文档库 最新最全的文档下载
当前位置:文档库 › 数论习题-整除练习1

数论习题-整除练习1

数论习题-整除练习1
数论习题-整除练习1

整除练习

1:某个六位数23456A是9的倍数,求A的值。

【详解】能被9整除,其数字和是9的倍数;

2+3+4+5+6+A=20+A;

大于20小于30且是9的倍数只有27;所以A=7;

2:某个七位数2008ABC能够同时被2,3,4,5,6,7,8,9整除,那么它的最后三位数ABC是多少?

【详解】能被8整除,必然被2、4整除;能被9整除,必然被3整除;能被8和9整除,一定能被6整除;可以认为能够同时被5、7、8、9整除;

被5整除,C只能是0;

被9整除,B+C为8或17;

被7整除,先割去末位的0形成2008AB六位数,再用截位法,得到6AB;

被8整除且末位是0的ABC必须是40的倍数;

分别检验24组3位数,满足被7整除和后2位的数字和是否8或7;

只有440符合要求;

3:形如12343434…...34,有n个34,能被11整除的最小自然数中的n等于几?【详解】奇数位上的数字和是4n+2,偶数位上的数字和是3n+1,它们差是n+1能被11整除时n+1=11,所以n最小是10

4:两个四位数A275和275B,如果他们的乘积能被72整除,求A和B。

【详解】考虑到72=8*9,而A275 是奇数,所以 275B 必为8的倍数,因此可得B=2 ;四位数 2752 各位数字之和为 2+7+5+2=16,不是3的倍数也不是9的倍数,因此275A必须是9的倍数,其各位数字之和A+2+7+5= A +14,能被9整除,所以A=4;

5:用1、2、3、4(每个数恰好用一次)可组成24个四位数,其中共有多少个能被11整除?

【详解】被11整除的数的特征是:奇数位上数字的和与偶数位上数字的和之差能被11整除。因为1、2、3、4这几个数字的和之差不可能大于11,因此要被11整除,只能是奇数位上数字的和与偶数位上数字的和之差等于0。所以1和4必须同是奇数位上的数字或者同时偶数位上的数字,这样才能满足以上要求。

当1和4都是奇数位上的数字时,这样的四位数有:1243、1342、4213、4312;当1和4都是偶数位上的数字时则为:2134、3124、2431、3421。所以满足题目要求的数一共有8个。

6:在小于5000的非0自然数中,能被11整除,并且数字和为13的数,共有多少个?

【详解】小于5000的自然数可分为一位数、两位数、三位数、四位数共四类两位数:11、22、……99,0个

三位数:设这个三位数为abc,则(a+c)+b=13;(a+c)-b=11;a+c=12;b=1;有913,814,715,616,517,418,319,7个

四位数:设这个四位数为abcd,则(a+c)+(b+d)=13;(a+c)-(b+d)=11;a+c=12、b+d=1,或a+c=1、b+d=12;注意有a〈5,共有4+7=11个以上几类相加共有18个

7:如果六位数1992AB能被105 整除,那么它的最后两位数AB是多少?

【详解】105=3*7*5

1992AB能被5整除,所以B非0即5

1992AB能被3整除,1+9+9+2+A+B=21+A+B,所以A+B是3的倍数;

B=0时,A可为3、6、9

B=5时,A可为1、4、7

1992AB能被7整除,2AB-199是7的倍数,即AB+1是7的倍数

两位数是7的倍数,而且个位数是1和6的有21、56、91

只有91满足A是9,且B是0的条件,所以AB是90;

8:请用1,2,5,7,8,9这六个数字(每个数字至多用一次)来组成一个五位数,使得它能被75整除,并求出这样的五位数有几个?

【详解】75=3*25

能被3整除,则各位数字和是3的倍数;

1+2+5+7+8+9=32,因此去掉2或者8,数字和是3的倍数;

能被25整除,则末2位能被25整除;

先去掉8,末2位要么是25要么是75,前3位则任意排,有3!=

(种)排法,因此共有2*6=12(个)满足要求的数

去掉2,末2位只能是75,前3位任意排,有6种排法,所以有6个满足要求。

综上所述,满足要求的五位数有18个

9:说明12位数 abbaabbaabba 一定是3、7、13的倍数。

【详解】要判别 abbaabbaabba 能否被3、7、13整除,可以先把这个12位数进行改写。根据十进制数的意义,有 abbaabbaabba =abba×100010001。

因为100010001各数位上数字之和是3,能够被3整除,所以这个12位数能被3整除。根据能被7(或13)整除的数的特征,100010001与(100010-1=)100009要么都能被7(或13)整除,要么都不能被7(或13)整除。

同理, 100009与( 100-9=91)要么都能被7(或13)整除,要么都不能被7(或13)整除。因为91=7×13,所以100010001能被7和13整除,推知这个 12位数能被7和13整除

10:用数字6,7,8各两个,组成一个六位数,使它们能被168整除,这个六位数是多少?

【详解】168=2*2*2*3*7

能被3整除,6、7、8各2个,数字和为42,是3的倍数;

能被8整除,则末三位数能被8整除,只能是688,768或者776;

688时,前3位是6、7、7组合

768时,前3位是6、7、8组合

776时,前3位是6、8、8组合

能被7整除,分别检验18组6位数,只有768768满足要求

11:一个四位数各位数字之和是18,能被251整除,求这个四位数?

【详解】注意发现题目中隐含的数量关系,由于这个四位数各位数字之和是18,能被9整除,所以这个四位数也能被9整除,而它又能被251整除(因为251是质数),所以它能被9*251=2259,整除,也就是说这个四位数是2259的倍数。四位数中2259的倍数有2259,4518,6777,9036,其中只有2259,4518,9036满足数字之和是18的条件。

12:判断下列各数能否被27或37整除,(1)2673135;(2)8990615496

【详解】(1) 2673135=2,673,135,2+673+135=810。

因为810能被27整除,不能被37整除,所以2673135能被27整除,不能被37整除。

(2)8990615496=8,990,615,496,8+990+615+496=2,109。

109大于三位数,可以再对2,109的各节求和,2+109=111。

因为111能被37整除,不能被27整除,所以2109能被37整除,不能被27整除,进一步推知8990615496能被37整除,不能被 27整除

13:已知两个三位数abc和def及(abc+def)能被37整除,求证:六位数abcdef 能被37整除。

【详解】37|abc ,37|def

abcdef=abc×1000+def

因为37|abc,所以37|abc×1000

根据:若c|a,c|b,则c|(ma+nb),其中m、n为任意整数

所以37|(abc×1000+def)

14:已知六位数N的前三位组成的数与后三位组成的数之和能被111整除,求证N能被111整除。

【详解】设前3位为A,后3位为B

则六位数为A*1000+B=A+B+999A

因为A+B能被111整除,999A也能能111整除

所以N能被111整除

15:求这样的三个不同的正整数,它们两两互质,且任意两数之和能被第三个数整除。

【详解】设这三个不同的正整数依次分别为a、b、c,a<b<c。

因为c可以整除a、b之和,所以,a+b≥c。

而a<c,b<c,所以a+b<2c。

于是可知,a+b=c。

a+c可以被b整除,设a+c=nb,n为大于1的正整数,

将a+b=c代入,则有a+a+b=nb,2a=(n-1)b,

因为a<b,所以,2>n-1,

则n<3。

1<n<3,n=2。

那么,a=1,b=2,c=3。

所以,这三个数为1、2、3

例16:已知六位数N的前三位组成的数与后三位组成的数之和能被111整除,求证N能被111整除。

【详解】设前3位为A,后3位为B

则六位数为A*1000+B=A+B+999A

因为A+B能被111整除,999A也能能111整除

所以N能被111整除;

17:1到200这200个数字中,有既不能被3整除,也不能被5整除的数,它们的和是多少?

【详解】200以内能被37整除的有66个,被5 整除的有40个,被15整除的有13个;

(1+2+3+......+199+200)-3*(1+2+3+......+65+66)-5*(1+2+3+......+39+40 )+15*(1+2+3+......+12+13)=20100-6633-4100+1365=10732

18:1到2004的自然数中,能被37整除,但不能被2或3整除的数的个数有多少?

【详解】能被37整除的有54个,能被2整除的有27个能被3整除的18个,能被6整除的9个(因为去掉能同时被2和3 整除的去掉了两次)

个数有54-27-18+9=18个

《初等数论》期期末复习资料

《初等数论》期期末复习资料 一、单项选择题 1、如果n 2,n 15,则30( )n . A 整除 B 不整除 C 等于 D 不一定 2、大于10且小于30的素数有( ). A 4个 B 5个 C 6个 D 7个 3、模5的最小非负完全剩余系是( ). A -2,-1,0,1,2 B -5,-4,-3,-2,-1 C 1,2,3,4,5 D 0,1,2,3,4 4、整数637693能被( )整除. A 3 B 5 C 7 D 9 5、不定方程210231525=+y x ( ). A 有解 B 无解 C 有正数解 D 有负数解 6、 求525与231的最大公因子( ) A 、63 B 、21 C 、42 D 、12 7、同余式)593(m od 4382≡x ( ). A 有解 B 无解 C 无法确定 D 有无限个解 8、不定方程210231525=+y x ( ). A 有解 B 无解 C 有正数解 D 有负数解 9、公因数是最大公因数的( ). A 因数 B 倍数 C 相等 D 不确定 10、整数637693能被( )整除. A 3 B 5 C 7 D 9 11、 求525与231的最大公因子( ) A 、63 B 、21 C 、42 D 、12 12、同余式)593(m od 4382≡x ( ). A 有解 B 无解 C 无法确定 D 有无限个解

13、不定方程210231525=+y x ( ). A 有解 B 无解 C 有正数解 D 有负数解 14、公因数是最大公因数的( ). A 因数 B 倍数 C 相等 D 不确定 15、整数637693能被( )整除. A 3 B 5 C 7 D 9 16、在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 17、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C ac T )(m od m bc D b a ≠ 19、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C ac T )(m od m bc D b a ≠ 20、=),0(b ( ). A b B b - C b D 0 21、如果1),(=b a ,则),(b a ab +=( ). A a B b C 1 D b a + 22、小于30的素数的个数( ). A 10 B 9 C 8 D 7 三、计算题 1、 求50!中2的最高次幂. 2、令 =-1859, =1573,求( )=? 3、 求525与231的最大公因子? 4、解同余式)321(m od 75111≡x . 5、求[525,231]=? 6、求解不定方程18116=-y x . 7、 解不定方程525x+231y=42.

初等数论试题

2 010年7月高等教育自学考试 初等数论试题 课程代码:10021 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.-30被-9除的余数是() A.-3 C.3 2.下列给出的数中是合数的是() A.1063 C.1093 1000 3.400 xx5的幂指数是() B.-6 D.6 B.1073 D.1103

A.1 C.3B.2 D.4 4.不能表示为5x+7y(x,y是非负整数)的最大整数是() A.23 C.25B.24 D.26 5.下列给出的素数模数中,3是平方非剩余的是() A.37 C.53 二、填空题(本大题共10小题,每小题3分,共30分) 请在每小题的空格中填上正确答案。错填、不填均无分。 1.60480的标准分解式为___. 2.μ (50400)=___. 3.π( 55.5)=___. 4.对任意的正整数n,最大公因数(12n+1,30n+3)=___. 5.若(n)=4,则n=___. 6.同余方程6x≡7(mod 23)的解是___. 7.不定方程6x+9y=30的通解是___.

8.写出模10的一个最小的非负简化剩余系,并要求每项都是7的倍数,则此简化剩余系为 B.47 D.59 ___. 9.326 被50除的余数是___. 10.xxM 23是___(填素数或合数). 三、计算题(本大题共4小题,每小题10分,共40分) 1.已知两正整数中,每一个除以它们的最大公约数所得的商之和等于18,它们的最小公倍数等于975,求这两个数。 2.有一队士兵,若三人一组,则余1人;若五人一组,则缺2人;若十一人一组,则余3人。 已知这队士兵不超过170人,问这队士兵有几人? 3.求正整数x,使x2-1216是完全平方数。 4.已知563是素数,判断不定方程x2+563y=429是否有整数解。 四、证明题(本大题共2小题,每小题10分,共20分) 1.证明当n为整数时,504|n9-n3。 2.设(a,m)=1,若x通过模m的完全剩余系,则ax+b也通过模m的完全剩余系.

初等数论试卷模拟试题和答案

初等数论试卷一 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,, ,n a a a 的公倍数中最小的称为最小公倍数 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解 ()00,,,x y d a b =,则此方程的一切解可表为( ) A.00,,0,1,2,;a b x x t y y t t d d =- =+ =±± B.00,,0,1,2, ;a b x x t y y t t d d =+= -=±± C.00,,0,1,2, ;b a x x t y y t t d d =+= -=±± D.00,,0,1,2, ;b a x x t y y t t d d =-= -=±± 4.下列各组数中不构成勾股数的是( ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡ D.()()112 2 11mod mod .a b m a b m ≡?≡ 6.模10的一个简化剩余系是( ) A.0,1,2, ,9; B.1,2,3,,10;

初等数论 1 习题参考答案

附录1 习题参考答案 第一章习题一 1. (ⅰ) 由a b知b = aq,于是b = (a)(q),b = a(q)及b = (a)q,即a b,a b及a b。反之,由a b,a b及a b 也可得a b; (ⅱ) 由a b,b c知b = aq1,c = bq2,于是c = a(q1q2),即a c; (ⅲ) 由b a i知a i= bq i,于是a1x1a2x2a k x k = b(q1x1 q2x2q k x k),即b a1x1a2x2a k x k;(ⅳ) 由b a知a = bq,于是ac = bcq,即bc ac; (ⅴ) 由b a知a = bq,于是|a| = |b||q|,再由a 0得|q| 1,从而|a| |b|,后半结论由前半结论可得。 2. 由恒等式mq np= (mn pq) (m p)(n q)及条件m p mn pq可知m p mq np。 3. 在给定的连续39个自然数的前20个数中,存在两个自然数,它们的个位数字是0,其中必有一个的十位数字不是9,记这个数为a,它的数字和为s,则a, a 1, , a 9, a 19的数字和为s, s 1, , s 9, s 10,其中必有一个能被11整除。 4. 设不然,n1= n2n3,n2p,n3p,于是n = pn2n3p3,即p3n,矛盾。 5. 存在无穷多个正整数k,使得2k1是合数,对于这样的k,(k1)2

不能表示为a2p的形式,事实上,若(k 1)2= a2p,则(k 1 a)( k 1 a) = p,得k 1 a = 1,k 1 a = p,即p = 2k 1,此与p为素数矛盾。 第一章习题二 1. 验证当n =0,1,2,… ,11时,12|f(n)。 2.写a = 3q1r1,b = 3q2r2,r1, r2 = 0, 1或2,由3a2b2 = 3Q r12r22知r1 = r2 = 0,即3a且3b。 3.记n=10q+r, (r=0,1,…,9),则n k+4-n k被10除的余数和r k+4-r k=r k(r4-1)被10 除的余数相同。对r=0,1,…,9进行验证即可。 4. 对于任何整数n,m,等式n2 (n 1)2 = m2 2的左边被4除的余数为1,而右边被4除的余数为2或3,故它不可能成立。 5 因a4 3a2 9 = (a2 3a 3)( a2 3a 3),当a = 1,2时,a2 3a 3 = 1,a4 3a2 9 = a2 3a 3 = 7,13,a4 3a2 9是素数;当a 3时,a2 3a 3 > 1,a2 3a 3 > 1,a4 3a2 9是合数。 6. 设给定的n个整数为a1, a2, , a n,作 s1 = a1,s2 = a1a2,,s n = a1a2a n, 如果s i中有一个被n整除,则结论已真,否则存在s i,s j,i < j,使得s i与s j 被n除的余数相等,于是n s j s i = a i + 1a j。

《数论》第一章补充例题

《数论》第一章补充例题 整除性理论是初等数论的基础.本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用. 1整数的整除性 例1设A={d1,d2,···,dk}是n的所有约数的集合,则 }{nnn,,···,B=d1d2dk 也是n的所有约数的集合. 解由以下三点理由可以证得结论: (i)A和B的元素个数相同; (ii)若di∈A,即di|n,则(iii)若di=dj,则问: d(1)+d(2)+···+d(1997) 是否为偶数? n解对于n的每个约数d,有n=d·n,因此,n的正约数d与是成对地出现的.只有 n2当d=n,即d=n时,d和才是同一个数.故当且仅当n是完全平方数时,d(n)是奇数.nini|n,反之亦然;=nj.例2以d(n)表示n的正约数的个数,例 如:d(1)=1,d(2)=2,d(3)=2,d(4)=3,···. 因为442<1997<452,所以在d(1),d(2),···,d(1997)中恰有44个奇数,故 d(1)+d(2)+···+d(1997)是偶数. 问题d2(1)+d2(2)+···+d2(1997)被4除的余数是多少? 例3证明:存在无穷多个正整数a,使得 n4+a(n=1,2,3,···) 都是合数. ? ?例题中引用的定理或推论可以在教材相应处找到. 1 解取a=4k4,对任意的n∈N,有 n4+4k4=(n2+2k2)2?4n2k2=(n2+2k2+2nk)(n2+2k2?2nk). 由 n2+2k2?2nk=(n?k)2+k2??k2, 所以,对于任意的k=2,3,···以及任意的n∈N,n4+a是合数.

初等数论期末练习

初等数论期末练习题 一、单项选择题 2、如果1),(=b a ,则),(b a ab +=( ). A a B b C 1 D b a + 3、小于30的素数的个数( ). A 10 B 9 C 8 D 7 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C ac T )(mod m bc D b a ≠ 5、不定方程210231525=+y x ( ). A 有解 B 无解 C 有正数解 D 有负数解 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 8、公因数是最大公因数的( ). A 因数 B 倍数 C 相等 D 不确定 9、大于20且小于40的素数有( ). A 4个 B 5个 C 2个 D 3个 11、因为( ),所以不定方程71512=+y x 没有解. A [12,15]不整除7 B (12,15)不整除7 C 7不整除(12,15) D 7不整除[12,15] 二、填空题 1、有理数 b a ,1),(,0= b a b a ,能写成循环小数的条件是( ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( ). 3、不大于545而为13的倍数的正整数的个数为( ). 4、设n 是一正整数,Euler 函数)(n ?表示所有( )n ,而且与n ( )的正整数的个数. 5、设b a ,整数,则),(b a ( )=ab . 6、一个整数能被3整除的充分必要条件是它的( )数码的和能被3整除. 7、+=][x x ( ). 8、同余式)321(mod 75111≡x 有解,而且解的个数( ). 9、在176与545之间有( )是17的倍数. 10、如果0 ab ,则),](,[b a b a =( ). 11、b a ,的最小公倍数是它们公倍数的( ). 12、如果1),(=b a ,那么),(b a ab +=( ). 三、计算题 1、求24871与3468的最小公倍数? 2、求解不定方程25 37107=+y x .(8分) 3、求?? ? ??563429,其中563是素数. (8分)

初等数论 第一章 整除理论

第一章整除理论 整除性理论是初等数论的基础。本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用。 第一节数的整除性 定义1设a,b是整数,b≠ 0,如果存在整数c,使得 a = bc 成立,则称a被b整除,a是b的倍数,b是a 的约数(因数或除数),并且使用记号b∣a;如果不存在整数c使得a = bc成立,则称a不被 b整除,记为b|/a。 显然每个非零整数a都有约数±1,±a,称这四个数为a的平凡约数,a的另外的约数称为非平凡约数。 被2整除的整数称为偶数,不被2整除的整数称为奇数。 定理1下面的结论成立: (ⅰ) a∣b?±a∣±b; (ⅱ) a∣b,b∣c?a∣c; (ⅲ) b∣a i,i = 1, 2, , k?b∣a1x1+ a2x2+ +a k x k,此处x i(i = 1, 2, , k)是

任意的整数; (ⅳ) b∣a ?bc∣ac,此处c是任意的非零整数; (ⅴ) b∣a,a≠ 0 ? |b| ≤ |a|;b∣a 且|a| < |b| ?a = 0。 证明留作习题。 定义2若整数a≠0,±1,并且只有约数±1和±a,则称a是素数(或质数);否则称a为合数。 以后在本书中若无特别说明,素数总是指正素数。 定理2任何大于1的整数a都至少有一个素约数。 证明若a是素数,则定理是显然的。 若a不是素数,那么它有两个以上的正的非平凡约数,设它们是d1, d2, , d k 。不妨设d1是其中最小的。若d1不是素数,则存在e1 > 1,e2 > 1,使得d1 = e1e2,因此,e1和e2也是a的正的非平凡约数。这与d1的最小性矛盾。所以d1是素数。证毕。 推论任何大于1的合数a必有一个不超过 证明使用定理2中的记号,有a = d1d2,其中d1 > 1是最小的素约数,所以d12≤a。证毕。 例1设r是正奇数,证明:对任意的正整数n,有 n+ 2|/1r+ 2r+ +n r。

(完整word版)初等数论练习题一(含答案)

《初等数论》期末练习二 一、单项选择题 1、=),0(b ( ). A b B b - C b D 0 2、如果1),(=b a ,则),(b a ab +=( ). A a B b C 1 D b a + 3、小于30的素数的个数( ). A 10 B 9 C 8 D 7 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C (mod )ac bc m ≡/ D b a ≠ 5、不定方程210231525=+y x ( ). A 有解 B 无解 C 有正数解 D 有负数解 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 7、如果a b ,b a ,则( ). A b a = B b a -= C b a ≥ D b a ±= 8、公因数是最大公因数的( ). A 因数 B 倍数 C 相等 D 不确定 9、大于20且小于40的素数有( ). A 4个 B 5个 C 2个 D 3个 10、模7的最小非负完全剩余系是( ). A -3,-2,-1,0,1,2,3 B -6,-5,-4,-3,-2,-1 C 1,2,3,4,5,6 D 0,1,2,3,4,5,6 11、因为( ),所以不定方程71512=+y x 没有解. A [12,15]不整除7 B (12,15)不整除7 C 7不整除(12,15) D 7不整除[12,15] 12、同余式)593(mod 4382≡x ( ). A 有解 B 无解 C 无法确定 D 有无限个解 二、填空题 1、有理数 b a ,0,(,)1a b a b <<=,能写成循环小数的条件是( ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( ). 3、不大于545而为13的倍数的正整数的个数为( ). 4、设n 是一正整数,Euler 函数)(n ?表示所有( )n ,而且与n ( )的正整数的个数. 5、设b a ,整数,则),(b a ( )=ab . 6、一个整数能被3整除的充分必要条件是它的( )数码的和能被3整除. 7、+=][x x ( ). 8、同余式)321(mod 75111≡x 有解,而且解的个数( ). 9、在176与545之间有( )是17的倍数.

初中数学竞赛专题复习第三篇初等数论第20章同余试题新人教版

第20章 同 余 20.1.1★(1)证明:任意平方数除以4,余数为0或1; (2)证明:任意平方数除以8,余数为0、1或4. 解析 (1)因为 奇数()2 22214411(mod 4)k k k =+=++≡, 偶数()222240(mod4)k k ==≡, 所以,正整数21(mod 4),;0(mod 4),.n n n ?≡??奇偶为数为数 (2)奇数可以表示为21k +,从而 奇数()22441411k k k k =++=++. 因为两个连续整数k 、1k +中必有一个是偶数,所以()41k k +是8的倍数,从而 奇数()2811mod8i =+≡. 又,偶数()2 2224k k ==(k 为整数). 若k =偶数2t =,则()224160mod 8k t ==. 若k =奇数21t =+,则 ()()2 2244211644(mod8)k t t t =+=++≡. 所以,平方数()()()0mod8,1mod8,4mod8. ??≡??? 评注 事实上,我们也可以这样来证:因为对任意整数a ,有0a ≡,±1,2(mod4),所以,0a ≡,1(mod4);又a ≡0,±1,±2,±3,4(mod8),所以,2a ≡0,1,()4mod8. 20.1.2★求证:一个十进制数被9除所得的余数,等于它的各位数字被9除所得的余数. 解析 设这个十进制数1210n n A a a a a a -=. 因10≡1(mod9),故对任何整数k ≥1,有 ()1011mod9k k ≡=. 因此 1210n n A a a a a a -= 1110101010n n n n a a a a --=?+?++?+ ()110mod9n n a a a a -≡++ ++.

初等数论期末复习资料

数论教案 §1整数的整除 带余除法 1 整数的整除 设a,b 是整数,且b ≠0,如果有整数q,使得a=bq,则称b 整除a,记为b|a,也称b 是a 的因数,a 是b 的倍数. 如果没有整数q,使得a=bq,则称b 不能整除a,记为b?a.例如 2|4, 4|-12, -5|15; 2?3, -3?22. 在中小学数学里,整除概念中的整数是正整数,今天讲的整除中的整数可正可负. 判断是否b|a 当a,b 的数值较大时,可借助计算器判别. 如果b 除a 的商数是整数,说明b|a;如果b 除a 的商不是整数,说明b?a. 例1判断下列各题是否b|a(1) 7|127 (2) 11|129 (3) 46|9529 (4) 29|5939 整除的简单性质 (1)如果c|b,b|a,那么c|a; (2)如果d|a,d|b,那么对任意整数m,n,都有d|ma+nb. (3)如果 12,,,n a a a L 都是m 的倍数,12,,,n q q q L 是任意整数,那么 1122n n q a q a q a +++L 是m 的倍数. (4)如果c|a,d|b,那么cd|ab 。 例如: 2|4,2|(-6),那么2|4+(-6),2|4-(-6). 2|4,3|(-6),那么2×3|4×(-6). 例2证明任意2个连续整数的乘积,一定可被2整除. 练习 证明任意3个连续整数的乘积,一定可被3整除. 2.带余除法 设a,b 是整数,且b>0,那么有唯一一对整数q,r 使得 a=bq+r,0≤r < b . (1) 这里q 称为b 除a 的商,r 称为b 除a 的余数. 例如-5=3×(-2)+1 5=3×1+2 -5=(-3)×2+1 5=(-3)×(-1)+2 15=(-5)×(-3), -24=(-2)×12. 事实上,以b 除a 的余数也可以是负的.例如 -5=3×(-1)-2=3×(-2)+1. 求b 除a 的余数,也称为模运算(取余):mod.可用计算器进行. 具体操作:输入a-按mod(取余)键-输入b-按=键得出余数.如果b 除a 的余数=0,则b|a;如果b 除a 的余数≠0,则b?a. 例3 利用计算器求余数: (1) 7除127;(2)11除-129 ;(3)46除-9529;(4)-29除5939 奇数、偶数及性质

0初等数论试卷及答案

初等数论考试试卷 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( A ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( B ) A.整数12,, ,n a a a 的公因数中最大的称为最大公因数; < B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数 【有最小的吗】 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解 ()00,,,x y d a b =,则此方程的一切解可表为( C ) A.00,,0,1,2,;a b x x t y y t t d d =- =+=±± B.00,,0,1,2, ;a b x x t y y t t d d =+=-=±± C.00,,0,1,2, ;b a x x t y y t t d d =+=-=±± D.00,,0,1,2, ;b a x x t y y t t d d =-=-=±± ( 4.下列各组数中不构成勾股数的是( D ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( D ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡

初等数论试卷和答案

初等数论考试试卷1 一、单项选择题(每题3分,共18分) 1、如果a b ,b a ,则( ). A b a = B b a -= C b a ≤ D b a ±= 2、如果n 3,n 5,则15( )n . A 整除 B 不整除 C 等于 D 不一定 3、在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C ac T )(m od m bc D b a ≠ 5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),( 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是( ). 2、同余式)(m od 0m b ax ≡+有解的充分必要条件是( ). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ). 5、b a ,的公倍数是它们最小公倍数的( ). 6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r ≤0. 三、计算题(每题8分,共32分) 1、求[136,221,391]=? 2、求解不定方程144219=+y x . 3、解同余式)45(mod 01512≡+x . 4、求 ??? ??563429,其中563是素数. (8分) 四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)

初等数论试卷

一、填空题(本大题共10小题,每小题4分,共40分)请在每小题的空格中填上正确答案。错填、不填均无分。 1.μ(2002)=_________; d(2002)=_________. 2.自然数225,226,…,240中的素数是_________. 3.n+2,2n+3,3n+1中必定互素的一组数是_________. 4.模7的绝对值最小简化剩余系是_________. 5.同余方程16x ≡6(mod 46)的解是_________. 6.不定方程3x+4y=5的通解是_________. 7.17|(2002n -1),则正整数n 的最小值是_________. 8.满足?(n) =20的n 有多个,其中两个是_________. 9.弗罗贝纽斯(Frobenius)问题可表述为_________. 10.?? ? ??17954 =_________. 二、计算题(本大题共3小题,第1,2小题各7分,第3小题9分,共23分) 1.判断下面同余方程组是否有解,如有解则求出其解: ?? ???≡≡≡9).5(mod x 20),7(mod x 15),2(mod x 2.试求不定方程y 2+x=x 2 +y-22的所有正整数解. 3.判断同余方程x 2≡62(mod 113)是否有解,如有解,则使用高斯(Gauss)逐步淘汰法求其解. 三、论证题(本大题共4小题,第1,2小题各8分,第3小题10分,第4题11分,共37 分) 1.试证一个正整数的平方,必与该正整数的各位数码字的和的平方,关于模9同余。 2.设(a,m)=1,x 通过模m 的一个简化剩余系,试证ax 也通过模m 的简化剩余系. 3.设F n =n 22+1,试证(F n ,F n+1)=1. 4.试证在两继自然数的平方之间,不存在四个自然数a

初等数论 期末复习 同余精选例题分析

第三章同余例题分析 例1:求3406的末二位数。 解:∵(3,100)=1,∴3)100(φ≡1(mod 100) φ(100)=φ(22·52)=40,∴340≡1(mol 100) ∴3406=(340)10·36≡(32)2·32≡-19×9≡-171≡29(mod 100) ∴末二位数为29。 例2:证明(a+b )p ≡a p +b p (mod p ) 证:由费尔马小定理知对一切整数有:a p ≡a (p ),b p ≡b (P ), 由同余性质知有:a p +b p ≡a+b (p ) 又由费尔马小定理有(a+b )p ≡a+b (p ) (a+b )p ≡a p +b p (p ) 例3:设素数p >2,则2P -1的质因数一定是2pk +1形。 证:设q 是2p -1的质因数,由于2p -1为奇数,∴q ≠2, ∴(2·q )=1,由条件q|2p -1,即2p ≡1(mod q ),又∵(q ,2)=1,2p ≡1(mod q )设i 是使得2x ≡1(mod p )成立最小正整数 若1

∴13|42n +1+3n +2 例5:证明5y +3=x 2无解 证明:若5y +3=x 2有解,则两边关于模5同余 有5y +3≡x 2(mod 5) 即3≡x 2(mod 5) 而任一个平方数x 2≡0,1,4(mod 5) ∴30,1,4(mod 5) ∴即得矛盾,即5y +3=x 2无解 例6:求 50111......被7除的余数。 解:∵111111被7整除,∴ 50111......≡11(mod 7)≡4(mod 7),即余数为 4。 例7:把..0.04263化为分数。 解:设b =...360420,从而1000b=...3642, 100000b=...364263,99000b=4263-42b=990004221 ==11000469 。 当然也可用直化分数的方法做。 例8:设一个数为62XY427是9,11的倍数,求X ,Y 解:因为9|62XY427 所以9|6+2+X+Y+4+2+7,即9|21+X+Y 又因为11|62XY427,有11|(7+4+X+6-2-Y-2) 即11|(X-Y+13) 因为0≤X,Y ≤9,所以有21≤21+X+Y ≤39, 4≤X-Y+13≤22,由此可知 21+X+Y=27,X-Y+13=11

初等数论试卷和答案

初等数论试卷和答案

初等数论考试试卷1 一、单项选择题(每题3分,共18分) 1、如果a b ,b a ,则( ). A b a = B b a -= C b a ≤ D b a ±= 2、如果n 3,n 5,则15( )n . A 整除 B 不整除 C 等于 D 不一定 3、在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C ac T )(mod m bc D b a ≠ 5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),( 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是( ). 2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为 ( ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ). 5、b a ,的公倍数是它们最小公倍数的( ).

试卷1答案 一、单项选择题(每题3分,共18分) 1、D. 2、A 3、C 4、A 5、A 6、B 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是(唯一的). 2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),(). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][b a ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ). 5、b a ,的公倍数是它们最小公倍数的( 倍数 ). 6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r ≤0. 三、计算题(每题8分,共32分) 1、 求[136,221,391]=?(8分) 解 [136,221,391] =[[136,221],391] =[391,17221136?] =[1768,391] ------------(4分) = 17391 1768?

初等数论试卷

初等数论试卷 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a L 的公因数中最大的称为最大公因数; B.整数12,,,n a a a L 的公倍数中最小的称为最小公倍数 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( ) A.00,,0,1,2,;a b x x t y y t t d d =-=+=±±L B.00,,0,1,2,;a b x x t y y t t d d =+=-=±±L C.00,,0,1,2,;b a x x t y y t t d d =+=-=±±L D.00,,0,1,2,;b a x x t y y t t d d =-=-=±±L 4.下列各组数中不构成勾股数的是( ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡ D.()()112211mod mod .a b m a b m ≡?≡ 6.模10的一个简化剩余系是( ) A.0,1,2,,9;L B.1,2,3,,10; L

(完整word版)初等数论期末考试试卷张

初等数论试卷(B) 一,选择题(满分15分,每题3分) 1,下列不正确的是( ) A 设m ∈+N ,a ,b ∈Z ,若)(mod m b a ≡ ,则)(mod m a b ≡。 B 设m ∈+N ,a ,b ,c ∈Z ,若)(mod m c b a ≡+,则)(mod m b c a -≡. C 设m ∈+N ,,,11b a 22,b a ∈Z ,,若)(m od 11m b a ≡,)(m od 22m b a ≡,则 )(m od 2121m b b a a ≡。 D 设m ∈+N ,a ,b ∈Z ,若)(m od 2 2 m b a ≡ ,则)(mod m b a ≡。 2,下列哪一个为模12互质的剩余类( ) A [2],B [5],C [6],D [3]。 3,下列哪一个有理数不可以化为有限小数( ) A 203,B 607,C 51,D 100 19。 4,同余方程)5(m od 022 ≡+x 的解为( ) A )5(mod 0≡x , B )5(mod 4≡x , C )5(mod 2≡x , D 此方程无解。 5,下列哪一个同余方程组无解( ) A ?????≡≡)10(mod 7)25(mod 9x x , B ?????≡≡)6(mod 1)9(mod 4x x C ?????≡≡)45(mod 2)25(mod 17x x , D ?? ???≡≡)7(mod 26)14(mod 19x x 。 二,填空题(满分10分,每题2分) 1,当m = 时,)(mod 1132m ≡和)(mod 1117m ≡同时成立。 2,设m ∈+N ,则 为模m 的非负最小完全剩余系。 3,=)16(? 。 4,写出模8的一个简化剩余系: 。 5,余式)5(mod a x ≡等价于等式: 。 三,判断题(满分10分,每题2分 )

自考初等数论试题及答案

初等数论考试试卷 1 一、单项选择题(每题3分,共18分) 1、 如果 ba , ab ,则(). A a b Bab C a b Dab 2、 如果 3n , 5n ,则 15 ( ) n . A 整除 B 不整除 C 等于 D 不一定 3、 在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 4、 如果 a b (modm ) , c 是任意整数贝V 5、 如果(),则不定方程ax by c 有解. A (a, b)c B c(a,b) C ac D (a,b)a 6、 整数5874192能被()整除. A 3 B 3 与 9 C 9 D 3 或 9 二、填空题(每题3分,共18分) 1、 素数写成两个平方数和的方法是( )? 2、 同余式ax b 0(modm ) 有解的充分必要条件是(). 3、 如果 a,b 是两个正整数,则不大于a 而为b 的倍数的正整数的个数为(). 4、 如果p 是素数,a 是任意一个整数,则a 被P 整除或者(). 5、 a,b 的公倍数是它们最小公倍数的 (). 6、如果a ,b 是两个正整数,则存在()整数q ,r ,使a bq r ,0 r b . 三、计算题(每题8分,共32分) 1、 求[136,221,391]=? 2、 求解不定方程9x 21y 144 . 3、 解同余式 12x 15 0(mod45) . 429 4、 求563 ,其中563是素数.(8 分) 四、证明题(第 1小题10分,第2小题11分,第3小题11分,共32分) 2 3 n n n 1证明对于任意整数n ,数3 2 6是整数. 2、 证明相邻两个整数的立方之差不能被 5整除. A ac bc(modm) B a b C ac bc(mod m) D ab

11-12初等数论 期末试卷 参考答案 A(数学091)

莆田学院期末考试参考答案及评分标准 2011 —— 2012 学年第 一 学期 (A )卷 课程名称: 初等数论 适用年级/专业 数学091 试卷类别:开卷( )闭卷(√) 学历层次: 本科 考试用时: 120 分钟 一、填空题(每空2分,共20分) 1、 ① 9072 2、 ① 4 3、 ① 无 4、 ① -2,-1,0,1,2 5、 ① -1 6、 ① 星期三 7、 ① 若p 是素数,则(mod )p a a p ≡。 8、 ① (28,45,53) (注:答案不惟一!) 9、 ① 6 ② 2,5,6,7,8,11 二、计算题(每小题10分,共50分) 1、(10分) 解:因为(6,14,32)2=,而2|80,所以原不定方程有整数解。将原方程化简得 371640x y z ++=。 设37x y t +=,显然,2,x t y t =-=是方程37x y t +=的一个解。因此,其通解为 27()3x t u u y t u =-+?? =-?为任意整数。 ‥‥‥‥(5分)

把37x y t +=代入原三元一次不定方程得:1640t z +=,这个二元一次不定方程的通解 为816()2t v v z v =+?? =-?为任意整数, 把=8+16t v 分别代入,x y ,可得原不定方程的通解为 163278163(,)2x v u y v u u v z v =--+?? =+-??=-? 为任意整数 (注:答案形式上不唯一!) ‥‥‥‥(5分) 2、(10分) 解:由(2,243)1=及①式可得: 28580(mod143)x y +-≡ ③ 由②,③得:171420(mod143)y -≡,解此一次同余式得42(mod143)y ≡, ‥‥‥‥(5分) 再由①式442290(mod143)x +?-≡,即4(mod143)x ≡。 所以此联立同余式的解是4(mod143) 42(mod143)x y ≡??≡?。 ‥‥‥‥(5分) 3、(10分) 解:注意到原式与下面的同余式组等价: ()0(mod5) ()0(mod7) f x f x ≡?? ≡? 容易验证()0(mod5)f x ≡有两个解:1,4(mod5)x ≡; ()0(mod7)f x ≡有三个解:35,6(mod 7)x ≡,。 ‥‥‥‥(5分) 故同余式()0(mod35)f x ≡有6个解,即各同余式组

初等数论1——整除性

第四讲初等数论1——整除性 本讲概述 数论是数学中极其重要又非常迷人的一个分支,目前我们仅学习初等数论中较浅的内容. 初等数论是数学竞赛四大模块中较难以掌握的模块之一,在数学竞赛中占据极其重要的位置.特别是联赛改制以后,二试必考一道50分的数论大题,一试也会有一到两道数论方面的问题.数论与组合水平如何是大家能否获得联赛一等奖甚至更好成绩的关键. 初等数论这块的竞赛问题涉及到的知识点极少,甚至可以说绝大部分同学在小学初中的培训中基本都接触过.但是限于初中的知识面和同学的年龄,考试中一般不出现较为深入、难度较高的数论问题.到了高中,大家将复习小学初中阶段的数论知识,并将其中的很多知识更为理论化、系统化.高中的数论问题难度也会明显增高.但是在数论这一模块中,我们并不提倡大家过多地掌握很多高深的数论知识,而是提倡大家真正去灵活熟练地运用最基本、最重要的数论基础知识和重要定理来解决问题. 由于同学们在小学、初中都已经学过不少关于初等数论的初步知识,所以这里我们把大家比较熟悉的知识都罗列在下面,对其中大部分定理将不给出证明,直接给出结论. 如果不特别说明,本讲中所有字母均代表正整数. 一、整除 1.整除的定义 两个整数a和b(b≠0),若存在整数k,使得a=bk,我们称a能被b整除,记作b|a.此时把a叫做b 的倍数,b叫做a的约数.如果a除以b的余数不为零,则称a不能被b整除,或b不整除a,记作b a. 2.数的整除特征 (1)1与0的特性: 1是任何整数的约数,即对于任何整数a,总有1|a. 0是任何非零整数的倍数,a≠0,a为整数,则a|0. (2)能被2,5;4,25;8,125;3,9;11,7,13整除的数的特征: 能被2整除的数的特征:个位为0,2,4,6,8的整数能被2整除,我们记为2k(k为整数). 能被5整除的数的特征:个位数为0或5的整数必被5整除,我们记为5k(k为整数). 能被4、25整除的数的特征:末两位数字组成的两位数能被4(25)整除的整数必能被4(25)整除.能被8,125整除的数的特征:末三位数字组成的三位数能被8(125)整除的整数必能被8(125)整除. 能被3,9整除的数的特征:各个数位上数字之和能被3或9整除的整数必能被3或9整除. 能被11整除的数的特征:一个整数的奇数位数字之和与偶数位数字之和的差如果是11的倍数,则这个数就能被11整除. 能被7,11,13整除的数的特征:一个三位以上的整数能否被7(11或13)整除,只须看这个数的末三位数字表示的三位数与末三位以前的数字组成的数的差(以大减小)能否被7(11或13)整除. 3.整除的几条性质 (1)自反性:a|a(a≠0) (2)对称性:若a|b, b|a,则a=b (3)传递性:若a|b, b|c,则a|c (4)若a|b, a|c,则a|(b, c) (5)若a|b, m≠0,则am|bm (6)若am|bm, m≠0,则a|b (7)若a|b, c|b, (a, c)=1,则ac|b

相关文档
相关文档 最新文档