文档库 最新最全的文档下载
当前位置:文档库 › 第二章 红外光谱习题

第二章 红外光谱习题

第二章 红外光谱习题
第二章 红外光谱习题

第二章红外光谱

一、判断题

[1]红外光谱不仅包括振动能级的跃迁,也包括转动能级的跃迁,故又称为振转光谱。(√)

[2]同核双原子分子N≡N、Cl-Cl、H-H等无红外活性。(√)

[3]由于振动能级受分子中其他振动的影响,因此红外光谱中出现振动耦合谱带。(√)

[4]确定某一化合物骨架结构的合理方法是红外光谱分析法。(×)

[5]对称结构分子,如H2O分子,没有红外活性,水分子的H-O-H对称伸缩振动不产生吸

收峰。(×)

[6]红外光谱图中,不同化合物中相同基因的特征频率峰总是在特定波长范围内出现,故可

以根据红外光谱图中的特征频率峰来确定化合物中该基团的存在。(√)

[7]不考虑其他因素的影响,下列羰基化合物υc=0伸缩频率的大小顺序为:酰卤>酰胺>酸>

醛>酯。(×)

[8]醛基中υC=H伸缩频率出现在2720cm-1。(√)

[9]红外光谱与紫外光谱仪在构造上的差别是检测器不同。(×)

[10]当分子受到红外光激发,其振动能级发生跃迁时,化学键越强吸收的光子数目越多。(×)

[11]游离有机酸C=O伸缩振动υc=0频率一般出现在1760cm-1,但形成多聚体时,吸收频率

会向高波数移动。(×)

[12]醛、酮、羧酸等的羰基的伸缩振动在红外光谱中的吸收峰频率相同。(×)

[13]红外吸收峰的数目一般比理论振动数目少,原因之一是有些振动是非红外活性的。(√)

[14]红外光谱的特点是一方面官能团的特征吸收频率的位置基本上是固定的,另一方面它们

又不是绝对不变的,其频率位移可以反映分子的结构特点。(√)

[15]Fermi共振是一个基频振动与倍频(泛频)或组频之间产生耦合作用。(√)

二、选择题(单项选择)

[1]红外光可引起物质的能级跃迁是(C)。

A. 分子的电子能级的跃迁,振动能级的跃迁,转动能级的跃迁;

B. 分子内层电子能级的跃迁;

C. 分子振动能级及转动能级的跃迁;

D. 分子转动能级的跃迁。

[2]H2O在红外光谱中出现的吸收峰数目为(A)。

A. 3

B. 4

C. 5

D. 2

[3]在红外光谱中,C=O的伸缩振动吸收峰出现的波数(cm-1) 范围(A )。

A. 1900~1650

B. 2400~2100

C. 1600~1500

D. 1000~650

[4]在下列分子中,不能产生红外吸收的是(D )。

A. CO

B. H2O

C. SO2

D. H2

[5]下列化学键的伸缩振动所产生的吸收峰波数最大的是(D)。

A. C=O

B. C-H

C. C=C

D. O-H

[6]表示红外分光光度法通常是(C)。

A. HPLC

B. GC

C. IR

D. TLC

[7]羰基化合物①RCOR、②RCOCl、③RCOH、④RCOF中,C=O伸缩振动频率最高的是(D )。

A. ①

B. ②

C. ③

D. ④

[8]在醇类化合物中,O-H伸缩振动频率随溶液浓度增加而向低波数移动,原因是(B )。

A. 溶液极性变大;

B. 分子键氢键增强;

C. 诱导效应变大;

D. 易产生振动耦合。

[9]某化合物在紫外光区270nm处有一弱吸收,在红外光谱中有如下吸收峰:

2700~2900cm-1,1725 cm-1,则该化合物可能是(A)。

A. 醛

B. 酮

C. 羧酸

D. 酯

[10]某化合物在紫外光区204nm处有一弱吸收,在红外光谱中有如下吸收峰:

3300~2500cm-1,1710cm-1,则该化合物可能是(C)。

A. 醛

B. 酮

C. 羧酸

D. 酯

[11]C O2分子的平动、转动、振动自由度为(A)。

A. 3,2,4

B. 2,3,4

C. 3,4,2

D. 4,2,3

[12]某化合物在紫外光区未见吸收,在红外光谱上3400~3200cm-1有强烈吸收,该化合物可

能是(C )。

A. 羧酸

B. 酚

C. 醇

D. 醚

[13]某化合物,其红外光谱上3000~2800cm-1、1450cm-1、1375cm-1和720cm-1等处有主要吸

收带,该化合物可能是(A )。

A. 烷烃

B. 烯烃

C. 炔烃

D. 芳烃

[14]红外光谱分析分子结构的主要参数是(B)。

A. 质荷比

B. 波数

C. 耦合常数

D. 保留值

[15]应用红外光谱法进行定量分析优于紫外光谱法的一点的是(B )。

A. 灵敏度高;

B. 可测定的范围广;

C. 可以测定低含量组分;

D. 测量误差小。

[16]时间域函数与频率域函数采用什么方法进行转换?(B)

A. 测量峰面积;

B. 傅立叶变换;

C. 使用Michelson干涉仪;

D. 强度信号由吸光度改为透光率。

[17]测定有机化合物的相对分子质量,应采用何法?(C)

A. 气相色谱法;

B. 红外光谱;

C. 质谱分析法;

D. 核磁共振法。

[18]下列气体中,不能吸收红外光的是(D )。

A. H2O

B. CO2

C. HCl

D. N2

[19]某化合物在紫外光区未见吸收,在红外光谱的官能团区有如下吸收峰:3000cm-1左右,

1650cm-1。该化合物可能是(B)。

A. 芳香族化合物

B. 烯烃

C. 醇

D. 酮

[20]乙酰乙酸乙酯有酮式和烯醇式两种互变异构体,与烯醇式结构相对应的一组特征红外吸

收峰是(B)。

A. 1738cm-1,1717 cm-1

B. 3000cm-1,1650cm-1

C. 3000cm-1,1738cm-1

D. 1717cm-1,1650cm-1

[21]红外吸收光谱是(A )。

A. 吸收光谱;

B. 发射光谱;

C. 电子光谱;

D. 线光谱。

[22]某化合物在1500~2800cm-1无吸收,该化合物可能是(A )。

A. 烷烃

B. 烯烃

C. 芳烃

D. 炔烃

[23]芳香酮类化合物C=O伸缩振动频率向低波数位移的原因为(A )。

A. 共轭效应;

B. 氢键效应;

C. 诱导效应;

D. 空间效应。

[24]红外光谱给出分子结构的信息是(C)。

A. 相对分子量;

B. 骨架结构;

C. 官能团;

D. 连接方式。

[25]下列化合物υC=O频率最大的是(D )

[26]酰胺类化合物C=O振动频率多出现在1680~1650cm-1范围内,比醛酮C=O伸缩振动频

率低的原因为(B )。

A. 共轭效应和形成分子间氢键;

B. 中介效应和形成分子间氢键;

C. 诱导效应和形成分子内氢键;

D. 中介效应和形成分子内氢键。

[27]酯类化合物的两个特征谱带是(A )。

A. 1760~1700cm-1和1300~1000cm-1

B. 1760~1700cm-1和900~650cm-1

C. 3300~2500cm-1和1760~1700cm-1

D. 3000~2700cm-1和1760~1700cm-1

[28]确定烯烃类型的两个特征谱带是(B)。

A. 1680~1630cm-1和1300~1000cm-1

B. 1680~1630cm-1和1000~700cm-1

C. 2300~2100cm-1和1000~700cm-1

D. 3000~2700cm-1和1680~1630cm-1

[29]在透射法红外光谱中,固体样品一般采用的制样方法是(B )。

A. 直接研磨压片测定

B. 与KBr混合研磨压片测定

C. 配成有机液测定

D. 配成水溶液测定

[30]在CO2的四种振动自由度中,属于红外非活性振动而非拉曼活性振动的是(B)。

A. 不对称伸缩振动

B. 对称伸缩振动

C. 面内变形振动

D. 面外变形振动

红外光谱法习题[1]

第九章红外光谱法 基本要求:了解红外吸收光谱和吸收峰特征的表达, 掌握红外吸收光谱产生的条件,影响吸收峰位置、峰数和强度的因素, 掌握主要的IR谱区域以及在这些区域里引起吸收的键振动的类型, 掌握常见基团的特征吸收频率,利用IR谱鉴别构造异构体并能够解析简单化合物的结构,了解红外 吸收光谱的实验技术,了解拉曼光谱的原理及应用。 重点:IR光谱产生的条件,影响吸收峰位置,峰数和强度的因素,常见基团的特征吸收频率。 难点:键振动的类型,IR谱解析,FT-IR的原理和特点。 部分习题解答 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 条件:(1)分子的振动或转动必须伴随偶极矩的变化;(2)红外辐射应具有能满足分子产生振动跃迁所需的能量(红外辐射频率等于振动量子数差值和振动频率的乘积) 不是所有的分子振动都会产生红外吸收光谱。只有满足上述两个条件的分子振动才会产生红外吸收光谱。例如,同核双原子分子(O2、N2、Cl2)等的振动没有红外活性。 5. 计算CO2和H2O的分子振动自由度,它们分别有几种振动形式,在红外吸收光谱中能看到几个吸收普带?数目是否相符?为什么? CO2:线性分子振动自由度3N-5=3*3-5=4 四种振动形式两个吸收带数目不符对称伸缩振动无偶极矩变化,无红外活性,无吸收峰;面内弯曲和面外弯曲振动简并,只显示一个吸收峰。 H2O:非线性分子振动自由度3N-6=3*3-6=3 三种振动形式三个吸收带数目相符 6.判断正误。 (1)对(2)错(3)错(4)对(5)错(6)错 7、下列同分异构体将出现哪些不同的特征吸收带? (1)CH3 CO2H CO2CH3 (2)C2H3COCH3CH3CH2CH2CHO (3) 解:(1)CH3——COH 在3300~2500cm-1处有v O—H, 其v C=O位于1746~1700cm-1 COCH3无v OH吸收,其v C=O位于1750~1735cm-1(2)C2H5CCH3其v C=O位于1720~1715cm-1 CH3CH2CH2CH 其2820cm-1及2720cm-1有醛基费米共振双峰。 O O O

红外吸收光谱法试题和答案解析

红外吸收光谱法 一、选择题 1. CH 3—CH 3的哪种振动形式是非红外活性的(1) (1)υC-C (2)υC-H (3)δasCH (4)δsCH 2. 化合物中只有一个羰基.却在1773cm -1和1736 cm -1处出现两个吸收峰.这是因 为(3) (1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻 3. 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体 4. 预测H 2S 分子的基频峰数为(2) ~ (1)4 (2)3 (3)2 (4)1 5. 下列官能团在红外光谱中吸收峰频率最高的是(4) (1) (2)—C ≡C — (3) (4)—O —H 二、解答及解析题 1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数是弹簧A 的力常数的两倍.每个球从静止位置伸长1cm.哪一个体系有较大的势能。 答:M h hv E k 2π= = ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器.同紫外可见分光光度法有哪些相似和不同之处 答: 红外 \ 紫外 基本原理 当物质分子吸收一定波长的光能.能引起分子振动和转动的能及跃迁.产生的吸收光谱一般在中红外区.称为红外光谱 当物质分子吸收一定波长的光能.分子外层电子或分子轨道电子由基态跃迁到激发态.产生的吸收光谱一般在紫外-可见光区。 仪器 傅立叶变换红外光谱仪 紫外可见光分光光度计 相同:红外光谱和紫外光谱都是分子吸收光谱。 不同:紫外光谱是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV; 而红外光谱是分子的振动能级跃迁引起的.同时伴随转动能级跃迁.一般振动能级间隔约为

红外光谱习题答案

红外光谱习题 一. 选择题 1.红外光谱是(AE ) A :分子光谱 B :原子光谱 C :吸光光谱 D :电子光谱 E :振动光谱 2.当用红外光激发分子振动能级跃迁时,化学键越强,则(ACE ) A :吸收光子的能量越大 B :吸收光子的波长越长 C :吸收光子的频率越大 D :吸收光子的数目越多 E :吸收光子的波数越大 3.在下面各种振动模式中,不产生红外吸收的是(AC ) A :乙炔分子中对称伸缩振动 B :乙醚分子中不对称伸缩振动 C :CO 2分子中对称伸缩振动 D :H 2O 分子中对称伸缩振动 E :HCl 分子中H -Cl 键伸缩振动 4.下面五种气体,不吸收红外光的是(D ) A:O H 2 B:2CO C:HCl D:2N 5 分子不具有红外活性的,必须是(D ) A:分子的偶极矩为零 B:分子没有振动 C:非极性分子 D:分子振动时没有偶极矩变化 E:双原子分子 6.预测以下各个键的振动频率所落的区域,正确的是(ACD ) A:O-H伸缩振动数在4000~25001 -cm B:C-O 伸缩振动波数在2500~15001 -cm C:N-H 弯曲振动波数在4000~25001 -cm D:C-N 伸缩振动波数在1500~10001 -cm E:C ≡N 伸缩振动在1500~10001 -cm 7.下面给出五个化学键的力常数,如按简单双原子分子计算,则在红外光谱中波数最大者是(B ) A:乙烷中C-H 键,=k 5.1510?达因1 -?cm B: 乙炔中C-H 键, =k 5.9510?达因1 -?cm

C: 乙烷中C-C 键, =k 4.5510?达因1 -?cm D: CH 3C ≡N 中C ≡N 键, =k 17.5510?达因1 -?cm E:蚁醛中C=O 键, =k 12.3510?达因1 -?cm 8.基化合物中,当C=O 的一端接上电负性基团则(ACE ) A:羰基的双键性增强 B:羰基的双键性减小 C:羰基的共价键成分增加 D:羰基的极性键成分减小 E:使羰基的振动频率增大 9.以下五个化合物,羰基伸缩振动的红外吸收波数最大者是(E ) A: B: C: D: E: 10.共轭效应使双键性质按下面哪一种形式改变(ABCD ) A:使双键电子密度下降 B:双键略有伸长 C:使双键的力常数变小 D.使振动频率减小 E:使吸收光电子的波数增加 11.下五个化合物羰基伸缩振动的红外吸收波数最小的是(E ) A: B: C: D: E: 12.下面四个化合物中的C=C 伸缩振动频率最小的是(D ) A: B: C: D: 13.两 个化合物(1) ,(2) 如用红外光谱鉴别,主要依 据的谱带是(C )

红外光谱习题

1009 在红外光谱分析中,用KBr制作为试样池,这是因为:( ) (1) KBr 晶体在4000~400cm-1范围内不会散射红外光 (2) KBr 在4000~400 cm-1范围内有良好的红外光吸收特性 (3) KBr 在4000~400 cm-1范围内无红外光吸收 (4) 在4000~400 cm-1范围内,KBr 对红外无反射 1022 下面给出的是某物质的红外光谱(如图),已知可能为结构Ⅰ、Ⅱ或Ⅲ,试问哪 一结构与光谱是一致的?为什么?( ) 1023 下面给出某物质的部分红外光谱(如图),已知结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构 与光谱是一致的,为什么?

1068 一化合物出现下面的红外吸收谱图,可能具有结构Ⅰ、Ⅱ、Ⅲ或Ⅳ,哪一结构与 光谱最近于一致? 1072 羰基化合物 R C O O R(I),R C O R? (¢ò), R C O N H R(I I I), A r S C O S R(I V) 中,C = O 伸缩振动 频率出现最低者为( ) (1) I (2) II (3) III (4) IV 1075 一种能作为色散型红外光谱仪色散元件的材料为( ) (1) 玻璃(2) 石英(3) 卤化物晶体(4) 有机玻璃1088 并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为( ) (1) 分子既有振动运动,又有转动运动,太复杂 (2) 分子中有些振动能量是简并的 (3) 因为分子中有C、H、O 以外的原子存在

(4) 分子某些振动能量相互抵消了 1097 下列四组数据中,哪一组数据所涉及的红外光谱区能够包括 CH 3- CH 2-CH = O 的吸收带 ( ) 1104 请回答下列化合物中哪个吸收峰的频率最高? ( ) (1) R C O R (2) C O R (3) C O (4) F C O R 1114 在下列不同溶剂中,测定羧酸的红外光谱时,C =O 伸缩振动频率出现最高者为( ) (1) 气体 (2) 正构烷烃 (3) 乙醚 (4) 乙醇 1179 水分子有几个红外谱带,波数最高的谱带对应于何种振动 ? ( ) (1) 2 个,不对称伸缩 (2) 4 个,弯曲 (3) 3 个,不对称伸缩 (4) 2 个,对称伸缩 1180

红外吸收光谱法习题与答案解析

六、红外吸收光谱法(193题) 一、选择题 ( 共61题 ) 1. 2 分 (1009) 在红外光谱分析中,用 KBr制作为试样池,这是因为: ( ) (1) KBr 晶体在 4000~400cm-1范围内不会散射红外光 (2) KBr 在 4000~400 cm-1范围内有良好的红外光吸收特性 (3) KBr 在 4000~400 cm-1范围内无红外光吸收 (4) 在 4000~400 cm-1范围内,KBr 对红外无反射 2. 2 分 (1022) 下面给出的是某物质的红外光谱(如图),已知可能为结构Ⅰ、Ⅱ或Ⅲ,试问哪 一结构与光谱是一致的?为什么? ( ) 3. 2 分 (1023) 下面给出某物质的部分红外光谱(如图),已知结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构 与光谱是一致的,为什么? 4. 2 分 (1068) 一化合物出现下面的红外吸收谱图,可能具有结构Ⅰ、Ⅱ、Ⅲ或Ⅳ,哪一结构与 光谱最近于一致? 5. 2 分 (1072) 1072 羰基化合物中, C = O 伸缩振动 频率出现最低者为 ( ) (1) I (2) II (3) III (4) IV 6. 2 分 (1075) 一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 7. 2 分 (1088) 并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) (1) 分子既有振动运动,又有转动运动,太复杂 (2) 分子中有些振动能量是简并的 (3) 因为分子中有 C、H、O 以外的原子存在 (4) 分子某些振动能量相互抵消了 8. 2 分 (1097) 下列四组数据中,哪一组数据所涉及的红外光谱区能够包括CH3- CH2-CH = O的吸收带( ) 9. 2 分 (1104) 请回答下列化合物中哪个吸收峰的频率最高? ( ) 10. 2 分 (1114) 在下列不同溶剂中,测定羧酸的红外光谱时,C=O 伸缩振动频率出现最高者为( ) (1) 气体 (2) 正构烷烃 (3) 乙醚 (4) 乙醇 11. 2 分 (1179) 水分子有几个红外谱带,波数最高的谱带对应于何种振动 ? ( ) (1) 2 个,不对称伸缩 (2) 4 个,弯曲 (3) 3 个,不对称伸缩 (4) 2 个,对称伸缩 12. 2 分 (1180) CO2的如下振动中,何种属于非红外活性振动 ? ( ) (1) ←→ (2) →←→ (3)↑↑ (4 )

红外光谱法习题参考答案

第十二章 红外吸收光谱法 思考题和习题 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 33,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1。 烯烃主要特征峰为H C C C H C -==-=γνν ,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1。 νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γ νν ,,,其中H C -≡ν 峰位在3333-3267cm -1。C C ≡ν 峰位在 2260-2100cm -1,是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ 分裂为双峰。如果是异丙基,双峰分别 位于1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1和1395 cm -1左右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动(ν=C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动(νc=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动(γ =C-H ),910~665cm -1 14.试用红外吸收光谱区别羧酸、酯、酸酐。 羧酸的特征吸收峰为v OH 、v C=O 及γOH 峰。v OH (单体)~3550 cm -1 (尖锐),v OH (二聚体)3400~2500(宽而散),v C=O (单体)1760 cm -1 (S),v as C=O (二聚体)1710~1700 cm -1 (S)。羧酸的γOH 峰位在955~915 cm -1范围内为一宽谱带,其形状较独特。 酯的特征吸收峰为v C=O 、v c-o-c 峰,具体峰位值是:v C=O ~1735cm -1 (S);v c-o-c 1300~1000cm -1 (S)。v as c-o-c 峰的强度大而宽是其特征。 酸酐的特征吸收峰为v as C=O 、v s C=O 双峰。具体峰位值是:v as C=O 1850~1800 cm -1(s)、v s C=O 1780~1740 cm -1 (s),两峰之间相距约60 cm -1,这是酸酐区别其它含羰基化合物主要标志。 7.某物质分子式为C 10H 10O 。测得红外吸收光谱如图。试确定其结构。

第三章 振动光谱作业

第二章振动光谱作业 1.红外光区的划分? 红外光按波长不同划分为三个区域:近红外区域(1-2.5微米)/中红外区域(2.5-25微米)/远红外区域(25-1000微米) 2.振动光谱有哪两种类型?多原子分子的价键或基团的振动有哪些类型?同一种基团哪种振动的频率较高?哪种振动的频率较低? 振动光谱有红外吸收光谱和激光拉曼光谱两种类型。 价键或基团的振动有伸缩振动和弯曲振动。其中伸缩振动分为对称伸缩振动和非对称伸缩振动;弯曲振动则分为面内弯曲振动(剪式振动、面内摇摆振动)和面外弯曲振动(扭曲振动、面外摇摆振动)。 伸缩振动频率较高,弯曲振动频率较低。(键长的改变比键角的改变需要更大的能量)非对称伸缩振动的频率高于对称伸缩振动。 3. 说明红外光谱产生的机理与条件? 产生机理: 当用红外光波长范围的光源照射物质时,物质因受光的作用,引起分子或原子基团的振动,若振动频率恰与红外光波段的某一频率相等时就引起共振吸收,使光的透射强度减弱,使通过试样的红外光在一些波长范围内变弱,在另一些范围内则较强,用光波波长(或波数)对光的透过率作图,便可得到红外光谱 产生条件: 1)辐射应具有能满足物质产生振动-转动跃迁所需的能量,即振动的频率与红外光谱谱段的某频率相等。 2)辐射与物质间有相互偶合作用,即振动中要有偶极矩变化 4.红外光谱图的表示法? 红外光谱图的表示法:横坐标:波数cm-1或者波长μm 纵坐标:透过率%或者吸光度A 5. 红外光谱图的四大特征(定性参数)是什么? 如何进行基团的定性分析?如何进行物相的定性分析? 四大特征:谱带(或者说是吸收峰)的数目、位置、形状和强度。 进行基团的定性分析时,首先,观察特征频率区,根据基团的伸缩振动来判断官能团。 进行物相的定性分析: 进行物相的定性分析: 对于已知物: a、,观察特征频率区,判断官能团,以确定所属化合物的类型 b、观察指纹频率区,进一步确定基团的结合方式 c、对照标准谱图进行比对,若被测物质的与已知物的谱图峰位置和相对强度完全一致,则可确认为一种物质。 对于未知物:A、做好准备工作。了解试样的来源,纯度、熔点、沸点点各种信息,如果是混合物,尽量用各种化学、物理的方法分离 B、按照鉴定已知化合物的方法进行 6. 何谓拉曼效应?说明拉曼光谱产生的机理与条件? 光子与试样分子发生非弹性碰撞,也就是说在光子与分子相互作用中有能量的交换,产生了频率的变化,且方向改变叫拉曼效应。 产生的机理: 斯托克斯线产生机理:处于振动基态的分子在光子作用下,激发到较高的不稳定的能态(虚

第二章红外光谱习题

第二章红外光谱 一、判断题 [1] 红外光谱不仅包括振动能级的跃迁,也包括转动能级的跃迁,故又称为振转光谱。(√) [2] 同核双原子分子N≡N、Cl-Cl、H-H等无红外活性。(√) [3] 由于振动能级受分子中其他振动的影响,因此红外光谱中出现振动耦合谱带。(√) [4] 确定某一化合物骨架结构的合理方法是红外光谱分析法。(×) [5] 对称结构分子,如H2O分子,没有红外活性,水分子的H-O-H对称伸缩振动不产生吸收峰。(×) [6] 红外光谱图中,不同化合物中相同基因的特征频率峰总是在特定波长范围内出现,故可以根据红外光谱图中的特征频率峰来确定化合物中该基团的存在。(√) [7] 不考虑其他因素的影响,下列羰基化合物υc=0伸缩频率的大小顺序为:酰卤>酰胺>酸>醛>酯。(×) [8] 醛基中υC=H伸缩频率出现在2720cm-1。(√) [9] 红外光谱与紫外光谱仪在构造上的差别是检测器不同。(×) [10] 当分子受到红外光激发,其振动能级发生跃迁时,化学键越强吸收的光子数目越多。(×) [11] 游离有机酸C=O伸缩振动υc=0频率一般出现在1760cm-1,但形成多聚体时,吸收频率会向高波数移动。(×) [12] 醛、酮、羧酸等的羰基的伸缩振动在红外光谱中的吸收峰频率相同。(×) [13] 红外吸收峰的数目一般比理论振动数目少,原因之一是有些振动是非红外活性的。(√) [14] 红外光谱的特点是一方面官能团的特征吸收频率的位置基本上是固定的,另一方面它们又不是绝对不变的,其频率位移可以反映分子的结构特点。(√) [15] Fermi共振是一个基频振动与倍频(泛频)或组频之间产生耦合作用。(√) 二、选择题(单项选择) [1] 红外光可引起物质的能级跃迁是(C)。 A. 分子的电子能级的跃迁,振动能级的跃迁,转动能级的跃迁; B. 分子内层电子能级的跃迁; C. 分子振动能级及转动能级的跃迁; D. 分子转动能级的跃迁。 [2] H2O在红外光谱中出现的吸收峰数目为(A)。 A. 3 B. 4 C. 5 D. 2 [3] 在红外光谱中,C=O的伸缩振动吸收峰出现的波数(cm-1) 范围(A )。 A. 1900~1650 B. 2400~2100 C. 1600~1500 D. 1000~650 [4] 在下列分子中,不能产生红外吸收的是(D )。 A. CO B. H2O C. SO2 D. H2 [5] 下列化学键的伸缩振动所产生的吸收峰波数最大的是(D)。 A. C=O B. C-H C. C=C D. O-H [6] 表示红外分光光度法通常是(C)。 A. HPLC B. GC C. IR D. TLC [7] 羰基化合物①RCOR、②RCOCl、③RCOH、④RCOF中,C=O伸缩振动频率最高的是(D )。 A. ① B. ② C. ③ D. ④ [8] 在醇类化合物中,O-H伸缩振动频率随溶液浓度增加而向低波数移动,原因是(B )。

红外光谱、拉曼和紫外作业

1.比较C=C和C=O键的伸缩振动,谱带强度更大的是C=O。 2.何谓基团频率?它有什么重要性及用途? 答: 不同分子中同一类型的化学基团,在红外光谱中的吸收频率总是出现在一个较窄的范围内,这种吸收谱带的频率称为基团频率。 它们不随分子构型的变化而出现较大的改变,可用作鉴别化学基团。基团频率区在4000~1300厘米-1,其中4000~2500厘米-1为单键伸缩振动区,2500~1900厘米-1为叁键和累积双键区,1900~1300厘米-1为双键伸缩振动区和单键弯曲振动区。 3.某化合物C8H9NO2,试根据如下谱图推断其结构,并说明依据。 答:U=8-(1-9)/2 + 1 =5,推断有苯环和C=C或C=O δ=3.8,单峰,归属CH3,推测为O-CH3

δ=7.1,7.8,均是双峰,归属Ar-H,是苯环对位取代特征峰 δ=7.2,双峰,推测可能为-NH2 3392cm-1,3172cm-1,N-H伸缩振动,双峰说明可能是-NH2 1651cm-1,N-H变形振动 1618cm-1,1574cm-1,1516cm-1,1423cm-1,芳环C=C伸缩振动 1397cm-1,甲基变形振动 1254cm-1,C-O-C伸缩振动吸收峰 853cm-1,苯环相邻两个H原子=C-H的面外变形振动,苯环对位取代的特征 故推测结构为 4.紫外吸收光谱有哪些基本特征? 答: (1)紫外吸收光谱所对应的电磁波长较短,能量大,它反映了分子中价电子能级跃迁情况。主要应用于共轭体系(共轭烯烃和不饱和羰基化合物)及芳香族化合物的分析。(2)由于电子能级改变的同时,往往伴随有振动能级的跃迁,所以电子光谱图比较简单,但峰形较宽。一般来说,利用紫外吸收光谱进行定性分析信号较少。 (3)紫外吸收光谱常用于共轭体系的定量分析,灵敏度高,检出限低。 5.光度分析误差的主要来源有哪些?如何降低光度分析的误差? 1对朗伯-比尔定律的偏离: (1)非单色光引起的偏离。◎使用比较好的单色器,从而获得纯度较高的“单色光”,使标准曲线有较宽的线性范围。◎人射光波长选择在被测物质的最大吸收处,保证测定有较高的灵敏度,此处的吸收曲线较为平坦,在此最大吸收波长附近各波长的光的?值大体相等,由于非单色光引起的偏离要比在其他波长处小得多。◎测定时应选择适当的浓度范围,使吸光度读数在标准曲线的线性范围内。 (2)介质不均匀引起的偏离。故在光度法中应避免溶液产生胶体

第九章--红外光谱法习题[1]教学提纲

第九章--红外光谱法 习题[1]

第九章红外光谱法 基本要求:了解红外吸收光谱和吸收峰特征的表达, 掌握红外吸收光谱产生的条件,影响吸收峰位置、峰数和强度的因素, 掌握主要的IR谱区域以及在这些区域里引起吸收的键振动的类型, 掌握常见基团的特征吸收频率,利用IR谱鉴别构造异构体并能够解析简单化合物 的结构,了解红外吸收光谱的实验技术,了解拉曼光谱的原理及应用。 重点:IR光谱产生的条件,影响吸收峰位置,峰数和强度的因素,常见基团的特征吸收频率。 难点:键振动的类型,IR谱解析,FT-IR的原理和特点。 部分习题解答 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 条件:(1)分子的振动或转动必须伴随偶极矩的变化;(2)红外辐射应具有能满足分子产生振动跃迁 所需的能量(红外辐射频率等于振动量子数差值和振动频率的乘积) 不是所有的分子振动都会产生红外吸收光谱。只有满足上述两个条件的分子振动才会产生红外吸收光谱。例如,同核双原子分子(O2、N2、Cl2)等的振动没有红外活性。 5. 计算CO2和H2O的分子振动自由度,它们分别有几种振动形式,在红外吸收光谱中能看到几个吸收普带?数目是否相符?为什么? CO2:线性分子振动自由度3N-5=3*3-5=4 四种振动形式两个吸收带数目不符对称伸缩振动无偶极矩变化,无红外活性,无吸收峰;面内弯曲和面外弯曲振动简并,只显示一个吸收峰。 H2O:非线性分子振动自由度3N-6=3*3-6=3 三种振动形式三个吸收带数目相符

6.判断正误。 (1)对 (2)错 (3)错 (4)对 (5)错 (6)错 7、下列同分异构体将出现哪些不同的特征吸收带? (1)CH 3 2H — (2)C 2 H 3COCH 3 CH 3CH 2CH 2CHO (3 )解:(1)CH 3— —COH 在3300~2500cm -1处有v O —H , 其v C=O 位于1746~1700cm -1 3 无v OH 吸收,其v C=O 位于1750~1735cm -1 (2)C 2H 5CCH 3 其v C=O 位于1720~1715cm -1 CH 3CH 2CH 2CH 其2820cm -1及2720cm -1有醛基费米共振双峰。 v C=O 位于1740~1720cm -1 (3v C=O 吸收频率小于v C=O 吸收频率 8、下列化合物在红外光谱中哪一段有吸收?各由什么类型振动引起? HO —3—CO 2CH 2C≡CH (A ) (B ) 解:(A )C-H : v OH 3700~3200cm -1 δOH 1300~1165cm -1 v CH(O) 2820~2720cm -1双峰 O O O O

红外光谱习题答案

红外光谱习题 一. 选择题 1红外光谱是(AE) A :分子光谱 B :原子光谱 D :电子光谱E:振动光谱 2. 当用红外光激发分子振动能级跃迁时,化学键越强,则A:吸收光子的能量越大 B:吸收光子的波长越长 C:吸收光子的频率越大 D:吸收光子的数目越多 E:吸收光子的波数越大 3. 在下面各种振动模式中,不产生红外吸收的是(AC)A :乙炔分子中-对称伸缩振动 B:乙醚分子中---不对称伸缩振动 C: CO2分子中- -对称伸缩振动 D: H2O分子中日对称伸缩振动 E: HCl分子中H —Cl键伸缩振动 4. 下面五种气体,不吸收红外光的是(D) A: H2O B: C°2 C: HCl D: N2 5分子不具有红外活性的,必须是(D) A:分子的偶极矩为零 B:分子没有振动 C:非极性分子 D:分子振动时没有偶极矩变化 E:双原子分子 6. 预测以下各个键的振动频率所落的区域,正确的是( A:O — H伸缩振动数在4000?2500cm 1 B:C-0伸缩振动波数在2500?1500cm 1 C:N-H弯曲振动波数在4000?2500cm 1 D:C-N伸缩振动波数在1500?1000cm 1 ACE ) ACD) C :吸光光谱

E:C三N伸缩振动在1500?1000cm 1

7. 下面给出五个化学键的力常数,如按简单双原子分子计算,则在红 外光谱中波数最大者是(B ) A :乙烷中C-H 键,k 5.1 105达因cm 1 B :乙炔中C-H 键,k 5.9 105达因cm 1 C :乙烷中C-C 键,k 4.5 105达因cm 1 D : CfO N 中 O N 键,k 17.5 105 达因 cm 1 E :蚁醛中C=0键,k 12.3 105达因cm 1 8基化合物中,当C=O 的一端接上电负性基团则(ACE ) A:羰基的双键性增强 B:羰基的双键性减小 C:羰基的共价键成分增加 D:羰基的极性键成分减小 E:使羰基的振动频率增大 以下五个化合物,羰基伸缩振动的红外吸收波数最大者是( R —C —H C: R —0—C1 II D: ° E: 10.共轭效应使双键性质按下面哪一种 形式改变( ABCD ) A:使双键电子密度下降 E:双键略有伸长 C:使双键的力常数变小 D.使振动频率减小 E:使吸收光电子的波数增加 11 ..下五个化合物羰基伸缩振动的红外吸收波数最小的是( R -| R —C — II -H O II . A: B: C : K —C —CH=CH —R D: R ! 3 5 E: 尺一田二 — r —( ) 1-0 12.下面四个化合物中的C=C 伸缩振动频率最小的是(D ) A: Q B: 0 C: □ D: A II 9. A: B: II 0

红外光谱分析习题解答

红外光谱分析习题解答 解:影响红外吸收峰强度的主要因素:红外吸收的强度主要由振动能级的跃迁概率和振动过程中偶极矩的变化决定。从基态向第一激 跃迁的概率大,因此基频吸收带一般较强。另外,基频振动过程中偶极矩的变化越大,则其对应的红外吸收越强。因此,如果化学键两 接原子的电负性差异越大,或分子的对称性越差,则伸缩振动时化学键的偶极矩变化越大,其红外吸收也越强,这就是 C=O 的强度大 =C 的原因。一般来说,反对称伸缩振动的强度大于对称收缩振动的强度,伸缩振动的强度大于变形振动的强度。 解:由量子力学可知,简单双原子分子的吸收频率可用下式表示: μπk c 21 (1) A N M M M M )(212 1+ (2) ) 式中: σ为波数(cm -1),c 为光在真空中的速度(310-10cm S -1),k 为化学键力常数(N cm -1) ) 式中: M 1和M 2分别为两种原子的摩尔质量,N A 为阿伏加德罗常数(6.021023mol -1 ) (2)式代入(1)得 2 1212121) (1307 )(221M M M M k M M M M k c N k c A +=+= πμπ 教材P 153公式(10-6)系数为1370有误】 Cl 键的键力常数 1 2 2 12 12 1.0079 .13453.350079.1453.35130729931307-?+?? ???+??? ??cm N M M M M σ 解:依照上题的计算公式

2 1212121) (1307 )(221M M M M k M M M M k c N k c A +=+= πμπ =9 N cm -1,M H =1.0079,M F =18.998代入可计算得到HF 的振动吸收峰频率为4023cm -1 。 解:2-戊酮的最强吸收带是羰基的伸缩振动( C=O ),分别在极性溶剂95%乙醇和非极性溶剂正己烷中,其吸收带出现的频率在正己 位于较高处。原因是乙醇中的醇羟基可以与戊酮的羰基形成分子间氢键,导致羰基的伸缩振动频率向低波数方向移动。而正己烷不能与 形成分子间氢键。 解: 断法则为:若振动前后引起偶极矩的变化的,是具有红外活性的,否则为非红外活性的。因此具有红外活性是:(b )(c )(e ),非 活性 (a )(d )(f )。 ⊕ C C H H H H ⊕ C C H H H C C H H H H (d )C =C 伸缩 (e )C ?H 剪式 (f )C ?H 摇摆 C C H H H H C C H H H H ⊕ ⊕ C C H H H H ⊕ ⊕ (a )C ?H 伸缩 (b )C ?H 伸缩 (c )CH 2扭曲

红外光谱分析法模拟试题及答案解析

红外光谱分析法模拟试题及答案解析 (1/29)单项选择题 第1题 一种能作为色散型红外光谱仪色散元件的材料为( )。 A.玻璃 B.石英 C.卤化物晶体 D.有机玻璃 下一题 (2/29)单项选择题 第2题 醇羟基的红外光谱特征吸收峰为( )。 A.1000cm-1 B.2000~2500cm-1 C.2000cm-1 D.3600~3650cm-1 上一题下一题 (3/29)单项选择题 第3题 红外吸收光谱的产生是由于( )。 A.分子外层电子、振动、转动能级的跃迁 B.原子外层电子、振动、转动能级的跃迁 C.分子振动、转动能级的跃迁 D.分子外层电子的能级跃迁 上一题下一题 (4/29)单项选择题 第4题 红外吸收峰的强度,根据( )大小可粗略分为五级。 A.吸光度A B.透射比t C.波长λ D.波数ν 上一题下一题 (5/29)单项选择题 第5题 用红外吸收光谱法测定有机物结构时,试样应该是( )。 A.单质 B.纯物质 C.混合物 D.任何试样 上一题下一题 (6/29)单项选择题 第6题 一个含氧化合物的红外光谱图在3600~3200cm-1有吸收峰,下列化合物最可能的是( )。

A.CH3—CHO B.CH3—CO—CH3 C.CH3—CHOH—CH3 D.CH3—O—CH2—CH3 上一题下一题 (7/29)单项选择题 第7题 对高聚物多用( )法制样后再进行红外吸收光谱测定。 A.薄膜 B.糊状 C.压片 D.混合 上一题下一题 (8/29)单项选择题 第8题 一般来说,( )具有拉曼活性。 A.分子的非对称性振动 B.分子的对称性振动 C.极性基团的振动 D.非极性基团的振动 上一题下一题 (9/29)单项选择题 第9题 在红外光谱的光源中,下列( )波长是氩离子激光器最常用的激发线的波长。 A.285.2nm B.422.7nm C.488.0nm D.534.5nm 上一题下一题 (10/29)单项选择题 第10题 若样品在空气中不稳定,在高温下容易升华,则红外样品的制备宜选用( )。 A.压片法 B.石蜡糊法 C.熔融成膜法 D.漫反射法 上一题下一题 (11/29)单项选择题 第11题 液体池的间隔片常由( )材料制成,起着固定液体样品的作用。 A.氯化钠 B.溴化钾 C.聚四氟乙烯 D.金属制品

第二章 红外光谱习题教学提纲

第二章红外光谱习题

第二章红外光谱 一、判断题 [1]红外光谱不仅包括振动能级的跃迁,也包括转动能级的跃迁,故又称为振 转光谱。(√) [2]同核双原子分子N≡N、Cl-Cl、H-H等无红外活性。(√) [3]由于振动能级受分子中其他振动的影响,因此红外光谱中出现振动耦合谱 带。(√) [4]确定某一化合物骨架结构的合理方法是红外光谱分析法。(×) [5]对称结构分子,如H2O分子,没有红外活性,水分子的H-O-H对称伸缩振 动不产生吸收峰。(×) [6]红外光谱图中,不同化合物中相同基因的特征频率峰总是在特定波长范围 内出现,故可以根据红外光谱图中的特征频率峰来确定化合物中该基团的存在。(√) [7]不考虑其他因素的影响,下列羰基化合物υc=0伸缩频率的大小顺序为:酰 卤>酰胺>酸>醛>酯。(×) [8]醛基中υC=H伸缩频率出现在2720cm-1。(√) [9]红外光谱与紫外光谱仪在构造上的差别是检测器不同。(×) [10]当分子受到红外光激发,其振动能级发生跃迁时,化学键越强吸收的光子 数目越多。(×) [11]游离有机酸C=O伸缩振动υc=0频率一般出现在1760cm-1,但形成多聚体 时,吸收频率会向高波数移动。(×) [12]醛、酮、羧酸等的羰基的伸缩振动在红外光谱中的吸收峰频率相同。(×) [13]红外吸收峰的数目一般比理论振动数目少,原因之一是有些振动是非红外 活性的。(√) [14]红外光谱的特点是一方面官能团的特征吸收频率的位置基本上是固定的, 另一方面它们又不是绝对不变的,其频率位移可以反映分子的结构特点。 (√) [15]F ermi共振是一个基频振动与倍频(泛频)或组频之间产生耦合作用。(√) 二、选择题(单项选择) [1]红外光可引起物质的能级跃迁是( C)。 A. 分子的电子能级的跃迁,振动能级的跃迁,转动能级的跃迁; B. 分子内层电子能级的跃迁; C. 分子振动能级及转动能级的跃迁; D. 分子转动能级的跃迁。

红外光谱法答案详解

习题 1、下列两个化合物,C=O的伸缩振动吸收带出现在较高的波数区的是哪个为什么 答案: a(共轭效应)>b(空间位阻效应让共轭效应减小)。 2、下图为不同条件下,丁二烯(1,3)均聚物的红外光谱图, 试指出它们的键结构。 3、有一化合物C7H8O,它出现以下位置的吸收峰:3040;3380;2940;1460;690;740;不出现以下位置吸收峰:1736;2720;1380;1182.试推断其结构式 作业 1、试述分子产生红外吸收的条件。 2、何谓基团频率影响基团频率位移的因素有哪些 3、仅考虑C=O受到的电子效应,在酸、醛、酯、酰卤和酰胺类化合物中,出现C=O伸缩振动频率的大小顺序应是怎样 4、从以下红外特征数据鉴别特定的苯取代衍生物C8H10: ①化合物A:吸收带在约790和695cm-1处。 ②化合物B:吸收带在约795cm-1处。 ③化合物C:吸收带在约740和690cm-1处。 ④化合物D:吸收带在约750cm-1处。 5、分别在95%乙醇和正已烷中测定2-戊酮的红外光谱,试预测C=O的伸缩振动吸收峰在哪种溶剂中出现的较高为什么 8. 某化合物的化学式为C6H10O,红外光谱如下图所示,

试推断其结构式。 答案: μ=1+6-5=2说明可能是不饱和烃 3000以上无小尖峰,说明双键不在端碳上 1680-羰基1715连接双键导致共轭移到低波位 1618-碳碳双键 1461-CH- 1380、1360-分裂说明异丙基存在 1215、1175-双峰强度相仿验证双甲基在端碳 816-三取代呈链状 。 9. 某化合物的化学式为C8H14O3,红外光谱如下图所示,试推断其结构式。 答案: μ=1+8-7=2 3000以上无小尖峰,1370峰没分裂,说明没有cc双键

红外作业参考答案.doc

红外吸收光谱作业(IR) 一、判断题 1.红外光谱不仅包括振动能级的跃迁,也包括转动能级的跃迁,故又称为振转光谱。(√) 2.由于振动能级受分子中其他振动的影响,因此红外光谱中出现振动偶合谱带。(√) 3.确定某一化合物骨架结构的合理方法是红外光谱分析法。(×) 4.对称分子结构,如H2O分子,没有红外活性。(×) 5.分子中必须具有红外活性振动是分子产生红外吸收的必备条件之一。(√) 6.红外光谱中,不同化合物中相同基团的特征频率总是在特定波长范围内出现,故可以根据红外光谱中的特征频率峰来确定化合物中该基团的存在。(√) 7.不考虑其他因素的影响,下列羰基化合物的大小顺序为:酰卤>酰胺>酸>醛>酯。(×) 8.傅里叶变换型红外光谱仪与色散型红外光谱仪的主要差别在于它有干涉仪和计算机部件。(√)9.当分子受到红外光激发,其振动能级发生跃迁时,化学键越强吸收的光子数目越多。(√) 10.游离有机酸C=O伸缩振动v C=O频率一般出现在1760cm-1,但形成多聚体时,吸收频率会向高波数移动。(×) 二、选择题 1.化学键的力常数越大,原子的折合质量越小,则化学键的振动频率(B) A.越低;B.越高;C.不变 2.在红外吸收光谱中,乙烯分子的C-H非对称伸缩振动具有(A) A.红外活性;B.非红外活性;C.视实验条件 3.在醇类化合物中,O-H伸缩振动随溶液浓度的增大向低波数移动的原因是(C) A.诱导效应;B.溶液极性增大;C.形成分子间氢键;D.振动耦合 4.分子的C-H对称伸缩振动的红外吸收带频率比弯曲振动的(A) A.高;B.低;C.相当 5.在红外吸收光谱中,C=O和C=C基,两者的吸收强度的大小关系是(B) A.前者<后者;B.前者>后者.C.两者相等 6.用于测量红外辐射的检测器是(D)。 A.光电池;B.光电管;C.热导池;D.热电偶 7.应用红外光谱解析分子结构的主要参数是(B) A.质荷比;B.波数;C.偶合常数;D.保留值。 8.红外吸收光谱是(D) A.原子光谱;B.发射光谱;C.电子光谱;D.分子光谱。 9.在醇类化合物中,O—H伸缩振动频率随溶液浓度增加而向低波数移动,原因是(B) A.溶液极性变大;B.分子间氢键增强;C.诱导效应变大;D.易产生振动偶合。 10.下列化学键的伸缩振动所产生的吸收峰波数最大的是(D) A.C=O;B.C—H;C.C=C;D.O—H。 三、填空题 1.适用于红外光谱区的光源是(能斯特灯)和(硅碳棒),傅里叶变换红外光谱仪的分光系统是(迈克耳孙干涉仪)。 2.一个分子能否产生红外吸收峰,除了(辐射应具有刚好满足振动跃迁所需的能量)以外,还与分子的(偶极矩是否发生变化)有关。 3.红外分光光度法与紫-可见分光光度法一样,按光谱获得方式,两者都属于(吸收)光谱法,但就辐射跃迁的本质而言,两种方法有区别,前者主要研究(振动-转动)光谱,后者主要研究(电子)光谱。4.红外光谱研究最多的是基本振动频率,而这种分子振动主要有两种形式,即(伸缩)振动和(弯曲)

(新)红外光谱习题

红外、拉曼光谱习题 一. 选择题 1.红外光谱是( CE ) A :分子光谱 B :原子光谱 C :吸光光谱 D :电子光谱 E :振动光谱 2.当用红外光激发分子振动能级跃迁时,化学键越强,则( CE ) A :吸收光子的能量越大 B :吸收光子的波长越长 C :吸收光子的频率越大 D :吸收光子的数目越多 E :吸收光子的波数越大 3.在下面各种振动模式中,不产生红外吸收的是( AC ) A :乙炔分子中 对称伸缩振动 B :乙醚分子中 不对称伸缩振动 C :CO 2分子中 对称伸缩振动 D :H 2O 分子中对称伸缩振动 E :HCl 分子中H -Cl 键伸缩振动 4.下面五种气体,不吸收红外光的是( D ) A:O H 2 B:2CO C:HCl D:2N 5 分子不具有红外活性的,必须是(ABD ) A:分子的偶极矩为零 B:分子没有振动 C:非极性分子 D:分子振动时没有偶极矩变化 E:双原子分子 6.预测以下各个键的振动频率所落的区域,正确的是( AC ) A:O-H 伸缩振动数在4000~25001-cm B:C-O 伸缩振动波数在2500~15001-cm C:N-H 弯曲振动波数在4000~25001-cm D:C-N 伸缩振动波数在1500~10001-cm E:C ≡N 伸缩振动在1500~10001-cm 7.下面给出五个化学键的力常数,如按简单双原子分子计算,则在红外光谱中波数 最大者是( ) A:乙烷中C-H 键,=k 5.1510?达因1-?cm B: 乙炔中C-H 键, =k 5.9510?达因1-?cm C: 乙烷中C-C 键, =k 4.5510?达因1-?cm D: CH 3C ≡N 中C ≡N 键, =k 17.5510?达因1-?cm

红外光谱习题答案

红外光谱习题 ACE ) B :原子光谱 C :吸光光谱 E :振动光谱 2.当用红外光激发分子振动能级跃迁时,化学键越强,则( ACE ) A :吸收光子的能量越大 B :吸收光子的波长越长 C :吸收光子的频率越大 D :吸收光子的数目越多 E :吸收光子的波数越大 3.在下面各种振动模式中,不产生红外吸收的是( AC ) A :乙炔分子中一C —C —对称伸缩振动 B :乙醚分子中。一C-5不对称伸缩振动 C : CO2 分子中 C —0—C D : H2O 分子中H/ \日 E : HCl 分子中H — CI 键伸缩振动 4.下面五种气体,不吸收红外光的是(D ) A: H 2O B: C°2 C: HCl D: N 2 5分子不具有红外活性的,必须是(D ) A:分子的偶极矩为零 B:分子没有振动 C:非极性分子 D:分子振动时没有偶极矩变化 E:双原子分子 6.预测以下各个键的振动频率所落的区域,正确的是( AD ) A:O — H 伸缩振动数在 4000?2500cm 1 B:C-0伸缩振动波数在 2500?1500cm 1 C:N-H 弯曲振动波数在 4000?2500cm 1 D:C-N 伸缩振动波数在1500?1000cm 1 E:C 三N 伸缩振动在1500?1000cm 1 一. 选择题 1红外光谱是 A :分子光谱 D :电子光谱 对称伸缩振动 对称伸缩振动

0 A: R —C — H 0 II ;B: 0 C: K —C —CH=CH —R D: R — E: 7.下面给出五个化学键的力常数,如按简单双原子分子计算,则在红 外光谱中波数最大者是(B ) 乙烷中C-H 键,k 5.1 105 达因 乙炔中C-H 键,k 5.9 乙烷中C-C 键,k 4.5 CH3O N 中 O N 键,k 蚁醛中C=C 键,k 12.3 8 基化合物中,当C=C 的一端接上电负性大的基团则(ACE ) A:羰基的双键性增强 B:羰基的双键性减小 C:羰基的共价键成分增加 D:羰基的极性键成分减小 E:使羰基的振动频率增大 以下五个化合物,羰基伸缩振动的红外吸收波数最大者是(E ) R —C —H 10.共轭效应使双键性质按下面哪一种形式改变( ABCD ) A:使双键电子密度下降 B:双键略有伸长 C:使双键的力常数变小 D.使振动频率减小 E:使吸收光电子的波数增加 1 cm 105 达因cm 1 105 达因cm 1 17.5 105 达因 cm 1 A B C D E 9. A : B : C : D : R —C —C1 II E: Cl —Cl K —CH=C —C — 11.下五个化合物羰基伸缩振动的红外吸收波数最小的是(

相关文档
相关文档 最新文档