文档库 最新最全的文档下载
当前位置:文档库 › 微生物发酵提高甘草渣中黄酮类物质提取率的研究

微生物发酵提高甘草渣中黄酮类物质提取率的研究

微生物发酵提高甘草渣中黄酮类物质提取率的研究
微生物发酵提高甘草渣中黄酮类物质提取率的研究

微生物发酵工程课程感受

《微生物发酵工程》课程感受 《微生物发酵工程》带给我的最大收获是让我完整的经历了查找文献,筛选文献,翻译文献以及从文献中找到值得学习的地方等一系列过程。在这其中带给我了很多的启发。 首先,对于大三即将结束,马上就要开始毕业设计以及毕业后读研的我们来说,如何有效快速的查找到我们所需要的文献是我们必须要掌握的技能。在平时的学习过程中这样的训练或者是锻炼机会并不多,而《微生物发酵工程》就给我们提供了一个非常好且及时的锻炼机会。我原来无论是做专业选修课还是一些E类课论文时,文献查找只局限用知网查找中文文献。现在宋老师的作业要求让我开始接触了英文文献的查找。我现在已初步学会了利用学校购买的英文文献数据库如nature、science等来查找英文文献资料,学会了通过一篇文献的摘要快速的判断文献是否是我们所需要的,适应了英文的阅读环境。这些让我获益匪浅,相信对我以后的研究生的学习生涯有很大帮助。 其次,在听别的小组同学汇报时,也可以学到很多东西。比如说,我从第一个展示的同学身上学到的就是如何高效传达出一篇文献或者说是我们自己的某些想法的主要内容。原来我在做展示一篇文献时所遵循的原则是按照文章顺序用简洁的语言表达。通过比较,我才发现这种我一直以来遵循的原则的缺陷——展示的结构不太清晰或者说是展示缺乏一种内在的逻辑,容易让听者搞不清每个实验每个步骤之间的关系从而产生混乱。大四学姐的展示则是自己把文献划分为四部分:为什么做、怎么做、做了什么和实验结果。这样这个展示的结构就清晰明了,每个实验每个步骤的目的也就一清二楚,听者也很清楚。我想,学习了这一点我以后的展示效果也一定会进步一大块的。此外宋老师还建议再加上实验创新之处和我能从文章中借鉴什么。 最后,在课程展示这一环节中我还发现我的一个不足。我只能做到听懂展示同学介绍的PPT内容,却无法就实验内容提出自己的疑问。这说明我平时无法锻炼,缺乏自主思考的能力。这一点应该是我在今后的学习生活中着力改善的一点。

中草药叶下花总黄酮提取方法

中草药叶下花总黄酮提取方法 作者:杨发忠,杨斌,杨德强,陈厚琴,代红娟,张丽,李东海 【摘要】目的对叶下花总黄酮的种类与提取方法进行初步研究。方法采用定性检测、光谱分析、单因素测定、正交实验等,研究黄酮种类,考察乙醇体积分数、温度、固液比、时间对提取率的影响。结果叶下花含黄酮、黄酮醇、二氢黄酮、二氢黄酮醇等多种黄酮类化合物;所考察的影响因素中,对总黄酮提取率影响程度大小顺序为乙醇体积分数>温度>时间>固液比。结论最佳提取条件为A1B2C3D3 (乙醇体积分数30%、温度65℃,提取时间180 min,固液比1∶80),在此提取条件下,提取量高达5.233%。 【关键词】叶下花总黄酮提取方法正交实验 Abstract:ObjectiveTo optimize the extraction conditions for the total flavonoids from Ainsliaea pertyoides Franch and to study the categories of the total flavonoids. MethodsThe methods of the chemical qualitative detection, the spectral analysis, single factor determination, orthogonal test were adopted to study the categories of the total flavonoids, and the effect of four factors, i.e. the volume fraction of ethanol, the temperature, the ratio of solid to liquid, the

推荐-甘草有效成分的提取与分离 精品

20XX-20XX学年第二学期 药用植物资源与开发 名称甘草化学成分的提取与分离 年级 20XX 学院中药材学院 专业植物科学与技术 学号 07107107 姓名林俊旭 任课教师张永刚 完成时间 20XX-5-11 成绩

甘草中化学成分的提取与分离 摘要:本文主要介绍了甘草中主要的化学成分以及这些化学成分的含量和性质,并简述了甘草酸,甘草次酸和甘草甘的提取和有效成分的含量测定,为进一步的生产实践做出贡献。 关键词:甘草化学成分提取 正文:甘草属于豆科甘草属,以根和根状茎入药。甘草在我国集中分布于三北地区(东北、华北和西北各省区),而以新疆、内蒙古、宁夏和甘肃为中心产区。随着药学及其相关学科以及科研设备的发展,甘草中主要含有的甘草酸、甘草次酸、黄酮、生物碱和氨基酸等化学成分,具有广泛的生物活性。 一、化学成分 药用甘草质量与其化学成分的组成、积累变化有直接的关系。先后从甘草属植物中提取、分离、鉴定了200多种化学成分,涉及甘草属植物10个种。其中最重要并已证实具有生物活性的成分主要是甘草酸等三萜皂苷类、黄酮类、香豆素类、多糖、生物碱、氨基酸等。 三萜皂苷类化合物:甘草属植物中三萜皂类成分具有量高、生理活性强的特点,甘草的许多药理作用都与这类成分有直接关系。至今在甘草属植物中已鉴定得到61种三萜类化合物,其中苷元45个。这些三萜类化合物其苷元均为3β-经基齐墩果烷型化合物的衍生物;皂苷一般为3β-羟基上的氧苷,糖元多为D-葡萄糖酸或D-葡萄糖。甘草酸一直被认为是甘草中最重要三萜类化合物,《中国药典》把甘草酸的量作为评价甘草药材及其制品质量的重要指标,通常要求不低于2%。 黄酮类成分:是近年来研究最活跃的天然活性成分之一,广泛存在于植物界中。这类化合物的存在对植物生长、发育、开花、结果以及抵御异物的侵入起着重要的作用。目前,从甘草属植物中已发现黄酮及其衍生物153种,它们的基本母核结构类型有15种,其中包括:黄酮、黄酮醇、双氢黄酮、双氢黄酮醇、查尔酮、异黄酮、双氢异黄酮、异黄烷、异黄烯等。对甘草中黄酮类成分的药理作用研究表明,这些成分在抗肿瘤、抗氧化、抗病毒方面作用显著。 甘草中黄酮类成分的分布和积策也表现出一定的特点。乌拉尔甘草无论是野生还是栽培,在一个生长季中,叶中总黄酮量最高,而地下部分的t相对较低;在5—10月,叶中的总黄酮量逐渐下降,而地下部分总黄酮盆具有上升趋势。各

微生物发酵工程思考题

思考题 1 了解发酵工程的发展简史 2微生物代谢调节的特点和方式 3酶合成调节的特点和机制 4酶活性调节的类型 5诱导、阻遏、分解代谢物阻遏、反馈抑制的定义 6代谢控制发酵的定义 7营养缺陷型突变株积累产物的特点。 8抗反馈调节突变株的定义 9谷氨酸、赖氨酸代谢控制发酵的应用举例 10自然界分离微生物的一般操作步骤? 11 从环境中分离目的微生物时,为何一定要进行富集富集? 12 菌种选育分子改造的目的? 13 什么叫自然选育? 14什么是诱变育种?常用的诱变剂有哪些? 15代谢工程的定义和方法 16常用的碳源有哪些?常用的糖类有哪些,各自有何特点? 17什么是生理性酸性物质?什么是生理性碱性物质? 18常用的无机氮源和有机氮源有哪些?有机氮源在发酵培养基中的作用?19无机盐的影响? 20 什么是前体?前体添加的一般方式? 21什么是生长因子?生长因子的来源? 22 什么是产物促进剂?产物促进剂举例? 23柠檬酸发酵的培养基条件 24物料粉碎的力学分析和粉碎原理 25气流输送的原理和方式? 26淀粉糖的酶法制备原理与技术? 27 高温瞬时灭菌的原理? 28 介质过滤除菌的机理是什么 29典型的空气除菌流程(两级冷却两级分离加热流程是重点)? 30 什么是菌体的生长比速?产物的形成比速?基质的消耗比速?维持消耗? 31 什么是初级代谢产物?什么是次级代谢产物? 32什么是连续培养?什么是连续培养的稀释率? 33连续发酵动力学的应用 34温度对微生物生长、产物形成的影响?发酵热的定义, 35 发酵过程的pH控制可以采取哪些措施? 36为何氧容易成为好氧发酵的限制性因素? 37 影响微生物需氧的因素有哪些? 38 发酵液中的体积氧传递方程?其中Kla的物理意义是什么? 39如何调节通气搅拌发酵罐的供氧水平? 40发酵过程中生长速度和菌体浓度的控制方法? 41 发酵中泡沫形成的原因是什么? 42圆筒锥底啤酒发酵罐的主要特点?罐内传质和传热如何实现 43 通风发酵设备的设备要求?通风搅拌发酵罐的主要结构? 44构建基因工程菌中常用宿主系统是什么? 45基因不稳定性的原因? 46工程菌发酵过程中,减少乙酸积累的措施? 47大肠杆菌高密度发酵的策略? 48甲醇营养酵母的主要特点?

总黄酮的提取方法

总黄酮的提取方法 1、熔剂法热水提取法、碱性水或碱性稀醇提取法、有机溶剂提取法 2、微波提取法微波提取是利用不同结构的物质在微波场中吸收微波能力的差异,使基体物质中的某些区域或提取体系中的某些组分被选择性加热,从而使被提取物质从基体或体系中分离,进入介电常数较小,微波吸收能力相对差的提取剂[1]。这种方法的优点是对提取物具有较高的选择性、提取率高、提取速度快、溶剂用量少、安全、节能、设备简单 3、超声波提取法用超声波提取法提取黄酮类物质,是目前比较新的方法。原理是利用超声波在液体中的空化作用加速植物有效成分的浸出提取,另外,还利用其次效应,如机械振动、扩散、击碎等,使其加速被提取成分的扩散、释放。超声波提取法具有设备简单,操作方便,提取时间短,产率高,无需加热,同时有利于保护热不稳定成分,省时,节能,提取率高的优点。 4、超临界流体萃取法超临界流体萃取技术是利用超临界流体处于临界温度和临界压力以上,兼有气体和液体的双重特点,对物质具有良好的溶解能力,从而作溶剂进行萃取分离。可做超临界流体的物质很多,一般为低分子量的化合物,如CO2、C2H6、NH3、N2O 等。目前多采用CO2 做萃取剂,因为它具有密度大、溶解能力强、临界压力适中、临界温度接近常温、不影响萃取物的生理活性、无毒无味、化学性质稳定、生产过程中容易回收、无环境污染、价格便宜等一系列优点。但单一的CO2作萃取剂只对低极性、亲脂性化合物有较强的溶解能力,对大多数极性较强的组分则不起作用,因此,在其中加入夹带剂,通过影响溶剂的密度和溶质与夹带剂分子间的作用力来影响溶质在二氧化碳流体中的溶解度和选择性[15]。超临界流体萃取技术有许多传统分离技术不可比拟的优点:过程容易控制、达到平衡的时间短、萃取效率高、无有机溶剂残留、对热敏性物质不易破坏等[16]。但它所需要的设备规模较大,技术要求高,投资大,安全操作要求高,难以用于较大规模的生产。 5、酶法提取酶解法适用于被细胞壁包围的黄酮类物质,利用酶反应的高度专一性,破坏细胞壁,使其中的黄酮类化合物释放出来。黄剑波等[22]采用纤维素酶辅助法从甜茶中提取黄酮类化合物,黄酮类物质的提取率为91%,提取纯度为54%。王悦等[23]对桔皮细胞进行游离酶、固定化酶和常规法提取,黄酮得率分别是%,% 和%,和传统的方法相比,游离酶法的总黄酮得率提高了81%。

甘草酸提取方法总结

甘草酸提取方法总结 1、甘草酸一般以钾盐或钙盐形式存在于甘草中,其盐易溶于水。同时,甘草酸为有机弱酸,酸性条件下游离。这是我们采用水酸提取法从甘草中提取甘草酸的理论依据。操作方法:将甘草进行适当粉碎,取lOOg甘草粗粉置于1000mL烧杯中,加500mL水,加热煮沸10min,然后置于振荡器上,于60℃下恒温振荡2h。过滤,将滤渣重复上述操作,至滤液于252nm无明显吸收为止。合并滤液,蒸发浓缩至200mL左右,然后边搅拌边滴加浓H2SO4。至不再析出沉淀;陈化2h,离心分离,将沉淀物置于100℃下干燥lh,得到棕色块状物8.9g,即为甘草酸粗品,粉碎备用。 2,过滤。合 并滤液,沉淀 减压干燥,称重。 3 ①、 提取1.5 加入溶剂 10小时,过滤。 (约15℃) 连续3 4、以 静置0.5h, ②、减压过滤, ③、醇热回流法:取10.00g甘草,加入70﹪乙醇100ml,90。C热回流提取2次,第一次1h,减压过滤,滤渣继续热回流0.5h,合并两次滤液定容到250ml。 ④、0.5﹪稀氨水和70﹪乙醇混合回流法:取10.00g甘草,加入混合溶剂100ml(按1:1比例),90。C热回流提取1h,减压过滤,滤渣继续热回流0.5h,合并两次滤液定容到250ml。 5、称取一定质量的甘草粉放入反应器中,加入其5倍质量的水,在搅拌下于85℃以上加热回流2.5h,过滤、滤渣再加3倍质量的水重复提取一次,合并滤液。 6、氨性醇提取法:称取一定量的甘草饮片,分别加5、4、4倍量的含氨0.3%的60%乙醇回流提取3次,每次1.5h。

7、将干燥甘草根粉碎,用水煮沸提取3次,合并提取液过滤后浓缩至原体积的1/5,搅拌下加入浓硫酸至不再析出沉淀为止,静置过夜。收集棕色沉淀,水洗,并在60℃以下干燥磨粉。粉末用丙酮回流提取3次,滤除不溶于丙酮的杂质,丙酮液放冷加20%氢氧化钾溶液至弱碱性,析出晶体为甘草酸三钾盐,其水溶液加酸即可生成游离甘草酸。 8、超临界CO2萃取法本法在超临界萃取状态下,用CO2做萃取剂,用水—乙醇作挟带剂从甘草中萃取甘草苷,最佳萃取温度为40℃,压力为35MPa,萃取体系与物料的质量比为4~5,萃取时间为5h。提取中CO2不与提取物有效成分发生化学反应,无毒、无污染、无致癌性、沸点低,便于从产品中清除。 9、稀氨水提取法:称10g甘草切片加0.5%的稀氨水150mL,在100℃加热60min,过滤,滤渣加稀氨水重复浸提二次,合并滤液,减压浓缩至200mL,加浓硫酸调pH,分离沉淀物,水洗3次,冷冻干燥,称重, 10、,合并滤液, 11200mL 即成膏状, 12 40OmL、300mL、,抽滤, 13 至原体积的 14 草粗粉101/5, 15 ,60℃恒温干燥,pH至7~8, 趁热抽滤,沉淀用少量冰醋酸洗涤1~2次,即得甘草酸提取物。

甘草的研究概况

疗.中医正骨,1993,4(3):13. 〔3〕张国忠.中药治疗痛性骨质疏松症28例报告1 中国中医骨伤科,1994,2(4):29.〔4〕于康冉,韩宜印1中药治疗老年性骨质疏松症 64例.四川中医,1995,13(4):49.〔5〕梁立.补肾中药治疗骨质疏松症的临床观察. 中医杂志,1992,33(11):39.〔6〕刘佳珍.中药治疗老年类风湿性关节炎所致骨 质疏松的临床研究.中国骨伤,1993,6(1):7.〔7〕刘珂军.健骨冲剂治疗老年性骨质疏松症的临 床研究.湖南中医杂志,1994.10(6):19.〔8〕马禄林141例骨质疏松症的中药热敷治疗.中 国骨伤,1993,6(2):31.〔9〕范增源.愈骨丸治疗原发性骨质疏松症的疗效 观察.四川中医,1995,13(1):43.〔10〕邵金莹.龙牡壮骨冲剂对大鼠实验性骨质疏 松的影响.中药药理与临床,1989,5(4):25.〔11〕赵咏芳,石印玉,沈培之,等1仙灵骨葆对卵巢 切除大鼠骨组织形态学的影响.中医正骨,2000,12(4):3.〔12〕冯坤,刘月桂,张灵菊,等1中药坚骨液对卵巢 切除后骨质疏松大鼠血、尿生化的影响.中医正骨.1996,8(1):3.〔13〕沈霖,杜靖远,杨家玉,等.补肾密骨片对大鼠 卵巢切除诱导的实验性骨质疏松的影响.中 华骨科杂志,1996,16(7):462.〔14〕王贤才主译.临床药用大典.青岛:青岛出版 社,1994.1709~1728.〔15〕王云钊,曹来宾.骨放射诊断学.北京:北京医 科大、中国协和医科大联合出版社,1998,394.〔16〕柴本甫.绝经期骨质疏松症的病理生理及治 疗.中华骨科杂志,1984,4(1):58.〔17〕张华俦.降钙素鼻喷剂治疗骨质疏松症骨痛 的初步疗效观察.中国骨质疏松杂志,1995,1(1):50.〔18〕陆强.1(OH )亚乙基二磷酸盐长程、间歇、周期 治疗绝经后骨质疏松的计量学变化.国外医学.内分泌分册,1993,1(3):封3.〔19〕陈慧.新一代抗骨质疏松药物—异丙氧黄酮. 医学综述,2000.6(3):136.〔20〕刘忠厚,薛延.骨质疏松症.北京:化学工业出 版社,1992.208~210.345;423.〔21〕蒋位庄,王和鸣1中医骨病学.北京:人民卫生 出版社,1989.258.〔22〕郭世绂.原发性骨质疏松的发病机制.中华骨 科杂志,1995,15(5):312. (收稿日期:2000-07-18) 甘草的研究概况 李 明 (甘肃中医学院中药系,甘肃 兰州 730000) 作者简介:李明(1963-),女,黑龙江人,讲师,理学硕士,主要从事药用植物资源开发及生理生化方面的研究。 摘 要:从甘草的化学成分、药理、栽培及综合利用几方面论述了近年来我国甘草的研究概况。随 着对甘草的深入研究,甘草的应用也愈来愈广泛。今后应加强开发甘草在食品、轻工方面的产品研制及在防治爱滋病方面的机理和临床的研究,使其发挥更大的作用。 关键词:甘草;化学成分;药理;栽培中图分类号:R285.5 文献标识码:A 文章编号:1003-8450(2000)03-0059-04 甘草是豆科甘草属(G lycyrrhiza )植物。其根和根茎是最常用的中药。近年来,随着新技术的不断应用,人们对甘草的认识和应用也愈来愈深入和广泛。甘草不仅广泛应用在医药上,而且也应用于食品、轻工等方面。此外,甘草还具有防沙固沙、改良土壤等作用,人们也将它应用于环保方

微生物工程期末考试试题

一、选择题(多项或单项) 1.发酵工程得前提条件就是指具有( A )与( E C)条件 A、具有合适得生产菌种 B、具备控制微生物生长代谢得工艺 C.菌种筛选技术D、产物分离工艺E.发酵设备 2.在好氧发酵过程中,影响供氧传递得主要阻力就是( C ) A.氧膜阻力 B.气液界面阻力 C.液膜阻力 D.液流阻力 3.微生物发酵工程发酵产物得类型主要包括: ( ABC ) A、产物就是微生物菌体本身 B、产品就是微生物初级代谢产物 C、产品就是微生物次级代谢产物 D、产品就是微生物代谢得转化产物 E、产品就是微生物产生得色素 4.引起发酵液中pH下降得因素有:( BCDE ) A、碳源不足 B、碳、氮比例不当 C、消泡剂加得过多 D、生理酸 性物质得存在E、碳源较多 5.发酵培养基中营养基质无机盐与微量元素得主要作用包括: (ABCD ) A、构成菌体原生质得成分 B、作为酶得组分或维持酶活性 C、调节细胞渗透压 D、缓冲pH值 E、参与产物得生物合成6.在冷冻真空干燥保藏技术中,加入5%二甲亚砜与10%甘油得作用就是(B ) A 营养物 B 保护剂 C 隔绝空气 D 干燥 7.发酵就是利用微生物生产有用代谢产物得一种生产方式,通常说得乳酸发酵属于( A ) A、厌氧发酵B.氨基酸发酵C.液体发酵D.需氧发酵 8.通过影响微生物膜得稳定性,从而影响营养物质吸收得因素就是( B ) A、温度 B、pH C、氧含量D.前三者得共同作用 9.在发酵工艺控制中,主要就是控制反映发酵过程中代谢变化得工艺控制参数,其中物理参数包括:( ABCD ) A、温度 B、罐压 C、搅拌转速与搅拌功率 D、空气流量 E、菌体接种量10.发酵过程中较常测定得参数有:( AD ) A、温度 B、罐压 C、空气流量 D、pH E、溶氧 二、填空题

举例说明黄酮的提取分离方法

举例说明黄酮的提取分离方法 组长:崔宁 组员:翟雪王璐璐冯子涵赵子惠罗春雨刘红成 1.提取方法 1.1热水提取法 热水提取法一般仅限于提取苷类. 在提取过程中要考虑加水量、浸泡时间、煎煮时间及煎煮次数等因素. 此工艺成本低、安全,适合于工业化大生产。以水做溶剂,同时提高浸提温度、延长浸提时间和增加液料比(60倍) ,可以明显提高芦丁的产率。 实例 桑叶:采用热水提取法测定桑叶中各有效成分含量,发现黄酮类化合物含量为1%以上,其中霜后桑叶黄酮类化合物含量最高为1.54% ,其次是晚秋桑叶,春季桑芽和后期桑叶含量最低。 甘草:过去甘草黄酮的提取主要为水提法,其主要原理通过甘草粉与水按一定配比,加热混合至80~95 ℃浸提甘草粉,利用甘草黄酮的水溶性进而提取甘草黄酮。此法虽然要求设备简单,但因提取杂质多、提取时间长、提取液存放易腐败变质、后续过滤操作困难、收率较低等缺点,现已不常使用。 1.2有机溶剂萃取法 其原理是利用黄酮类化合物与混入的杂质极性不同,选用不同的溶剂萃取。常用的有机溶剂有甲醇、乙醇、丙酮、乙酸乙酯等,一般采取乙醇为提取溶剂。高浓度的乙醇(如90 %~95 %) 适于提取苷元,浓度60 %左右的乙醇适于提取苷类。提取次数一般为2~4 次,提取方法有热 回流提取和冷浸提取两种方式。 实例 桑叶:使用乙醇提取桑叶中总黄酮的最佳工艺条件为:乙醇的浓度为70%,料液比为1:15,在80℃的条件下浸泡3h。使用多种有机溶剂提取发现桑叶中黄酮类化合物的最佳提取溶剂是60%丙酮。 西芹:使用无水乙醇为提取剂,按西芹鲜重与提取剂的比例(W/ V) 1∶2 ,在80 ℃下回流提取2~4h ,制备西芹总黄酮。 银杏叶:从银杏叶中提取总黄酮时, 随乙醇浓度的增加总黄酮提取率逐渐上升, 当乙醇浓度增至70% 时提取率最高, 之后反而下降, 故选用70% 的乙醇作浸提剂最佳。 生姜:生姜黄酮提取用40倍原料的90%甲醇溶液, 在60 ~ 65℃条件下提取4 h 为其优化组合, 而其试验组合中以用40倍原料的75%甲醇溶液,在60~ 65 ℃条件下提取2 h的提取效果最好。 1.3碱性水或碱性稀醇提取法 黄酮类化合物大多具有酚羟基, 易溶于碱水, 酸化后又可沉淀析出。其原因一是由于黄酮酚羟基的酸性, 二是由于黄酮母核在碱性条件下开环, 形成2′-羟基查耳酮, 极性增大而溶解。因此可用碱性水( 碳酸钠、氢氧化钠、氢氧化钙水溶液) 或碱性稀醇( 50 %乙醇) 浸出, 浸出液经酸化后析出黄酮类化合物。 实例 菊花:各取5g干菊花4份, ,在80℃恒温水浴分别以pH为8,9,10,11的NaOH溶液分两次温浸1h和0.5h。pH降低时.由于提取不完全.含量较低;pH为11时,虽然黄酮

甘草酸的提取、分离和纯化

甘草酸的提取、分离及纯化实验 甘草酸的性质及用途 甘草为豆科植物的根,主要产于我国内蒙古、山西、甘肃、宁夏、新疆等地。甘草味甘,故又名甜草、蜜草。其主要化学成分有四类:三萜类、黄酮类、生物碱类及多糖类。其中三萜类成分有甘草酸、羟基甘草次酸等。 甘草酸又称甘草皂苷、甘草甜素。白色结晶,可用冰醋酸结晶,有很强的甜味。分子式为C42H62O16,分子量为822.90。纯品为白色、无臭的结晶性粉末,熔点212~217℃,易溶于热水及热的稀乙醇,几乎不溶于无水乙醇或乙醚。甘草酸在植物中常以钙、钾、铵盐等形式存在。从甘草根为原料制得的甘草浸膏中提取的铵盐,其甜度为蔗糖的50~100倍,精制甘草酸钠、钾盐的甜度为蔗糖的200~300倍,是一种天然的甜味剂。 甘草素入口后不能立刻感觉到甜味,而是逐渐才有感觉,并且一直延续很长时间还留有余味,因此甘草素与砂糖、葡萄糖等糖类复配,可以得到口感良好的甜味。因为它是非糖类、高甜度的甜味剂,因此没有褐变、吸湿及发酵等缺点。甘草素在医药上还可用作消化道溃疡治疗剂、解毒剂、消炎剂以及降血脂、抗动脉粥样硬化、降胆固醇等。目前,甘草素已广泛用于食品、医药、化妆品、饮料、卷烟等行业。 我国甘草资源丰富,带皮甘草中含甘草酸7%~10%,去皮甘草中约5.5%~9.0%。甘草经溶剂浸取,可以制得甘草浸膏,再进一步加工可以制得甘草酸。 1 实验目的 1.掌握甘草酸的提取原理和方法。 2.掌握甘草酸的分离纯化方法。 2 实验原理 甘草酸在原料中以钾盐或钙盐形式存在,其盐易溶于水,因此可用极性溶剂提取。 提取后滤液再加硫酸,因难溶于酸性溶液而析出游离甘草酸。 3实验材料、仪器和试剂 实验材料:甘草 实验仪器:电子分析天平(精确至0.001g)、移液管、紫外分光光度计、超声波清洗器、抽滤装置、水浴锅、旋转蒸发仪、容量瓶(10mL、25mL、100mL) 试剂:70 %的乙醇溶液、蒸馏水、硫酸(3.5mol/L)、浓氨水、25 %氨水、冰醋酸、80%甲醇 质量分数为70 %的乙醇溶液(100 mL):用量筒量取75 mL 无水乙醇,25 mL 二次重蒸馏水于烧杯中,混匀;质量分数为10 %的乙醇溶液(100 mL):用量筒量取12.5 mL 无水乙醇,87.5 mL 二次重蒸馏水于烧杯中,混匀;质量分数为0.5 %的氨水溶液(100 mL):

甘草有效成分的提取与分离

2012-2013学年第二学期 药用植物资源与开发 论文名称甘草化学成分的提取与分离 年级 2010 学院中药材学院 专业植物科学与技术 学号 07107107 姓名林俊旭 任课教师张永刚 完成时间 2013-5-11 成绩

甘草中化学成分的提取与分离 摘要:本文主要介绍了甘草中主要的化学成分以及这些化学成分的含量和性质,并简述了甘草酸,甘草次酸和甘草甘的提取和有效成分的含量测定,为进一步的生产实践做出贡献。 关键词:甘草化学成分提取 正文:甘草属于豆科甘草属,以根和根状茎入药。甘草在我国集中分布于三北地区(东北、华北和西北各省区),而以新疆、内蒙古、宁夏和甘肃为中心产区。随着药学及其相关学科以及科研设备的发展,甘草中主要含有的甘草酸、甘草次酸、黄酮、生物碱和氨基酸等化学成分,具有广泛的生物活性。 一、化学成分 药用甘草质量与其化学成分的组成、积累变化有直接的关系。先后从甘草属植物中提取、分离、鉴定了200多种化学成分,涉及甘草属植物10个种。其中最重要并已证实具有生物活性的成分主要是甘草酸等三萜皂苷类、黄酮类、香豆素类、多糖、生物碱、氨基酸等。 三萜皂苷类化合物:甘草属植物中三萜皂类成分具有量高、生理活性强的特点,甘草的许多药理作用都与这类成分有直接关系。至今在甘草属植物中已鉴定得到61种三萜类化合物,其中苷元45个。这些三萜类化合物其苷元均为3β-经基齐墩果烷型化合物的衍生物;皂苷一般为3β-羟基上的氧苷,糖元多为D-葡萄糖酸或D-葡萄糖。甘草酸一直被认为是甘草中最重要三萜类化合物,《中国药典》把甘草酸的量作为评价甘草药材及其制品质量的重要指标,通常要求不低于2%。 黄酮类成分:是近年来研究最活跃的天然活性成分之一,广泛存在于植物界中。这类化合物的存在对植物生长、发育、开花、结果以及抵御异物的侵入起着重要的作用。目前,从甘草属植物中已发现黄酮及其衍生物153种,它们的基本母核结构类型有15种,其中包括:黄酮、黄酮醇、双氢黄酮、双氢黄酮醇、查尔酮、异黄酮、双氢异黄酮、异黄烷、异黄烯等。对甘草中黄酮类成分的药理作用研究表明,这些成分在抗肿瘤、抗氧化、抗病毒方面作用显著。 甘草中黄酮类成分的分布和积策也表现出一定的特点。乌拉尔甘草无论是野生还是栽培,在一个生长季中,叶中总黄酮量最高,而地下部分的t相对较低;在5—10月,叶中的总黄酮量逐渐下降,而地下部分总黄酮盆具有上升趋势。各

最新微生物发酵工程测试题

微生物发酵工程测试 题

微生物发酵工程测试题 一、单选题: 1.下列关于微生物的叙述正确的是() A.所有微生物个体都非常微小,需借助显微工具才能看清 B.所有微生物在生态系统中的成分都是分解者 C.微生物包含了除植物界和动物界以外的所有生物 D.微生物少数对人是有用的,多数对于人和动植物是有害 2.非典型性肺炎、禽流感、炭疽热、人间鼠疫都是一些传染性极强的疾病,对人们的生命健康造成很大的威胁。引起这些传染病的致病微生物分别是 () A.病毒、细菌、病毒、细菌 B.病毒、病毒、细菌、细菌 B.病毒、病毒、病毒、病毒 D.细菌、细菌、细菌、细菌 3.据报道,一些日本人根本没有饮用任何酒精饮料,却经常呈醉酒状态。经抗生素治疗,很快恢复健康。下列是对致病原因的分析,合理的是 () A.由于人体细胞无氧呼吸产生过多酒精所致 B.由于肠道中感染的乳酸菌无氧发酵所致 C.于肠道中感染的酵母菌酒精发酵所致 D.D.由于肠道中大肠杆菌的有氧呼吸所致 4.下列关于微生物的碳源说法不正确的是() A.微生物最常用的碳源是糖类,尤其是葡萄糖 B.自养型微生物以CO2等无机物作为唯一或主要的碳源

C.常糖类是异养型微生物的主要碳源和能源 D.不同种类的微生物对碳源的需求相差不大 5.19世纪后期,著名的德国细菌学家科赫发明了纯培养技术,分离出了霍乱弧菌、结核杆菌等,这种培养技术中,很重要的一点就是要判断在培养基上细菌哪些是同一种。他的判断依据是()A.细菌鞭毛的有无 B.细菌能否形成芽孢 C.细菌的菌落特征 D.细菌荚膜的有无 6.关于细菌培养过程说法错误的是() A.培养基、手、接种环的灭菌、消毒方法分别是高压蒸汽灭菌、酒精、火焰烧灼 B.培养基分装的高度为试管长度的1/5,搁置斜面的长度不超过试管的1/3 C.高压蒸汽灭菌结束时,当压力为0时,才能打开排气阀 D.接种时,不要画破培养基,也不能使接种环接触管壁或管口 7.下列关于平菇培养过程的叙述正确的是() A.培养基也可采用高压蒸汽灭菌,所需压强、时间与细菌培养基灭菌时完全一样 B.培养基的pH应调至高无上8.0 C.接种过程中,要在火焰旁操作,防止杂菌感染 D.接种后应放在完全密闭的适宜温度的房间里培养 8.下列关于固氮菌的叙述中,错误的是() A.不同的根瘤菌只能侵入特定种类的豆科植物B.具有根瘤的豆科植物能以氮气为氮源

黄酮类化合物的提取纯化方法

黄酮类化合物的提取、药用价值和产品开发应用前景 任红丽2009090141 摘要:对黄酮类化合物的药用价值、提取工艺、分离方法等方面进行综述。在 药用价值方面,讨论了其抗抑郁作用、抗氧化与自由基消除活性作用、对化学性肝损伤的保护作用、抗肿瘤作用、抗骨质疏松作用、抗心肌缺血作用;在提取工艺方面,讨论了溶剂提取法、超声提取法、酶法、微波法等;及其开发应用,为今后黄酮类化合物的深入研究提供理论基础。 关键词:黄酮类化合物提取工艺药用价值 黄酮类物质是一类低分子天然植物成分,是自然界中存在的酚类物质[14],又称生物黄酮或植物黄酮,属植物次级代谢产物,广泛存在于各种植物的各个部位,尤其是花、叶,主要存在于芸香科、唇形科、豆科、伞形科、银杏科与菊科中。迄今,已有数百种不同类型的黄酮类化合物在植物中被发现,人工合成的黄酮类化合物也不断问世。最初这类物质仅用于染料方面,自20世纪20年代,槲皮素、芦丁等黄酮类物质用于临床后,才开始引起人们的关注,研究发现其中相当一部分具有显著的生理及药理活性,例如抗氧化、抗病毒、抗炎、调节血管渗透性,改善记忆,抗抑郁、抗焦虑、中枢抑制、神经保护等功能[2,12]诸多生理和药理特性使其广泛应用于食品、医药等领域。 1.提取纯化方法 1.1 传统提取方法 1.1.1 热水提取法 水是最廉价的提取溶剂,是地球最丰富的物质,无色无味无毒,对人体和环境无害,挥发性不大,具有真正的绿色环保意义。但用水作为提取溶剂时,从中药材中提取的黄酮类化合物中杂质含量较多,往往因泡沫或粘液很多,给进一步分离带来许多麻烦,而且浓缩也会很困难。此外,水提取物容易发霉发酵[22]。1.1.2 碱性水、碱性稀醇浸提法 中草药中黄酮类成分多为多酚类化合物,因其结构中具有酚羟基[7],故可用碱性水或碱性稀醇液来提取中草药中的黄酮类化合物。黄酮母核的多样性主要是由黄酮本身骨架、环系的变化、氧化程度和数量而定,当碱的浓度过高,加热时便破坏黄酮类化合物的母核。 1.1.3 有机溶剂热回流及冷浸提取法 根据杂质极性不同,可选用不同的有机溶剂(如石油醚、乙酸乙酯、氯仿、乙醇、甲醇、丙酮等),一般采取乙醇为提取溶剂[15]。

甘草酸提取方法总结

甘草酸提取方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

甘草酸提取方法总结 1、甘草酸一般以钾盐或钙盐形式存在于甘草中,其盐易溶于水。同时,甘草酸为有机弱酸,酸性条件下游离。这是我们采用水酸提取法从甘草中提取甘草酸的理论依据。操作方法:将甘草进行适当粉碎,取lOOg甘草粗粉置于1000mL烧杯中,加500mL水,加热煮沸10min,然后置于振荡器上,于60℃下恒温振荡2h。过滤,将滤渣重复上述操作,至滤液于252nm无明显吸收为止。合并滤液,蒸发浓缩至200mL左右,然后边搅拌边滴加浓H2SO4。至不再析出沉淀;陈化2h,离心分离,将沉淀物置于100℃下干燥lh,得到棕色块状物 8.9g,即为甘草酸粗品,粉碎备用。 2、甘草经室温干燥后磨成粗末以适量水浸泡20h,过滤,,滤渣再用适量水浸泡20h,过滤。合并滤液, 在搅拌下缓缓滴加3.5-4mol/L硫酸至溶液的pH为1.9,放置冰箱6h以上,倾去上清液。沉淀以适量甲醇回流提取两次,合并提取液,滴加氨水至ph7.5-8.0,减压蒸干,得糖浆状物。趁热加入冰醋酸使溶解,室温静置,投入甘草酸单铵盐晶种。翌日吸滤,以少量冷冰醋酸洗涤,减压干燥,称重。 3、以下实验提取溶剂组成经优化均为60%乙醇+1%氨水+水 ①、热回流提取法:称取相应粒度的甘草10克,第1次加入溶剂100ml于约80℃温度下进行回流提取1.5小时,过滤;提取后的残渣加入溶剂80ml进行第二次回流提取1.5小时,过滤;再次将残渣加入溶剂80ml进行第三次回流提取1.5小时,过滤。 ②、索氏提取法:称取相应粒度的甘草10克,加入溶剂200ml在约80℃下提取5小时或10小时,过滤。 ③、室温提取法:称取相应粒度的甘草3克,加入溶剂30ml,间断2小时手摇,室温(约15℃)下提取相应时间,过滤。 ④、微波辅助提取法:称取相应粒度的甘草10克,加入溶剂100ml,在经技术改造后的微波辅助提取设备内约80℃温度下提取相应时间,过滤。 连续3次提取时,第1 次提取4min,过滤,残渣再重复提取2次。 4、以70﹪乙醇作为提取溶剂,对以下4种提取方法进行了考察: ①、室温静置提取法:取10.00g甘草切片,加入70﹪乙醇100ml,静置1h,减压过滤,滤渣继续静置0.5h,过滤,合并两次滤液并定容到250 ml。 ②、超声波辅助提取法:取10.00g甘草,加100ml70﹪乙醇浸泡1 h,超声提取30min, 减压过滤,滤渣继续合并滤液超声提取30min, 合并两次滤液定容到250ml。 ③、醇热回流法:取10.00g甘草,加入70﹪乙醇100ml,90。C热回流提取2次,第一次1h, 减压过滤,滤渣继续热回流0.5h,合并两次滤液定容到 250ml。 ④、0.5﹪稀氨水和70﹪乙醇混合回流法:取10.00g甘草,加入混合溶剂100ml(按1:1比例),90。C热回流提取1h, 减压过滤,滤渣继续热回流0.5h,合并两次滤液定容到250ml。 5、称取一定质量的甘草粉放入反应器中,加入其5倍质量的水,在搅拌下于85 ℃以上加热回流2.5 h,过滤、滤渣再加3倍质量的水重复提取一次,合并滤液。 6、氨性醇提取法:称取一定量的甘草饮片,分别加5、4、4倍量的含氨0.3%的60%乙醇回流提取3次,每次1.5h。

甘草的功效与禁忌

甘草的功效与禁忌 甘草的功效和作用 1.用于心气虚,心悸怔忡,脉结代,以及脾胃气虚, 倦怠乏力等。前者,常与桂枝配伍,如桂枝甘草汤、炙甘草汤。后者,常与党参、白 术等同用,如四君子汤、理中丸等。 2.用于痈疽疮疡、咽喉肿痛等。可单用,内服或外敷,或配伍应用。痈疽疮疡,常与 金银花、连翘等同用,共奏清热解毒之功,如仙方活命饮。咽喉肿痛,常与桔梗同用,如 桔梗汤。若农药、食物中毒,常配绿豆或与防风水煎服。 3.用于气喘咳嗽。可单用,亦可配伍其他药物应用。如治湿痰咳嗽的二陈汤;治寒痰 咳喘的苓甘五味姜辛汤;治燥痰咳嗽的桑杏汤;治热毒而致肺痈咳唾腥臭脓痰的桔梗汤;治 咳唾涎沫的甘草干姜汤等。另风热咳嗽、风寒咳嗽、热痰咳嗽亦常配伍应用。 4.用于胃痛、腹痛及腓肠肌挛急疼痛等,常与芍药同用,能显著增强治挛急疼痛的疗效,如芍药甘草汤。 5.用于调和某些药物的烈性。如调味承气汤用本品缓和大黄、芒硝的泻下作用及其对 胃肠道的刺激。另外,在许多处方中也常用本品调和诸药。 7 甘草有类似肾上腺皮质激素样作用。对组胺引起的胃酸分泌过多有抑制作用;并有 抗酸和缓解胃肠平滑肌痉挛作用。 8. 甘草黄酮、甘草浸膏及甘草次酸均有明显的镇咳作用;祛痰作用也较显著,其作用 强度为甘草酸>甘草黄酮>甘草浸膏。 9. 甘草还有抗炎,抗过敏作用,能保护发炎的咽喉和气管粘膜。甘草浸膏和甘草酸 对某些毒物有类似葡萄糖醛酸的解毒作用。 10. 甘草常用来治疗随更年期而来的症状.因为甘草里含有甘草素,是一种类似激素 的化合物,它有助于平衡女性体内的激素含量。 甘草的禁忌 甘草不要多服、久服或当甜味剂嚼食尤其是儿童,会产生类似肾上腺皮脂激素样的副 作用,使血钠升高,钾排出增多,导致高血压、低血钾症,出现浮肿、软瘫等临床表现。 久服甘草,还会引起低血钙,出现钙性抽搐等症状,还可能引起肾上腺皮质小球带萎缩, 导致肾上腺皮质机能减退等。但是,只要辨证准确,适当配伍利尿、理气药可防患于未然。如若出现副作用,应立即停用甘草。

微生物与发酵工程

微生物与发酵工程 13101002 朱梦雪发酵工程是生物工程的重要组成部分,也是现代微生物学的核心内容;任何产品的发酵生产都必须通过微生物发酵或细胞扩大培养才能实现。因此,微生物与发酵是紧紧联系在一起的。微生物发酵工程是加快发酵工程研究成果转化为生产力,取得最佳效益的重要手段。微生物科学工作者应不失时机地积极而科学地运用这种手段为社会社会主义市场经济服务。 根据文献的调查,微生物的发酵工程主要应用于以下几点: 首先是在农业生产上,巴西全国土壤生物研究中心的研究人员发现一种新固氮菌,即固氮醋杆菌(Aeetobaeterdiazotrophyeus)。这是人类发现的第一个有固氮能力的醋杆菌,生活在甘蔗根部,具有很强的抗酸性。由于它的高效固氮能力,可使甘蔗年产量提高2倍(由60吨/公顷提高到180吨/公顷)。在固氮菌的研究方面,我国作物茎瘤固氮根瘤菌的高效固氮活性,以及小麦、玉米、陆生水稻固氮根瘤菌研究取得重要进展;英国诺丁汉大学一个研究小组也获得田著根瘤菌进入小麦、水稻、玉米和油菜等非豆科植物侧根中形成小根瘤,且有固氮作用的类似结果。今年拟在埃及、印度、墨西哥分别进行小麦、水稻、玉米的田间试验。这些非豆科专性共生固氮菌尚处在试验研究阶段。而我国联合固氮微生物早已产业化生产,其产品推广应用于农业生产实践,获得了增产的效果。近又发现一些新的联合固氮菌如产酸克氏杆菌、植皮克氏杆菌(Klebsiellaplantieola)等,为扩大联合固

氮菌AIJ新品种的研制做出了新贡献。 其次是在生物材料方面。有很多生物材料都是应用微生物发酵来生产的。我了解到的有生物可降塑料、建筑用生物材料和壳聚糖材料。 生物可降解塑料:微生物合成塑料物质:加拿大蒙特利尔生物技 术研究所以甲醇为原料利用从土壤中选育的嗜甲基细菌生产聚件轻 基丁酸(PHB),在我国,武汉大学生物工程研究中心用圆褐固氮菌发酵生产PHB;中国科学院微生物研究所用真养产碱杆菌生产PHB,在培养基中累积的量达细胞干重的63%(W/W);山东大学微生物研究所用该菌生产PHB的研究取得类似结果。 建筑用生物材料:某些微生物及其代谢产物如橡胶物质、弹力纤维、高分子多糖等作为混凝土添加剂,制造富有弹性的牢固的生物混凝土材料是有可能的,提供生物建筑材料的另一种可能性是某些微生物—蓝细菌或微型藻类,它们有分泌石灰石(碳酸钙)能力。 多用途的壳聚糖材料:壳聚糖又叫脱乙酞基多糖,用途极其广泛,几乎各个行业都用得着它。从微生物发酵生产,如真菌细胞壁含几丁质成分20%一22%,毛霉细胞壁中几丁质含量高达30写一40%,利用黑曲霉或其他真菌来生产壳聚糖是完全可能的。 还有就是利用微生物发酵生产两类重要有机酸这里着重介绍两 类重要有机酸,都有可能通过微生物发酵途径索取。 衣康酸(itaconicac记)进人规模生产:衣康酸又称甲叉丁二酸,系一种不饱和的二梭酸,用途广、需求量大,它是制造合成树脂、合成纤维、塑料、橡胶、表面活性剂、去垢剂、润滑油添加剂等的原料,

甘草化学成份

甘草化学成份 1、三萜类化合物:甘草根和根茎甘草甜素(Glycyrrhizin),主要系甘草酸(Glycy-rrhizic acid)的钾、钙盐,为甘草的甜味成分。甘草酸水解后得二分子葡萄糖醛酸和一分子18β-甘草次酸(18β-Glycyrrbetinic acid)。近报导根尚还分解得24-羟基甘草次酸,3β-羟基齐墩果烷-11,13(18)-二烯-30-酸(3-β-Hydroxyolean-11,13(18)-dien30-oic acid)、3β- 羟基齐墩果叶烷-9(11),12(13)-二烯-30-酸。光果甘草 (G. glabra)的根和根茎除分离得甘草酸、甘草次酸之外,尚分得多种三萜类化合物;去氧甘草次酸I(Deo-xyglycyrrhetic acid I),去氧甘草次酸Ⅱ(Deoxyglycyrrhetic acidⅡ),18-α-羟基甘草次酸(18-α-Hydroxyglycyrrhetic acid),异甘草次酸(Liqui-ritic acid),甘草萜醇(Glycyrrhetol),甘草内酯(Gabrolide)等。近十几年来国内外对甘草属不同种的植物进行较广泛的研究,迄今为止,已知的三萜类成分达20余种。 为了进一步扩大中药甘草和提取甘草次酸的原料资源,中国医学科学院药物所对国产的几种甘草进行了甘草甜素和甘草次酸的定性、定量分析,结果见下表。 六种甘草中甘草次酸与甘草甜素的含量种类拉丁名产地次酸含量%甜素含量%甘草 G.uralensis内蒙古4.25.2甘草G.uralensis新疆7.1211.1甘草G.uralensis甘肃 3.488.6光果甘草G.glabra新疆 3.40 4.02胀果甘草G.inflata甘肃 3.724.6黄甘草 G.korshinskyi甘肃4.166.8云南甘草G.yunnanensis云南2.52未作粗毛甘草G.aspera 新疆0.72未作以上表中几种甘草用重量法和分光光度法分别测了甜素和次酸的含量,测定结果,甜素的含量均高于次酸的含量,是符合实际情况的。 [注] 分析方法:(1)定性方法:取定量用的氯仿提取液一份,浓缩至10m1,用毛细管点于硅胶石膏薄层板上,于板上同时点上甘草次酸标准品的氯仿溶液作对照。(2)定量分析方法:精密称取甘草粉末0.1g,加20ml12N硫酸,在水浴上回流1小时后,加入70m1水,50m1氯仿,回流15分钟,洽却,将此液移至250m1的分液漏斗中,振摇数分钟,将氯仿层分至另一分液漏斗中,硫酸液再用氯仿两次每次25m1振摇,合并氯仿液,用100ml2%碳酸氢钠液振摇,分去碳酸氢钠液,再将氯仿层通过装有25g无水硫酸钠柱子,收集氯仿液100m1。吸取氯仿提取液2.5m1至带塞的10m1刻度试管中,在水浴上蒸发至干,加入5ml80%硫酸,置沸水中5分钟,后在冰中冷却,再加95%乙醇5ml,1%香草醛水溶液0.5ml,冷却后,将试管塞上摇匀,放至室温,用72型分光光度计在波长545nm测定其光密度。然后由回归方程式Ye =0.3404×-0.004977计算出甘草次酸的含量(mg)。式中Ye为甘草次酸在5ml比色杯中的mg 数,x为光密度(比色杯长为1公分)。再换算出100g甘草样品中的百分含量。样品中甘草次酸的%含量=光密度×(0.3404—0.004977)×100/样品重。 2、黄酮类化合物:镇痉作用是甘草的药效之一,已经注意到它依存于甘草中的黄酮类。其中首先发现了黄酮甙之一的甘草甙(Liquiritin),甘草甙元(Liquiritigenin),异甘草甙(Iso-liquiritin),异甘草甘元(Iso-liquititigenin),新甘草甙(Neo-li-quiritin,dl-liquiritigenin-7-β-D-glucopyranoside),新异甘草甙(Neoisoliqui-titin,trans-isoliquiritigenin-4-β-D-glucopyranoside),异甘草呋喃糖甙(Licu-razid,trans-isoliquiritigenin-4-β-D-glucopyranosyl-2-β-D-apiodic-orifur-anoside),鼠李糖异甘草甙(Rhamnoisoliquiritin)等。从光果甘草(G.blabra)的根和根茎中分离出以上黄酮化合物之外,尚分离出光果甘草甙(Liguirito-side),光果甘草甙元(Liquiritogenine),异光果甘草甙(Isoliquiritoside),异光果甘草甙元(Isoli-quiritogenin),甘草黄酮A(Licoflavone A),甘草查耳酮(Licochal-cone)A及B等。

相关文档
相关文档 最新文档