文档库 最新最全的文档下载
当前位置:文档库 › 三极管参数测试

三极管参数测试

三极管参数测试
三极管参数测试

简易半导体三极管参数测试仪

摘要:三极管特性参数测试系统以AT89S52单片机最小系统为核心,应用

ADC0804 和运放组成数据采集电路,DAC7528和精密电阻组成数控电压源。整个系统采用模块化设计,能较精确的对三极管交直流放大系数、集电极——发射极反向击穿电压和反向饱和电流等特性参数进行测量。利用单片机将采集所得的数据进行处理,并通过 LCD 对各项参数和输入输出曲线进行显示。关键词: 单片机三极管采样特性参数系统测试

Abstract:

The system is a characteristic parameters test system of transistor based on AT89S52 SCM system as the core chip .With AD0804 and op-amp making up data acquisition circuit, and with DAC7528 and precise resistance composing digital control voltage source. The whole system uses modular design, it can measure the characteristics parameters of transistor, like ac/dc amplification coefficient of transistor, the collector or emitter reverse breakdown voltage and reverse saturation current. The acquired data processed by SCM system, then the various parameters, the input and output curve will display on the LCD.

Key word: SCM transistor sample characteristic parameter test system

引言:

在模拟电子线路设计、测试、调试时,我们经常要对半导体三极管放大系数、反向击穿电压、反向饱和电流、晶体管的输入输出特性曲线、延迟时间、晶体管开启时间、存贮时间等多种参数进行测量。但是传统的半导体三极管特性参数、放大倍数等的测试主要采用晶体管特性图示仪或万用表。晶体管特性图示仪可以显示三极管的输入、输出特性曲线,估读直流、交流放大倍数等,但其测量准确度不高,携带不方便,而万用表只能测晶体管的直流放大倍数,并且误差较大,不能显示晶体管的特性曲线。因此设计了一个简易半导体三极管参数测试仪,使它具有测量三极管交直流放大系数、集电极——发射极反向击穿电压和反向饱和电流等特性参的功能。

1方案论证及原理分析

1.1总体方案(框图)

系统设计方案如图一所示,主要包括测试部分,采样部分,数据处理部分和显

示部分。

通过数控恒压源与数控恒流源提供三极管集电极和基极电压,然后分别通过电压跟随,差分放大和反向电路获得基极、集电极电压,电流送入由ADC0804为核心的采样电路,再在单片机中进行数据处理,最后由显示电路将所测参数在LCD上显示出来。而根据任务要求及电路的实际情况,采样电路的输入电压要不能太小,否则造成测试结果不准确,因此在采样电路前加了一个放大电路。

1.2主要单元方案论证及选择

1.2.1测试采样部分

方案一:采用基极和集电极电阻两端直接测电压。此方法简单,易于操作,但精度不高。

方案二:如下图二所示,A/D转换器是本系统参数测量系统的核心部件,它把采集的模拟量变换成数字信号,送到单片机中进行处理。在设计中对ADC0804 的转换速度、精度和器件成本满足系统要求的情况下,选用了 8路8位A/D转换器 ADC0804。利用两路数据采集电路分别对基极电压和集电极电阻两端电压进行采样。基极和集电极电阻两端的电压采用具有高精度、低漂移的差分放大器进行放大。若所测三极管为PNP型管,则经过反向比例电路转换为NPN型管。电路转换为成正电压以满足ADC0804 采样的需要。为了测得放大系数β的值,根据β=Ic/Ib的基本原理,我们需要组建用于NPN型三极管β参数的放大电路。主要由数控电源、三极管、放大电路和采样电路组成。

参数测量步骤如下:

(1)判断三极管工作类型

若Vb-Vc>0,则三极管为NPN型;

相反若Vb-Vc<0,则三极管为PNP型。

(2)参数测量

测量三极管β参数的前提就是要使三极管工作再放大状态,通过该电路,测得A/D转换器D0~D7点的电压值。再根据β=Ic/Ib计算出β的值。

例:若三极管工作在PNP模式,则经过设计电路放大,反向后得到NPNz 正向电压满足A/D的要求。

从而可得:

Ic=(D2-D0)/Rc;

Ib=(D6-AD4)/Rb;

所以β=Ic/Ib。

因此采用方案二处理,电路结构较简单,比采用基极和集电极电阻两端直接测电压的方法测量精度高。

1.2.2数据处理部分

该部分由单片机、电子开关构成。由A/D转化器将测得的模拟信号转换为数字信号后,送入单片机进行数据处理。这部分主要由软件来控制,通过将软件下载到单片机,进行数据处理。再由电子开关对单片机进行控制,显示所要求测

得的交直流放大系数,反向击穿电压和反向饱和电流和各项参数的输入输出曲线。

1.2.3显示部分

该部分由LCD液晶显示器锁存器和稳压器组成。由单片机输入处理后的信号进入锁存器,最后在LCD上显示出来所要求的测试参数和曲线。LCD具有低压微功耗,显示信息量大(像素很小)等特点。因此更容易驱动和显示较清晰地曲线图。设计框图如图三所示:

2硬件部分

2.1部分模块电路

为了完成本次设计的要求,我们制作了三个电路板,包括测试电路板,单片机小系统板,LCD显示电路板。

2.1.1测试电路模块

测试电路板由数控电源、三极管、放大器构成。该放大电路分别又由两个TL084放大电路和两个TL082放大电路组成。

2.1.2单片机小系统模块

单片机小系统板由单片机模块,A/D模块,D/A模块,电源模块,按键及复位模块和电子开关构成。

2.1.2.2A/D模块电路

2.1.2.4按键及复位电路

2.1.3LCD显示电路模块

该部分主要由HB12864M2A液晶显示器、74ALS02或非门、MC74HC573AN 锁存器和SPX1117-3.3稳压器组成。其中HB12864M2A工作在并行接口模式。SPX1117-3.3为一个低功耗正向电压调节器,其可以用在高效率,小封装的低功耗的设计中。

3软件部分

3.1设计思路

先初始化,将三极管类型初始定义为NPN型;由D/A将设置的数字量转换为模拟电压量,输入测试电路板,以驱动测试电路;再根据Vb,Vc的值判断三极管的类型,若为NPN型,则由电子开关选取0,2,4,6管脚的值,并经过A/D转换将其送入单片机中进行数据处理;处理后的数值通过LCD进行显示;若为PNP型,则由电子开关选取1,3,5 ,7管脚的值,其后与NPN一致。

3.2主程序流程图

3.3主要单元流程图

4系统调试与数据分析

4.1调试仪器:

测试使用的仪器主要有数字式万用表、示波器DS1752E、函数发生器EE1410、直流稳压稳流电源DH1723-1。

4.2调试步骤

4.2.1液晶板调试

第一步:在未接电源的情况下,检测线路之间是否连通;芯片的接地端是否接通;线路之间是否有短路。

第二步:在液晶板上插上74ALS02或非门和MC74HC573AN锁存器芯片后,输入3.3v后测试液晶管脚是否导通,电压是否正常。

第三步:插上LCD,采用并口方式,将JI端口短接,检查LCD是否正常。

4.2.2单片机小系统板调试

第一步:在未接电源的情况下,检测线路之间是否连通;芯片的接地端是否接通;线路之间是否有短路。

第二步:信号发生器产生锯齿波,并直接与示波器连接。比较两者产生的锯齿波是否一致。

第三步:插上A/D,D/A,单片机和电子开关的芯片。输入电压正负电压12V。将信号发生器产生的锯齿波接入A/D,然后下载一个A/D,D/A程序到单片机,选通A/D,D/A。

第四步:采用双踪示波器,比较第二步中示波器所显示的锯齿波与D/A所显示的锯齿波是否一致,若一致或误差较小,则系统正常。

4.2.3测试板调试

第一步:在未接电源的情况下,检测电源线是否连通,芯片的接地端是否连通,电源与地是否短路;

第二步:功率放大电路部分, 检测电源和地,插上OP07,将输入与地短接

时调节RW2,使输出为零,当输入为5V时,调节RW1,使输出为10V,反复调节两个电位器,使输入锯齿波时,集电极输出无明显失真;

第三步:恒流源部分,检测电源和地, 插上OP07,短接晶体管的基极和发射极,当输入电压为0-5V时,测量基极取样电阻上的电压是否线性变化;

第四步:插上TL084和TL082,检测电源和地,测试输入端电压,再测试输出端电压;

第五步:使用函数发生器产生频率约1KHz、幅度为5V并经过电平平移为正的锯齿波,输入功率放大电路,加入待测试的晶体管,改变基极电流的控制电压,使用示波器观察晶体管输出特性曲线。

4.3测试数据及分析

4.3.1测试数据

4.3.2误差分析

5设计总结

本次课题用了十天的时间,采用了以AT89S52单片机最小系统为核心,运用ADC0804 和运放组成数据采集电路,DAC7528和精密电阻组成数控电压源。整个系统采用模块化设计,能较精确的对三极管交直流放大系数、集电极——发射极反向击穿电压和反向饱和电流等特性参数进行测量。在硬件方面,经过前几轮的课题,更加熟练运用Altium Designer Summer 08软件,因此这次制作较快,测试时间加长。

包括:①对设计的小结;②设计收获体会;③对设计的进一步完善提出意见或建议。

6参考文献

7附:

7.1PCB:

7.1.1测试电路:

7.1.2单片机:

7.1.3液晶:

三极管的测量方法

三级管的在路测量,(1).NPN管的电压正常是:VC>VB>VE.其中PN结电压是0.5V左右,也就是:VB>VE的电压是0.5V,明显大于2V或者VB∠VE,三极管是损坏,(注: VC的电压大小是不固定的,看这个管的承受多大的内压) (2).PNP管的电压正常是:VE>VB>VC. 其中PN结电压是0.5V左右, 也就是: VE>VB 的电压是0.5V,明显大于2V或者VE∠VB, 三极管是损坏,( VC的电压大小是不固定的,看偏置电路是要多大的电压,但一定适上面的VE>VB>VC电压的大小) 2.拆下来时的三极管测量(R*1K档来测量) 根据PN结的原理:和二极管一样,正向电阻一边用万用表测是相通,对调红.黑笔反向来测是不通.拆下来时的三极管,(1) NPN管:任意测三极管的两个脚,当发现固定黑笔接的一脚不动,用红笔分别接另外两脚时,万用表的指针摆动,电阻是相同.反过来对调表笔,红笔固定的一脚不动,用黑笔分别接另外两脚时,万用表的指针不摆动,电阻是无穷大.哪确定;固定的一脚确定是b极(坏的三极管是对调表笔也是相通的) . (2) PNP管:任意测三极管的两个脚,当发现固定红笔接的一脚不动, 用黑笔分别接另外两脚时,万用表的指针摆动,电阻是相同.反过来对调表笔,黑笔固定的一脚不动, 用红笔分别接另外两脚时,万用表的指针不摆动,电阻是无穷大.哪确定;固定的一脚确定是b极 3(确定C极和E极) 三极管好坏的判断(R*10K档来测量) (1)(确定C极和E极) NPN好坏的判断:上面已确定了B极,R*10K档来测量.用黑笔和红笔分别接触另外两极,保持红笔和黑笔现在状态不变用手指捏b极+红笔接的一极,发现指针摆动的幅度大,放大倍数大,黑笔接的是c极,红笔接的是e极(坏的三极管,用万用表的R*10K档来测量.红,黑笔测量c.e极,接法和二极管测量相同,一边相通,对调表笔另一边是不通,例如;R*10K档的黑笔接C极红笔接E极指针摆动一点,说明是漏电损坏.经验总结:如果是好的三级管,用万用表的R*10K档来测量c.e电阻一边不通,极笔对调后,另一边是相通的有电阻,电阻大的和原来没有用过的同型号的三极管对比.B极E极输出电压偏低的. (2) (确定C极和E极) PNP好坏的判断 R*10K档来测量.用黑笔和红笔分别接触另外两极保持红笔和黑笔现在状态不变用手指捏b极+黑笔接的一极,同时捏两极,发现指针摆动的幅度大,放大倍数大,黑笔接的是e极,红笔接的是c极(坏的三极管,用万用表的R*10K档来测量.红,黑笔测量c.e极,接法和二极管测量相同,一边相通,对调表笔另一边是不通,例如:R*10K档的黑笔接E极红笔接极

常用三极管型号及参数

常用三极管型号及参数 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型IRFU020 50V 15A 42W **NMO场效应 IRFPG42 1000V 4A 150W ** NMO场效应 IRFPF40 900V 4.7A 150W ** NMO场效应 IRFP9240 200V 12A 150W ** PMOS场效应 IRFP9140 100V 19A 150W **PMOS场效应 IRFP460 500V 20A 250W ** NMO场效应 IRFP450 500V 14A 180W **NMO场效应IRFP440 500V 8A 150W **NMO场效应IRFP353 350V 14A 180W **NMO场效应IRFP350 400V 16A 180W **NMO场效应IRFP340 400V 10A 150W **NMO场效应IRFP250 200V 33A 180W **NMO场效应IRFP240 200V 19A 150W **NMO场效应IRFP150 100V 40A 180W **NMO场效应晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型IRFP140 100V 30A 150W **NMO场效应IRFP054 60V 65A 180W **NMO场效应IRFI744 400V 4A 32W **NMO场效应IRFI730 400V 4A 32W **NMO场效应IRFD9120 100V 1A 1W **NMO场效应IRFD123 80V 1.1A 1W **NMO场效应IRFD120 100V 1.3A 1W **NMO场效应IRFD113 60V 0.8A 1W **NMO场效应IRFBE30 800V 2.8A 75W **NMO场效应

三极管的基础知识及参数对照表

[知识学堂] 三极管的基础知识及参数对照表双极结型三极管相当于两个背靠背的二极管PN结。正向偏置的EB结有空 穴从发射极注入基区,其中大部分空穴能够到达集电结的边界,并在反向偏置的CB结势垒电场的效果下到达集电区,形成集电极电流IC。在共发射极晶体管电路中,发射结在基极电路中正向偏置,其电压降很小。绝大部分的集电极和发射极之间的外加偏压都加在反向偏置的集电结上。由于VBE很小,所以基极电流约为IB=5V/50kΩ=0.1mA。 如果晶体管的共发射极电流放大系数β=IC/IB=100,集电极电流IC=β*IB=10mA。在500Ω的集电极负载电阻上有电压降VRC=10mA*500Ω=5V,而晶体管集电极和发射极之间的压降为VCE=5V,如果在基极偏置电路中叠加一个交变的小电流ib,在集电极电路中将出现一个相应的交变电流ic,有c/ib=β,实现了双极晶体管的电流放大效果。 常用中小功率三极管参数表: 型号材料与极性Pcm( W) Icm(mA ) BVcbo(V) ft(MHz) 3DG6C SI-NPN 0.1 20 45 >100 3DG7C SI-NPN 0.5 100 >60 >100 3DG12C SI-NPN 0.7 300 40 >300 3DG111 SI-NPN 0.4 100 >20 >100 3DG112 SI-NPN 0.4 100 60 >100 3DG130C SI-NPN 0.8 300 60 150 3DG201C SI-NPN 0.15 25 45 150 C9011 SI-NPN 0.4 30 50 150 C9012 SI-PNP 0.625 -500 -40 C9013 SI-NPN 0.625 500 40 C9014 SI-NPN 0.45 100 50 150 C9015 SI-PNP 0.45 -100 -50 100 C9016 SI-NPN 0.4 25 30 620 C9018 SI-NPN 0.4 50 30 1.1G

如何测量三极管的好坏

下面是三极管的架构以及在电路图中的各种标识方法

万用表打到二极管档(蜂鸣档)对三极管测量时...首先我们要确定哪只脚是b极.于是用红表笔接触其中任意一只脚不动.用黑表笔去接触另外两只脚.如果能够测得两组相近且小于1的数字.说明此时红笔接触的就是b极.如果测得两组数字不相近..那说明此时红笔接触的不是b极..应把红笔换一只脚..黑笔去测另外两只脚...直到找到b极为止...假设我们知道哪只脚是b极...怎样去判断另外两只脚c极和e极呢?如下图:

图中红笔为b极.黑笔在另外两脚分别没得两组相近的数据..其中有一组数据会稍微大一点...此脚即为e极.小的那脚则为c极....并且我们知道此管为NPN三极管.因为红笔在b 极! 而对于PNP型三极管的测量方法也一样...只不过是黑表笔在b极..红笔接触另外两脚能测得两组相近的数据.,如下图: 下面是对场效应管的测量方法 场效应管英文缩写为FET.可分为结型场效应管(JFET)和绝缘栅型场效应管(MOSFET),我们平常简称为MOS管.而MOS管又可分为增强型和耗尽型而我们平常主板中常见使用的也就是增强型的MOS管. 下图为MOS管的标识

我们主板中常用的MOS管G D S三个引脚是固定的。。。不管是N沟道还是P沟道都一样。。。把芯片放正。。。从左到右分别为G极D极S极!如下图: 用二极管档对MOS管的测量。。。首先要短接三只引脚对管子进行放电。。。 1然后用红表笔接S极.黑表笔接D极.如果测得有500多的数值..说明此管为N沟道..

2黑笔不动..用红笔去接触G极测得数值为1. 3红笔移回到S极.此时管子应该为导通...

全系列常用三极管型号参数资料(精)

全系列常用三极管型号参数资料 编者按:这些虽不能涵盖所有的三极管型号,例如3DD系列等,但是都是极其常用的型号,例如901系列,简直是无所不在。在网上查的电子元件手册都是卖书的广告,找到点参数型号确实不易。 名称封装极性功能耐压电流功率频率配对管 D633 28 NPN 音频功放开关100V 7A 40W 达林顿 9013 21 NPN 低频放大50V 0.5A 0.625W 9012 9014 21 NPN 低噪放大50V 0.1A 0.4W 150HMZ 9015 9015 21 PNP 低噪放大50V 0.1A 0.4W 150MHZ 9014 9018 21 NPN 高频放大30V 0.05A 0.4W 1000MHZ 8050 21 NPN 高频放大40V 1.5A 1W 100MHZ 8550 8550 21 PNP 高频放大40V 1.5A 1W 100MHZ 8050 2N2222 21 NPN 通用60V 0.8A 0.5W 25/200NS 2N2369 4A NPN 开关40V 0.5A 0.3W 800MHZ 2N2907 4A NPN 通用60V 0.6A 0.4W 26/70NS 2N3055 12 NPN 功率放大100V 15A 115W MJ2955 2N3440 6 NPN 视放开关450V 1A 1W 15MHZ 2N6609 2N3773 12 NPN 音频功放开关160V 16A 50W 2N3904 21E NPN 通用60V 0.2A 2N2906 21C PNP 通用40V 0.2A 2N2222A 21铁NPN 高频放大75V 0.6A 0.625W 300MHZ 2N6718 21铁NPN 音频功放开关100V 2A 2W 2N5401 21 PNP 视频放大160V 0.6A 0.625W 100MHZ 2N5551 2N5551 21 NPN 视频放大160V 0.6A 0.625W 100MHZ 2N5401 2N5685 12 NPN 音频功放开关60V 50A 300W 2N6277 12 NPN 功放开关180V 50A 250W 9012 21 PNP 低频放大50V 0.5A 0.625W 9013 2N6678 12 NPN 音频功放开关650V 15A 175W 15MHZ 9012 贴片PNP 低频放大50V 0.5A 0.625W 9013

三极管的主要参数

三极管的主要参数 1、直流参数 (1)集电极一基极反向饱和电流Icbo,发射极开路(Ie=0)时,基极和集电极之间加上规定的反向电压Vcb 时的集电极反向电流,它只与温度有关,在一定温度下是个常数,所以称为集电极一基极的反向饱和电流.良好的三极管,Icbo很小,小功率锗管的Icbo约为1~10微安,大功率锗管的Icbo可达数毫安,而硅管的Icbo则非常小,是毫微安级. (2)集电极一发射极反向电流Iceo(穿透电流)基极开路(Ib=0)时,集电极和发射极之间加上规定反向电 压Vce时的集电极电流.Iceo大约是Icbo的β倍即Iceo=(1+β)Icbo o Icbo和Iceo受温度影响极大,它们是衡量管子热稳定性的重要参数,其值越小,性能越稳定,小功率锗管的Iceo比硅管大. (3)发射极---基极反向电流Iebo 集电极开路时,在发射极与基极之间加上规定的反向电压时发射极的 电流,它实际上是发射结的反向饱和电流. (4)直流电流放大系数β1(或hEF) 这是指共发射接法,没有交流信号输入时,集电极输出的直流电流与 基极输入的直流电流的比值,即: β1=Ic/Ib 2、交流参数 (1)交流电流放大系数β(或hfe) 这是指共发射极接法,集电极输出电流的变化量△Ic与基极输入电流 的变化量△Ib之比,即: β= △Ic/△Ib 一般晶体管的β大约在10-200之间,如果β太小,电流放大作用差,如果β太大,电流放大作用虽然大,但性能往往不稳定. (2)共基极交流放大系数α(或hfb) 这是指共基接法时,集电极输出电流的变化是△Ic与发射极电流的 变化量△Ie之比,即: α=△Ic/△Ie 因为△Ic<△Ie,故α<1.高频三极管的α>0.90就可以使用 α与β之间的关系: α= β/(1+β) β= α/(1-α)≈1/(1-α) (3)截止频率fβ、fα当β下降到低频时0.707倍的频率,就是共发射极的截止频率fβ;当α下降到低频 时的0.707倍的频率,就是共基极的截止频率fαo fβ、fα是表明管子频率特性的重要参数,它们之间的关系为: fβ≈(1-α)fα (4)特征频率fT因为频率f上升时,β就下降,当β下降到1时,对应的fT是全面地反映晶体管的高频放 大性能的重要参数. 3、极限参数 (1)集电极最大允许电流ICM 当集电极电流Ic增加到某一数值,引起β值下降到额定值的2/3或1/2, 这时的Ic值称为ICM.所以当Ic超过ICM时,虽然不致使管子损坏,但β值显著下降,影响放大质量. (2)集电极----基极击穿电压BVCBO 当发射极开路时,集电结的反向击穿电压称为BVEBO. (3)发射极-----基极反向击穿电压BVEBO 当集电极开路时,发射结的反向击穿电压称为BVEBO. (4)集电极-----发射极击穿电压BVCEO 当基极开路时,加在集电极和发射极之间的最大允许电压,使用 时如果Vce>BVceo,管子就会被击穿.

如何检测三极管的三个极

如何检测三极管的三个极 可以用万用表来初步确定三极管的好坏及类型(NPN 型还是PNP 型), 并辨别出e(发射极)、b(基极)、c(集电极)三个电极。测试方法如下: ①用指针式万用表判断基极 b 和三极管的类型:将万用表欧姆挡置"R ×100" 或"R×lk" 处,先假设三极管的某极为"基极",并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧 至几千欧),则假设的基极是正确的,且被测三极管为NPN 型管;同上,如果两次测得的电阻值都很大( 约为几千欧至几十千欧), 则假设的基极是正确的,且被 测三极管为PNP 型管。如果两次测得的电阻值是一大一小,则原来假设的基极是错误的,这时必须重新假设另一电极为"基极",再重复上述测试。 ②判断集电极c和发射极e:仍将指针式万用表欧姆挡置"R × 100"或"R × 1k" 处,以NPN管为例,把黑表笔接在假设的集电极c上,红表笔接到假设的发射极e上,并用手捏住b和c极( 不能使b、c直接接触), 通过人体, 相当 b 、C 之间接入偏置电阻, 读出表头所示的阻值, 然后将两表笔反接重测。若第一次测得的阻值比第二次小, 说明原假设成立, 因为 c 、 e 问电阻值小说明通过万用表的电流大, 偏置正常。 ③用数字万用表测二极管的挡位也能检测三极管的PN结,可以很方便地确定三极管的好坏及类型,但要注意,与指针式万用表不同,数字式万用表红表笔为 内部电池的正端。例:当把红表笔接在假设的基极上, 而将黑表笔先后接到其余两个极上, 如果表显示通〈硅管正向压降在0.6V 左右), 则假设的基极是正确的, 且被测三极管为NPN 型管。 数字式万用表一般都有测三极管放大倍数的挡位(hFE), 使用时, 先确认晶体管类型, 然后将被测管子 e 、b 、c三脚分别插入数字式万用表面板对应的三极管插孔中,表显示出hFE 的近似值。 三极管的管型及管脚的判别 为了迅速掌握测判方法,结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。”下面进行解释。 一、三颠倒,找基极 大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管; 测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位,红表笔正,黑表笔负。 假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的

常用晶体三极管参数

常用晶体三极管参数 2008-05-12 11:12 常用晶体三极管参数 名称封装极性耐压电流功率频率配对管 D633 28 NPN 音频功放 100V 7A 40W 达林顿 9013 21 NPN 低频放大 50V 0.5A 0.625W 9012 9014 21 NPN 低噪放大 50V 0.1A 0.4W 150HMZ 9015 9015 21 PNP 低噪放大 50V 0.1A 0.4W 150MHZ 9014 9018 21 NPN 高频放大 30V 0.05A 0.4W 1000MHZ 8050 21 NPN 高频放大 40V 1.5A 1W 100MHZ 8550 8550 21 PNP 高频放大 40V 1.5A 1W 100MHZ 8050 2N2222 21 NPN 通用 60V 0.8A 0.5W 25/200NS 2N2369 4A NPN 开关 40V 0.5A 0.3W 800MHZ 2N2907 4A NPN 通用 60V 0.6A 0.4W 26/70NS 2N3055 12 NPN 功率放大 100V 15A 115W MJ2955 2N3440 6 NPN 视放开 450V 1A 1W 15MHZ 2N6609 2N3773 12 NPN 音频功放 160V 16A 50W 2N3904 21E NPN 通用 60V 0.2A 2N2906 21C PNP 通用 40V 0.2A 2N2222A 21铁 NPN 高频放大 75V 0.6A 0.625W 300MHZ 2N6718 21铁 NPN 音频功放 100V 2A 2W 2N5401 21 PNP 视频放大 160V 0.6A 0.625W 100MHZ 2N5551 2N5551 21 NPN 视频放大 160V 0.6A 0.625W 100MHZ 2N5401 2N5685 12 NPN 音频功放 60V 50A 300W 2N6277 12 NPN 功放开 180V 50A 250W 9012 21 PNP 低频放大 50V 0.5A 0.625W 9013 2N6678 12 NPN 音频功放 650V 15A 175W 15MHZ 9012 贴片 PNP 低频放大 50V 0.5A 0.625W 9013 3DA87A 6 NPN 视频放大 100V 0.1A 1W 3DG6B 6 NPN 通用 20V 0.02A 0.1W 150MHZ 3DG6C 6 NPN 通用 25V 0.02A 0.1W 250MHZ 3DG6D 6 NPN 通用 30V 0.02A 0.1W 150MHZ MPSA42 21E NPN 电话视频 300V 0.5A 0.625W MPSA92 MPSA92 21E PNP 电话视频 300V 0.5A 0.625W MPSA42

晶体管测试仪使用说明

晶体管测试仪使用说明 输入电压:直流6.8V-12V 工作电流30mA左右,输入7.5V直流电压时实测 ●晶体管测试仪控制 测试仪由一个旋转编码器开关控制,旋转编码器开关一共可以有4种操作,短按、长按、左旋、右旋。 在关机状态下短按一次,就能打开电源,开始测试。 在一次测试完成后,如果没有检测到器件。长按开关或者左右旋转开关可以进入功能菜单,进入功能菜单后,左旋或者右旋开关可以在菜单项上下选择,要进入某一个功能项,则短按一次开关。当需要从某个功能里退出时,则长按开关。 ●测试器件 测试仪一共有3个测试点,TP1、TP2、TP3。这三个测试点在测试座里的分布如下:

在测试座的右边是贴片元件的测试位置,上面分别有数字1,2,3,各代表TP1、TP2、TP3 测试只有2个引脚的元件时,引脚不分测试顺序,2个引脚任意选择2个测试点,3个脚的器件引脚分别放到三个测试点中,不分顺序。经过测试后,测试仪自动识别出元件的引脚名称、所在的测试点,并显示在屏幕上。 测试只有2个脚的元件时,如果使用的是TP1和TP3两个测试点,则测试完成后自动进入连续测试模式,这样可以连续的同步测量TP1和TP3上的元件,不用再按开关。如果使用的是“TP1和TP2”或者“TP2和TP3”测试,则只测试一次。要再一次测试则按一次开关。 测试电容器前,先给电容器放电,再插入测试座测量,否则有可能损坏测试仪的单片机。 ●校准 测试仪校准是用于消除自身元器件的误差,使得最后的测试结果更加精确。校准分为快速校准和全功能校准。 快速校准的操作方法:用导线将三个测试点TP1、TP2、TP3短接,然后按下测试按钮,同时注意观察屏幕。屏幕颜色会变成黑底白字,在出现提示信息”Selftest mode..? ”后,按一下测试按钮,就进入到快速校准过程;如果在出现提示信息“Selftest mode..?”后,2秒钟内没有按键,则进行一次正常的测试过程,最后显示出短接TP1、TP2、TP3三个测试点导线的电阻值。进入快速校准过程后,屏幕上会出现一些数据,不用管他。等待直到屏幕上出现闪烁的字符串“isolate Probes!”后,去掉短接TP1、TP2、TP3的导线。直到屏幕出现字符串“Test End”后,快速校准完成。首次校准时,使用全功能校准方式。 全功能校准需要从功能菜单里进入,还需要另外准备一个220nf的电容器。全功能校准执行更加全面的校准过程,会花费更长的时间。进入功能菜单后,旋转测试按钮来到菜单项“Selftest”,然后按下测试按钮就进入全功能校准过程,屏幕上首先冒出闪烁的字符串“short Probes!”, 这时和快速校准一样,用导线把三个测试点短接,等待校准过程进行,在屏幕冒出闪烁的字符串“isolate Probes!”时,去掉短接在三个测试点的导线,继续等待校准过程进行,在屏幕冒出字符串“1-||-3 > 100nf”时,把准备好的220nf电容器安装在测试点TP1和TP3上。等待直到屏幕提示“Test End”,全功能校准过程完成。 ●功能菜单 Switch off 关机。 Transistor 晶体管测试,也即是开机后的默认功能。 Frequency 测量频率。长按测试按钮可以退出频率测量功能。频率测量范围从1Hz到1MHz以上,当被测频率低于25KHz时,显示周期。 f-Generator 方波发生器,有多档方波频率可选,左旋或右旋测试按钮切换不同的方波频率,长按测试按钮退出方波发生器。 10-bit PWM 脉冲信号发生器,左旋或右旋测试按钮调节脉冲的占空比,从1% - 99%。长按测试按钮退出脉冲信号发生器。 C+ESR@TP1:3 电容在线测量功能,可以从TP1和TP3引出两根导线,对2uF-50mF 电容器在线测量其电容值和ESR,注意测试前被测电容需完全放电,如果是在线测量,电容所在的电路需完全断电后才能进行。 1- - 3 电阻连续测量方式,不断测试安装在TP1和TP3上的电阻值,电感值。被测电阻小于2100欧姆时才会测量其电感,电感测量范围从0.01mH-20H .长按测试按钮退出。

三极管的检测及其管脚的判别

三极管的检测及其管脚的判别 使用数字万用表判断三极管管脚(图解教程) 现在数字式的万用表已经是很普及的电工、电子测量工具了,它的使用方便和准确性受到得维修人员和电子爱好者的喜爱。但有朋友会说在测量某些无件时,它不如指针式的万用表,如测三极管。我倒认为数字万用表在测量三极管时更加的方便。以下就是我自己的一些使用经验,我是通常是这样去判断小型的三极管器件的。大家不妨试试看是否好用或是否正确,如有意见或问题可以发信给我。 手头上有一些BC337的三极管,假设不知它是PNP管还是NPN 管。 图1三极管 我们知道三极管的内部就像二个二极管组合而成的。其形式就像下图。中间的是基极(B极)。

图2三极管的内部形式 首先我们要先找到基极并判断是PNP还是NPN管。看上图可知,对于PNP管的基极是二个负极的共同点,NPN管的基极是二个正极的共同点。这时我们可以用数字万用表的二极管档去测基极,看图3。对于PNP管,当黑表笔(连表内电池负极)在基极上,红表笔去测另两个极时一般为相差不大的较小读数(一般0.5-0.8),如表笔反过来接则为一个较大的读数(一般为1)。对于NPN表来说则是红表笔(连表内电池正极)连在基极上。从图4,图5可以得知,手头上的BC337为NPN管,中间的管脚为基极。

图3万用表的二极管测量档 图4判断BC337的B极和管型(1)

图4判断BC337的B极和管型(2) 找到基极和知道是什么类型的管子后,就可以来判断发射极和集电极了。如果使用指针式万用表到了这个步可能就要用到两只手了,甚至有朋友会用到嘴舌,可以说是蛮麻烦的。而利用数字表的三伋管hFE档(hFE 测量三极管直流放大倍数)去测就方便多了,当然你也可以省去上面的步骤直接用hFE去测出三极管的管脚极性,我自己则认为还是加上上面的步骤方便准确一些。 把万用表打到hFE档上,BC337卑下到NPN的小孔上,B极对上面的B字母。读数,再把它的另二脚反转,再读数。读数较大的那次极性就对上表上所标的字母,这时就对着字母去认BC337的C,E 极。学会了,其它的三极管也就一样这样做了,方便快速。 图5万用表上的hFE档

三极管的主要参数及极性判断

PNP三极管管脚图TO-92管脚图: SOT-23管脚图:

本篇文章摘自百科查看详细内容请点:https://www.wendangku.net/doc/c816458228.html,/Article/jk/200912/121135 5.html 三极管的主要参数及极性判断

Z304三极管的主要参数及极性判别 1.常用小功率三极管的主要参数 常用小功率三极管的主要参数,参见表B311。 2.三极管电极和管型的判别 (1) 目测法 ①管型的判别 一般,管型是NPN还是PNP应从管壳上标注的型号来辨别。依照部颁标准,三极管型号的第二位(字母),A、C表示PNP管,B、D表示NPN管,例如: 3AX 为PNP型低频小功率管3BX 为NPN型低频小功率管 3CG 为PNP型高频小功率管3DG 为NPN型高频小功率管 3AD 为PNP型低频大功率管3DD 为NPN型低频大功率管 3CA 为PNP型高频大功率管3DA 为NPN型高频大功率管 此外有国际流行的9011~9018系列高频小功率管,除9012和9015为PNP管外,其余均为NP N型管。 ②管极的判别 常用中小功率三极管有金属圆壳和塑料封装(半柱型)等外型,图T305介绍了三种典型的外形和管极 排列方式。

(2) 用万用表电阻档判别 三极管内部有两个PN结,可用万用表电阻档分辨e、b、c三个极。在型号标注模糊的情况下,也可 用此法判别管型。 ①基极的判别 判别管极时应首先确认基极。对于NPN管,用黑表笔接假定的基极,用红表笔分别接触另外两个极,若测得电阻都小,约为几百欧~几千欧;而将黑、红两表笔对调,测得电阻均较大,在几百千欧以上,此时黑表笔接的就是基极。PNP管,情况正相反,测量时两个PN结都正偏的情况下,红表笔接基极。 实际上,小功率管的基极一般排列在三个管脚的中间,可用上述方法,分别将黑、红表笔接基极,既可测定三极管的两个PN结是否完好(与二极管PN结的测量方法一样),又可确认管型。 ②集电极和发射极的判别 确定基极后,假设余下管脚之一为集电极c,另一为发射极e,用手指分别捏住c极与b极(即用手指代替基极电阻Rb)。同时,将万用表两表笔分别与c、e接触,若被测管为NPN,则用黑表笔接触c极、用红表笔接e极(PNP管相反),观察指针偏转角度;然后再设另一管脚为c极,重复以上过程,比较两次测量指针的偏转角度,大的一次表明IC大,管子处于放大状态,相应假设的c、e极正确。 3.三极管性能的简易测量 (1) 用万用表电阻档测ICEO和 基极开路,万用表黑表笔接NPN管的集电极c、红表笔接发射极e(PNP管相反),此时c、e间电阻 值大则表明ICEO小,电阻值小则表明ICEO大。 用手指代替基极电阻Rb,用上法测c、e间电阻,若阻值比基极开路时小得多则表明β值大。 (2) 用万用表hFE档测β 有的万用表有hFE档,按表上规定的极型插入三极管即可测得电流放大系数β,若β很小或为零,表明三极管己损坏,可用电阻档分别测两个PN结,确认是否有击穿或断路。

晶体管测试仪简介

开始/测试按键 SMD 器件测试座电容放电电阻外接表笔座 DC 电源接口 LCD 显示屏 开始/测试按键小元件放置区插件元件测试座 一. 产品概述 本仪表是一款针对于电子爱好者、开发者、电子维修及生产工厂研发的小仪器。可测直插式器件,也可测试贴片器件,可测各种二极管、三极管、可控硅、MOS管;能判断器件类型、引脚的极性、输出HFE、阀电压,场效应管的结电容,可测电容和电阻等。 二. 注意事项 ● 在测试电容前,请务必先进行放电,否则有可能损坏仪表。 ● 使用适配器供电时,请使用DC 9V -12V(含9V,12V)电压范围的适配器。● 本仪表不会对电池进行充电,当电池电量低于6V 时,请更换电池。 三. 技术指标 电阻:0Ω-50MΩ 分辨率: 0.01Ω电容:25pF-100mF 分辨率:1pF 电感:0.01mH-20H 分辨率:0.01mH 测量电容ESR 的分辨率: 0.01Ω 四. 使用方法 a. 按“开机/测试”可以实现开机和一次测试的功能,多次测量可重复按此键;测完后20秒无操作自动关机。 b. 本仪表提供贴片、插件和外置表笔三种测量方式,每种方式的1,2,3脚都是相同的对应关系。 c. 放置器件无需区分管脚顺序,测量完成后屏幕会显每个管脚对应的器件功能。 d. 仪表背面印有电解电容对应的ESR 典型值参照表,该表仅供参考,请以各生产厂家公布的数据为准。 五. 校准 短接1,2,3 测试点,按“开机/测试”按键,屏幕提示是否进入校准,在2秒内此按“开机/测试”按键确认,进入校准。之后屏幕提示断开1, 2,3 测试点,断开后继续,直到提示校准结束。 POWER/TEST SMD Devices Socket Capacitor Discharge Resistor Probe Socket DC IN LCD Screen POWER/TEST Small Devices Container Plug-in Devices Socket 1. Product Description This Meter is a small tool design for Engineer, Electronic Maintenance and Factory. It’s very easy to test plug-in and SMD devices, also can test di?erent kinds of Diodes, Triodes, Thyristors, MOSFET; able to analysis the device type, the polarity of the pin, the output HFE, the valve voltage, the junction capacitance of the FET. 2. Cautions ● Before testing the capacitor, be sure to discharge it, otherwise it may damage the internal circuit.● If using DC supply , please choose DC 9V -12V adapter(including 9V and 12V).● When the battery power is under 6V, please replace a new one . 3. Measuring parameters Resistor : 0Ω-50MΩ Resolution : 0.01ΩCapacitor: 25pF-100mF Resolution : 1pF Inductor: 0.01mH-20H Resolution : 0.01mH Capacitor ESR measuring resolution : 0.01Ω 4. Instructions a. Push "POWER/TEST" to power on and start a test, multiple measurements can be repeated by this key; auto power o? 20 seconds after measurement. b. Provide three kinds of socket, each socket pin1, pin2 and pin3 are connected. c. There 's a table "Typical ESR value of Electrolytic Capacitor" at the back, it’s for guide only, these are typical value for standard grade Electrolytic capacitor at room temperature. 5. Calibration Short the test pin 1,2,3 together, and push "POWER/TEST" button, then the screen prompts to enter Calibration, push the button again whin 2 seconds to con?rm. Few seconds latter the screen prompts to release pin 1,2,3, release them and wait for calibration ?nish. 晶体管测试仪

三极管单元测试题

三极管单元测试题 一、单选题(每题2分) 1. 关于三极管反向击穿电压的关系,下列正确的是( )。 A. EBO BR CBO BR CEO BR U U U )()()(>> B. EBO BR CEO BR CBO BR U U U )()()(>> C. CEO BR EBO BR CBO BR U U U )()()(>> D. CBO BR CEO BR EBO BR U U U )()()(>> 2. 某三极管的V 15,mA 20,mW 100(BR)CEO CM CM ===U I P ,则下列状态下三极管能正常工作的是( )。 A. mA 10,V 3C CE ==I U B. mA 40,V 2C CE ==I U C. mA 20,V 6C CE ==I U D. mA 2,V 20C CE ==I U 3. 放大电路如图所示,已知硅三极管的50=β,则该电路中三极管的工作状态为( )。 A. 截止 B. 饱和 C. 放大 D. 无法确定 4. ( )具有不同的低频小信号电路模型。 A. NPN 管和PNP 管 B. 增强型场效应管和耗尽型场效应管 C. N 沟道场效应管和P 沟道场效应管 D. 三极管和二极管 5. ( )情况下,可以用H 参数小信号模型分析放大电路。 A. 正弦小信号 B. 低频大信号 C. 低频小信号 D. 高频小信号 6. 硅三极管放大电路中,静态时测得集-射极之间直流电压U CE =,则此时三极管工作于( ) 状态。 A. 饱和 B. 截止 C. 放大 D. 无法确定 7. 已知场效应管的转移特性曲线如图所示,则此场效应管的类型是( )。

三极管的识别与检测方法(2)

三极管的识别与检测方法(2) 课型:理论+实践 教学目标 1、熟悉三极管外形,图形符号和文字符号; 2、了解三极管的种类与特点; 3、了解三极管的特性与参数; 4、掌握常用三极管的命名方法; 教学重点与难点 1、掌握三极管的外形,图形符号和文字符号; 2、了解三极管的种类与特点; 教学方法 讲授法、演示法 教学安排:2课时 教学过程 一、项目实施 任务一:普通三极管的识别与检测 工作任务: 1.识别不同类别的三极管 2.测量三极管 工作步骤: 1.识别各种三极管(按功率) (1)普通小功率三极管 普通小功率三极管通常采用TO-92封装,如图所示为9013三极管,其引脚顺序为E、B、C(引脚向下,面向元件型号)。 (2)中功率三极管 图所示为NPN型中功率三极管TIP41,其引脚顺序为B、C、E(引脚向下,面向元件型号),中功率三极管通常采用TO-220封装。 (3)金属外壳三极管 如图所示为开关三极管2N2222A,该三极管为NPN型三极管,采用金属外壳封装TO-18或TO-39,其引脚顺序如图所示,引脚向下,从凸起位置依次为E、B、C。

(4)大功率金属外壳三极管 图为大功率金属外壳三极管,其封装形式通常为TO-3,其外壳通常为集电极(C),另外两个引脚分别为基极(B)和发射极(E)。 (5)贴片三极管 图为贴片三极管8550,8550为小功率PNP三极管,其贴片型号为2TY,引脚顺序如图所示。 2、识别各种三极管(按引脚的现状) (1)色点标志 (2)凸形标记 (3)三角排列 (4)三脚等距平面性 (5)带散热片的三极管 3.用指针式万用表测量三极管 步骤一:判断三极管的基极(B) 用万用表R×1K档或R×100档依次测量三极管各极之间的正反向阻值,并将测得阻值填入表中。然后分析表中测得数据,观察哪一个引脚与其他两个引脚之间的测得的阻值均较小,如果符合这一条件,则这个引脚就是三极管的基极(B)。 步骤二:判断三极管的管型(PNP还是NPN) 将万用表置于R×1K档或R×100档,将万用表的黑表笔接三极管的基极,红表笔在其他极,如果阻值均较小,则表明这是一个NPN型三极管。如果是高阻值,改用红表笔接三极管的基极,黑表笔在其他引脚,若阻值均较小,则表明这是一个PNP型三极管。 步骤三:辨别三极管的集电极(C)和发射极(E) 方法一:将万用表置于R×1K档或R×100档,用“鳄鱼夹”夹持管脚,或用两手分别捏住表笔和管脚,然后用舌尖舔基极,利用人体电阻作为基极偏流电阻,也可进行测量。指针偏转较大的那一次,黑表笔所接为集电极(NPN管),红表笔所接为发射极。PNP管正好相反。 方法二:将万用表置于HFE档,将三极管管按假定的E、C插入万用表的“三极管测量

常用贴片三极管主要参数及丝印

常用贴片三极管主要参数(SOT-23) 序号型号 TYPE 极性 POLA RITY P D (mW) I C (mA) BV CBO (V) BV CEO (V) h FE V CE(sat)I C/I B f TYPE (MHZ) 打标 Marking Min/Max I C mA V CE Volts Max Volts mA 1S9012PNP3005004025120/3505010.6500501502T1 2S9013NPN3005004025120/3505010.650050150J3 3S9014NPN2001005045200/1000150.31005150J6 4S9015PNP2001005045200/1000150.310010150M6 5S9018NPN20050251870/190 1.O50.51001600J8 6S8050NPN3005004025120/3505010.650050150J3Y 7S8550PNP3005004025120/3505010.6500501502TY 8SS8050NPN1001500402585/30010010.58008080Y1 9SS8550PNP1001500402585/30010010.58008080Y2 10C1815NPN20015060500130/400260.251001080HF 11A1015PNP2001505050130/400260.31001080BA 12C945NPN2001506050130/400160.310010150CR 13A733PNP2001506050120/475160.31001050CS 142SC1623NPN200100605090/600160.310010250L4、L5、L6、L7 15M28S NPN20010004020300/1000010010.556002010028S 16M8050NPN2001000402580/30010010.580080150Y11 17M8550PNP2001000402585/30010010.580080150Y21 18MMBT5551NPN30060018016080/25010 5.O0.550 5.O80G1 19MMBT5401PNP300600160150100/20010 5.O0.5500.51002L 20MMBTA42NPN300300300300100/20010100.2202501D 21MMBTA92NPN300300300300100/20010100.2202502D 222SC2412NPN2001506050120/560160.4505180BQ、BR、BS 232SC3356NPN300100201250/30020100.51057000R23、R24、R25 242SC3837NPN30050301856/39010100.52041500CN、CP、CQ、CR 252SC3838NPN30050201156/3905100.51053200AN、AP、AQ、AR 26BC807-16PNP2255005045100/25010010.7500502005A 27BC807-25PNP2255005045160/40010010.7500502005B 28BC807-40PNP2255005045250/60010010.7500502005C 29BC817-16NPN2255005045100/25010010.7500502006A 30BC817-25NPN2255005045160/40010010.7500502006B 31BC817-40NPN2255005045250/60010010.7500502006C 32BC846A NPN2251008065110/220250.610051001A 33BC846B NPN2251008065200/450250.610051001B 34BC847A NPN2251005045110/220250.610051001E 35BC847B NPN2251005045200/450250.610051001F 36BC847C NPN2251005045420/800250.610051001G 37BC848A NPN2251003030110/220250.610051001J 38BC848B NPN2251003030200/450250.610051001K 39BC848C NPN2251003030450/800250.610051001L 40BC858A PNP2251008065125/250250.6510051003A 41BC858B PNP2251008065220/475250.6510051003B 42BC857A PNP2251005045125/250250.6510051003E 43BC857B PNP2251005045220/475250.6510051003F 44BC875C PNP2251005045420/800250.6510051003G

相关文档