文档库 最新最全的文档下载
当前位置:文档库 › 最新二项式定理典型例题解析

最新二项式定理典型例题解析

最新二项式定理典型例题解析
最新二项式定理典型例题解析

二项式定理 概 念 篇

【例1】求二项式(a -2b )4的展开式. 分析:直接利用二项式定理展开.

解:根据二项式定理得(a -2b )4=C 04a 4+C 14a 3(-2b )+C 24a 2(-2b )2+C 34a (-2b )3+C 4

4(-

2b )4

=a 4-8a 3b +24a 2b 2-32ab 3+16b 4.

说明:运用二项式定理时要注意对号入座,本题易误把-2b 中的符号“-”忽略.

【例2】展开(2x -

223x

)5

. 分析一:直接用二项式定理展开式.

解法一:(2x -223x )5=C 0

5(2x )5+C 15(2x )4(-223x )+C 25(2x )3(-223x )2+C 35

(2x )2(-2

23x )3+ C 4

5 (2x )(-223x )4+C 55(-2

23x

)5 =32x 5-120x 2+x 180-4135x

+78405

x -1032243x .

分析二:对较繁杂的式子,先化简再用二项式定理展开.

解法二:(2x -223x

)5=105

332)34(x x

=10321x

[C 05(4x 3)5+C 15(4x 3)4(-3)+C 25(4x 3)3(-3)2+C 35(4x 3)2(-3)3+C 45(4x 3)(-3)4+ C 55(-3)5

=

10

321

x

(1024x 15-3840x 12+5760x 9-4320x 6+1620x 3-243) =32x 5-120x 2+x 180-4135x

+78405

x -10

32243x . 说明:记准、记熟二项式(a +b )n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.

【例3】在(x -3)10的展开式中,x 6的系数是 .

解法一:根据二项式定理可知x 6的系数是C 4

10.

解法二:(x -3)10的展开式的通项是T r +1=C r 10x 10-

r (-3)r .

令10-r =6,即r =4,由通项公式可知含x 6项为第5项,即T 4+1=C 410x 6(-3)4=9C 410x 6. ∴x 6的系数为9C 410.

上面的解法一与解法二显然不同,那么哪一个是正确的呢?

问题要求的是求含x 6这一项系数,而不是求含x 6的二项式系数,所以应是解法二正确.

如果问题改为求含x 6的二项式系数,解法一就正确了,也即是C 4

10.

说明:要注意区分二项式系数与指定某一项的系数的差异.

二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项

式无关,后者与二项式、二项式的指数及项数均有关.

【例4】已知二项式(3x -

x

32)10

, (1)求其展开式第四项的二项式系数; (2)求其展开式第四项的系数; (3)求其第四项.

分析:直接用二项式定理展开式.

解:(3x -x 32)10的展开式的通项是T r +1=C r

10(3x )10-r (-x

32)r (r =0,1,…,10).

(1)展开式的第4项的二项式系数为C 3

10=120. (2)展开式的第4项的系数为C 31037(-

3

2)3

=-77760. (3)展开式的第4项为-77760(x )7

31

x ,即-77760x .

说明:注意把(3x -

x 32)10写成[3x +(-x 32)]10,从而凑成二项式定理的形式. 【例5】求二项式(x 2+x

21)10

的展开式中的常数项.

分析:展开式中第r +1项为C r

10(x 2)10-r (x

21)r ,要使得它是常数项,必须使“x ”的指

数为零,依据是x 0=1,x ≠0.

解:设第r +1项为常数项,则

T r +1=C r

10(x 2)

10-r

(

x

21)

r

=C r 10x r 2

5

20-(

21)r (r =0,1,…,10),令20-2

5

r =0,得r =8. ∴T 9=C 8

10(

21)8=256

45

. ∴第9项为常数项,其值为

256

45

. 说明:二项式的展开式的某一项为常数项,就是这项不含“变元”,一般采用令通项T r +1

中的变元的指数为零的方法求得常数项.

【例6】 (1)求(1+2x )7展开式中系数最大项; (2)求(1-2x )7展开式中系数最大项.

分析:利用展开式的通项公式,可得系数的表达式,列出相邻两项系数之间关系的不等式,进而求出其最大值.

解:(1)设第r +1项系数最大,则有?????≥≥++--,

2C 2C ,

2C 2C 11771177r r r r r r r r

即????

???--+≥-+--≥---,2!)17(!)1(!72!

)7(!!7,2!)17(!)1(!72!)7(!!711r r r r

r r r r r r r r

化简得???

???

?≥≤???????+≥--≥.313,316.1271,812r r r r r r 解得又∵0≤r ≤7,∴r =5.

∴系数最大项为T 6=C 5725x 5=672x 5

.

(2)解:展开式中共有8项,系数最大项必为正项,即在第一、三、五、七这四项中取得.又因(1-2x )7括号内的两项中后两项系数的绝对值大于前项系数的绝对值,故系数最大值

必在中间或偏右,故只需比较T 5和T 7两项系数的大小即可.6

6744

7)2(C )2(C --=17

3

7C 4C >1,所以系数最大项为第五项,即T 5=560x 4.

说明:本例中(1)的解法是求系数最大项的一般解法,(2)的解法是通过对展开式多项分析,使解题过程得到简化,比较简洁.

【例7】 (1+2x )n 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.

分析:根据已知条件可求出n ,再根据n 的奇偶性确定二项式系数最大的项.

解:T 6=C 5n (2x )5,T 7=C 6n (2x )6,依题意有C 5n 25=C 6n 26

,解得n =8. (1+2x )8的展开式中,二项式系数最大的项为T 5=C 4n (2x )4=1120x 4

.

设第r +1项系数最大,则有?????≥≥++--.

2C 2C ,

2C 2C 11771

177r r r r r r r r

∴5≤r ≤6.∴r =5或r =6.

∴系数最大的项为T 6=1792x 5,T 7=1792x 6.

说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大;n 为偶数时,中间一项的二项式系数最大.

(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,再解不等式的方法求得.

应 用 篇

【例8】若n ∈N *,(2+1)n =2a n +b n (a n 、b n ∈Z ),则b n 的值( ) A.一定是奇数 B.一定是偶数

C.与b n 的奇偶性相反

D.与a 有相同的奇偶性

分析一:形如二项式定理可以展开后考查.

解法一:由(2+1)n =2a n +b n ,知2a n +b n =(1+2)n

=C 0n +C 1

n

2+C 2n (2)2+C 3n (2)3+ … +C n

n (2)n .

∴b n =1+C 2n (2)2+C 4

n (2)4+ …

∴b n 为奇数. 答案:A

分析二:选择题的答案是唯一的,因此可以用特殊值法. 解法二:n ∈N *,取n =1时,(2+1)1=(2+1),有b 1=1为奇数.

取n =2时,(2+1)2=22+5,有b 2=5为奇数.

答案:A

【例9】若将(x +y +z )10展开为多项式,经过合并同类项后它的项数为( ) A.11 B.33 C.55 D.66

分析:(x +y +z )10看作二项式10

)(][z y x ++展开.

解:我们把x +y +z 看成(x +y )+z ,按二项式将其展开,共有11“项”,即(x +y +z )10=

10

)(][z y x ++=

∑=10

10

C

k k

(x +y )10-

k z k .

这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式(x +y ) 10-

k 展开,不同

的乘积C k

10(x +y )10-

k z k (k =0,1,…,10)展开后,都不会出现同类项.

下面,再分别考虑每一个乘积C k

10(x +y )10-

k z k (k =0,1,…,10).

其中每一个乘积展开后的项数由(x +y )10-

k 决定,而且各项中x 和y 的指数都不相同,也不会出现同类项.故原式展开后的总项数为11+10+9+…+1=66.

答案:D

说明:化三项式为二项式是解决三项式问题的常用方法.

【例10】求(|x |+|

|1

x -2)3展开式中的常数项.

分析:把原式变形为二项式定理标准形状. 解:∵(|x |+

||1x -2)3=(||x -|

|1x )6

, ∴展开式的通项是T r +1=C r

6(||x )6-r (-

|

|1x )r =(-1)r C r

6(||x )6-2r . 若T r +1为常数项,则6-2r =0,r =3.

∴展开式的第4项为常数项,即T 4=-C 36=-20.

说明:对某些不是二项式,但又可化为二项式的题目,可先化为二项式,再求解. 【例11】求(x -3x )9展开式中的有理项.

分析:展开式中的有理项,就是通项公式中x 的指数为整数的项.

解:∵T r +1=C r

9(x

21

)9-r (-x 31)r =(-1)r C r 9

x

6

27r

-.

627r -∈Z ,即4+63r

-∈Z ,且r =0,1,2,…,9. ∴r =3或r =9.

当r =3时,627r -=4,T 4=(-1)3C 39x 4=-84x 4

.

当r =9时,6

27r -=3,T 10=(-1)9C 99x 3=-x 3

.

∴(x -3x )9的展开式中的有理项是第4项-84x 4,第10项-x 3. 说明:利用二项展开式的通项T r +1可求展开式中某些特定项. 【例12】若(3x -1)7=a 7x 7+a 6x 6+ … +a 1x +a 0,求 (1)a 1+a 2…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6.

分析:所求结果与各项系数有关可以考虑用“特殊值”法,整体解决. 解:(1)令x =0,则a 0=-1,令x =1,则a 7+a 6+ … +a 1+a 0=27=128.

∴a 1+a 2+…+a 7=129.

(2)令x =-1,则a 7+a 6+a 5+a 4+a 3+a 2+a 1+a 0=(-4)7.

2)2()1(-得:a 1+a 3+a 5+a 7=21

[128-(-4)7]=8256. (3)由2)2()1(+得a 0+a 2+a 4+a 6=2

1[128+(-4)7]=-8128.

说明:(1)本解法根据问题恒等式特点来用“特殊值”法,这是一种重要的方法,它用于恒等式.

(2)一般地,对于多项式g (x )=(px +q )n =a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6+a 7x 7,g (x )各项的

系数和为g (1),g (x )的奇数项的系数和为21[g (1)+g (-1)],g (x )的偶数项的系数和为2

1

[g (1)

-g (-1)].

【例13】证明下列各式

(1)1+2C 1n +4C 2

n + … +2n -

1C 1-n n +2n C n n =3n ;

(2)(C 0n )2+(C 1n )2+ … +(C n n )2=C n n 2; (3)C 1n +2C 2n +3C 3n + … +n C n n =n 2

n -

1. 分析:(1)(2)与二项式定理的形式有相同之处可以用二项式定理,形如数列求和,因此可以研究它的通项寻求规律.

证明:(1)在二项展开式(a +b )n =C 0n a n +C 1n a n -

1b +C 2n a n -2b 2+ … +C 1-n n ab n -

1+C n n b n 中,

令a =1,b =2,得(1+2)n =1+2C 1n +4C 2n + … +2n -

1C 1-n n +2n C n n ,即

1+2C 1n +4C 2n + … +2n -

1C 1-n n +2n C n n =3n .

(2)(1+x )n (1+x )n =(1+x )2n ,

∴(1+C 1n x +C 2n x 2+ … +C r n x r + … +x n )(1+C 1n x +C 2n x 2+ … +C r n x r + … +x n )=(1+x )2n . 而C n n 2是(1+x )2n 的展开式中x n 的系数,由多项式的恒等定理,得 C 0n C n n +C 1n C 1-n n + … +C 1n C 1-n n +C n n C 0n =C n n 2. ∵C m n =C m n n

-,0≤m ≤n , ∴(C 0n )2+(C 1n )2+ … +(C n n )2=C n n 2.

(3)证法一:令S =C 1n +2C 2n +3C 3n + … +n C n n . ①

令S =C 1n +2C 2n + … +(n -1)C 1-n n +n C n n =n C n n +(n -1)C 1-n n + … +2C 2n +C 1n =n C n n +(n -1)C 1n + … +2C 2-n n

+C 1-n n . ②

由①+②得2S =n C 1n +n C 2n +n C 3n + … +n C n n =n (C n n +C 1n +C 2n +C 3n + … +C n

n )

=n (C 0n +C 1n +C 2n +C 3n + … +C n n )=n 2n .

∴S =n 2n -

1,即C 1n +2C 2n +3C 3n + … +n C n n =n 2

n -

1. 证法二:观察通项:k C k n =k 1

1C !

)(!)1(!)1(!)(!--=---=-k n n k n k n n k n k n .

∴原式=n C 01-n +n C 11-n +n C 21-n +n C 31-n + … +n C 11--n n =n (C 01-n +C 11-n +C 21-n +C 3

1-n +…

+C 1

1--n n )=n 2

n -

1, 即C 1n +2C 2n +3C 3n + … +n C n

n =n 2

n -

1. 说明:解法二中k C k n =n C 11--k n 可作为性质记住. 【例14】求1.9975精确到0.001的近似值.

分析:准确使用二项式定理应把1.997拆成二项之和形式如1.997=2-0.003.

解:1.9975=(2-0.003)5

=25-C 15240.003+C 25230.0032-C 3522

0.0033+…

≈32-0.24+0.00072≈31.761.

说明:利用二项式定理进行近似计算,关键是确定展开式中的保留项,使其满足近似计算的精确度.

【例15】求证:5151-1能被7整除.

分析:为了在展开式中出现7的倍数,应把51拆成7的倍数与其他数的和(或差)的形式.

证明:5151-1=(49+2)51-1=C 0514951+C 15149502+ … +C 505149·250+C 5151251

-1, 易知除C 5151251-1以外各项都能被7整除.

又251-1=(23)17-1=(7+1)17-1=C

17

717+C

117

716+ … +C

1617

7+C

1717

1=7(C 017716+C 117715+…+C 16

17).

显然能被7整除,所以5151-1能被7整除.

说明:利用二项式定量证明有关多项式(数值)的整除问题,关键是将所给多项式通过恒等变形变为二项式形式,使其展开后的各项均含有除式.

创 新 篇

【例16】已知(x lg x +1)n 的展开式的最后三项系数之和为22,中间一项为20000.求x . 分析:本题看似较繁,但只要按二项式定理准确表达出来,不难求解!

解:由已知C n n +C 1-n n +C 2

-n n

=22,即n 2+n -42=0. 又n ∈N *,∴n =6. T 4为中间一项,T 4=C 36 (x lg x )3=20000,即(x lg x )3=1000. x lg x =10.

两边取常用对数,有lg 2x =1,lg x =±1,∴x =10或x =10

1

.

说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项公式,根据已知条件列出等式或不等式进行求解.

【例17】设f (x )=(1+x )m +(1+x )n (m ,n ∈N *),若其展开式中关于x 的一次项的系数和为11,问m ,n 为何值时,含x 2项的系数取最小值?并求这个最小值.

分析:根据已知条件得到x 2的系数是关于x 的二次表达式,然后利用二次函数性质探讨最小值问题.

解:C 1m +C 1n =n +m =11. C 2m

+C 2n

=2

1(m 2-m +n 2

-n )=21122-+n m ,

∵n ∈N *,

∴n =6或5,m =5或6时,x 2项系数最小,最小值为25. 说明:本题是一道关于二次函数与组合的综合题.

【例18】若(x +

x

1

-2)n 的展开式的常数项为-20,求n . 分析:题中x ≠0,当x >0时,把三项式(x +x 1

-2)n 转化为(x -x

1)2n ;当x <0时,

同理(x +x 1

-2)n =(-1)n (x -x

1)2n .然后写出通项,令含x 的幂指数为零,进而解出n .

解:当x >0时,(x +x 1

-2)n =(x -x

1)2n ,

其通项为T r +1=C r n 2(x )2n -r (-x

1)r =(-1)r C r n 2(x )

2n -2r

. 令2n -2r =0,得n =r ,∴展开式的常数项为(-1)r C n n 2; 当x <0时,(x +

x 1

-2)n =(-1)n (x -x

1)2n .同理可得,展开式的常数项为(-1)r C n n 2. 无论哪一种情况,常数项均为(-1)r C n n 2.

令(-1)r C n n 2=20.以n =1,2,3,…,逐个代入,得n =3. 说明:本题易忽略x <0的情况.

【例19】利用二项式定理证明(32)n -1<1

2

+n .

分析:12+n 不易从二项展开式中得到,可以考虑其倒数2

1

+n . 证明:欲证(32)n -1<12+n 成立,只需证(23)n -1<2

1

+n 成立.

而(23)n -1=(1+21)n -1=C 01-n +C 11-n 21+C 21-n (21)2+ … +C 11--n n (

21)n -1 =1+21-n +C 21-n (21)2+ … +C 11--n n (

21)n -1 >2

1+n .

说明:本题目的证明过程中将(23)n -1转化为(1+2

1)n -

1,然后利用二项式定理展开式是解

决本问题的关键.

【例20】求证:2≤(1+n

1

)n <3(n ∈N *).

分析:(1+n

1

)n 与二项式定理结构相似,用二项式定理展开后分析.

证明:当n =1时,(1+n 1

)n =2.

当n ≥2时,(1+n 1)n =1+C 1n n 1+C 2n 21n + … +C n n (n 1)n =1+1+C 2n 2

1n + … +C n n (

n 1)n

>2. 又C k n (

n 1)k =k

n k k n n n !)

1()1(+-- ≤!1k ,

所以(1+n 1)n ≤2+!21+!31+ … +!1n <2+211?+3

21

?+ … +n n ?-)1(1

=2+(1-21)+(21-31)+ … +(11-n -n

1) =3-

n

1

<3. 综上有2≤(1+

n

1)n

<3. 说明:在此不等式的证明中,利用二项式定理将二项式展开,再采用放缩法和其他有关知识,将不等式证明到底.

【例21】求证:对于n ∈N *,(1+n 1)n <(1+1

1+n )n +1

.

分析:结构都是二项式的形式,因此研究二项展开式的通项是常用方法.

证明:(1+n 1)n 展开式的通项T r +1=C r n r n

1=r r n n r A ! =

!1r r n r n n n n )

1()2)(1(+---

=!1r (1-n 1)(1-n 2)…(1-n

r 1-). (1+11+n )n +1展开式的通项T ′r +1=C r n 1+r

n )

1(1+=r r n n r )1(!A 1++ =

!1r r n r n n n n )

1()2)(1(+---

=!1r (1-11+n )(1-12+n )…(1-1

1+-n r ). 由二项式展开式的通项可明显地看出T r +1<T ′r +1

所以(1+

n 1)n <(1+1

1+n )n +1

说明:本题的两个二项式中的两项均为正项,且有一项相同.证明时,根据题设特点,采用比较通项大小的方法完成本题证明.

【例22】设a 、b 、c 是互不相等的正数,且a 、b 、c 成等差数列,n ∈N *,求证:a n +c n

>2b n .

分析:题中虽未出现二项式定理的形式,但可以根据a 、b 、c 成等差数列创造条件使用二项式定理.

证明:设公差为d ,则a =b -d ,c =b +d .

a n +c n -2

b n =(b -d )n +(b +d )n -2b n

=[b n -C 1n b n -

1d +C 2n b n -

2d 2+ … +(-1)n d n ]+[b n +C 1n b n -

1d +C 2n b

n -

2d 2

+ … +d n ] =2(C 2n b n -

2d 2+C 4n b

n -

4d 4…)>0. 说明:由a 、b 、c 成等差,公差为d ,可得a =b -d ,c =b +d ,这就给利用二项式定理证明此问题创造了可能性.问题即变为(b -d )n +(b +d )n >2b n ,然后用作差法改证(b -d )n +(b +d )n -2b n >0.

【例23】求(1+2x -3x 2)6的展开式中x 5项的系数.

分析:先将1+2x -3x 2分解因式,把三项式化为两个二项式的积,即(1+2x -3x 2)6=(1+3x )6

(1-x )6.

然后分别写出两个二项式展开式的通项,研究乘积项x 5的系数,问题可得到解决.

解:原式=(1+3x )6(1-x )6,其中(1+3x )6展开式之通项为T k +1=C k 63k x k

,(1-x )6展开式之

通项为T r +1=C r

6(-x )r .

原式=(1+3x )6(1-x )6展开式的通项为C k 6C r

6(-1)r 3k x k +r .

现要使k +r =5,又∵k ∈{0,1,2,3,4,5,6},r ∈{0,1,2,3,4,5,6},

必须???==5,0r k 或?

??==???==???==???==???==.0,

51,42,33,24,1r k r k r k r k r k 或或或或

故x 5项系数为C 0630C 56(-1)5+C 1631C 46(-1)4+C 2632C 36(-1)3+C 3633C 2

6(-1)4+C 4634C 16 (-1)+C 5635C 06(-1)0

=-168.

说明:根据不同的结构特征灵活运用二项式定理是本题的关键.

【例24】(2004年全国必修+选修1)(x -x 1)6

展开式中的常数项为( ) A.15

B.-15

C.20

D.-20

解析:T r +1=(-1)r

C r

6(

x )

6-r

x -r

=(-1)

r

C r

6x

r 2

33-,当r =2时,3-

2

3r =0,T 3=(-1)2C 2

6=15. 答案:A

【例25】 (2004年江苏)(2x +x )4的展开式中x 3的系数是( ) A.6

B.12

C.24

D.48

解析:T r +1=(-1)r

C r 4

(x )

4-r

(2x )r

=(-1)r 2r

C r 4

x

2

2r

+,当r =2时,2+

2

r

=3,T 3=(-2)2C 24=24. 答案:C

【例26】 (2004年福建理)若(1-2x )9展开式的第3项为288,则∞

→n lim (

x 1+21x + … +n x

1

)的值是( )

A.2

B.1

C.

2

1

D.

5

2 解析:T r +1=(-1)r C r 9(2x )r =(-1)r C r 92xr

,当r =2时,T 3=(-1)2C 2922x =288.

∴x =

2

3

. ∴∞→n lim (x 1+21x + … +n x 1

)=3

2132

-=2.

答案:A

【例27】 (2004年福建文)已知(x -x

a )8

展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( )

A.28

B.38

C.1或38

D.1或28

解析:T r +1=(-1)r C r 8x 8-

r

(

x

a )r =(-a )r C r 8x 8-2r ,当r =4时,T 3=(-a )4C 48=1120,∴a =±2.

∴有函数f (x )=(x -

x

a )8

.令x =1,则f (1)=1或38. 答案:C

【例28】 (2004年天津)若(1-2x )2004=a 0+a 1x +a 2x 2+…+a 2004x 2004(x ∈R ),则(a 0+a 1)+(a 0+a 2)+

(a 0+a 3)+ … +(a 0+a 2004)= .(用数字作答)

解析:在函数f (x )=(1-2x )2004中,f (0)=a 0=1,f (1)=a 0+a 1+a 2+ … +a 2004=1,

(a 0+a 1)+(a 0+a 2)+(a 0+a 3)+…+(a 0+a 2004) =2004a 0+a 1+a 2+ … +a 2004

=2003a 0+a 0+a 1+a 2+ … +a 2004

=2003f (0)+f (1) =2004.

答案:2004

完整版二项式定理测试题及答案

二项式定理测试题及答案 n 能使(n+i) 4 成为整数(B ) C.2 D.3 A A ; L L A ;J°,则S 的个位数字是(C ) -a ) 8展开式中常数项为1120,其 中实数a 是常数,则展开式中各项系数的和 x A. 15 个 B. 33 个 C. 17 个 D. 16 个 是(C ) A.28 B.38 C.1 或38 D.1 或 28 5.在(2 3 5)100的展开式中,有理项的个数是( 6.在、x 1 3x 24 的展开式中,x 的幕指数是整数的项共有(C B . 4项 -x)6的展开式中,含 、5 A. 3项 7?在(1 - x)5- (1 A 、一 5 B 、5 C & (1 x)5 (1 x)3的展开式中x 3的系数为(A A . 6 B. -6 C. 9 9.若x==,则(3+2x) 10的展开式中最大的项为(B 2 A.第一项 C . 5项 3 x 的项的系数是(C 、一10 B. 、10 ) D . -9 第三项 C. 第六项 D. 第八项 A. 7 B. 12 C. 14 D . 5 11.设函数 f(x) (1 2x)10 ,则导函数 2 f (x)的展开式x 项的系数为(C ) A. 1440 B .-1440 C .-2880 D .2880 12 .在(x 1 5 -I)5 x '的展开式中,常数项为( B ) (A ) 51 (B ) -51 (C )- ii (D ) ii 13 .若(x n n 1) x L 3.2. ax bx L 1(n N ),且 a:b 3:1,则n 的值为(C ) A. 9 B . 10 C . ii D. 12 14 .若多项式x 2 10 x =a 0 a i (x 1) a 9(x i)9 a i0(x i)i0, 则 a 9 ( ) (A ) 9 (B ) 10 (C ) 9 (D ) 10 10.二项式 n 的最小值为( ) A 解:根据左边 1,易知 a io 10 X 的系数为 1,左边x 9的系数为0,右边x 9的系数为 1 3 )n 的展开式中含有非零常数项,则正整数 3x 3 1.有多少个整数 A.0 B.1 2. 2 4 展开式中不含x 项的系数的和为(B ) A.-1 B.0 C.1 D.2 3?若 S =A 1 4.已知(x (2x 4

动量冲量和动量定理典型例题精析

动量、冲量和动量定理·典型例题精析 [例题1]质量为m的物体,在倾角为θ的光滑斜面上由静止开始下滑.如图7-1所示.求在时间t内物体所受的重力、斜面支持力以及合外力给物体的冲量. [思路点拨]依冲量的定义,一恒力的冲量大小等于这力大小与力作用时间的乘积,方向与这力的方向一致.所以物体所受各恒力的冲量可依定义求出.而依动量定理,物体在一段时间t内的动量变化量等于物体所受的合外力冲量,故合外力给物体的冲量又可依动量定理求出. [解题过程]依冲量的定义,重力对物体的冲量大小为 I G=mg·t, 方向竖直向下. 斜面对物体的支持力的冲量大小为 I N=N·t=mg·cosθ·t,

方向垂直斜面向上. 合外力对物体的冲量可分别用下列三种方法求出. (1)先根据平行四边形法则求出合外力,再依定义求出其冲量. 由图7-1(2)知,作用于物体上的合力大小为F=mg·sinθ,方向沿斜面向下. 所以合外力的冲量大小 I F=F·t=mg·sinθ·t. 方向沿斜面向下. (2)合外力的冲量等于各外力冲量的矢量和,先求出各外力的冲量,然后依矢量合成的平行四边形法则求出合外力的冲量. 利用前面求出的重力及支持力冲量,由图7-1(3)知合外力冲量大小为 方向沿斜面向下.

或建立平面直角坐标系如图7-1(4),由正交分解法求出.先分别求出合外力冲量I F在x,y方向上分量I Fx,I Fy,再将其合成. (3)由动量定理,合外力的冲量I F等于物体的动量变化量Δp. I F=Δp=Δmv=mΔv=m(at)=mgsinθ·t. [小结] (1)计算冲量必须明确计算的是哪一力在哪一段时间内对物体的冲量. (2)冲量是矢量,求某一力的冲量除应给出其大小,还应给出其方向. (3)本题解提供了三种不同的计算合外力冲量的方法.

(完整版)二项式定理典型例题解析

二项式定理 概 念 篇 【例1】求二项式(a -2b )4的展开式. 分析:直接利用二项式定理展开. 解:根据二项式定理得(a -2b )4=C 04a 4+C 14a 3(-2b )+C 24a 2(-2b )2+C 34a (-2b )3 +C 44(- 2b )4 =a 4-8a 3b +24a 2b 2-32ab 3+16b 4. 说明:运用二项式定理时要注意对号入座,本题易误把-2b 中的符号“-”忽略. 【例2】展开(2x - 223x )5 . 分析一:直接用二项式定理展开式. 解法一:(2x -223x )5=C 05(2x )5+C 15(2x )4(-223x )+C 25(2x )3(-223x )2+C 35(2x )2(-2 23x )3+ C 4 5 (2x )(-223x )4+C 55(-2 23x )5 =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 分析二:对较繁杂的式子,先化简再用二项式定理展开. 解法二:(2x -223x )5=105 332)34(x x =10321x [C 05(4x 3)5+C 15(4x 3)4(-3)+C 25(4x 3)3(-3)2+C 35(4x 3)2(-3)3+C 45(4x 3)(-3)4+ C 55(-3)5 ] = 10 321 x (1024x 15-3840x 12+5760x 9-4320x 6+1620x 3-243) =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 说明:记准、记熟二项式(a +b )n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便. 【例3】在(x -3)10的展开式中,x 6的系数是 . 解法一:根据二项式定理可知x 6的系数是C 4 10. 解法二:(x -3)10的展开式的通项是T r +1=C r 10x 10- r (-3)r . 令10-r =6,即r =4,由通项公式可知含x 6项为第5项,即T 4+1=C 410x 6(-3)4=9C 410x 6. ∴x 6的系数为9C 410. 上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6这一项系数,而不是求含x 6的二项式系数,所以应是解法二正确. 如果问题改为求含x 6的二项式系数,解法一就正确了,也即是C 4 10. 说明:要注意区分二项式系数与指定某一项的系数的差异. 二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已 知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如图 2. 由题意可知△AC D中,∠ACD=90°,在Rt △ACD 中,只知道CD =1.5,这是典型的利用勾股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=A D2 设水深AC= x 米,那么AD =A B=AC+CB =x +0.5 x2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

2018届浙江省基于高考试题的复习资料——二项式定理

(2)增减性与最大值:当r≤n+1 22 n 相等并同时取最大值。 九、计数原理与古典概率 (二)二项式定理 一、高考考什么? [考试说明] 3.了解二项式定理,二项式系数的性质。 [知识梳理] 1.二项式定理:(a+b)n=C0a n+C1a n-1b+ n n +C r a n-r b r+ n +C n b n,其中组合数C r叫 n n 做第r+1项的二项式系数;展开式共有n+1项,其中第r+l项T r+1=C r a n-r b r(r=0,1,2, n ???),会求常数项、某项的系数等 2.二项式系数的性质: (1)对称性:与首末两端“等距离”的两个二项式系数相等,即C m=C n-m; n n n+1 时,二项式系数C r的值逐渐增大,当r≥时, n C r的值逐渐减小,且在中间取得最大值。当n为偶数时,中间一项(第n n 2+1项) 的二项式系数C n 2 n 取得最大值。当n为奇数时,中间两项(第 n+1n+3 和项)的 22 二项式系数C n-12 n =C n+12(3)二项式系数的和: C0+C1+ n n +C r+ n +C n=2n; n C0+C2+???=C1+C3+???=2n-1。n n n n 3.展开式系数的性质:若 (a+bx)n=a+a x+ 01+a x n;令f(x)=(a+bx)n n 则:(1)展开式的各项系数和为f (1) (2)展开式的奇次项系数和为1 [f(1)-f(-1)] 2

(6) x - ? 展开式中的常数项是( ) 1 (3)展开式的偶次项系数和为 [ f (1)+ f (-1)] 2 二、高考怎么考? [全面解读] 从考试说明来看,二项式定理主要解决与二项展开有关的问题,从考题来看,每一年均 有一题,难度为中等,从未改变。命题主要集中在常数项,某项的系数,幂指数等知识点上。 掌握二项式定理主要以通项为抓手,由通项可解决常数项问题、某项的系数问题,系数要注 意二项式系数与展开式系数的区别。 [难度系数] ★★★☆☆ [原题解析] [2004 年] (7)若 ( x + 2 3 x )n 展开式中存在常数项,则 n 的值可以是( ) A .8 B .9 C .10 D .12 [2005 年] (5)在 (1- x)5 + (1- x) 6 + (1- x) 7 + (1- x) 8 的展开式中,含 x 3的项的系数是( ) A .74 B . 121 C .-74 D .-121 [2006 年] (8)若多项式 x 2 + x 10 = a + a ( x + 1) + 1 + a ( x + 1) 9 + a ( x + 1) 10 , 9 10 则 a = ( ) 9 A .9 B .10 C .-9 D .-10 [2007 年] ? 1 ?9 ? x ? A . -36 B . 36 C . -84 D . 84 [2008 年]

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB CD EF、GH四条线段, 其中能构成一个直角三角形三边的线段是() A.CD、EF、 GH C. AB、CD GH B.AB、EF、GH D. AB、CD EF 愿路分乐屮 1)題意分析’本题考查幻股定理及勾股定理的逆定理.亠 2)解題思器;可利用勾脸定理直接求出各边长,再试行判断?』 解答过整屮 在取DEAF中,Af=l, AE=2,根据勾股定理,得昇 EF = Q抡於十£尸° = Q +F二艮 同理HE = 2百* QH. = 1 CD = 2^5 计算发现W十◎血尸=(鸥31即血+曲=GH2,根据勾股定理的逆宦理得到UAAE、EF\ GH为辺的三角形是直毎三角形.故选B. * 縮題后KJ思专:* 1.勾股定理只适用于直角三角形,而不适用于说角三角形和钝角三角形? 因此」辭题时一宦妾认真分析题目所蛤■条件■,看是否可用勾股定理来解口* 2.在运用勾股左理时,要正确分析题目所给的条件,不要习惯性地认为就是斜 迫而“固执”地运用公式川二/十就其实,同样是S6

"不一罡就等于餌,疋不一罡就昱斜辺,KABC不一定就是直角三祐

3.直角三第形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从 卅形s—个三角形是直角三角形)到懺 y =沖十沪)的过程,而直角三角形的判定是一 ①从嗦(一个三角形的三辺满足X二护+酹的条件)到偲个三角形是直角三角形)的过 程.a 4?在应用勾股定理解题叭聲全面地琴虑间题.注意m题中存在的多种可能性,遊免漏辭.初 例玉如圏,有一块直角三角形?椀屈U,两直角迫4CM5沁丸m?现将直角边AC沿直绘AD折蠡便它落在斜边AB上.且点C落到点E处, 则切等于(、* C/) "禎 B. 3cm G-Icni n題童分析,本题着查勾股定理的应用刎 :)解龜思路;車题若直接在△MQ中运用勾股定理是无法求得仞的长的,因为貝知遒一条边卫0的长,由题意可知,AACD和心迓门关于直线KQ对称.因而^ACD^hAED ?进一歩则有应RUm CZAED ED 丄AB,设UD=E2>黄泱,则在Rt A ABO中,由勾股定 理可得^=^(^+^=^83=100,得AB=10cm,在松迟DE 中,W ClO-fl)2= d驚解得尸 九4 解龜后的思琴尸 勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占 明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗?” 占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角

二项式定理 练习题 求展开式系数的常见类型

二项式定理 1.在()103x -的展开式中,6 x 的系数为 . 2.10()x -的展开式中64x y 项的系数是 . 3.92)21(x x -展开式中9x 的系数是 . 4.8)1(x x - 展开式中5x 的系数为 。 5.843)1()2 (x x x x ++-的展开式中整理后的常数项等于 . 6.在65 )1()1(x x ---的展开式中,含3x 的项的系数是 . 7.在x (1+x )6的展开式中,含x 3项的系数为 . 8.()()8 11x x -+的展开式中5x 的系数是 . 9.72)2)(1(-+x x 的展开式中3x 项的系数是 。 10.54)1()1(-+x x 的展开式中,4x 的系数为 . 11.在6 2)1(x x -+的展开式中5x 的系数为 . 12.5)212(++x x 的展开式中整理后的常数项为 . 13.求(x 2+3x -4)4的展开式中x 的系数.

14.(x 2+x +y )5的展开式中,x 5y 2的系数为 . 15.若 32()n x x -+的展开式中只有第6项的系数最大,则n= ,展开式中的常数项是 . 16.已知(124 x +)n 的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数. 17.在(a +b )n 的二项展开式中,若奇数项的二项式系数的和为64,则二项式系数的最大值为________. 18.若2004200422102004...)21(x a x a x a a x ++++=-)(R x ∈,则展开式的系数和为________. 19.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,则a 1+a 2+…+a 7的值是________. 20.已知(1-2x +3x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14.求:(1)a 1+a 2+…+a 14; (2)a 1+a 3+a 5+…+a 13.

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

二项式定理典型例题

二项式定理典型例题-- 例1 在二项式n x x ?? ? ??+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T 为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 例2 求62)1(x x -+展开式中5x 的系数. 分析:62)1(x x -+不是二项式,我们可以通过22)1(1x x x x -+=-+或)(12x x -+把它看成二项式展开. 解:方法一:[]6 262)1()1(x x x x -+=-+ -+++-+=4 4256)1(15)1(6)1(x x x x x 其中含5x 的项为55145355566C 15C 6C x x x x =+-. 含5 x 项的系数为6. 例3 求证:(1)1212C C 2C -?=+++n n n n n n n ;

(2))12(1 1C 11C 31C 21C 1210 -+=++++++n n n n n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质 n n n n n n 2C C C C 210 =++++ . 解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--?=--=-? =k n k n n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =?=+++=-----11111012)C C C (n n n n n n n 右边. (2))! ()!1(!)!(!!11C 11k n k n k n k n k k k n --=-?+=+ 11C 1 1)!()!1()!1(11+++=-++?+=k n n k n k n n . ∴左边112111C 1 1C 11C 11++++++++++= n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 例4 展开5 2232??? ? ?-x x . 例5 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开. 解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即 ∑=-?+=++=++100101010 10)(])[()(k k k k z y x C z y x z y x . 这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式k y x -+10)(展开, 不同的乘积k k k z y x C ?+-1010) ((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k k k z y x C ?+-1010)((10,,1,0 =k ). 其中每一个乘积展开后的项数由k y x -+10)(决定,

最新二项式定理练习题(含答案)

二项式定理 1 单选题 2 (x+1)4的展开式中x的系数为3 A.2 B. 4 C. 6 D.8 4 答案 5 B 6 解析 7 分析:根据题意,(x+1)4的展开式为T r+1=C 4 r x r;分析可得,r=1时,有x 8 的项,将r=1代入可得答案.9 解答:根据题意,(x+1)4的展开式为T r+1=C 4 r x r; 10 当r=1时,有T 2=C 4 1( x)1=4x; 11 故答案为:4. 12 故选B. 13 点评:本题考查二项式系数的性质,特别要注意对x系数的化简. 14 2 (x+2)6的展开式中x3的系数是 15 A.20 B.40 C.80 D. 160 16 答案 17 D 18 解析 19 分析:利用二项展开式的通项公式求出通项,令x的指数为3求出展开式中20 x3的系数. 21 解答:设含x3的为第r+1, 22 则Tr+1=C6rx6-r?2r, 23

24 令6-r=3, 25 得r=3, 26 故展开式中x3的系数为C63?23=160. 27 故选D. 28 点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工29 具 30 3在(1+数学公式)4的展开式中,x的系数为 31 A.4 B.6 C.8 D.10 答案 32 33 B 34 解析 35 分析:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r;分析可36 得,r=2时,有x的项,将x=2代入可得答案. 37 解答:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r; 当r=2时,有T3=C42(数学公式)2=6x; 38 39 故选B. 40 点评:本题考查二项式系数的性质,特别要注意对x系数的化简. 4(1+x)7的展开式中x2的系数是 41 42 A.21 B.28 C.35 D.42 43 答案 A 44 45 解析

高中物理动量定理试题经典及解析

高中物理动量定理试题经典及解析 一、高考物理精讲专题动量定理 1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。 【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】 (1)设运动过程中摩擦阻力做的总功为W ,则 W =-kmgL -2kmgL =-3kmgL 即整个过程中摩擦阻力所做的总功为-3kmgL 。 (2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得 mv 1=2mv 2 22101122 kmgL mv mv -= - 2 21(2)0(2)2 k m gL m v -=- 由以上各式得 010v kgL = 所以人给第一辆车水平冲量的大小 010I mv m kgL == 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略

二项式定理典型例题

二项式定理典型例题-- 典型例题一 例1 在二项式n x x ??? ? ?+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 17页 系数和为n 3. 典型例题四 例4 (1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:

勾股定理练习题及问题详解(共6套)

勾股定理课时练(1) 1. 在直角三角形ABC中,斜边AB=1,则AB2 2 2AC BC+ +的值是() A.2 B.4 C.6 D.8 2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值). 3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m? 5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米. 6. 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米? 7. 如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8. 一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。求CD的长. 9. 如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长. 10. 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北 7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少? 11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱? 12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?

二项式定理(基础+复习+习题+练习)

课题:二项式定理 考纲要求: 1.能用计数原理证明二项式定理 2.会用二项式定理解决与二项展开式有关的简单问题. 教材复习 1.二项式定理及其特例: ()101()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈, ()21(1)1n r r n n n x C x C x x +=++ ++ + 2.二项展开式的通项公式:r r n r n r b a C T -+=1210(n r ,,, = 3.常数项、有理项和系数最大的项: 求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性. 4.二项式系数表(杨辉三角) ()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式 系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和. 5.二项式系数的性质: ()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量 的函数()f r ,定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图) 6.()1对称性. 与首末两端“等距离”的两个二项式系数相等(m n m n n C C -=).直线2 n r = 是图象的对称轴. ()2增减性与最大值: 当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n n C -,12n n C +取得最大值 ()3各二项式系数和:∵1(1)1n r r n n n x C x C x x +=++ ++ +, 令1x =,则012 2n r n n n n n n C C C C C =+++ ++ +

高二物理动量定理的应用

动量定理的应用(2)·典型例题解析 【例1】 500g 的足球从1.8m 的高处自由下落碰地后能弹回到1.25m 高,不计空气阻力,这一过程经历的时间为1.2s ,g 取10m/s 2,求足球对地面的作用力. 解析:对足球与地面相互作用的过程应用动量定理,取竖直向下为 正,有-Δ=′-其中Δ=--=-×-×=--=,′=-=-××=(mg N)t mv mv t 1.2 1.21.20.60.50.1(s)v 2gh 210 1.2522221810 21251012h g h g .. -,==××=,解得足球受到向上的 弹力='+=+×=+=5(m /s)v 2gh 210 1.86(m /s)N mg 0.51055560(N)1v v v t ().(). -+?056501 由牛顿第三定律得足球对地面的作用力大小为60N ,方向向下. 点拨:本例也可以对足球从开始下落至弹跳到最高点的整个过程应用动量定理:mgt 总-N Δt =0-0,这样处理更为简便. 从解题过程可看出,当Δt 很短时,N 与mg 相比较显得很大,这时可略去重力. 【例2】如图51-1所示,在光滑的水平面上有两块前后并排且靠在一起的木块A 和B ,它们的质量分别为m 1和m 2,今有一颗子弹水平射向A 木块,已知子弹依次穿过A 、B 所用的时间分别是Δt 1和Δt 2,设子弹所受木块的阻力恒为f ,试求子弹穿过两木块后,两木块的速度各为多少? 解析:取向右为正,子弹穿过A 的过程,以A 和B 作为一个整体, 由动量定理得=+,=,此后,物体就以向右匀速运动,接着子弹要穿透物体. f t (m m )v v A v B 112A A A ??f t m m 1 12+ 子弹穿过B 的过程,对B 应用动量定理得f Δt 2=m 2v B -m 2v A , 解得子弹穿出后的运动速度=+.B B v B f t m m f t m ??11222 + 点拨:子弹穿过A 的过程中,如果只将A 作为研究对象,A 所受的冲量

二项式定理练习题.doc

10.3二项式定理 【考纲要求】 1、能用计数原理证明二项式定理. 2、会用二项式定理解决与二项展开式有关的简单问题. 【基础知识】 1、二项式定理:n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+---ΛΛ222110)( 二项式的展开式有1n +项,而不是n 项。 2、二项式通项公式:r r n r n r b a C T -+=1 (0,1,2,,r n =???) (1)它表示的是二项式的展开式的第1r +项,而不是第r 项 (2)其中r n C 叫二项式展开式第1r +项的二项式系数,而二项式展开式第1r +项的 系数是字母幂前的常数。 (3)注意0,1,2,,r n =??? 3、二项式展开式的二项式系数的性质 (1)对称性:在二项展开式中,与首末两项“等距离”的两项的二项式系数相等。即 m n C =m n n C - (2)增减性和最大值:在二项式的展开式中,二项式系数先增后减,且在中间取得最大值, 如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等且最大。 (3)所有二项式系数的和等于2n ,即n n n n n n n n n n C C C C C C 212210=++++++--ΛΛ 奇数项的二项式系数和与偶数项的二项式系数和相等,即 15314202-=+++=+++n n n n n n n C C C C C C ΛΛΛΛ 4.二项展开式的系数0123,,,,n a a a a a ???的性质: 对于2012()n n f x a a x a x a x =++++g g g 0123(1)n a a a a a f ++++???+=, 0123(1)(1)n n a a a a a f -+-+???+-=- 5、证明组合恒等式常用赋值法。 【例题精讲】 例1 若,,......)21(2004200422102004R x x a x a x a a x ∈++++=-求(10a a +)+(20a a +)+……+(20040a a +) 解:对于式子:,,......)21(2004200422102004R x x a x a x a a x ∈++++=- 令x=0,便得到:0a =1

高考物理动量定理试题经典含解析

高考物理动量定理试题经典含解析 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 22 02v v aL -= 可解得:22 1002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv = -

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ?,重力加速度g 取210m /s ,求: (1)小球运动到圆弧轨道1最低端时,对轨道的压力大小; (2)小球落到圆弧轨道2上时的动能大小。 【答案】(1)2 5(22 +(2)62.5J 【解析】 【详解】 (1)设小球在圆弧轨道1最低点时速度大小为0v ,根据动量定理有 0I mv = 解得05m /s v = 在轨道最低端,根据牛顿第二定律, 20 v F mg m R -= 解得252N 2F ??=+ ? ?? ? 根据牛顿第三定律知,小球对轨道的压力大小为252N F ' ?=+ ?? (2)设小球从轨道1抛出到达轨道2曲面经历的时间为t , 水平位移: 0x v t = 竖直位移: 2 12 y gt =

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数 (包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

相关文档
相关文档 最新文档