文档库 最新最全的文档下载
当前位置:文档库 › 固定床反应器的数学模型..

固定床反应器的数学模型..

固定床反应器的数学模型..
固定床反应器的数学模型..

固定床反应器的数学模型

1、概述

凡是流体通过不动的固体物料所形成的床层而进行反应的装置都称作固定床反应器,其中尤以用气态的反应物料通过由固体催化剂所构成的床层进行反应的气-固相催化反应器占最主要的地位。如炼油工业中的催化重整,异构化,基本化学工业中的氨合成、天然气转化,石油化工中的乙烯氧化制环氧乙烷、乙苯脱氢制苯乙烯等等。此外还有不少非催化的气-固相反应,如水煤气的生产,氮与电石反应生成石灰氮(CaCN2)以及许多矿物的焙烧等,也都采用固定床反应器。固定床反应器之所以成为气固催化反应器的主要形式,是由于具有床内的流体轴向流动可看作为平推流,在完成同样的生产任务时,所需的催化剂用量(或反应器体积)最小;床内流体的停留时间可严格控制,温度分布可适当调节,因而有利于提高化学反应的转化率和选择性;床内催化剂不易磨损,可以在高温高压下操作等优点,但固定床中传热较差,对于热效应大的反应过程,传热与控温问题就成为固定床技术中的难点和关键,为解决这一问题而提出了多种形式的床层结构。

2、固定床反应器的结构形式

固定床反应器类型很多.按换热方式不同可分为:绝热式反应器和换热式反应器。

2.1绝热式反应器

在反应器中的反应区(催化剂层)不与外界换热的称为绝热式反应器。一般来说,反应热效应小;调节进A反应器的物料温度,就可使反应温度不致超出反应允许的温度范围的反应过程等可采用绝热式反应器。绝热式反应器具有结构简单,反应空间利用率高,造价便宜等优点。图1是绝热床反应器的示意图。

如果反应热效应较大,为了减小反应区内轴间温度分布不均,可将绝热反应器改成多段绝热式反应器,在各段之间进行加热或冷却,它可使各段反应区接近适宜温度。图2是多段绝热床反应器的示意图。

总之,不论是吸热或放热的反应,绝热床的应用相当广泛。特别对大型的,高温的或高压的反应器,希望结构简单,同样大小的装置内能容纳尽可能多的催化剂以增加生产能力(少加换热空间),而绝热床正好能符合这种要求。不过绝热床的温度变化总是比较大的,而温度对反应结果的影响也是举足轻重的,因此如何取舍,要综合分析并根据实际情况来决定。此外还应注意到绝热床的高/径比

不宜过大,床层填充务必均匀,并注意气流的预分布,以保证气流在床层内的均匀分布。

图1 绝热式反应器

图2 多段绝热床反应器的示意图

2.2换热式反应器

为了改善热效应大的反应过程反应区内的温度条件,可在反应区内进行热交换,这种反应器称为换热式反应器。换热式反应器又有自热式和外热式两种。自热式是以原料气体来加热或冷却反应区(图3),外热式则是用载热体加热或冷却反应区换热式反应器以列管式为多,通常在管内放催化剂,管外走热载体(图

4)。列管的管径一般取25~50mm为宜,催化剂的粒径应小于管径的8倍,以防管壁处出现沟流。

图3

图4 自热式反应器示意图

3、固定床反应器的数学模型

反应器是整个化工生产过程的核心装置,其中固定床反应器是应用较为广泛的反应设备,建立能准确描述其特性的数学模型,不但可以给反应器设计和最优化操作提供理论依据,更减少了工作量。实现其优化操作,具有重要意义。

描述固定床反应器的数学模型按其传递过程的不同可分为拟均相模型和非均相模型两大类。拟均相模型不考虑流体与催化剂间的传热、传质阻力,把流体和催化剂看成均相物系,催化剂粒子和流体之间没有温度和浓度上的差别。拟均相模型又可分为拟均相一维模型和拟均相二维模型(表1)。非均相模型则考虑了流体与催化剂外表面间的温度梯度和浓度梯度,须对流体和催化剂分别列出物料衡算式。

表1 固定床反应器的数学模型

拟均相模型 非均相模型 一维 基本模型 (A-Ⅰ) +相间梯度 (B-Ⅰ) +轴向混合 (A-Ⅱ) +颗粒内梯度(B-Ⅱ) 二维 +径向混合 (A-Ⅲ)

+径向梯度 (B-Ⅲ)

3.1拟均相基本模型(A-I)(拟均相一维活塞流模型)

将实际非均相反应系统简化为均相系统处理。适用于:(1)化学反应为控制步骤;(2)流固相间或固相内部存在传递阻力;

“拟均相”是只指将实际上为非均相的反应系统简化为均相系统处理,即认为流体相和固体相之间不存在浓度差和温度差。

“一维”的含义是只在流动方向上存在浓度梯度和温度梯度,而垂直于流动方向的同一截面上各点的浓度和温度均相等。

“活塞流”的含义则是在流动方向上不存在任何形式的返混。 物料衡算方程:

当为等摩尔反应时,

能量衡算方程: 管内: 管外:

流动阻力方程:

()()()d d d d A A A B A A

B A N N N r V N r V

ρρ=++--

=-()()d d d d A

B A A B A uA c r A z u c r z ρρ-

=--=-()()()d 4d g p

R B A c t

T U

u c H r T T z d ρ?ρ=----()d 4d c c c pc

c t

T U

u c T T z d ρ=-2d d g k p

u p

f z d ρ-=

边界条件:

对于绝热反应器:

对反应物流和载热体并流的列管式反应器:

求解方法用龙格库塔法。

对反应物流和载热体逆流的列管式反应器:

求解方式:打靶法。

3.2拟均相轴向分散模型(A-Ⅱ)

反应物流通过固体颗粒床层是不断分流和汇合,并作绕流流动,造成一定程度的轴向混合(返混),用分散模型描述。

管内物料衡算方程: 管内能量衡算方程::

管外EB 和流动阻力方程同拟均相基本模型。 边界条件:

与拟均相基本模型相比,引入轴向混合项的作用主要在于:

(1)降低转化率;

(2)当轴向混合足够大时,反应器可能存在多重定态。

对于反应速率随床层轴向距离单调减小的情形,如果进口条件满足下面两式,可忽略轴向混合影响的判据:

000

0, , , , A A c c z c c T T p p z L T T ======处处0000, , , A A z c c T T p p ====处0000

0, , , , A A c c z c c T T T T p p =====处()22

d d d d A A

ea B A c u c D r z z

ρ-=-()()()

22d d 4d d ea g p R B A c t

T T U

u c H r T T z z d λρ?ρ-+=----()()000

d 0, d d d d d ,

0d d A

A A ea g p ea

A c z u c c D z T

u c T T z

p p c T

z L z z

ρλ=-=--=-====处处

3.3拟均相二维模型(A-Ⅲ)

对于管径较粗或反应热较大,造成径向位置处反应速率和反应物浓度的差别, 需采用二维模型,同时考虑轴向及径向分布。

在列管反应器的某反应管中,以反应管轴线为中心线,取以半径为r ,径向厚度为dr ,轴向高度为dz 的环状微元体,如图5所示

图5 拟均相二维模型

对微元体作组分A 的物料衡算:

气相主体流动自z 面进入微元体的组分A 的量为: 气相主体流动自(z+dz )面流出微元体的组分A 的量为:

从r 面扩散进入微元体的组分A 的量:

()()m

a A P

B A Pe uc d r <<-0

0ρ()()()()h

a P

g W P

B A Pe c u T T d r H <<--?-ρρ00A

rdruc π2?

?

?

????+dz z c c rdru A A π2r

c rdzD A er

??-π2

从r +dr 面扩散出微元体的组分A 的量: 组分A 在微元体内的反应量:

在定态条件下:

进入微元体的量-出微元体的量=微元体反应的量

3.4考虑颗粒界面梯度的活塞流非均相模型(B-I)

对于热效应很大而且速率极快的反应,可能需要考虑流体相和固体相之间的浓度差和温度差。

气相衡算方程:

固相衡算方程:

边界条件:

)

()(222dr r

c r c dzD dr r A

A er ??+??+-π()

A B r rdrdz -ρπ2()()()H r r T r r

T z T

c u r r c r r c D z c u A B er p g A B A A er A

?--+???? ????+??=??--???

? ????+??=??ρλρρ112222能量守恒方程:

物料衡算方程:

00

0,000=??=??=??====r

T r T r

c

z r T T c c r z s

A A A 为任意值处,,为任意值处,,边界条件:

()()()

d d d 4d A

g A As g p s c t c u

k a c c z T U u c ha T T T T z d ρ-=-=---()()()()()

,,g A As A As s B s A As s B k a c c r c T ha T T r c T H ρρ?-=-????-=--????00

0, , A A z c c T T ===处

求解方式:先通过迭代求解固相式后再代入气相式进行数值解微分方程。

3.4考虑颗粒界面梯度和颗粒内梯度的活塞流非均相模型(B-Ⅱ)

当催化剂颗粒内的传热、传质阻力很大时,颗粒内不同位置的反应速率是不均匀的。

气相衡算方程:

固相衡算方程:

气相方程的边值条件:

固相方程的边值条件:

3.4非均相二维模型(B-Ⅲ)

迄今结构最复杂的固定床反应器数学模型,既考虑了沿反应器轴向和径向的浓度分布和温度分布,也考虑了气固相间和固相内部的浓度差和温度差。

该模型在考虑床层内部和床层与器壁的传热时,都对气相和固相的贡献作了区分。

气相衡算方程:

)(dz

d As A g A

c c a k c u

-=-)(4)(dz dT C t

S p

g T T D U

T T ha c u ---=ρ0)),(()d dc (d d D As

22e =--s s As A T c r ρξξξξ0)),()(()d dT (d d s

22

e =-?-+s s As A T c r H ρξ

ξξξλ0

0,0T T c c z A A ===处,)(d dc -2

As A As

e

c c a k D

d g p -==

ξ

ξ处,0d dT d dc 0s

As ===ξ

ξξ处,

)T T (d dT s s

e

-=-ha ξ

λ

固相衡算方程:

边值条件:

()()s er p g As A g A A er A

T T ha r T r r T z T c u c c a k r c r r c D z c u -=???

? ????+??+??--=???

? ????+??+??-1122

f 22λρ()()

As A g B A c c a k r -=-ρη()()()T T ha r T r r T H r s s

er

B A -=???

?

????+??+?--122λρη()()r

T T T h r

T T T h r

c

z d t r T r T r

c

z r T T c c r z s s er s w s w

er w w

A t s

A A A ??=-??=-=??==??=??=??====λλf f

000

,200

,0,,0为任意值处,为任意值处,为任意值处,

5万吨每年甲醛固定床反应器课程设计参考

目录 5.0×104t/y甲醛生产用固定床反应器设计 (1) Fixed-bed Reactor Design of 5.0×104t/y Formaldehyde (1) 1. 概述 (2) 1.1银法制甲醛生产工艺 (2) 1.2铁钼催化氧化法 (2) 2. 原料、辅助原料、产品的主要技术规格 (4) 2.1银法和铁钼法生产甲醛的技术经济指标 (4) 2.2原辅料规格及消耗配比 (4) 2.3产品质量标准 (5) 3. 反应工段工艺简介 (6) 4. 反应工段工艺计算 (7) 4.1催化反应过程的物料衡算 (7) 4.1.1 计算用原始数据 (7) 4.1.2 化学反应 (7) 4.2合成甲醛过程的热量衡算 (9) 4.2.1 各物质比热容的计算 (9) 4.2.2 各物质焓值的计算 (10) 5.反应器工艺尺寸计算 (12) 5.1反应器型式的确定 (12) 5.2合成甲醛反应器几何尺寸的确定 (12) 5.2.1 设计依据 (12) 5.2.3 列管根数的确定 (15) 5.2.4 列管式固定床反应器壳体内径的确定 (15) 6. 设计体会 (18) 参考文献 (19)

3.6×104t/y甲醛生产用固定床反应器设计 根据自己的产量确定题目 摘要:本文选用铁钼法,以甲醇、空气和水蒸气为原料,经预热、反应、换热后得甲醛产品。设计规模为3.6万吨/年的工业级甲醛。根据反应特征,采用等温固定床列管式反应器,通过物料衡算,确定了反应器的工艺参数、类型及特征尺寸,容器内径1500 mm、列管根数为1805根、三角形排列、管长6000mm。 关键词:甲醛;甲醇;设计;固定床反应器(根据自己的设计选用的路线确定关键词) Fixed-bed Reactor Design of 5.0×104t/y Formaldehyde Abstract:Industrial grade formaldehyde of 50, 000 ton per year was designed via iron molybdenum process, methanol, air, and water vapor as raw material by preheating, the reaction, and heat transfer. According to the reaction characteristics, isothermal packed-bed reactor tube was chose, and at same time according to material balance, process parameters, type and feature size determine. The reactor diameter is 1, 500 mm, the number of tubes is 1805, equilateral triangle arranged and the length of tube is 6000mm. Key words: Formaldehyde; Methanol; Design; Fixed-bed reactor 请根据自己的设计进行润色修改完善!

固定床流化床浆态床的优缺点

固定床反应器 定义:气体流经固定不动的催化剂床层进行催化反应的装置。 特点:结构简单、操作稳定、便于控制、易实现大型化和连续化生产等优点,是现代化工和反应中应用很广泛的反应器。 应用:主要用于气固相催化反应。 基本形式:轴向绝热式、径向绝热式、列管式。 固定床反应器缺点: 床层温度分布不均匀; 床层导热性较差; 对放热量大的反应,应增大换热面积,及时移走反应热,但这会减少有效空间。 流化床反应器(沸腾床反应器) 定义:流体(气体或液体)以较高流速通过床层,带动床内固体颗粒运动,使之悬浮在流动的主体流中进行反应,具有类似流体流动的一些特性的装置。 应用:应用广泛,催化或非催化的气—固、液—固和气—液—固反应。 原理:固体颗粒被流体吹起呈悬浮状态,可作上下左右剧烈运动和翻动,好象是液体沸腾一样,故流化床反应器又称沸腾床反应器。 结构:壳体、气体分布装置、换热装置、气—固分离装置、内构件以及催化剂加入和卸出装置等组成。 优点:传热面积大、传热系数高、传热效果好。进料、出料、废渣排放用气流输送,易于实现自动化生产。 缺点:物料返混大,粒子磨损严重;要有回收和集尘装置;内构件复杂;操作要求高等。 固定床: 一、固定床反应器的优缺点 凡是流体通过不动的固体物料形成的床层面进行反应的设备都称为固定床反应器,而其中尤以利用气态的反应物料,通过由固体催化剂所构成的床层进行反应的气固相催化反应器在化工生产中应用最为广泛。气固相固定床反应器的优点较多,主要表现在以下几个方面: 1、在生产操作中,除床层极薄和气体流速很低的特殊情况外,床层内气体的流动皆可看成是理想置换流动,因此在化学反应速度较快,在完成同样生产能力时,所需要的催化剂用量和反应器体积较小。 2、气体停留时间可以严格控制,温度分布可以调节,因而有利于提高化学反应的转化率和选择性。 3、催化剂不易磨损,可以较长时间连续使用。 4、适宜于高温高压条件下操作。 由于固体催化剂在床层中静止不动,相应地产生一些缺点: 1、催化剂载体往往导热性不良,气体流速受压降限制又不能太大,则造成床层中传热性能较差,也给温度控制带来困难。对于放热反应,在换热式反应器的入口处,因为反应物浓度较高,反应速度较快,放出的热量往往来不及移走,而使

管式反应器课程设计

化学化工学院 化工专业课程设计 设计题目:管式反应器设计 化工系

化工专业课程设计——设计文档质量评分表(100分) 评委签名: 日期:

目录 绪论 .........................................................错误!未定义书签。1设计内容与方法介绍..........................................错误!未定义书签。 反应器设计概述............................................错误!未定义书签。 设计内容..................................................错误!未定义书签。 生产方法介绍..............................................错误!未定义书签。 反应器类型特点............................................错误!未定义书签。 反应器选择及操作条件说明..................................错误!未定义书签。2工艺计算....................................................错误!未定义书签。 主要物性数据..............................................错误!未定义书签。 计算,确定管长,主副反应收率.............................错误!未定义书签。 管数计算..................................................错误!未定义书签。3压降计算公式................................................错误!未定义书签。4催化剂用量计算..............................................错误!未定义书签。5换热面积计算................................................错误!未定义书签。6反应器外径计算..............................................错误!未定义书签。7壁厚计算....................................................错误!未定义书签。 8 筒体封头计算................................................错误!未定义书签。9管板厚度计算................................................错误!未定义书签。10设计结果汇总...............................................错误!未定义书签。11设计小结...................................................错误!未定义书签。

固定床流化床设计计算讲义

炔烃液相选择加氢固定床床反应器设计计算 由于固定床反应器具有结构简单、操作方便、 操作弹性大、建设投资低等优点,而广泛应用于各类油品催化加氢裂化及精制、低碳烃类选择加氢精制等领域。将碳四馏分液相加氢新工艺就是采用单台固定床绝热反应器进行催化选择加氢脱除碳四馏分中的乙基乙炔和乙烯基乙炔等。在工业装置中,由于实际所采用的流速足够高,流体与催化剂颗粒间的温差和浓差,除少数强放热反应外,都可忽略。对于固定床反应器来讲最重要的是处理好床层中的传热和催化剂粒子内扩散传质的影响。 一、固定床反应器设计 碳四馏分选择性加氢反应器一般采用绝热固定床反应器。在工程上要确定反应 器的几何尺寸,首先得确定出一定生产能力下所需的催化剂容积,再根据高径比确定反 应器几何尺寸。 反应器的设计主要依据试验结果和技术要求确定的参数,对反应器的大小及高径比、催化剂床层和液体分布板等进行计算和设计。 1. 设计参数 反应器进口温度: 20℃ 进口压力:0.1MPa 进料量(含氢气进料组分) 体积流量:197.8m 3/h 质量流量:3951kg/h 液相体积空速:400h -1 2. 催化剂床层设计计算 正常状态下反应器总进料量为2040m 3/h 液体体积空速400h -1 则催化剂用量3R V V V /S 2040/400 5.1m ===总 催化剂堆密度3850/B kg m ρ= 催化剂质量850 5.14335B B R m V kg kg ρ=?=?= 求取最适宜的反应器直径D: 设不同D 时,其中高径比一般取2-10,设计反应器时,为了尽可能避免径向的影响, 取反应器的长径比5,则算出反应器的直径和高度为:按正常进料量3 2040m h /及液体 空速400h -1,计算反应器的诸参数: 取床层高度L=5m ,则截面积2R S V /L 5.1/51.02m === 床层直径 1.140D m == 因此,圆整可得反应器内径可以选择1200mm

固定床反应器

4.2.3 固定床反应器的常见结构 固定床反应器的结构型式主要分为绝热式和换热式两类,以适应不同的传热要求和传热方式。 1.绝热式固定床反应器 1.1单段绝热式 绝热式固定床反应器甲醇氧化的薄层反应器 1-矿渣棉2-瓷环3-催化剂 1-催化剂 2-冷却器 特点:反应器结构简单,生产能力大。 缺点:反应过程中温度变化较大。 应用:适用于反应热效应不大的放热反应,反应过程允许温度有较宽变动范围的反应;热效应较大的,但对反应温度不很敏感或是反应速率非常快的过程也可适用。 1.2多段绝热床 多段绝热式固定床反应器 (a)、(b)、(c)中间换热式;(d)、(e)冷激式

根据段间反应气体的冷却或加热方式,多段绝热床又分为中间间接换热式和冷激式。 中间间接换热式 特点:催化剂床层的温度波动小。 缺点:结构较复杂,催化剂装卸较困难 应用:适用于放热反应 冷激式 特点:反应器结构简单,便于装卸催化剂,催化剂床层的温度波动小。 缺点:操作要求较高 应用:适用于放热反应,能做成大型催化反应器 2、换热式固定床反应器 按换热介质不同,可分为对外换热式固定床反应器和自热式固定床反应器。 2.1、对外换热式固定床反应器 以各种载热体为换热介质的对外换热式反应器多为列管式结构,类似于列管式换热器。 列管式固定床反应器 特点:传热面积大,传热效果好,易控制催化剂床层温度,反应速率快,选择性高。 缺点:结构较复杂,设备费用高。 应用:能适用于热效应大的反应。 载热体的选择:一般反应温度在240℃以下宜采用加压热水作载热体;反应温度在250℃~300℃可采用挥发性低的导热油作载热体;反应温度在300℃的则需用熔盐作载热体,如KNO353%,NaNO37%,NaNO240%的

固定床反应器的设计计算

周波主编.反应过程与技术.高等教育出版社,2006年6月. 四、固定床反应器的设计计算 固定床反应器的设计方法主要有两种:经验法和数学模型法。 经验法的设计依据主要来自于实验室、中间试验装置或工厂实际生产装置的数据。对中间试验和实验室研究阶段提供的主要工艺参数如温度、压力、转化率、选择性、催化剂空时收率、催化剂负荷和催化剂用量等进行分析,找出其变化规律,从而可预测出工业化生产装置工艺参数和催化剂用量等。 固定床反应器的主要计算任务包括催化剂用量、床层高度和直径、床层压降和传热面积等。(一)催化剂用量的计算 经验法比较简单,常取实验或实际生产中催化剂或床层的重要操作参数作为设计依据直接计算得到。1.空间速度 空间速度Sv指单位时间内通过单位体积催化剂的原料处理量,单位为s-1。它是衡量固定床反应器生产能力的一个重要指标。 (2-36) 式中: 2.停留时间 停留时间r指在规定的反应条件下,气体反应物在反应器内停留的时间,单位为s。 式中:; 停留时间与空间速度的关系为

。(二)反应器床层高度及直径的计算 催化剂的用量确定后,催化剂床层的有效体积也就确定。很明显,床层高度增高,床层截面积将变小,操作气速、流体阻力(动力)将增大;反之,床层高度降低必然引起截面积(直径)增大,对传热不利或易产生短路等现象。因此,床层高度与直径应通过操作流速、压降(即动力消耗)、传热、床层均匀性等影响因素作综合评价来确定。 通常,床层高度或直径的计算是根据固定床反应器某一重要操作参数范围或经验选取,然后校验其他操作参数是否合理,如床层压降不超过总压力的15%。床层高度与直径的计算步骤如下。

固定床-流化床-浆态床的优缺点

固定床-流化床-浆态床的优缺点

固定床反应器 定义:气体流经固定不动的催化剂床层进行催化反应的装置。 特点:结构简单、操作稳定、便于控制、易实现大型化和连续化生产等优点,是现代化工和反应中应用很广泛的反应器。 应用:主要用于气固相催化反应。 基本形式:轴向绝热式、径向绝热式、列管式。 固定床反应器缺点: 床层温度分布不均匀; 床层导热性较差; 对放热量大的反应,应增大换热面积,及时移走反应热,但这会减少有效空间。 流化床反应器(沸腾床反应器) 定义:流体(气体或液体)以较高流速通过床层,带动床内固体颗粒运动,使之悬浮在流动的主体流中进行反应,具有类似流体流动的一些特性的装置。 应用:应用广泛,催化或非催化的气—固、液—固和气—液—固反应。 原理:固体颗粒被流体吹起呈悬浮状态,可作上下左右剧烈运动和翻动,好象是液体沸腾一样,故流化床反应器又称沸腾床反应器。 结构:壳体、气体分布装置、换热装置、气—固分离装置、内构件以及催化剂加入和卸出装置等组成。 优点:传热面积大、传热系数高、传热效果好。进料、出料、废渣排放用气流输送,易于实现自动化生产。 缺点:物料返混大,粒子磨损严重;要有回收和集尘装置;内构件复杂;操作要求高等。 固定床: 一、固定床反应器的优缺点 凡是流体通过不动的固体物料形成的床层面进行反应的设备都称为固定床反应器,而其中尤以利用气态的反应物料,通过由固体催化剂所构成的床层进行反应的气固相催化反应器在化工生产中应用最为广泛。气固相固定床反应器的优点较多,主要表现在以下几个方面: 1、在生产操作中,除床层极薄和气体流速很低的特殊情况外,床层内气体的流动皆可看成是理想置换流动,因此在化学反应速度较快,在完成同样生产能力时,所需要的催化剂用量和反应器体积较小。 2、气体停留时间可以严格控制,温度分布可以调节,因而有利于提高化学反应的转化率和选择性。 3、催化剂不易磨损,可以较长时间连续使用。 4、适宜于高温高压条件下操作。 由于固体催化剂在床层中静止不动,相应地产生一些缺点: 1、催化剂载体往往导热性不良,气体流速受压降限制又不能太大,则造成床层中传热性能较差,也给温度控制带来困难。对于放热反应,在换热式反应器的入口处,因为反应物浓度较高,反应速度较快,放出的热量往往来不及移走,

环氧乙烷固定床反应器课程设计

化工与制药学院 课程设计说明书 课题名称:年产?1、5万吨环氧乙烷固定床反应器设计专业班级:2011 级有机与石油化工1 班 学生学号:1106170104 学生姓名:陈正飞 学生成绩: 指导教师:杨昌炎 设计时间:2015、1、6—2015、01、20

武汉工程大学课程设计任务书 系别化工与制药学院班级有机一班?学生陈正飞 一、设计名称 年产吨环氧乙烷固定床反应器设计 二、任务 根据设计条件,通过物料衡算、热量衡算、反应器得选型及尺寸得确定,计算压降、催化剂得用量等,设计出符合设计要求得反应器,并画出设备得装配图。 三、内容 1、概述 2、环氧乙烷物化性质 3、设计方案 4、设计条件 5、工艺计算 6、设计总结 7、参考文献 四、计划进度 1、发题2015年1月6日 2、第一阶段:2015年1月6日~1月12日?工艺计算与设备计算 3、第二阶段:1月13日~1月18日画图、撰写设计报告、答辩 4、第三阶段:1月19-日~1月20日?设计答辩 指导老师?杨昌炎?教研室主任?刘生鹏

目录 摘要?I Abstract?II 第一章概述1? 第二章环氧乙烷物化性质 ------------------------------------------------------------------------------- 3 2、1 物理性质3? 2、2 化学性质------------------------------------------------------------------------------------------ 4 3、1 环氧乙烷生产艺------------------------------------------------------------------------------- 7 3、2 环氧乙烷生产得设计方案?8 3、3、2 工艺参数 ------------------------------------------------------------------------------------ 8 3、3、3环氧乙烷生产工艺流程 ------------------------------------------------------------- 10第四章工艺计算-------------------------------------------------------------------------------------------- 13 4、1设计条件1?3 4、1、1 反应原理1?3 4、1、2原料组成1?4 4、1、3反应器设计条件 --------------------------------------------------------------- 14 4、2物料衡算14? 4、3 热量衡算17? 第五章反应器得工艺参数优化-------------------------------------------------------------------------- 215、1催化剂得用量------------------------------------------------------------------------------ 215、2 确定氧化反应器得基本尺寸 ------------------------------------------------------------- 25 5、3 床层压力降得计算--------------------------------------------------------------------------- 26 5、4 传热面积得核算27? 5、4、1 床层对壁面得给热系数27? 5、4、2总传热系数得计算28? 5、4、3 传热面积得核算?28 5、5 反应器塔径得确定29? 第六章设计参数总结 ------------------------------------------------------------------------------------- 31第七章安全生产 ----------------------------------------------------------------------------------------- 33第八章三废治理与环境保护---------------------------------------------------------------------------- 37第九章资金核算 ------------------------------------------------------------------------------------------- 39第十章设计体会-------------------------------------------------------------------------------------------- 41

反应过程与技术 固定床反应器的计算

§2-4固定床反应器的计算 Calculation of fixed bed 计算内容:①催化剂用量;②床层高度和直径;③传热面积;④床层压力降。 计算基础:反应动力学方程;物料衡算;热量衡算。 固定床反应器的经验计算法: 利用实验室;中间试验装置;工厂现有装置最佳条件测得数据。 一.催化剂用量的计算 Calculation of catalyst use level 1.空间速度:Space velocity []1-=h V V S R ON V ~ON V 原料气体积(标)流量 ~R V 催化剂填充体积 意义:单位体积催化剂在单位时间内通过原料标准体积流量 2.接触时间:Contact time V V R ε τ= ~0V 反应条件下,反应物体积流量 ~ε床层空隙率 00,nRT V p nRT PV ON == p T Tp S p T Tp V V p T Tp V V V R ON ON 00 0000 0ε ετ===∴代入 a p p K T 300103.101273?==, 3.空时收率:Space time yield(STY) S G W W W S =

意义:反应物流经床层时,单位质量(或体积)催化剂在单位时间内所获得的目的产物量。 4.催化剂负荷 Catalyst load []h Kg W W /~原料 [][] 3~m Kg cat W S 或 单位质量催化剂在单位时间内通过反应所消耗的原料 5.床层线速度与空床速度 Linear velocity and superficial velocity 线速度:ε R A V u 0= 反应体积在反应下,通过催化剂床层自由截面积的速率。 空床速度:R A V u 00= 在反应条件下,反应气体通过床层截面积时的气速。 使用条件:所设计的反应器与提供数据的装置具有相同的操作条件等)、、、、原料、、(P T u cat μ 只能估算。不可能完全相同∴ 二.反应器床层高度及直径的计算 Calculation of reactor 体积一定:床层高度↑→H 床层截面积↓→A 气速 ↑↑→?P ↑动力消耗流动阻力,u ; 床层高度↓↑→A ↓→u H ,对传热不利,另:H 太小, 气体易产生短路。 根据经验:①取气体各空床速度; ②再计算床层工截面积; ③校床层阻力降; ④确定床层的结构尺寸。 S W G W W S =

固定床反应器

固定床反应器.txt 固定床反应器单元仿真培训系统 操作说明书 北京东方仿真软件技术有限公司 二〇〇六年十月 目录 一、工艺流程说明 2 1、工艺说明 2 2、本单元复杂控制回路说明 2 3、设备一览 2 二、固定床反应器单元操作规程 3 1、开车操作规程 3 2、正常操作规程 4 3、停车操作规程 4 4、联锁说明 5 5、仪表及报警一览表 6 三、事故设置一览 7 四、仿真界面 8 附:思考题 10 一、工艺流程说明 1、工艺说明 本流程为利用催化加氢脱乙炔的工艺。乙炔是通过等温加氢反应器除掉的,反应器温度由壳侧 中冷剂温度控制。

主反应为:nC2H2+2nH2?(C2H6)n,该反应是放热反应。每克乙炔反应后放出热量约为34000千卡。温度超过66℃时有副反应为:2nC2H4?(C4H8)n,该反应也是放热反应。 冷却介质为液态丁烷,通过丁烷蒸发带走反应器中的热量,丁烷蒸汽通过冷却水冷凝。 反应原料分两股,一股为约-15℃的以C2为主的烃原料,进料量由流量控制器FIC1425控制;另一股为H2与CH4的混合气,温度约10℃,进料量由流量控制器FIC1427控制。FIC1425与FIC1427为比值控制,两股原料按一定比例在管线中混合后经原料气/反应气换热器(EH-423)预热,再经原料预热器(EH-424)预热到38℃,进入固定床反应器(ER-424A/B)。预热温度由温度控制器TIC1466通过调节预热器EH-424加热蒸汽(S3)的流量来控制。 ER-424A/B中的反应原料在2.523MPa、44℃下反应生成C2H6。当温度过高时会发生C2H4聚合生成C4H8的副反应。反应器中的热量由反应器壳侧循环的加压C4冷剂蒸发带走。C4蒸汽在水冷器EH-429中由冷却水冷凝,而C4冷剂的压力由压力控制器PIC-1426通过调节C4蒸汽冷凝回流量来控制,从而保持C4冷剂的温度。 2、本单元复杂控制回路说明 FFI1427:为一比值调节器。根据FIC1425(以C2为主的烃原料)的流量,按一定的比例,相适应的调整FIC1427(H2)的流量。 比值调节:工业上为了保持两种或两种以上物料的比例为一定值的调节叫比值调节。对于比值调节系统,首先是要明确那种物料是主物料,而另一种物料按主物料来配比。在本单元中,FIC1425(以C2为主的烃原料)为主物料,而FIC1427(H2)的量是随主物料(C2为主的烃原料)的量的变化而改变。 3、设备一览 EH-423:原料气/反应气换热器 EH-424:原料气预热器 EH-429:C4蒸汽冷凝器 EV-429:C4闪蒸罐 ER424A/B:C2X加氢反应器 二、固定床反应器单元操作规程 1、开车操作规程 本操作规程仅供参考,详细操作以评分系统为准。 装置的开工状态为反应器和闪蒸罐都处于已进行过氮气冲压置换后,保压在0.03MPa状态。可以直接进行实气冲压置换。 1.1、EV-429闪蒸器充丁烷 (1)确认EV-429压力为0.03 MPa。 (2)打开EV-429回流阀PV1426的前后阀VV1429、VV1430。 (3)调节PV1426(PIC1426)阀开度为50%。 (4)EH-429通冷却水,打开KXV1430,开度为50%。 (5)打开EV-429的丁烷进料阀门KXV1420,开度50%。 (6)当EV-429液位到达50%时,关进料阀KXV1420。 1.2、ER-424A反应器充丁烷 (1)确认事项 ①反应器0.03 MPa保压。 ②EV-429液位到达50%。 (2)充丁烷 打开丁烷冷剂进ER-424A壳层的阀门KXV1423,有液体流过,充液结束;同时打开出ER-424A壳层的阀门KXV1425。

固定床,流化床,浆态床的优缺点学习资料

固定床,流化床,浆态床的优缺点

固定床反应器 定义:气体流经固定不动的催化剂床层进行催化反应的装置。 特点:结构简单、操作稳定、便于控制、易实现大型化和连续化生产等优点,是现代化工和反应中应用很广泛的反应器。 应用:主要用于气固相催化反应。 基本形式:轴向绝热式、径向绝热式、列管式。 固定床反应器缺点: 床层温度分布不均匀; 床层导热性较差; 对放热量大的反应,应增大换热面积,及时移走反应热,但这会减少有效空间。 流化床反应器(沸腾床反应器) 定义:流体(气体或液体)以较高流速通过床层,带动床内固体颗粒运动,使之悬浮在流动的主体流中进行反应,具有类似流体流动的一些特性的装置。应用:应用广泛,催化或非催化的气—固、液—固和气—液—固反应。 原理:固体颗粒被流体吹起呈悬浮状态,可作上下左右剧烈运动和翻动,好象是液体沸腾一样,故流化床反应器又称沸腾床反应器。 结构:壳体、气体分布装置、换热装置、气—固分离装置、内构件以及催化剂加入和卸出装置等组成。 优点:传热面积大、传热系数高、传热效果好。进料、出料、废渣排放用气流输送,易于实现自动化生产。

缺点:物料返混大,粒子磨损严重;要有回收和集尘装置;内构件复杂;操作要求高等。 固定床: 一、固定床反应器的优缺点 凡是流体通过不动的固体物料形成的床层面进行反应的设备都称为固定床反应器,而其中尤以利用气态的反应物料,通过由固体催化剂所构成的床层进行反应的气固相催化反应器在化工生产中应用最为广泛。气固相固定床反应器的优点较多,主要表现在以下几个方面: 1、在生产操作中,除床层极薄和气体流速很低的特殊情况外,床层内气体的流动皆可看成是理想置换流动,因此在化学反应速度较快,在完成同样生产能力时,所需要的催化剂用量和反应器体积较小。 2、气体停留时间可以严格控制,温度分布可以调节,因而有利于提高化学反应的转化率和选择性。 3、催化剂不易磨损,可以较长时间连续使用。 4、适宜于高温高压条件下操作。 由于固体催化剂在床层中静止不动,相应地产生一些缺点: 1、催化剂载体往往导热性不良,气体流速受压降限制又不能太大,则造成床层中传热性能较差,也给温度控制带来困难。对于放热反应,在换热式反应器的入口处,因为反应物浓度较高,反应速度较快,放出的热量往往来不及移走,而使物料温度升高,这又促使反应以更快的速度进行,放出更多的热量,物料

固定床反应器的数学模型..

固定床反应器的数学模型 1、概述 凡是流体通过不动的固体物料所形成的床层而进行反应的装置都称作固定床反应器,其中尤以用气态的反应物料通过由固体催化剂所构成的床层进行反应的气-固相催化反应器占最主要的地位。如炼油工业中的催化重整,异构化,基本化学工业中的氨合成、天然气转化,石油化工中的乙烯氧化制环氧乙烷、乙苯脱氢制苯乙烯等等。此外还有不少非催化的气-固相反应,如水煤气的生产,氮与电石反应生成石灰氮(CaCN2)以及许多矿物的焙烧等,也都采用固定床反应器。固定床反应器之所以成为气固催化反应器的主要形式,是由于具有床内的流体轴向流动可看作为平推流,在完成同样的生产任务时,所需的催化剂用量(或反应器体积)最小;床内流体的停留时间可严格控制,温度分布可适当调节,因而有利于提高化学反应的转化率和选择性;床内催化剂不易磨损,可以在高温高压下操作等优点,但固定床中传热较差,对于热效应大的反应过程,传热与控温问题就成为固定床技术中的难点和关键,为解决这一问题而提出了多种形式的床层结构。 2、固定床反应器的结构形式 固定床反应器类型很多.按换热方式不同可分为:绝热式反应器和换热式反应器。 2.1绝热式反应器 在反应器中的反应区(催化剂层)不与外界换热的称为绝热式反应器。一般来说,反应热效应小;调节进A反应器的物料温度,就可使反应温度不致超出反应允许的温度范围的反应过程等可采用绝热式反应器。绝热式反应器具有结构简单,反应空间利用率高,造价便宜等优点。图1是绝热床反应器的示意图。 如果反应热效应较大,为了减小反应区内轴间温度分布不均,可将绝热反应器改成多段绝热式反应器,在各段之间进行加热或冷却,它可使各段反应区接近适宜温度。图2是多段绝热床反应器的示意图。 总之,不论是吸热或放热的反应,绝热床的应用相当广泛。特别对大型的,高温的或高压的反应器,希望结构简单,同样大小的装置内能容纳尽可能多的催化剂以增加生产能力(少加换热空间),而绝热床正好能符合这种要求。不过绝热床的温度变化总是比较大的,而温度对反应结果的影响也是举足轻重的,因此如何取舍,要综合分析并根据实际情况来决定。此外还应注意到绝热床的高/径比

固定床流化床浆态床的优缺点

固定床反应器定义:气体流经固定不动的催化剂床层进行催化反应的装置。特点:结构简单、操作稳定、便于控制、易实现大型化和连续化生产等优点,是现代化工和反应中应用很广泛的反应器。 应用:主要用于气固相催化反应。基本形式:轴向绝热式、径向绝热式、列管式。 固定床反应器缺点:床层温度分布不均匀;床层导热性较差; 对放热量大的反应,应增大换热面积,及时移走反应热,但这会减少有效空间。 流化床反应器(沸腾床反应器)定义:流体(气体或液体)以较高流速通过床层,带动床内固体颗粒运动,使之悬浮在流动的主体流中进行反应,具有类似流体流动的一些特性的装置。应用:应用广泛,催化或非催化的气—固、液—固和气—液—固反应。原理:固体颗粒被流体吹起呈悬浮状态,可作上下左右剧烈运动和翻动,好象是液体沸腾一样,故流化床反应器又称沸腾床反应器。结构:壳体、气体分布装置、换热装置、气—固分离装置、内构件以及催化剂加入和卸出装置等组成。优点:传热面积大、传热系数高、传热效果好。进料、出料、废渣排放用气流输送,易于实现自动化生产。缺点:物料返混大,粒子磨损严重;要有回收和集尘装置;内构件复杂;操作要求高等。 固定床: 、固定床反应器的优缺点凡是流体通过不动的固体物料形成的床层面进行反应的设备都称为固定床反应器,而其中尤以利用气态的反应物料,通过由固体催化剂所构成的床层进行反应的气固相催化反应器在化工生产中应用最为广泛。气固相固定床反应器的优点较多,主要表现在以下几个方面: 1、在生产操作中,除床层极薄和气体流速很低的特殊情况外,床层内气体的流动皆可看成是理想置换流动,因此在化学反应速度较快,在完成同样生产能力时,所需要的催化剂用量和反应器体积较小。 2、气体停留时间可以严格控制,温度分布可以调节,因而有利于提高化学反应的转化率和选择性。 3、催化剂不易磨损,可以较长时间连续使用。 4、适宜于高温高压条件下操作。由于固体催化剂在床层中静止不动,相应地产生一些缺点: 1、催化剂载体往往导热性不良,气体流速受压降限制又不能太大,则造成床层中传热性能较差,也给温度控制带来困难。对于放热反应,在换热式反应器的入口处,因为反应物浓度较高,反应速度较快,放出的热量往往来不及移走,而使物料温度升高,这又促使反应以更快的速度进行,放出更多的热量,物料温度继续升高,直到反应物浓度降低,反应速度减慢,传热速度超过了反应速度时,温度才逐渐下降。所以在放热反应时,通常在换热式反应器的轴向存在一个最高的温度点,称为“热点”。如设计或操作不当,则在强放热反应时,床内热点温度会超过工艺允许的最高温度,甚至失去控制而出现“飞温”。此时,对反应的选择性、催化剂的活性和寿命、设备的强度等均极不利。 2、不能使用细粒催化剂,否则流体阻力增大,破坏了正常操作,所以催化剂的活性内表面得不到充分利用。 3、催化剂的再生、更换均不方便。固定床反应器虽有缺点,但可在结构和操作方面做出改进,且其优点是主要的。因此,仍不失为气固相催化反应器中的主要形式,在化学工业中得到了广泛的应用。例如石油炼制工业中的裂化、重整、异构化、加氢精制等;无机化学工业中的合成氨、硫酸、天然气转化等;有机化学工业中的乙烯氧化制环氧乙烷、乙烯水

化学反应工程习题-第六章:固定床反应器

第六章 固定床反应器 1.凡是流体通过不动的固体物料所形成的床层而进行反应的装置都称作_______。(固定床反应器) 2.固定床中催化剂不易磨损是一大优点,但更主要的是床层内流体的流动接近于_______,因此与返混式的反应器相比,可用较少量的催化剂和较小的反应器容积来获得较大的生产能力。(平推流) 3.固定床中催化剂不易磨损是一大优点,但更主要的是床层内流体的流动接近于平推流,因此与返混式的反应器相比,可用_______的催化剂和_______的反应器容积来获得较大的生产能力。(较少量、较小) 4.目前描述固定床反应器的数学模型可分为_______和_______的两大类。(拟均相、非均相) 5.描述固定床反应器的拟均相模型忽略了粒子与流体之间_______与_______的差别。(温度、浓度) 6.描述固定床反应器的数学模型,忽略了粒子与流体之间温度与浓度的差别的模型称之为_______。(拟均相模型) 7.描述固定床反应器的数学模型,考虑了粒子与流体之间温度与浓度的差别的模型称之为_______。(非均相模型) 8.描述固定床反应器的拟均相模型,根据流动模式与温差的情况它又可分为平推流与有轴向返混的_______模型,和同时考虑径向混合和径向温差的_______模型。(一维、二维) 9.固定床中颗粒的体积相当直径定义为具有相同体积P V 的球粒子直径,表达式 V d =_______。(3/1)/6(πP V ) 10.固定床中颗粒的面积相当直径是以外表面P a 相同的球形粒子的直径,表达式a d =_______。( π/P a ) 11.固定床中颗粒的比表面相当直径是以相同的比表面V S 的球形粒子直径来表示,表达式 S d =_______。(V S /6) 12.对于非球形粒子,其外表面积P a 必大于同体积球形粒子的外表面积 S a ,故可定义颗粒的形状系数=S ?_______。(P S a a /) 13.颗粒的形状系数S ?对于球体而言,=S ?_______,对于其他形状的颗粒S ?_______。 (=1、均小于1) 14.固定床的_______定义为水力半径H R 的四倍,而水力半径可由床层空隙率及单位床层体积中颗粒的润湿表面积来求得。(当量直径e d ) 15.固定床中的传热实质上包括了_______、_______以及_______几个方面。(粒内传热、颗粒与流体间的传热、床层与器壁的传热) 16.绝热床反应器由于没有径向床壁传热,一般可以当作平推流处理,只考虑流体流动方向上有温度和浓度的变化,因此一般可用_______模型来计算。(拟均相一维) 17.对于可逆的放热反应,存在着使反应速率最大的最优温度opt T 和平衡温度eq T ,二者的关 系为______________。(1212ln E E E E R T T T T opt eq opt eq -= ?-) 18.对于固定床反应器,当某一参数变化到一定程度时就可能使床层温度迅速升高,这种现象俗称_______,它是固定床反应器设计和操作中所应注意的问题。(飞温) 19.不属于气固相催化反应固定床反应器拟均相二维模型的特点是_______。(A ) A. 粒子与流体间有温度差 B. 粒子与流体间无温度差 C. 床层径向有温度梯度 D. 床层轴向有温度梯度 20.不属于气固相催化反应固定床反应器拟均相二维模型的特点是_______。(A )

相关文档
相关文档 最新文档