文档库 最新最全的文档下载
当前位置:文档库 › midas中反应谱分析

midas中反应谱分析

midas中反应谱分析
midas中反应谱分析

北京迈达斯技术有限公司

目录

简要 (1)

设定操作环境及定义材料和截面 (2)

定义材料 (2)

定义截面 (3)

建立结构模型 (4)

主梁及横向联系梁模型 (4)

输入横向联系梁 (5)

输入桥墩 (5)

刚性连接 (7)

建立桥墩和系梁 (9)

输入边界条件 (10)

输入支座的边界条件 (10)

刚性连接 (11)

输入横向联系梁的梁端刚域 (12)

输入桥台的边界条件 (13)

输入二期恒载 (14)

输入质量 (15)

输入反应谱数据 (17)

输入反应谱函数 (17)

输入反应谱荷载工况 (18)

运行结构分析 (19)

查看结果 (20)

荷载组合 (20)

查看振型形状和频率 (21)

查看桥墩的支座反力 (24)

简要

本例题介绍使用MIDAS/CIVIL的反应谱分析功能来进行抗震设计的方法。

例题模型使用的是简化了的钢箱型桥梁模型,由主梁、横向联系梁和桥墩构成。桥台部分由于刚度很大,不另外建立模型只输入边界条件;基

础部分假设完全固定,也只按边界条件来定义。

下面是桥梁的一些基本数据。

跨径:45 m + 50 m + 45 m = 140 m

桥宽:11.4 m

主梁形式:钢箱梁

钢材:GB(S) Grade3(主梁)

混凝土:GB_Civil(RC) 30(桥墩)

图1. 桥梁剖面图[单位:

mm]

设定操作环境及定义材料和截面

开新文件(新项目),以‘Response.mcb’为名保存(保存)。

文件/ 新项目t

文件/ 保存( Response )

将单位体系设定为kN(力), m(长度)。

工具/ 单位体系

长度>m; 力>kN ?

定义材料

分别输入主梁和桥墩的材料数据。

模型/ 材料和截面特性/ 材料

材料号(1); 类型>S钢材

规范>GB(S); 数据库>Grade3 ?

材料号(2); 类型>混凝土

规范>GB-Civil(RC); 数据库>30 ?

图2. 定义材料

定义截面

使用用户定义来输入主梁、横向联系梁以及桥墩的截面数据。

主 梁: 箱型截面 2000×2500×12×16/18 横向联系梁: 工字型截面 1500×300×12×12/12 柱 帽: 实腹长方形截面 1.5×1.5 桥 墩: 实腹圆形截面 1.5

主梁与桥墩连接的支座部分使用弹性连接(Elastic Link)来模拟。

模型 / 材料和截面特性

/ 截面

数据库/用户

名称 (Girder) ; 截面形状>箱型截面 ; 用户 偏心>中-中心

H ( 2 ) ; B ( 2.5 ) ; tw ( 0.012 ) tf1 ( 0.016 ) ; C ( 2.3 ) ; tf2 ( 0.018 )

名称 (Cross) ; 截面形状>工型截面 ; 用户 偏心>中-中心

H ( 1.5 ) ; B ( 0.3 ) ; tw ( 0.012 ) ; tf1 ( 0.012 )

名称( Coping ) ; 截面形状>实腹长方形截面 偏心>中-中心 用户 ; H ( 1.5 ) ; B ( 1.5 ) ?

名称 ( Column ) ; 截面形状>实腹圆形截面 用户 ; D ( 1.5 ) ?

图3. 定义截面

输入截面尺寸时,若只输入tf1,不输入t f 2,则t f 2与t f 1相同。

建立结构模型

主梁及横向联系梁模型

使用建立节点建立节点后,通过扩展单元功能将节点按28 @5m扩展成梁单元来建立主梁。

顶面,捕捉节点(开), 捕捉单元(开)

自动对齐(开)

模型/ 节点/ 建立节点

坐标( 0, 0, 0 )

复制>复制次数(1); 距离(0, 7.7, 0)?

模型/ 单元/ 扩展单元

全选

扩展类型>节点 线单元

单元属性>单元类型>梁单元

材料>1:Grade3 ; 截面>1 : Girder

生成形式>复制和移动

复制和移动>等间距

dx, dy, dz ( 5, 0, 0 ) ; 复制次数( 28 ) ?

图4. 输入主梁

输入横向联系梁

在主梁起点处使用建立单元功能连接两个节点建立一个横向联系梁后,可通过将该梁按纵桥方向复制来建立剩余横向联系梁。

节点号(开)

模型/ 单元/ 建立单元

单元类型>一般梁/变截面梁

材料>1:Grade3; 截面>2:Cross ; Beta Angle ( 0 )

节点连接( 1, 2 )

模型/ 单元/ 复制和移动

选择最新建立的个体

形式>复制; 复制和移动>等间距

dx, dy, dz ( 5, 0, 0 ) ; 复制次数( 28 )

图5. 输入横向联系梁

输入桥墩

如图6所示,在桥墩的位置建立模型后,通过刚性连接(Rigid Link)来模拟实际结构。桥墩的剖面如图7所示。

图6. 桥墩和上部结构连接示意图

图7. 桥墩模型

11.7

1.5

立面 侧面

[单位 : m]

7.0

1.5

1.5

刚性连接 弹性连接 1.25 0.20 0.75 0.75 2.0 2.0

2@3.85=7.7

刚性连接

刚性连接

[单位 : m]

刚性连接

选择主梁支座处的节点,将其向z轴方向复制,生成要进行刚性连接的节点。(参考图6)

显示

边界>一般支承(开)

多边形选择( 单元: 中跨中的单元)

激活

标准视图, 节点号(开)

模型/节点/ 复制和移动

单选( Nodes : 19, 20, 39, 40)

形式>复制; 复制和移动>任意间距

方向>z; 间距( -1.25, -0.2, -0.75 )

图8. 复制节点

在要建立桥墩和系梁的位置生成节点。

模型/ 节点/ 分割节点间距

分割>等间距>分割数量(2)

分割的节点号(67, 68) ; (69, 70)

模型/ 节点/ 复制和移动

单选(节点: 71, 72)

形式>复制; 复制和移动>任意间距

方向>y; 间距( 11.7/2, -11.7 ) ?

前次选择

方向>z; 间距-0.75, 7@-1 ) ?

图9. 输入桥墩的节点

建立桥墩和系梁

使用建立单元功能建立桥墩和系梁。(参考图7)

模型/ 单元

/ 建立单元

单元类型>一般梁/变截面梁

材料>2:30 ; 截面>3:Coping

Beta Angle ( 0 ) ; 交叉分割>节点(开) (图10的○1)

节点连接( 73, 75 )

节点连接( 74, 76 )

材料>2:30 ; 截面>4:Column

Beta Angle ( 0 ) ; 交叉分割>节点(开)

节点连接( 77, 91 )

节点连接( 78, 92 )

图10. 建立系梁和桥墩

输入边界条件

输入支座的边界条件

使用 Zoom Window 放大系梁的连接部分,并使用弹性连接功能输入支座的边界条件。

窗口缩放 (放大第一个桥墩的系梁部分)

模型 / 边界条件 / 弹性连接

选择>添加/替换 ; 连接类型>一般类型

SDx (1e11) ; SDy (1e11) ; SDz (1e11) SRx (0) ; SRy (0) ; SRz (0)

两点 ( 59, 63 )

SDx (1e11) ; SDy (0) ; SDz (1e11) SRx (0) ; SRy (0) ; SRz (0)

两点( 60, 64 )

对齐,

窗口缩放 (放大第二个桥墩的系梁部分)

SDx (1e11) ; SDy (1e11) ; SDz (0) SRx (0) ; SRy (0) ; SRz (0)

两点( 61, 65 )

SDx (1e11) ; SDy (0) ; SDz (1e11) SRx (0) ; SRy (0) ; SRz (0)

两点( 62, 66 )

图11. 只激活连接部分的单元

弹性连接各方向弹簧的刚度需按单元坐标系输入。自由方向输入为“0”, 固定方向输入为“1e11”以保证其刚性运动。

刚性连接

将在实际位置建立的主梁和支座、支座和桥墩分别使用刚性连接 连接起来。(参考图6)

对齐,

窗口缩放 (放大第一个桥墩的系梁部分)

模型 /边界条件/ 刚性连接

单选( 节点 : 60 )

主节点号 ( 20 )

复制刚性连接(开)>方向>x ; 间距 ( 50 ) 类型>刚体 ?

单选(节点 : 59 )

主节点号( 19 )

?

单选(节点: 68 )

主节点号( 64 )

?

单选(节点: 67 )

主节点号( 63 )

?

单选(节点: 77 )

主节点号( 71 )

?

图12. 主梁和支座及桥墩间的刚性连接

已输入的刚性连接可进行复制。

输入横向联系梁的梁端刚域

由于建模时所有的单元是以中心轴为准相互连接的,故会有如图15所示的主梁和横向联系梁间由于主梁的梁宽导致的重复部分出现。对此可使用梁端刚域功能通过输入刚域长度使程序在计算刚度时将该部分的影响排除。

输入梁端刚域长度的方法有整体坐标系和单元坐标系两种类型。若选择整体坐标系类型,则对于所输入的刚域长度不考虑荷载,只针对剩余的单元长度计算刚度和自重。

相反选择单元坐标系的话,只在计算刚度时排除输入的刚域长度,而在计算自重和施加荷载时则将该部分包含在内。(参考在线帮助手册)这里使用单元坐标系来输入刚域长度。此时由于需在梁单元的i、j端输入轴向的刚域长度,故需事先确认梁单元的单元坐标系方向。

左面,

隐藏(开)

模型/ 边界条件/ 梁端刚域

交叉线选择(单元: 横向联系梁)

选择>添加/替换; 梁端部刚域长度>类型>单元坐标系

RGDi ( 2.3/2 ); RGDj ( 2.3/2 )

图13. 输入横向联系梁的刚域长度i 端

j 端

①①

输入桥台的边界条件

本例题主梁与桥墩系梁的支座部分使用弹性连接和刚性连接功能来模拟。桥台的边界条件如图14所示。基础则假设其完全固定,故约束所有自由度。

图14. 桥台的约束条件

隐藏(关),标准视图,全部激活

模型/边界条件/ 一般支承

单选(节点: 1, 57)

选择>添加; 支承条件类型>Dy, Dz(开) ?

单选(节点: 2, 58)

选择>添加; 支承条件类型>Dz(开) ?

单选(节点: 91, 92)

选择>添加; 支承条件类型>D-All (开), R-All (开) ?

图15.输入边界条件

固定端

桥台

45 m50 m45 m

使用查询>查询节点

功能(图12的①)可在信

息窗口查询相应节点的

各种输入情况,并可非

常容易地查看两个节点

间的距离。

输入二期恒载

首先定义二期恒载的静力荷载工况。

荷载/静力荷载工况

名称( DL ) ; 类型>恒荷载

假设二期恒载为10kN/m大小的均布荷载,使用梁单元荷载功能输入。

荷载/ 梁单元荷载

荷载工况名称>DL; 选择>添加

荷载类型>均布荷载

方向>整体坐标系Z; 投影>否

数值>相对值; x1 ( 0 ); x2( 1 ) ; w ( -10)

①①

图17. 输入主梁二期恒载

输入质量

由于在进行反应谱分析之前需先进行特征值分析,故输入进行特征值分析所需的结构的质量。

在MIDAS/Civil中输入质量有两种类型。一个是将所建结构模型的自重转换为质量,还有一个是将输入的其它恒荷载(铺装及护栏荷载等)转换

为质量。

对于结构的自重不需另行输入,即可在模型>结构类型对话框中完成转换。而二期荷载一般是以外部荷载(梁单元荷载、楼面荷载、压力荷

载、节点荷载等)的形式输入的,可使用模型>质量>荷载转换为质量功

能来转换。

本例题也使用上述两种方法来输入质量。

首先将所输入的二期荷载(梁单元荷载)转换为质量。

模型/ 质量/ 将荷载转换成质量

质量方向>X, Y, Z

转换的荷载种类>梁单元荷载(开)

重力加速度( 9.806 ); 荷载工况>DL

组合值系数( 1 ); 添加

图18. 将梁单元荷载转换为质量

下面将单元的自重转换为质量。

模型 / 结构类型

将结构的自重转换为质量 转换到 X, Y, Z

图19. 将结构的自重自动转换为质量

质量输入结束后,可使用查询>质量统计表格 功能确认质量输入得是否正确。表格中荷载转化为质量是指被转换成质量的外部荷载,结构

质量指的是被转换的自重。在表格下端的合计(图20的○

1)里的数值为被转换的所有质量的合计。

查询 / 质量统计表格

图20. 质量统计表格

输入反应谱数据

输入反应谱函数

进行抗震计算,这里使用振型分解反应谱法。输入地震荷载所需的各项参数如下。

如图21,将以上参数输入后就可自动得到公路工程抗震设计规范(JTJ 004-89)的地震影响系数曲线。

荷载 / 反应谱分析数据

/ 反应谱函数 > 添加

设计反应谱 ; 设计反应谱>China(JTJ004-89) 基本烈度>7 场地类别>Ⅰ

重要性修正系数>1.0 综合影响系数>0.20 最大周期( 10 )

图21. 输入反应谱函数

基本烈度:

7 场地类别: I

重要性修正系数:

1.0 综合影响系数:

0.20

最大周期:

10秒

反应谱函数中输入的最大周期必须包含特征值分析所计算出的最大、最小周期的范围。

输入反应谱荷载工况

输入反应谱函数后,按桥梁纵向(整体坐标系X 方向)和侧向(整体坐标系Y 方向)分别定义反应谱荷载工况。

荷载 / 反应谱函数

/反应谱荷载工况

荷载工况名称 ( X-dir ) ; 函数名称>CH-JTJ004-89 方向>X-Y ; 地震角度 ( 0 ) 放大系数 ( 1 ) 操作>添加

荷载工况名称 ( Y-dir ) ; 函数名称>CH-JTJ004-89 方向>X-Y ; 地震角度 ( 90 ) 放大系数 ( 1 ) ; 操作>添加

图22. 输入反应谱荷载工况

① ②

地震角度是指地震荷载的方向与整体坐标系X 轴的夹角,角度的符号对于Z 轴遵循右手法则。

地震荷载的方向与X-Y 平面平行,则选择‘X-Y ’ 方向。

ANSYS中的模态分析与谐响应分析

ANSYS中的模态分析与谐响应分析 作者:未知时间:2010-4-15 8:59:49 模态分析是分析结构的动力特性,与结构受什么样的荷载没有关系,只要给定了质量、弹性模量、泊松比等材料参数,并施加了边界约束就可以得到此状态下的各阶自振频率和振型(也称为模态)。 谐响应分析是分析结构在不同频率的简谐荷载作用下的动力响应,是与结构所受荷载相关的,只是结构所受荷载的都是简谐荷载,而且荷载频率的变化范围在谐响应分析时要给出来。 比如,在ANSYS谐响应分析中要给出这样的语句 FK,3,FX,7071,7071 !指定点荷载的实部和虚部(或者幅值和相位角) HARFRQ,0,2.5, !指定荷载频率的变化范围,也就是说只分析结构所受频率从0到2.5HZ之间的荷载 NSUBST,100, !指定频率从0到2.5之间分100步进行计算 这样,结构所受的这个点荷载的表达式实际上是 F=(7071+i*7071)*exp(i*omiga*t) !式中omiga从0到2.5*2*3.1415926变化 分析得到结果是各点物理量随频率变化的,但物理量的值一般为复数,包括实部的虚部,这可以从后处理LIST结点值看出来。 个人认为进行谐响应分析并不一定要先进行模态分析(也叫振型分析、振型分解等),而直接进行谐响应分析后查看结构的物理量随频率变化曲线时也会看到在结构的自振频率处响应会放大(共振)。如果已经进行过模态分析的话,会发现谐响应分析时的共振频率和模态分析提到的自振频率是一致的。但有些时候模态分析中得到的有些频率在谐响应分析的频响曲线里可能很不明显。因此,只能说在谐响应分析前进行一下模态分析可以对结构的自振特性有个了解,以便验证谐响应分析结果是否合理。 另外,谐响应分析应该是频域分析方法的一个部分。对于相地震那样的时间过程线,直接进行时域分析(ANSYS里用暂态分析)可得到结构随时间的响应。而如果进行频域分析,就应该通过傅立叶变换把时域地震曲线变为由多个简谐荷载的叠加,然后再以此简谐荷载做为谐响应分析时的荷载进行谐响应分析,最后再对谐响应分析得到的结果进行傅立叶逆变换得到时域的结果。不知道这种理解是否正确,我也没有用ANSYS这样做过。如果正确的话,时域分析和频域分析的结果应该是一致的。 模态分析的应用及它的试验模态分析 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模

模态分析和频率响应分析的目的

有限元分析类型 一、nastran中的分析种类 (1)静力分析 静力分析是工程结构设计人员使用最为频繁的分析手段,主要用来求解结构在与时间无关或时间作用效果可忽略的静力载荷(如集中载荷、分布载荷、温度载荷、强制位移、惯性载荷等)作用下的响应、得出所需的节点位移、节点力、约束反力、单元内力、单元应力、应变能等。该分析同时还提供结构的重量和重心数据。 (2)屈曲分析 屈曲分析主要用于研究结构在特定载荷下的稳定性以及确定结构失稳的临界载荷,NX Nastran中的屈曲分析包括两类:线性屈曲分析和非线性屈曲分析。 (3)动力学分析 NX Nastran在结构动力学分析中有非常多的技术特点,具有其他有限元分析软件所无法比拟的强大分析功能。结构动力分析不同于静力分析,常用来确定时变载荷对整个结构或部件的影响,同时还要考虑阻尼及惯性效应的作用。 NX Nastran的主要动力学分析功能:如特征模态分析、直接复特征值分析、直接瞬态响应分析、模态瞬态响应分析、响应谱分析、模态复特征值分析、直接频率响应分析、模态频率响应分析、非线性瞬态分析、模态综合、动力灵敏度分析等可简述如下: ?正则模态分析 正则模态分析用于求解结构的固有频率和相应的振动模态,计算广义质量,正则化模态节点位移,约束力和正则化的单元力及应力,并可同时考虑刚体模态。 ?复特征值分析 复特征值分析主要用于求解具有阻尼效应的结构特征值和振型,分析过程与实特征值分析类似。此外

Nastran的复特征值计算还可考虑阻尼、质量及刚度矩阵的非对称性。 ?瞬态响应分析(时间-历程分析) 瞬态响应分析在时域内计算结构在随时间变化的载荷作用下的动力响应,分为直接瞬态响应分析和模态瞬态响应分析。两种方法均可考虑刚体位移作用。 直接瞬态响应分析 该分析给出一个结构随时间变化的载荷的响应。结构可以同时具有粘性阻尼和结构阻尼。该分析在节点自由度上直接形成耦合的微分方程并对这些方程进行数值积分,直接瞬态响应分析求出随时间变化的位移、速度、加速度和约束力以及单元应力。 模态瞬态响应分析 在此分析中,直接瞬态响应问题用上面所述的模态分析进行相同的变换,对问题的规模进行压缩,再对压缩了的方程进行数值积分,从而得出与用直接瞬态响应分析类型相同的输出结果。 ?随机振动分析 该分析考虑结构在某种统计规律分布的载荷作用下的随机响应。例如地震波,海洋波,飞机超过建筑物的气压波动,以及火箭和喷气发动机的噪音激励,通常人们只能得到按概率分布的函数,如功率谱密度(PSD)函数,激励的大小在任何时刻都不能明确给出,在这种载荷作用下结构的响应就需要用随机振动分析来计算结构的响应。NX Nastran中的PSD可输入自身或交叉谱密度,分别表示单个或多个时间历程的交叉作用的频谱特性。计算出响应功率谱密度、自相关函数及响应的RMS值等。计算过程中,NX Nastran不仅可以像其他有限元分析那样利用已知谱,而且还可自行生成用户所需的谱。 ?响应谱分析 响应谱分析(有时称为冲击谱分析)提供了一个有别于瞬态响应的分析功能,在分析中结构的激励用各个小的分量来表示,结构对于这些分量的响应则是这个结构每个模态的最大响应的组合。 ?频率响应分析 频率响应分析主要用于计算结构在周期振荡载荷作用下对每一个计算频率的动响应。计算结果分实部和虚部两部分。实部代表响应的幅度,虚部代表响应的相角。 直接频率响应分析 直接频率响应通过求解整个模型的阻尼耦合方程,得出各频率对于外载荷的响应。该类分析在频域中主要求解两类问题。第一类是求结构在一个稳定的周期性正弦外力谱的作用下的响应。结构可以具有粘性阻尼和结构阻尼,分析得到复位移、速度、加速度、约束力、单元力和单元应力。这些量可以进行正则化以获得传递函数。 第二类是求解结构在一个稳态随机载荷作用下的响应。此载荷由它的互功率谱密度定义。而结构载荷由上面所提到的传递函数来表征。分析得出位移、加速度、约束力或单元应力的自相关系数。该分析也对自功率谱进行积分而获得响应的均方根值。 模态频率响应 模态频率响应分析和随机响应分析在频域中解决的两类问题与直接频率响应分析解决相同的问题。

谐响应分析定义与应用

谐响应分析的定义与应用 2009-11-14 09:43 任何持续的周期载荷将在结构系统中产生持续的周期响应(谐响应)。谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时的稳态响应的一种技术。分析的目的是计算出结构在几种频率下的响应并得到一些响应值(通常是位移)对频率的曲线。从这些曲线上可以找到“峰值”响应,并进一步观察峰值频率对应的应力。该技术只计算结构的稳态受迫振动,而不考虑发生在激励开始时的瞬态振动。(见图1)。谐响应分析使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计能否成功地克服共振、疲劳,及其它受迫振动引起的有害效果。 图1(a)典型谐响应系统。F0及ω已知,u0和Φ未知。 (b)结构的瞬态和稳态动力学响应。 谐响应分析是一种线性分析。任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。分析中可以包含非对称系统矩阵,如分析在流体─结构相互作用中问题(参见<>的第5章)。谐响应分析也可以 分析有预应力结构,如小提琴的弦(假定简谐应力比预加的拉伸应力小得多)。 谐响应分析中用到的命令§2.2建模过程与执行谐响应分析可以使用其它类 型分析相同的命令。同样,无论进行何种类型的分析,均可以从用户图形界面(GUI)中选择等效的选项来建模和求解。 在后面的“谐响应分析实例(命令或批处理方式)”中,将会给出进行一个谐响 应分析需要执行的命令(GUI方式或者批处理方式运行ANSYS时用到的)。而“谐响应分析实例(GUI方式)”则描述了如何用ANSYS用户图形界面的菜单执行同 样实例分析的过程。(要了解如何用命令和用户图形界面进行建模,请参阅《ANSYS 建模与网格指南》)。 《ANSYS命令参考手册》中有更为详细的ANSYS命令说明,它们是按字母顺序进行组织的。 三种求解方法§2.3. 谐响应分析可采用三种方法:完全法(Full)、缩减法(Reduced)、模态叠加法(Mode Superposition)。(第四种方法,也是一种开销相对较大的方法,是将简谐载荷指定为有时间历程的载荷函数,进行相应的瞬态动力学分析,参见第三部分瞬态动力学分析中的叙述。)ANSYS/Linear Plus中只允许采用模态叠加法。 在研究每种方法的实现细节前,让我们先比较一下各种方法的优缺点。 完全法§2.3.1完全法是三种方法中最易使用的方法。它采用完整的系统矩阵计算谐响应(没有矩阵缩减)。矩阵可以是对称的或非对称的。完全法的优点是:

模态分析与谐响应分析区别联系

模态分析是分析结构的动力特性,与结构受什么样的荷载没有关系,只要给定了质量、弹性模量、泊松比等材料参数,并施加了边界约束就可以得到此状态下的各阶自振频率和振型(也称为模态)。 谐响应分析是分析结构在不同频率的简谐荷载作用下的动力响应,是与结构所受荷载相关的,只是结构所受荷载的都是简谐荷载,而且荷载频率的变化范围在谐响应分析时要给出来。 比如,在ANSYS谐响应分析中要给出这样的语句 FK,3,FX,7071,7071 !指定点荷载的实部和虚部(或者幅值和相位角) HARFRQ,0,2.5, !指定荷载频率的变化范围,也就是说只分析结构所受频率从0到2.5HZ之间的荷载NSUBST,100, !指定频率从0到2.5之间分100步进行计算 这样,结构所受的这个点荷载的表达式实际上是 F=(7071+i*7071)*exp(i*omiga*t) !式中omiga从0到2.5*2*3.1415926变化 分析得到结果是各点物理量随频率变化的,但物理量的值一般为复数,包括实部的虚部,这可以从后处理LIST结点值看出来。 个人认为进行谐响应分析并不一定要先进行模态分析(也叫振型分析、振型分解等),而直接进行谐响应分析后查看结构的物理量随频率变化曲线时也会看到在结构的自振频率处响应会放大(共振)。如果已经进行过模态分析的话,会发现谐响应分析时的共振频率和模态分析提到的自振频率是一致的。但有些时候模态分析中得到的有些频率在谐响应分析的频响曲线里可能很不明显。因此,只能说在谐响应分析前进行一下模态分析可以对结构的自振特性有个了解,以便验证谐响应分析结果是否合理。 另外,谐响应分析应该是频域分析方法的一个部分。对于相地震那样的时间过程线,直接进行时域分析(ANSYS里用暂态分析)可得到结构随时间的响应。而如果进行频域分析,就应该通过傅立叶变换把时域地震曲线变为由多个简谐荷载的叠加,然后再以此简谐荷载做为谐响应分析时的荷载进行谐响应分析,最后再对谐响应分析得到的结果进行傅立叶逆变换得到时域的结果。不知道这种理解是否正确,我也没有用ANSYS这样做过。如果正确的话,时域分析和频域分析的结果应该是一致的。 模态分析的应用及它的试验模态分析 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 模态分析技术的应用可归结为一下几个方面: 1) 评价现有结构系统的动态特性; 2) 在新产品设计中进行结构动态特性的预估和优化设计; 3) 诊断及预报结构系统的故障; 4) 控制结构的辐射噪声; 5) 识别结构系统的载荷。 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应

排气系统模态及振动响应分析

机电技术 2012年2月 110 作者简介:卞信涛(1987-),男,工程师,研究方向:汽车噪声与振动。 排气系统模态及振动响应分析 卞信涛 (东南(福建)汽车工业有限公司研发中心,福建 福州 350119) 摘 要:文章介绍利用Altair/HyperMesh 软件创建某排气系统有限元模型,运用MSC/Nastran 软件计算排气系统的约束模态,对约束模态分析的结果进行评价。最后结合排气系统吊耳振动响应分析结果,评估排气系统吊耳振动响应峰值频率点,为后续排气系统结构及吊耳位置优化提供依据。 关键词:排气系统;模态;振动;频率响应分析 中图分类号:U464 文献标识码:A 文章编号:1672-4801(2012)01-110-03 动力总成作为车辆的主要振动激励源,其工作时产生的振动传递给排气系统,然后再通过吊耳传递给车身,若吊耳位置及其性能匹配不佳,会导致较大的车身振动通过座椅、地板和方向盘直接传递给乘客,进而影响乘员舒适性。所以,控制传递到车身上的力是排气系统振动控制的最主要目标之一。 本文对某排气系统约束模态分析的结果进行评价,结合排气系统吊耳振动响应分析结果,评估排气系统吊耳振动响应峰值频率点,为后续排气系统结构及吊耳位置优化提供依据。 1 排气系统模型创建 图1 排气系统有限元模型 图1为排气系统的有限元模型,以下是该模型的主要组成部分: 动力总成部分:动力总成(包含排气歧管)是用质量、惯量、刚性梁和弹簧来模拟的,它的质量和惯量参数施加在质心上,用三个弹簧单元(每个弹簧单元有X 、Y 、Z 三个方向的刚度)来模拟悬置衬套,三个刚性梁单元分别将质心与悬置衬套连接起来。动力总成的质心与排气系统的开始端也用刚性梁单元相连。 排气系统部分:排气系统依据3D 模型建立,包括三元催化器、副消音器、主消音器以及吊耳等。 球连接及吊耳橡胶部分:球连接主要控制动力总成传递到冷端的振动,球连接只有三个方向的转动自由度,吊耳车身侧被动挂钩与排气系统侧主动挂钩间的橡胶用弹簧单元模拟,并设置X 、Y 、Z 三个方向的刚度。 2 排气系统模态分析 模态分析是排气系统频率响应分析的关键。排气系统的模态必须与发动机的激振频率和车体的模态分开,否则各系统的频率耦合在一起会产生强烈的共振。在进行排气系统的模态分析时,通常要对以下几个指标设定目标:第1阶横向弯曲模态,第1阶垂向弯曲模态,第1阶扭转模态等。 2.1 边界条件 该模型的约束边界条件有两部分:第一部分是发动机悬置的橡胶衬套,它的一端与动力总成相连,另一端固定。第二部分是吊耳的边界,吊耳橡胶一端与排气系统相连,另一端固定。 2.2 计算结果 由于该动力总成的怠速工况转速为650 r/min 左右。对四缸发动机来说,该动力总成的发火频率要大于20 Hz ,故该排气系统中低于20 Hz 的模态多为刚性模态且很难被激励出来,所以不考虑20 Hz 以下的模态。在设计排气系统时,要使得其模态数目越少越好。如果模态数目太多,那么系统中的某些频率很容易被激励起来。经过计算分析,在20~200 Hz 范围内该排气系统共有13阶模态。

排气系统模态及振动响应分析

排气系统模态及振动响应分析 1 排气系统模型 1.1几何模型 排气系统,包括三元催化器、波纹管、前消声器、后消声器、连接管、连接法兰等。四处吊挂分别位于前消声器前后和后消声器的前后,以橡胶悬挂在车厢底板平面上,见图1。整体坐标系采用右手法则的直角坐标系,X轴为从汽车前部指向后部,Y 轴指向汽车右侧,Z 轴指向上方。 图1 排气系统的三维几何模型 1.2有限元模型 排气系统大部分为薄板结构,采用壳单元来进行模拟;对连接法兰,则采用实体进行模拟,生成网格。由于波纹管、三元催化器、消声器结构的复杂性,在分析和建模过程中,进行了以下处理: (1)对波纹管结构,根据设计部门提供的波纹管结构数据,在CAD软件中建立波纹管的壳模型,然后将建立的模型组装进排气系统,进行网格划分。排气系统波纹管段的网格要非常细密,才能保证求解精确。 (2)三元催化器、前消声器取其外壳和内部隔板划分网格,不足的质量采用集中质量单元加在部件质心。 吊挂3 后消声器

(3)后消声器取实际模型; (4)有限元模型中,将连接法兰之间的橡胶密封垫省略,两个法兰间采用 RBE2连接。法兰的体网格与管道的壳网格、管道的壳网格之间用MPC连接。 (5)做自由模态分析时,忽略橡胶悬挂、吊钩等结构; (6)橡胶悬挂简化为线性弹簧。 图2为其有限元模型,体网格划分采用六面体单元,面网格采用四边形单元。 (a) 前段(b) 后段 图2 排气系统有限元模型 2 约束模态与振型节点分析 2.1 模态分析 对排气系统进行了约束模态分析。约束点取排气系统与发动机排气歧管连接法兰螺栓以及5个吊钩与车身连接处。表2为排气系统的前16阶自由模态频率及其振型说明。图3为前10阶振型。 表2 排气系统前16阶自由模态 阶数振型说明(主要变形) 1 XOY面内一阶弯曲 2 XOY面内一阶弯曲 3 XOZ面内,以波纹管为中心整体摆动 4 XOZ面内一阶弯曲 5 一阶扭转 6 二阶扭转 7 前段XOZ面内一阶弯曲,后段扭转 8 三元催化器段XOZ弯曲 9 以XOZ面内弯曲为主 10 以XOY面内弯曲为主 11 三元催化器段弯曲

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过 AHA12GAGGAGAGGAFFFFAFAF

模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 AHA12GAGGAGAGGAFFFFAFAF

AHA12GAGGAGAGGAFFFFAFAF 二、各模态分析方法的总结 (一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计

Midas中震设计

在MIDAS/Gen中如何实现中震设计? 结构设计学习资料2009-11-29 23:05:09 阅读224 评论0 字号:大中小订阅 转自:https://www.wendangku.net/doc/c817124230.html,/s/blog_5e1bf3ef0100fckz.html 中震弹性设计就是在中震时结构的抗震承载力满足弹性设计要求,中震不屈服的设计就是地震作用下的内力按中震进行计算。 中震弹性设计与中震不屈服的设计在MIDAS中的实现 一、中震弹性设计 1、在MIDAS/Gen中定义中震反应谱 主菜单》荷载》反应谱分析数据》反应谱函数:定义中震反应谱,即在定义相应的小震反应谱基础上输入放大系数β即可。 2、定义设计参数时,将抗震等级定为四级,即不考虑地震组合内力调整系数(即强柱弱梁、强剪弱弯调整系数。 3、其它设计参数的定义均同小震设计。 二、中震不屈服设计 1、在MIDAS/Gen中定义中震反应谱。内容同中震弹性设计。 2、定义设计参数时,将抗震等级定为四级,即不考虑地震组合内力调整系数(即强柱弱梁、强剪弱弯调整系数)。内容同中震弹性设计。 3、定义荷载组合时将地震作用分项系数取为1.0。 4、将材料分项系数定义为1.0,即构件承载力验算时取用材料强度的标准植。 5、其它操作均同小震设计。 《抗规》中对中震设计的内容涉及很少,仅在总则中提到“小震不坏、中震可修、大震不倒”的抗震设防目标,但没有给出中震设计的判断标准和设计要求,我国目前的抗震设计是以小震为设计基础的,中震和大震则是通过地震力的调整系数和各种抗震构造措施来保证的,但随着复杂结构、超高超限结构越来越多,对中震的设计要求也越来越多,目前工程界对于结构的中震设计有两种方法,第一种按照中震弹性设计,第二种是按照中震不屈服设计,而这两种设计方法在MIDAS/Gen中都可以实现,具体说明如下: 一、中震弹性设计 结构的抗震承载力满足弹性设计要求,最大地震影响系数α按表1取值,在中震作用下,设计时可不考虑地震组合内力调整系数(即强柱弱梁、强剪弱弯调整系数),但应采用作用分项系数、材料分项系数和抗震承载力调整系数,构件的承载力计算时材料强度采用设计值。 表1地震影响系数(β为相对于小震的放大系数)

midas反应谱分析

反应谱分析 北京迈达斯技术有限公司

目录 简要 (1) 设定操作环境及定义材料和截面 (2) 定义材料 (2) 定义截面 (3) 建立结构模型 (4) 主梁及横向联系梁模型 (4) 输入横向联系梁 (5) 输入桥墩 (5) 刚性连接 (7) 建立桥墩和系梁 (9) 输入边界条件 (10) 输入支座的边界条件 (10) 刚性连接 (11) 输入横向联系梁的梁端刚域 (12) 输入桥台的边界条件 (13) 输入二期恒载 (14) 输入质量 (15) 输入反应谱数据 (17) 输入反应谱函数 (17) 输入反应谱荷载工况 (18) 运行结构分析 (19) 查看结果 (20) 荷载组合 (20) 查看振型形状和频率 (21) 查看桥墩的支座反力 (24)

简要 本例题介绍使用MIDAS/CIVIL的反应谱分析功能来进行抗震设计的方法。 例题模型使用的是简化了的钢箱型桥梁模型,由主梁、横向联系梁和桥墩构成。桥台部分由于刚度很大,不另外建立模型只输入边界条件;基 础部分假设完全固定,也只按边界条件来定义。 下面是桥梁的一些基本数据。 跨 径:45 m + 50 m + 45 m = 140 m 桥 宽:11.4 m 主梁形式:钢箱梁 钢 材:GB(S) Grade3(主梁) 混 凝 土:GB_Civil(RC) 30(桥墩) 图1. 桥梁剖面图[单位: mm]

设定操作环境及定义材料和截面 开新文件(新项目),以‘Response.mcb’为名保存(保存)。 文件 / 新项目t 文件 / 保存( Response ) 将单位体系设定为kN(力), m(长度)。 工具 / 单位体系 长度>m ; 力>kN ? 定义材料 分别输入主梁和桥墩的材料数据。 模型 / 材料和截面特性 / 材料 材料号(1); 类型>S钢材 规范>GB(S); 数据库>Grade3 ? 材料号(2); 类型>混凝土 规范>GB-Civil(RC) ; 数据库>30 ? 图2. 定义材料

谐响应分析

[结构分析](原创)谐响应分析总结[复制链接] 一什么是谐响应分析? 确定一个结构在已知频率的正弦(简谐)载荷作用下结构响应的技术。谐响应分析的局限性 1.所有载荷必须随时间按正弦变化 2.所有载荷必须有相同的频率 3.不允许有非线性特性 4.不计算瞬态效应 可以通过瞬态动力学分析来克服这些限制,即将简谐载荷表示为有时间历程的载荷函数。 二输入: 1. 已知大小和频率的谐波载荷(力、压力和强迫位移); 2. 同一频率的多种载荷,可以是同相或不同相的。 三输出: 1. 每一个自由度上的谐位移,通常和施加的载荷不同相; 2. 其它多种导出量,例如应力和应变等。 四谐响应分析用于设计: 1. 旋转设备(如压缩机、发动机、泵、涡轮机械等)的支座、固定装置和部件; 2. 受涡流(流体的漩涡运动)影响的结构,例如涡轮叶片、飞机机翼、桥和塔等 五为什么要作谐响应分析?

1. 确保一个给定的结构能经受住不同频率的各种正弦载荷(例如:以不同速度运行的发动机); 2. 探测共振响应,并在必要时避免其发生(例如:借助于阻尼器来避免共振)。 六谐波载荷的本性 1. 在已知频率下正弦变化; 2. 相角y允许不同相的多个载荷同时作用,y缺省值为零; 3. 施加的全部载荷都假设是简谐的,包括温度和重力。 七复位移 在下列情况下计算出的位移将是复数 1. 具有阻尼 2. 施加载荷是复数载荷(例如:虚部为非零的载荷) 3. 复位移滞后一个相位角y(相对于某一个基准而言) 4. 可以用实部和虚部或振幅和相角的形式来查看 八模型 1. 只能用于线性单元和材料,忽略各种非线性; 2. 记住要输入密度; 3. 注意:如果ALPX(热膨胀系数)和DT均不为零,就有可能不经意地包含了简谐热载荷。为了避免这种事情发生,请将ALPX设置为零。如果参考温度[TREF]与均匀节点温度[TUNIF]不一致, 那么DT 为非零值。 九施加谐波载荷并求解

Midas地震波的选取方法

地震波的选取方法 建筑抗震设计规范(GB 50011-2001)的5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。 频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期Tg值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表5.1.2-2采用。地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。 持续时间的概念不是指地震波数据中总的时间长度。持时T d的定义可分为两大类,一类是以地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最后一个k*a max之间的时段长度,k一般取0.3~0.5。不论实际的强震记录还是人工模拟波形,一般持续时间取结构基本周期的5~10倍。 说明: 有效峰值加速度 EPA=Sa/2.5 (1) 有效峰值速度 EPV=Sv/2.5 (2) 特征周期 Tg = 2π*EPV/EPA(3) 1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中同时做出绝对加速度反应谱和拟速度反应谱,找出加速度反应谱平台段的起始周期T0和结束周期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2之间的谱值求平均得Sv(注:生成谱的时候一定要用对数谱),加速度反应谱和拟速度反应谱在平台段的放大系数采用2.5,按公式(1)、(2)、(3)求得EPA、EPV、Tg。 在MIDAS程序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功能(工具>地震波数据生成器,生成后保存为SGS文件),用户可利用保存的SGS文件(文本格式文件)根据上面所述方法计算Sv、Sa、Tg=Sv/Sa。通过Tg值可判断该地震波是否适合当地场地和地震设计分组,然后将抗震规范中表5.1.2-2中的EPA值与Sa相比求出调整系数(即放大系数),将其代入到地震波调整系数中。将地震波转换为绝对加速度反应谱和拟速度反应谱时注意周期范围要到6秒(建筑抗震规范规定)。 建筑抗震设计规范5.1.2条中规定,采用时程分析方法时,应按照场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。所谓“在统计意义上相符”指的是,其平均影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在各周期点上相差不大于20%。 在MIDAS程序中,可选取两组实际强震记录生成两个SGS文件(调整Sa后的),然后将一组人

ANSYS中的模态分析与谐响应分析

ANSYS中的模态分析与谐响应分析 ANSYS中的模态分析与谐响应分析 作者:未知时间:2010-4-158:59:49模态分析是分析结构的动力特性,与结构受什么样的荷载没有关系,只要给定了质量、弹性模量、泊松比等材料参数,并施加了边界约束就可以得到此状态下的各阶自振频率和振型(也称为模态)。 谐响应分析是分析结构在不同频率的简谐荷载作用下的动力响应,是与结构所受荷载相关的,只是结构所受荷载的都是简谐荷载,而且荷载频率的变化范围在谐响应分析时要给出来。 比如,在ANSYS谐响应分析中要给出这样的语句 FK,3,FX,7071,7071!指定点荷载的实部和虚部(或者幅值和相位角) HARFRQ,0,2.5,!指定荷载频率的变化范围,也就是说只分析结构所受频率从0到2.5HZ之间的荷载

NSUBST,100,!指定频率从0到2.5之间分100步进行计算 这样,结构所受的这个点荷载的表达式实际上是 F=(7071+i*7071)*exp(i*omiga*t)!式中omiga从0到2.5*2*3.1415926变化 分析得到结果是各点物理量随频率变化的,但物理量的值一般为复数,包括实部的虚部,这可以从后处理LIST结点值看出来。 个人认为进行谐响应分析并不一定要先进行模态分析(也叫振型分析、振型分解等),而直接进行谐响应分析后查看结构的物理量随频率变化曲线时也会看到在结构的自振频率处响应会放大(共振)。如果已经进行过模态分析的话,会发现谐响应分析时的共振频率和模态分析提到的自振频率是一致的。但有些时候模态分析中得到的有些频率在谐响应分析的频响曲线里可能很不明显。因此,只能说在谐响应分析前进行一下模态分析可以对结构的自振特性有个了解,以便验证谐响应分析结果是否合理。 另外,谐响应分析应该是频域分析方法的一个部分。对于相地震那样的时间过程线,直接进行时域分析(ANSYS里用暂态分析)可得到结构随时间的响应。而如果进行频域分析,就应该通过傅立叶变换把

练习5_大桥谐响应分析

Training Manual 谐响应分析 吊桥

Training Manual DYNAMICS 11.0 Workshop 1 – 目标 ? 目标是研究悬索桥的振动特性. – The Tacoma Narrows bridge, also known as the Galloping The Tacoma Narrows bridge, also known as the Galloping Gertie Gertie Gertie is famous for its spectacular collapse in 1940. ?我们将检验这个模型,并计算大桥的固有频率及其阵型。? We will also employ We will also employ ““prestress prestress” ” in the solution since gravity loads will preload the tensile members of the bridge and add to its overall stiffness. ? We will then apply harmonic (sustained cyclic) loads to simulate wind type loads that caused the bridge simulate wind type loads that caused the bridge’ ’s collapse.

Training Manual DYNAMICS 11.0 Workshop 1 – 前提 ?大桥的四个桥墩固定约束.?大桥两端纵向和横向约束?边界约束施加在点上.

模态分析基本内容简介

模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。 概述 振动模态是弹性结构固有的、整体的特性。通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动模态各不相同。模态分析提供了研究各类振动特性的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。 近十多年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。 用处

模态分析的最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 模态分析技术的应用可归结为以下几个方面: 1) 评价现有结构系统的动态特性; 2) 在新产品设计中进行结构动态特性的预估和优化设计; 3) 诊断及预报结构系统的故障; 4) 控制结构的辐射噪声; 5) 识别结构系统的载荷。 最佳悬挂点 模态试验时,一般希望将悬挂点选择在振幅较小的位置,最佳悬挂点应该是某阶振型的节点。 最佳激励点 最佳激励点视待测试的振型而定,若单阶,则应选择最大振幅点,若多阶,则激励点处各阶的振幅都不小于某一值。如果是需要许多能量才能激励的结构,可以考虑多选择几个激励点。 最佳测试点 模态试验时测试点所得到的信息要求有尽可能高的信噪比,因此测试点不应该靠近节点。在最佳测试点位置其AD DOF(Average Driving DOF Displacement)值应该较大,一般可用EI(Effective Independance)法确定最佳测试点。 模态参数有那些 模态参数有:模态频率、模态振型、模态质量、模态向量、模态刚度和模态阻尼等。 主模态主空间主坐标 无阻尼系统的各阶模态称为主模态,各阶模态向量所张成的空间称为主空间,其相应的模态坐标称为主坐标。 模态截断

1MIDASGTS的分析功能

分析理论手册 78第一篇 MIDAS/GTS的分析功能 1. 概要 岩土分析(geotechnical analysis)与一般的结构分析(structural analysis)有较 大差异。一般的结构分析注重荷载的不确定性,所以在分析时会加载各种荷载,然 后对分析结果进行各种组合,最后取各组合中最不利的结果进行设计。岩土分析注 重的是施工阶段和材料本身的不确定性,所以决定岩土的物理状态显得格外重要。 在岩土分析中应尽量使用实体单元模拟围岩的状态,尽量真实地模拟岩土的非线性 特点以及地基应力状态(自应力和构造应力),并且尽量真实地模拟施工阶段开挖过 程,这样才会得到比较真实的结果。 优秀的岩土分析程序应能真实地模拟现场条件和施工过程,并应为用户提供更多的 材料模型和边界条件,让用户在做岩土分析时有更多的选择。 MIDAS/GTS不仅具有岩土分析所需的基本分析功能,并为用户提供了包含最新分析 理论的强大的分析功能,是岩土和隧道分析与设计的最佳的解决方案之一。 MIDAS/GTS中提供的的分析功能如下: A. 静力分析 (static analysis) (1) 线弹性分析 (linear elastic analysis) (2) 非线性弹性分析 (nonlinear elastic analysis) (3) 弹塑性分析 (elastoplastic analysis) B. 渗流分析 (seepage analysis) (1) 稳定流分析 (steady state analysis) (2) 非稳定流分析 (transient state analysis) C. 应力-渗流耦合分析 (stress-seepage coupled analysis) D. 固结分析 (consolidation analysis) (1) 排水/非排水分析 (drained/undrained analysis) (2) 固结分析 (consolidation analysis)

(整理)运用midas_Building进行超限分析基本流程指导书

运用midas Building进行超限分析基本流程 指 * 导 * 书 初稿:王明 校对:李法冰 审核:卫江华 审定:陈德良 (2012.12版)

目录 1 运用midas进行超限分析基本流程简介 (3) 2 反应谱分析、设计基本流程及要点 (4) 2.1 概述 (4) 2.2 基本流程 (4) 2.3 反应谱分析要点及注意事项 (5) 3 弹性时程分析基本流程及要点 (10) 3.1 概述 (10) 3.2 基本操作及要点 (10) 4 静力/动力弹塑性时程分析基本流程及要点 (15) 4.1 概述 (15) 4.2弹塑性分析基本流程 (16) 4.3静力弹塑性分析要点 (16) 4.4动力弹塑性分析要点 (20) 5 相关补充分析与计算 (21) 5.1 温差工况分析 (21) 5.2 楼板详细分析 (23) 5.3 转换结构分析 (24) 5.4 舒适度分析 (25) 5.5 工程量统计 (26) 6 主要附件一览表 (29) 7 主要参考文献 (30)

1 运用midas 进行超限分析基本流程简介 midas building/Gen 在超限分析流程中应用的主要环节可见如下示意图1.1。 图1.1 超限分析基本流程示意图 注:1.图中黄色框选内容为可运用midas Building/Gen 进行分析主要内容。 或大震

2 反应谱分析、设计基本流程及要点 2.1 概述 反应谱分析是抗震设计中最常用的分析方法,反应谱分析中需要定义设计反应谱、振型组合方法、地震作用方向等数据。设计规范一般考虑地震强度和远近的影响、建筑的重要性等综合因素提供了设计反应谱函数。 2.2 基本流程 图2.2.1 运用midas Building 进行反应谱分析基本流程图 注: 1. 实际工程中基本以PKPM 导入为主,已进行过的数十个分析显示:模型中构件与荷载能够完全准确导入,但所有参数需要重新定义,具体导入过程详见[附件一]。若导入ETABS 模型,出错较多,可尝试通过广厦或盈建科二次转换; 2. 若仅进行反应谱阶段分析,则无需进行设计(浪费时间); 3. 本过程参数调整阶段基本流程见下图2.2.2。 图2.2.2 参数调整基本流程图

(完整版)ANSYS模态分析实例和详细过程

均匀直杆的子空间法模态分析 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

相关文档
相关文档 最新文档