米材料是晶粒尺寸小于100 nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度硬度增大、低密度、低弹性模量、高电阻低热导率等(1)。正是因为纳米材料具有这些优良性能,因此纳米材料在今后一定有着广泛的应用。 引言: 此法能处理多种污染物,适用范围广,特别是对难降解有机物具有很好的氧化分解作用;还具有反应条件温和,设备简单,二次污染小,易于操作控制,对低浓度污染物及气相污染物也有很好的去除效果;催化材料易得,运行成本低;可望用太阳光为反应光源等优点,是一种非常有前途的污染治理技术。 关键字:纳米纳米材料纳米材料光催化纳米TiO2 水热合成法 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000—8000nm,人体红细胞的直径一般为3000—5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃(2)。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1—100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 纳米TiO2在光催化领域已经显示出广阔的应用前景.但是,由于TiO2仅仅能吸收5%紫外区附近的太阳光而限制了它的广泛应用,许多研究试图通过表面改性与掺杂来扩大它的光谱响应范围和提高它的催化活性。有选择性的进行掺杂已被证明是一种提高半导体氧化物光催化活性的极其有效的方法,掺入一定的金属阳离子能极大的提高TiO2的光催化效率,最近有大量的关于通过掺杂来提高TiO2的光催化性能的报道,掺杂的半导体光催化材料由于其物理和光学性质的改变,通过扩展光响应范围和提高光生电荷的分,从而提高了光催化性能(2)。 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景(3)。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。纳米粒子的粒径远小于光波波长。与入射光有交互作用,光透性可以通过控制粒径和气孔率而加以精确控制,在光感应和光过滤中应用广泛。由于量子

金属纳米材料的应用研究

金属纳米材料的应用与研究 【前言】著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”(bottom up) 出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。”[1] 1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。1982年,科学家发明研究纳米的重要工具--扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。 【摘要】纳米技术是当今世界最有前途的决定性技术。文章简要地概述了纳米技术,纳米材料的结构和特殊性质以及纳米纳米材料各方面的性能在实际中的应用,并展望了纳米材料的应用前景。 1.纳米科学和技术 1.1 纳米科技的定义 纳米科技是20世纪80年代末诞生并正在崛起的新科技,是一门在0.1~ 100 nm尺度空间内,研究电子、原子和分子运动规律和特性的高技术学科。其涵义是人类在纳米尺寸(10-9--10-7m)范围内认识和改造自然,最终目标是通过直接操纵和安排原子、分子而创造特定功能的新物质。纳米科技

是现代物理学与先进工程技术相结合的基础上诞生的,是一门基础研究与应用研究紧密联系的新兴科学技术。其中纳米材料是纳米科技的重要组成部分。 1.2 纳米科技的内容 纳米科技主要包含:纳米物理学;纳米电子学;纳米材料学;纳米机械学;纳米生物学;纳米显微学;纳米计量学;纳米制造学…… 1.3 纳米科技的内涵 第一:纳米科技不仅仅是纳米材料的问题。目前科技界普遍公认的纳米科技的定义是:在纳米尺度上研究物质的特性和相互作用以及如何利用这些特性和相互作用的具有多学科交叉性质的科学和技术。纳米科技与众多学科密切相关,它是一门体现多学科交叉性质的前沿领域。现在已不能将纳米科技划归任何一个传统学科。如果将纳米科技与传统学科相结合,可产生众多的新的学科领域,并派生出许多新名词。这些新名词所体现的研究内容又有交叉重叠。若以研究对象或工作性质来区分,纳米科技包括三个研究领域:纳米材料;纳米器件;纳米尺度的检测与表征。其中纳米材料是纳米科技的基础;纳米器件的研制水平和应用程度是人类是否进入纳米科技时代的重要标志;纳米尺度的检测与表征是纳米科技研究必不可少的手段和理论与实验的重要基础。目前人们对纳米科技的理解,似乎仅仅是讲纳米材料,只局限于纳米材料的制备,这是不全面的。主要原因:国内科研经费的资助以及有影响的成果的获得,主要集中在纳米材料领域,而且我国目前纳米科技在实际生活中的应用也最先在纳米材料这一领域表现出来。我国现在300余家从事纳米科技研发的公司也主要是从事纳米材

基于局域表面等离激元共振的金属纳米结构折射率传感

基于局域表面等离激元共振的金属纳米结构折射率传感 高灵敏度的折射率传感结构在生物化学传感等领域有着很大的潜在应用价值。因为金属纳米结构在表面等离激元共振(SPR)产生时会有明显的电磁场增强,所以在高灵敏度传感应用上受到广泛关注。 有两种SPR被用于折射率传感应用:传播的SPR(PSPR)和局域的SPR (LSPR)。由于传播SPR传感需要非常光滑的金属表面,所以对加工精度要求高。 因此,本文这里主要讨论基于LSPR的折射率传感。金属纳米结构的尖端在LSPR产生时会有很强的局域电场,因此带有尖端的金属纳米结构传感灵敏度很高。 本文第一部分工作中我们研究了带有四个尖端的X形金属纳米孔阵列结构的LSPR传感。实验和数值模拟的结果均证实了该结构拥有高折射率传感灵敏度。 此外特异介质结构在磁响应共振产生时也会有很强的局域电场,因此他们可以应用于高灵敏度折射率传感。本文余下的工作就是制备用于传感的特异介质结构。 金属纳米环形圆盘结构有很大的局域电场和周围用于传感的电介质环境相 互叠加的空间。X形金属纳米颗粒结构有四个尖端,在LSPR产生时会有很强的局域电场。 所以上面提的这2种结构都有很高的传感灵敏度。基于此,我们制备了由金属纳米环形圆盘、电介质层和金属膜以及由X形金属纳米颗粒、电介质层和金属膜组成的环形圆盘和X形2种特异介质结构。 实验测试和数值模拟证实了这2种结构有着非常高的传感灵敏度。本文的主要工作分为如下几个方面:1.X形金属纳米孔阵列折射率传感带有尖端的金属纳

米结构在产生LSPR共振时有着很强的局域电场。 这一现象使得局域的电场与周围电介质环境的相互作用就很强,因此这种结构有着高传感灵敏度。基于此,我们制备了带有四个相对尖端的X形金属纳米孔阵列结构。 四个尖端的存在使得电场在LSPR产生时被很好的局域和增强了。透射光谱的实验测试结果表明了该结构的折射率传感灵敏度可以达到945nm RIU-1,高于其他诸如圆环形和月亮形这样的拥有高折射率传感灵敏度的金属纳米结构。 我们通过使用电介质支撑柱将X形金属孔阵列支撑起来远离玻璃衬底来增加局域电场与周围用于传感的电介质环境的叠加区域,然后减少尖端间距进一步增强局域电场。经过这两步之后,该结构在近红外区域传感灵敏度达到了非常高的1398nm RIU-1。 这一高传感灵敏度使得该结构在芯片集成高灵敏度生物医学传感和光学集成器件中有很大的潜在应用。2.环形圆盘特异介质折射率传感由于磁共振的产生导致特异介质结构周围有很强的局域电场。 这使得局域的电场与周围用于传感的电介质环境有强相互作用。因此特异介质有很高的传感灵敏度。 环形圆盘金属纳米结构在LSPR共振时比其他如圆盘和球形金属纳米结构有着更大的局域电场与周围用于传感的电介质环境相互叠加的区域,因此该结构有更高的传感灵敏度。基于上面提的这两点,我们制备了在金属膜上由电介质层支撑的金属环形圆盘构成的特异介质结构。 反射光谱的测量表明该结构的传感灵敏度可达到1304nm RIU-1.我们通过增加电介质层的厚度和环形圆盘内半径进一步的增加局域电场和电介质环境相互

异质结纳米材料光催化性能

密级★保密期限:(涉密论文须标注) Z S T U Zhejiang Sci-Tech University 硕士学位论文 Master’s Thesis 中文论文题目: p-n型Cu2O/TiO2异质结纳米材料的结构及其光催化性能研究 英文论文题目:Structure and photocatalytic performance of p-n heterojunction Cu2O/TiO2 nanomaterals 学科专业:应用化学 作者姓名:周冬妹 指导教师:王惠钢 完成日期:2015年1月

浙江理工大学学位论文独创性声明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得浙江理工大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。 学位论文作者签名: 签字日期:年月日

目录 中文摘要 ..................................................................................................................................... I Abstract .......................................................................................................................................... II 第一章前言. (1) 1.1背景 (1) 1.2文献综述 1.2.1纳米TiO2概述 (1) 1.2.2纳米Cu2O概述 (2) 1.2.3 p-n异质结用于光催化的基本原理 (2) 1.2.4p-n型Cu2O/TiO2异质结纳米材料光催化反应的研究进展 (4) 1.3本课题的选题思路及研究内容 (6) 参考文献 (7) 第二章还原法制备的Cu2O/TiO2异质结纳米颗粒及其光催化性能 (11) 2.1引言 (11) 2.2实验 (11) 2.2.1主要试剂和仪器 (11) 2.2.2实验方法和步骤 (12) 2.3实验结果与讨论 (13) 2.3.1Cu2O/TiO2颗粒的表征 (13) 2.3.1.1XRD表征 (13) 2.3.1.2XPS表征 (14) 2.3.1.3SEM与TEM表征 (15) 2.3.1.4PL表征 (17) 2.3.1.5DRS表征 (18) 2.3.2光催化性能实验 (19) 2.3.2.1光催化降解装置 (19) 2.3.2.2对亚甲基蓝的光催化降解性能 (19) 2.3.3Cu2O/TiO2复合材料中Cu2O颗粒的粒径调控 (20) 本章小结 (23)

金属纳米微粒晶体结构的稳定性及其结合能

万方数据

万方数据

万方数据

万方数据

万方数据

548中固有色金属学报2009年3月降低,随着微粒尺寸的增加趋近于块体结合能。 2)在一定形状下,在一定的临界尺寸时纳米微粒 bcc结构的结合能和fee结构的结合能相等。当微粒尺 寸大于该临界尺寸时,bee结构更稳定,小于该尺寸 时,fee结构更稳定。 3)球形和正四面体形可以看作近正多面体形的 两个极限,多面体形微粒发生结构转变的临界尺寸也 介于两个极限尺寸之间,这和v、Cr、Nb、Mo、Ta、 W和Fe元素纳米微粒在文献中报道的结果一致。 REFERENCES 【2]【3】【4】[5】【6】【7】【8】【9】9CHATTOPADHYAYPP'PABISK.MANNAI.Ametastable allotropictransformation inNbinducedby planetaryball milling[J].MaterSciEngA,2001.304/306:424-428. MANNAI。CHATTOP_ADHYAYPP’BANHARTF'FECHTHJ Formationofface--centered—?cubiczirconiumbymechanical attrition[J].AppliedPhysicsLetters,2002,81(22):4136—4138. KIT八KAMIO.SATOH.SHIⅣ【ADAY.Sizeeffectonthe crystalphaseofcobaltfineparticles[J].PhysicsReviewB,1997, 56(211:13849—13854. HANEDAkZHOUZX,MOR刚SHAH.Low-temperature stablenanometer-sizefcc—Feparticleswithnomagnetic ordering[J].PhysicsReviewB,1992,46(21):13832—13837. HUHSH,KIMHK.PARKJW.LEEGH.Criticalclustersize ofmetallicCrandMonanoclusters[J].PhysicsReviewB,2000, 62(4):2937—2943. TESSIER凡BRENNECKEF,STADTHERRA.Reliablephase stabilityanalysis forexcessGibbsenergymodels[J].Chemical EngineeringScience,2000,55:1 785—1796. MENGQ。zHOUN,RONGY,CHENS,HSUTYxuZu-yao. Sizeeffect00theFenanoerystallinephasetransformation[J]. ActaMaterialia,2002.50:4563—4570. QIWH.Size,shapeandstructuredependentcohesiveenergy andphasestabilityofmetallicnanocrystals[J].SolidState ComratmicatiOIlS,2006,l37:536--539. ToMA7NEKD,MIⅨHEluEES。BENNERMANNKH- 【lO】 【12] 【13】 【14】 Simpletheoryfortheelectronicandatomicstructureofsmall clusters[J].PhysicsReviewB,1983,28(2):665-673. SUNCQ,WANGYTAYBkLIS,HUANGH,ZHANGY Correlationbetweenthemeltingpointofananosolidandthe cohesiveenergyofasurfaceatom[J].JournalofPhysics ChemicalB,2002,106(41):10701—10705. .RANGQ,LIJC,CHIBQ.Size-dependentcohesiveenergyof nanocrystals[J].ChemicalPhysicsl捌[1ct2002,366(5/6): 55l-554. NANDAKI(,SAHUSN.BEHERASN.Liquid?dropmodel forthesize?dependentmeltingoflow?dimensionalsystems[j]. PhysicsReviewA,2002,66(1):013208-013209. QIWH,WANGMP'XUGYTheparticlesizedependenceof cohesiveenergyofmetallicnanoparticles[J].ChemicalPhysical Letter,2003,376(3/4):538—538. ⅪMHK,HUHSH,PARKJWTheclustersizedependenceof thermalstabilitiesofbothmolybdenumand tungsten nanoclusters[J].ChemicalPhysicsLetter,2002,354(1/2): 165-172. Q1wH,WANGMPSizeandshapedependentmelting temperatureofmetallicnanoparticles[J].MaterialsChemistry andPhysics。2004,88(2/3):280—284. NAHERU。BJRNHOLMS,FRAUENDORFS,GARCIASF' GUETF.Fissionofmetalclusters[J].PhysicsReports,1997, 285(6):245-320. }兀兀TGRENRDESAIDPD,HAWKINST'GLEISERM, KELLYKK,WAGMANKK.Electedvaluesofthe thermodynamicpropertiesoftheelements[M].Cleveland: AmericanSocietyofMetals,1973. PETTIFORDGTheoryofthecrystalstructuresoftransition metals[J].JournalPhysicsC,l970,3:367—377. 张邦维,胡望宇,舒小林.嵌入原子方法理论及其在材料科 学中的应用【M】.长沙:湖南大学出版社,2002:249-260. ZHANG Bang?wei,HUWang—yu,SHUXiao—lin.Theoryof embeddedatommethodanditsapplicationtOmaterials[M]. Changsha:HunanUniversity,2002:249—260. (编辑龙?际中) 珂 q 刀 明 卅 【  万方数据

浅谈纳米材料光催化技术研究现状

龙源期刊网 https://www.wendangku.net/doc/c812259215.html, 浅谈纳米材料光催化技术研究现状 作者:林雪牛文成 来源:《神州》2012年第29期 摘要:近年来,人们对半导体纳米光学材料的研究越来越广泛。从1972年Fujishima和Honda利用TiO2电极实验发现光解水现象开始,人们逐步开始对半导体材料进行研究。本文就纳米材料光催化技术研究现状和发展前景进行了简要介绍。 关键词:纳米材料,光催化 一、纳米材料的分类 人类对材料科学的探索与研究已有上千年的历史了,但是纳米材料作为新型材料的一种,其从发展到现在也不过二三十年的时间。1984年,德国著名学者通过现代技术将一个6nm的铁晶体压制成纳米块,并详细的分析了其内部结构的改变而引起的性能差异。发现从强度和硬度上都较普通钢铁强很多倍,并且在低温下失去传导能力,随着自身晶粒尺寸的减小,材料的熔点也会随之降低。1990年,纳米科技大会在美国第一次胜利举办,《纳米技术杂志》的正 式创刊标志着纳米科技从此正式开山立派。而我国的纳米领域的研究基本与国际发展同步,目前已具备开展纳米科技的研究条件,国家重点研究机构对相关高科技的研究步伐不断加快,部分领域已经与国际先进水平持平,这些都为实现跨越式发展提供了可能。近年来,我国通过结合国家战略需求,对纳米技术在能源、环境、资源和污水处理等领域开展深入研究,纳米材料净化机、助燃剂、固硫剂和降解剂等新型产品相继研究成功。 人们对于一门新学科——纳米材料学的研究已经有一定的进展。通常纳米材料以三种方式分类:按结构分类、按化学组分分类和按应用分类: 1、按结构分,我们通常将其分为四类:第一类是具有原子簇与原子束结构的零维纳米材料;第二类是具有纤维结构的一维纳米材料;第三类是具有层状结构的二维纳米材料;第四类是晶粒尺寸至少在一个方向上在纳米量级的单位纳米材料。 2、按化学组分,通常又有两种分类方式,一种是按材料的化学性质分类,另一种是按材料的物理性质分类。按材料化学性质,我们通常将其分为纳米金属材料,纳米晶体材料,纳米陶瓷,纳米玻璃,纳米高分子和纳米复合材料;按材料物理性质,我们可将纳米材料分为纳米半导体材料,纳米磁性材料,纳米非线性光学材料,纳米铁电体材料,纳米超导材料和纳米热电材料等等。 3、按应用,我们可将其分为纳米电子材料、纳米光催化材料、纳米生物医学材料、纳米光敏材料、纳米储能材料等等。 二、纳米光催化技术的研究现状

tio2光催化技术

纳米TiO2光催化剂安全环保性能研究 作者:北京化工大学徐瑞芬教授 纳米科技的发展为人类治理环境开辟了 一条行之有效的途径,我们可以合理利用 自然光资源,通过纳米TiO2半导体的光催化效应,在材料内部由吸收光激发电子,产生电子-空穴对,即光生载流子,迅速迁移到材料表面,激活材料表面吸附氧和水分,产生活性氢氧自由基(oOH)和超氧阴离子自由基(O2·-),从而转化为一种具有安全化学能的活性物质,起到矿化降解环境污染物和抑菌杀菌的作用。 纳米TiO2光催化应用技术工艺简单、成本低廉,利用自然光即可催化分解细菌和污染物,具有高催化活性、良好的化学稳定性和热稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景的绿色环保催化剂之一。 本研究在用亚稳态氯化法合成纳米二氧化钛的技术基础上,根据光催化功能高效性的需要,进行掺杂和表面处理,制成特有的在室内自然光和黑暗区微光也能显著发挥光催化作用的纳米二氧化钛,将其作为功能粉体材料,复合到塑料、皮革、纤维、涂料等材料中,研制成无污染、无毒害的纳米TiO2光催化绿色复合材料,充分发挥抗菌、降解有机污染物、除臭、自净化的功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间的多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用的环保材料。 2 纳米TiO2光催化剂对环境的净化功能研究 2.1室内环境的净化 随着建筑材料中各种添加物的使用,室内装饰材料和各种家用化学物质的使用,室内空气污染的程度越来越严重。调查表明,室内空气污染物浓度高于室外,甚至高于工业区。据有关部门测试,现代居室内空气中挥发性有机化合物高达300多种,其中对人体容易造成伤害、甚至致癌的就有20多种,极大地威胁着人类的健康生活。随着人们健康和环保意识的增强,人们对具有光催化净化室内外空气、抗菌杀毒等功能性绿色环保材料的需求日益迫切,纳米TiO2光催化剂的出现为环境净化材料的发展开辟了一片新天地,也为人们对健康环境需求的解决提供了有效的途径。

纳米材料与纳米结构21个题目完整答案

1.简单论述纳米材料的定义与分类。 2.什么是原子团簇? 谈谈它的分类. 3.通过Raman 光谱中任何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径? 4.论述碳纳米管的生长机理。 5.论述气相和溶液法生长纳米线的生长机理。 6.解释纳米颗粒红外吸收宽化和蓝移的原因。 7.论述光催化的基本原理以及提高光催化活性的途径。 8.什么是库仑堵塞效应以及观察到的条件? 9.写出公式讨论半导体纳米颗粒的量子限域效应和介电限域效应对其吸收边,发光峰的影响。 10.纳米材料中的声子限域和压应力如何影响其Raman 光谱。 11.论述制备纳米材料的气相法和湿化学法。 12.什么是纳米结构,并举例说明它们是如何分类的,其中自组装纳米结构形成的条件是什么。 13.简单讨论纳米颗粒的组装方法 14.论述一维纳米结构的组装,并介绍2种纳米器件的结构。 15.论述一维纳米结构的组装,并介绍2种纳米器件的结构。 16.简单讨论纳米材料的磁学性能。 17.简述“尺寸选择沉淀法”制备单分散银纳米颗粒的基本原理 18.简述光子晶体的概念及其结构 19.目前人们已经制备了哪些纳米结构单元、复杂的纳米结构和纳米器件。并说明那些纳米结构应该具有增强物理和化学性 能。 20.简单论述单电子晶体管的原理。 21.简述纳米结构组装的工作原理。 1.简单论述纳米材料的定义与分类。 答:最初纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。 现在广义: 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。 如果按维数,纳米材料可分为三大类: 零维:指在空间三维尺度均在纳米尺度,如:纳米颗粒,原子团簇等。 一维:指在空间有两处处于纳米尺度,如:纳米丝,纳米棒,纳米管等。 二维:指在三维空间中有一维处在纳米尺度,如:超薄膜,多层膜等。 因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元,分别又具有量子点,量子线和量子阱之称。

影响纳米材料光催化性能的因素

1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H 2 O的氧化 还原势负,才能产生H 2,价带顶必须比O 2 /H 2 O(+的氧化还原势正,才能产生O 2 ,。 因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半 导体禁带宽度Eg应至少大于。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO 2 是目前认为最 好的光催化剂之一。TiO 2 主要有两种晶型—锐钛矿和金红石,两种晶型结构均可 由相互连接的TiO 6 八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙()略大于金红石(),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在

金属纳米结构材料的研制

大连理工大学 硕士学位论文 金属纳米结构材料的研制姓名:陈慧玉 申请学位级别:硕士 专业:无机化学 指导教师:辛剑;汤皎宁 20050601

大连理工大学硕士学位论文 摘要 高温液相法是近些年发展起来的制备磁|生=金属纳米粒子的新方法,包括高温液相还原法、高温液相醇解法和金属有机化合物热分解法。本文首先介绍了采用高温液相醇解法制备钴纳米粒子,即在二苯醚溶剂中,通过复合表面活性剂油酸和乙二醇辛基苯基醚(OP)的保护,用1,10一癸二醇还原钴盐制备了粒径约20hm的钴纳米粒子,通过XRD、XPS、TEM和激光粒度仪的表征,发现该种方法制备的钴纳米粒子具有hcp相,是未被氧化的单质钴,呈球状颗粒。改变工艺条件,首次制备出纳米钴环,这种钴环的外直径约65nnl,内直径约55rim。 以高分子聚乙烯吡咯烷酮(PVP)作为表面活性剂,在乙醇体系中用水合联氨还原钴盐(CoOl。?6}120)而得到粒径约30hm的磁性钴纳米粒子,通过XRD检验确认该种方法合成的钴纳米粒子具有hcp相;XPS的表征结果显示:钴粒子表面价态为零价,说明制备过程中没有被氧化;粒子近似圆球形,在正己烷中分散效果较好。改变工艺条件,以PvP作为软模板,首次制各出钴纳米多孔棒和普通钴纳米棒。钴纳米多孔棒的长度约为200~500nm,直径在20~40nm,棒上的孔径约为8nm。随着反应物中钴盐浓度的增加,钴纳米多孔棒的长度基本不变,而直径增加到40~60nm。普通钴纳米棒的长度约为3~41xm,直径约为70~lOOnm。本论文分别对钴纳米多孔棒和普通钴纳米棒的形成机理作了简单的探讨。 采用同样的合成方法,利用形成普通钴纳米棒的机理,首次制备出普通镍纳米棒。经过XRD、XPS和TEM的表征,发现这种棒长度约为500~650nm,直径约为50nm,为fcc相的零价单质镍。同时,还制各出粒径在40hm左右、具有fcc相镍纳米粒子;粒径约在35rim、具有fcc相的铜纳米粒子;粒径在50nm左右、具有fcc相的银纳米粒子,这些纳米粒子均为单质金属,制备过程中没有被氧化,TEM照片显示其均为球形,在正己烷中分散较好。 关键词:金属盐醇解法,钴,镍,水合联氨

K Lu金属中发现超硬超高稳定性纳米层片结构

金属中发现超硬超高稳定性纳米层片结构 图1.表面机械碾磨处理在金属镍中形成的超细晶结构(A)和纳米层片结构(B,C)。(D)为镍中不同微观结构的硬度与结构粗化温度关系,纳米层片结构(NL)兼具超高硬度和超高稳定性。 对金属材料进行强塑性变形可显著细化其微观组织,使晶粒细化至亚微米(0.1~1微米)级从而大幅度提高其强度。但进一步塑性变形时晶粒不再细化,材料微观结构趋于稳态达到极限晶粒尺寸,形成三维等轴状超细晶结构,绝大多数晶界为大角晶界。出现这种极限晶粒尺寸的原因是位错增殖主导的晶粒细化与晶界迁移主导的晶粒粗化相平衡,其实质是超细晶结构的稳定性随晶粒尺寸减小而降低所致。如何突破这一晶粒尺寸极限,进一步细化微观组织,在继续提高金属材料强度的同时提高其结构稳定性,是当今纳米金属材料研究面临的一个重大科学难题。 最近,中国科学院金属研究所沈阳材料科学国家(联合)实验室卢柯研究组在这一科学难题研究上取得重大突破,他们利用自行研发的新型塑性变形技术(表面机械碾磨处理)在金属镍表层成功突破了这一晶粒尺寸极限,获得纳米级厚度并具有小角晶界的层片结构,同时发现这种纳米层片结构兼具超高硬度和热稳定性。这种新型超硬超高稳定性金属纳米结构突破了传统金属材料的强度-稳定性倒置关系,为开发新一代高综合性能纳米金属材料开辟了新途径。 研究表明,塑性变形过程中提高变形速率和变形梯度可有效提高位错增殖及储存位错密度,从而促进晶粒细化进程。为此,卢柯研究组利用表面机械碾磨处理在金属纯镍棒表层实现了高速剪切塑性变形,这种塑性变形可在材料最表层同时获得大应变量、高应变速率和高应变梯度。随着距表面深度增加,应变量、应变速率和应变梯度呈梯度降低,形成呈梯度分布的微观结构。在距离表面10~50微米深度形成了具有小角晶界的纳米层片结构,层片平均厚度约为20nm,比纯镍中的变形晶粒尺寸极限小一个数量级,其硬度高达6.4 GPa,远远超过其他变形方式细化的纯镍硬度。测量表明,纳米层片结构的结构粗化温度高达506℃,比同成分材料超细晶结构晶粒粗化温度高40℃。纳米尺度的层片厚度是超高硬度的本质原因,而高热稳定性源于其中的平直小角晶界和强变形织构。这种新型超硬超高稳定性金属纳米结构有望在工程材料中得到应用以提高其耐磨性和疲劳性能,为开发新一代的高综合性能纳米金属材料开辟了新途径。 该研究得到科技部国家重大科学研究计划和国家自然基金资助。 该研究成果发表于2013年10月18日出版的《科学》(Science)周刊。

相关文档