文档库 最新最全的文档下载
当前位置:文档库 › 122.进气冷却技术在燃气轮机及联合循环中的应用

122.进气冷却技术在燃气轮机及联合循环中的应用

122.进气冷却技术在燃气轮机及联合循环中的应用
122.进气冷却技术在燃气轮机及联合循环中的应用

进气冷却技术在燃气轮机及联合循环中的应用

杨 洋, 付忠广, 王树国, 靳 涛, 卞 双 

(华北电力大学动力工程系暨电站设备状态监测与控制教育部重点实验室,北京102206) 

摘要:大气温度对燃气轮机及联合循环机组性能具有很重要的影响,当大气温度升高时,燃气轮机机组出力下降,同时机组的效率也会降低。考虑到夏季高温时段燃气轮机机组出力大幅降低,同时电网处于电力需求的高峰期。论文从缓解夏季用电紧张,提高燃气轮机出力的角度出发探讨了燃气轮机进气冷却技术。介绍了几种主要的进气冷却技术形式,以及影响其可行性的各种重要因素,并对各种技术的进行了分析和比较,最后根据各种冷却技术的特点确定了其适用的范围。 

关键词:热能工程;进气冷却;综述;燃气轮机;联合循环 

Cooling Technology and Their Application on 

Gas Turbine and GTCC 

YANG Yang, FU Zhong-guang, WANG Shu-guo, JIN Tao, BIAN Shuang (North China Electric Power University, Dep. of Power Engineering, Key Laboratory of Condition

Monitoring and Control for Power Plant Equipment Ministry of Education Beijing 102206) 

Abstract:The atmosphere temper ature has an important effect on the performance of gas turbine and GTCC unit. When the atmosphere temperature is higher, both the turbine power output and it’s efficiency will be lower. In the day time of summer, with the view of electric power and peak load supplying, the inlet air cooling technology are discussed. S everal inlet air cooling methods and the major factors which influence their feasibility are introduced. Finally, the cooling methods and their application conditions are presented by the analyzed and compared of different methods.

Key words:thermal power engineering;inlet air cooling;summarization;gas turbine;GTCC

燃气轮机以及蒸汽—燃气联合循环其功率输出受大气条件温度的影响比较明显。随着气温的升高,其输出功率将下降,热耗率将增加。对于电厂,夏季是使用电高峰季节,燃机因气温升高,出力下降

作者简介:杨洋(1980~),男,汉族,江苏盐城人、硕士研究生,主要从事联合循环机组运行优化方面的研究,tsgxy98@https://www.wendangku.net/doc/cf9786588.html,;

使调峰的能力受到影响。通过加装进气冷却装置可消除温度影响因子。国内深圳金岗电力有限公司的一台PG654lB燃气轮机加装进气冷却设备后实现了进气温度降低了14℃(大气温度31℃,相对湿度75%),燃气轮机出力增加3.94MW。通过该案例[1]可以发现,对燃机进口空气进行冷却,是提高燃机

358

359

出力,增加高峰负荷电力供给的有效办法。随着我国西气东输和“捆绑招标”工程的发展,燃气轮机及其联合循环发电机组将成为承担电网调峰任务的主力机组,在电力负荷高峰时期提高燃气轮机以及联合循环机组出力的技术必将受到关注。本文将对该技术的应用进行分析,以对联合循环电站的优化运行提供指导。

1 进气冷却技术对燃气轮机以及联合循环的影响 

燃气轮机循环中3T 越高,机组比功GT W 和效率η愈高[2](参见图1)。一般3T 每提高100oC,GT W 约增加20~40%,η约增加0.02~0.05。现在世界上运行的燃气轮机机组燃气初温3T 在1500 oC左右,当燃气初温3T 超过1500 o

C时,提高3T 对改

善经济性的影响有放慢的趋势。 

温比13T T =τ能同时体现燃气初温3T 和大气温度1T 对燃机性能整体的影响。下面分析3T 和1T 对燃气轮机和联合循环的具体影响。 1.1进气冷却技术对燃气轮机的影响分析 

燃气轮机简单循环比功: 

C T GT w w w ?= (1) 

比功相当于图1中1→2、2→3、3→4和4→1

这四个过程包围的面积。 

图1 燃气轮机简单温熵图 Fig 1 Temperature -entropy chart of GT

)]1()1([1???=?=?m m p C T GT T c w w w ππτ (2)

燃气轮机简单循环的有用功率: 

τππτππτλm m

p m

m p T GT T c T c w w ?=????==??1)1()]1()1([/1

1

(3) 式中:π-压气机的压比,即:12P P =π; 

τ-燃气轮机温比,即:13T =τ; 

 

m =k k 1?;k -绝热指数; GT w -理想循环的净比功; 

T w -理想循环透平所做的膨胀比功; C w -理想循环压气机所消耗的比功; λ-有用功系数。 

由式(2)和式(3)可知,当压比保持不变时,随着温比的增加,燃气轮机单位质量工质做工能力以及燃气轮机有用功系数即循环效率必将提高。

下面以GE 公司的9E, 9F 两种功率的机组为例进行分析。表1列举了两种机组的一些重要参数。

表1 GE两种功率机组的性能参数 

Table1 Performance parameter GE turbine 

型号 出力KW 热耗率KJ/KW h 排气流量KG/h 排气温度℃ PG9171(E) 123400 10650 1476890 538 PG9351(FA)

255600

9728

2322830

608

1) 对机组9E,进气温度3T 为1397 K,压气机进口温度取1T 为288 K,τ为4.8507,此时若1T 下降1K,则τ变为4.8676;如果1T 不变,为了让τ=4.8676,则3T 应该为1402 K,即3T 必须提高5K。 

2) 对机组9FA,进气温度3T 为1600K,压气机进口温度取1T 为288 K,τ为5.5556,此时若1T 下降1K,则τ变为5.5749;如果1T 不变,为了让τ=5.5749,则3T 应该为1606 K,即3T 必须提高6 K。可见在温比以及其他条件相同的情况下,降低压气机进气单位温度,比提高燃气轮机进气单位温度,更能提高机组的出力以及机组的效率。如果采取进

气冷却技术,燃气轮机的比功以及效率都能提高。 

图2燃机性能随大气温度的变化[3]

Fig2 Turbine performance vs atmosphere temperature [3]

图2表示随着压气机进口温度的升高,燃气轮机的出力呈下降趋势,而热耗率呈上升的趋势。图中出力和热耗以标准进气温度15℃为基准,若大气温度上升到40℃,则燃气轮机出力只有设计值的83%,热耗将上升到设计值的105%。采用进气冷却技术,可使燃气轮机出力明显增加,热耗率也呈下降趋势。若不考虑环境湿度的变化,则随着环境温度的升高,使用燃气轮机进气冷却技术,燃机出力增加的百分比呈近似直线趋势上升(参见图

3)。 

图3进气冷却对燃机出力及热耗率的影响[3] Fig3 Influence of inlet cooling to gas turbine’s output

and heat consumption rate [3]

1.2进气冷却对联合循环性能的影响 

1.2.1大气温度对联合循环性能的影响 

1) 随着大气温度的升高,联合循环机组的燃气轮机出力和效率都有所下降。 

2) 随着大气温度的升高,冷却水温也会相应升高。汽轮机的背压也会升高,采用冷却塔二次循环冷却的比采用直流冷却的受气温影响更大,汽轮机的出力和效率会有所下降。 

3) 燃气轮机排气温度会随大气温度的升高而升高,这一因素部分抵消了排入余热锅炉的烟气量减少,使汽轮机做功能力的减少有所缓和。大气温度升高对联合循环机组效率的影响较对简单燃气轮机循环效率小。但若考虑冷凝器冷却介质温度随大气温度的变化,大气温度升高会导致效率降低。综合以上三方面的因素,大气温度对联合循环效率的影响如图4所示。

1.2.2进气冷却的效果 

当使用进气冷却技术时,尽管透平排气温度会降低,但是进入余热锅炉的排气流量和总的排气热能增加了,从而增加了余热锅炉蒸汽产量。因而联合循环电站将因燃气轮机进气温度下降而增大的出力高于燃气轮机单循环运行方式因其进气温度下降而提高的出力。如果余热锅炉使用补燃式燃烧器增加

蒸汽产量,则较多的透平排气可减少燃料的消耗。 

图4 大气温度对联合循环发电效率的影响 

(T3=1288℃)[4]

Fig4 Influence of atmosphere air temperature to GGCT

(T3=1288℃)[4] 

2 冷却技术的应用 

对压气机进口空气进行冷却,可利用的冷却方式有三种。第一种方式是电制冷,即靠电能的形式来冷却进口空气;第二种方式是利用蒸汽或燃气余热制冷,即通过联合循环的蒸汽抽汽或简单循环的燃机排气实现制冷;第三种方式是水直接冷却,即依靠水直接将空气冷却。这三种冷却技术在实践中都有应用,具体使用哪种技术需要分析三种冷却技术的特点。下面对三种技术的特点及其冷却效果进行分析。

2.1电制冷 

压气机进气冷却采用电制冷时,根据制冷的时间特性又可以分为连续制冷与夜间蓄冰制冷。

连续制冷一般是采用压缩氨等制冷剂来实现对进气的冷却,根据需要随时可以启动制冷系统对进气制冷,使进口空气温度保持在一个理想值。

夜间蓄冰制冷一般在夜间电力供应过剩时利用电能进行制冷蓄冰,白天用电高峰和气温较高时再利用冰冷却压气机的进气。

360

2.1.1连续制冷 

采用燃气轮机或联合循环电厂自身发出的电力,驱动氨基压缩式制冷机产生低温冷水,通过闭式循环回路送到燃气轮机进气道内的鳍片管换热器中,降低燃气轮机进气温度。

这种冷却方式的优点是初投资较低,且体积小,占地少,制冷不受环境空气相对湿度的限制,制冷深度高,可将进气冷却至6℃左右。溴化锂吸收式制冷一般只能将进气冷却至15℃左右。

由于这种冷却方式不受环境空气相对湿度的影响,只要冷源有足够的制冷能力就可以将进气冷却到合适的最佳进气温度,因此在潮湿炎热的地区采用这种冷却方式的较多。但这种冷却方式不管用电峰谷时段都要消耗大量的电能,特别是在用电高峰期时,运行成本将会很高。由于电制冷的效率随着冷负荷的下降而下降,若按燃气轮机在夏季白天的运行工况设计制冷容量,则在其他季节制冷时效率较低,所以会影响到机组运行的经济性。

以9F机组标准工况出力256MW,效率36.9%为例进行计算,当大气温度为38℃时,机组出力为222.1MW,效率为35.081%,若把进气冷却到5℃,机组出力将变为270MW,效率为37.691%,除去制冷所消耗的电能,机组实际净出力可增加3.6万KW 左右。38℃时机组发电燃耗为633.1MW,而5℃发电燃耗为716.4MW,即发电燃耗增加了8.3万KW。也就是说电厂付出8.3万KW的燃料能量获得了3.6万KW的电能,效率43.4%较38℃时机组效率相对要高23.7%,所以在经济性上还是比较划算的。2.1.2夜间蓄冰制冷 

由于夜间环境温度较低,机组效率较高,所以机组本身的发电成本较低,蓄冰制冷就是利用电网中夜晚低谷电的廉价优势,将谷电的能量转化为冰的冷量,等到峰电时再将冷量放出来就可以提高机组出力,缓解用电的紧缺。

这种制冷方式在实行峰谷电价的地区最能体现优势。以广东地区为例,夜间利用的是比燃气轮机自身发电成本还低的谷电,白天可以得到大概3倍于谷电的高价峰电,除了经济的收益外,也可以获

得电网调峰的效益。澳大利亚达尔文市海峡岛电厂安装了5台6B燃气轮机,每台机组设计出力为36MW,由于环境温度高达37℃,实际出力不足32MW,采用蓄冰冷却后,进气温度降至9℃,高峰出力达到40MW,等于增加1台40MW燃气轮机机组。随着电力逐步实行峰谷电价和竞价上网,高峰时段能够增加发电出力的技术将会为发电企业带来巨大利益。

同样以9F机组为例,当大气温度从38℃降至标准工况15℃时,机组空气流量为623.7 Kg/S,空气的比热容为1.005KJ/Kg?K,温度降低23℃,冷却进气需要冷量为14417 KWh,取制冷COP为4,则所需制冷耗电量为3604KWh。若晚间蓄冰时低负荷运行机组效率为35.5%,则制冷所需耗燃料为10152KW,整个系统的发电燃耗为703MW,除去制冷的辅机耗电量2560KW,机组净出力为253.44MW,即机组降温后出力增加了3.13万KW,发电燃耗增加了6.99万KW,所得效率为44.78%。可见和连续制冷相比蓄冰制冷的效率更高些,同时由于蓄冰制冷是利用的夜间谷电,而连续制冷会消耗峰电,因此蓄冰制冷有较大的优势,峰谷电价差越大的地区,这种优势越明显。

2.2蒸汽或燃气余热制冷 

利用联合循环电厂中余热锅炉的尾部余热产生低压蒸汽或高温热水,或利用联合循环电厂中汽轮机的低压抽汽,送入溴化锂吸收式制冷机,产生5℃的冷水。冷水再送入燃气轮机进气冷却鳍片管中冷却进气。该方式有以下特点:

1) 增加一套蒸汽或热水系统,系统稍复杂。

2) 溴化锂制冷比电制冷压缩机占地稍大,但比冰蓄冷占地要小。

3) 制冷效率在不同季节无明显变化,一年四季都能使用,机组运转部件少、噪声低、振动小、无污染、无爆炸危险、结构简单、制造和使用维护方便、机组安置要求低、冷量调节范围广、对外界环境变化的适应性强等一系列优点。

这种冷却方式最大的优点是充分利用了电厂低品位的热量,而且相对于电压缩制冷,耗电节省了95%,毫无疑问,在经济上是最划算的,一次投资可

361

常年受益。研究表明[5],当燃气轮机的进口空气从40℃冷却到6℃,除去一些辅助设备的用电,可以使发电机组的输出功率提高26%(原理图如图5所示)。

图5 吸收式制冷原理图 

Fig 5 absorption refrigeration principle diagram 2.3水直接冷却 

水直接冷却包括蒸发冷却和喷雾冷却。该方式投资省,但冷却效率不高,不适用于高湿度气候地区。2.3.1蒸发式冷却 

蒸发式冷却利用水在空气中蒸发时所吸收的潜热来降低空气温度。该冷却方式虽然蒸发冷却系统简单,投资省,运行维护方便,耗功少,但受环境空气相对湿度的限制,冷却效率较低,目前,该冷却方式的冷却效率最高只有90%左右[6]。在空气湿度为70%~80%时,可降低进气温度4~6℃,因为需要较大的换热表面积,以便让空气与水有足够的接触时间。该冷却方式对燃机进气会产生阻力导致压损。上述缺点影响了它的广泛使用。通常这种冷却方式比较适用于我国干燥炎热的地区。

2.3.2喷雾冷却

喷雾冷却是利用喷雾器把水喷到空气中,加快了换热速率。该系统在气候干燥地区运行效果比较好,因为它们可将进气冷至接近湿饱和度。但在冷却过程中水滴会随气流进入压气机,所以为了机组的安全寿命,所用水必须是除盐水。

3 结论 

采用进气冷却技术,可有效地提高燃气轮机及联合循环机组的出力和效率,取得良好的经济效益和电网调峰效益,使透平出力对环境温度的依赖性

明显下降。冷却方式的选择,要考虑用户的特点,

根据机组所在地区以及机组本身的具体情况来进行经济性评估,根据以下的原则来确定冷却方式:1)对常年温差较大地区,可以利用蒸汽或燃气余热制冷。因为其在制冷负荷变化范围比较大时效率基本保持一个较高的水平。可以考虑用夜间蓄冰制冷,充分利用夜间温度低,机组经济性好的时候蓄冰。而且常年温差大的地区相对来说峰谷电价的比例会高些。

2)对相对湿度很大的地区,只能考虑电制冷和蒸汽或余热制冷,水直接冷却的效果很差,达不到要求。对湿度很低且水资源丰富的地区可以选择水直接冷却。

3)峰谷电价差很大的地区,可考虑蓄冰制冷,但如果峰谷电价差达不到一定值时,可能需要考虑选用其他的冷却方式,这需要根据当地具体峰谷电价比来确定。

4)水资源比较紧张的地区,主要考虑电制冷。由于吸收式制冷所需循环水量大,冷却水耗量大约为压缩式的两倍,一般不选择蒸汽或燃气余热制冷。

5)当要求机组进气冷却的深度很高时,一般考虑用制冷效果最好的电制冷。

6)当机组用作调峰的时间较多时,由于机组满负荷运行的时间相对较少,如果用连续电能压缩制冷设备,虽然初投资成本相对较低,但由于使用率不高,而且压缩设备是运转设备,维护费用较高,应用效果会较差。可考虑蒸汽或燃气余热制冷或水

直接冷却。

参考文献 

[1] 郑叔琛.浅述燃气轮机的进气冷却技术[J] .南京工程学

院学报,2002,2(2):1-8.

[2] 邹新林.燃气轮机进气制冷装置的理论依据和实际效能

[J] .能源研究与信息,1998,14(2):31-34.

[3] 何语平.采用进气冷却技术提高燃气轮机的出力和热效

率[J] .浙江电力2004,(3):25-29

[4] 王树国. 燃气-蒸汽联合循环电站机组运行优化研究

[D] .华北电力大学硕士学位论文,2005,66

[5] 宋玫峰.单压吸收式制冷循环[J] .节能,2004,(3):

25-27 

[6] 尹琦岭. 燃气轮机进气冷却技术及应用[J] .化工科技

市场,2004,(3):22-26

362

整体煤气化联合循环发电

整体煤气化联合循环(IGCC-Integrated Gasification Combined Cycle)发电系统,是将煤气化技术和高效的联合循环相结合的先进动力系统。它由两大部分组成,即煤的气化与净化部分和燃气-蒸汽联合循环发电部分。第一部分的主要设备有气化炉、空分装置、煤气净化设备(包括硫的回收装置),第二部分的主要设备有燃气轮机发电系统、余热锅炉、蒸汽轮机发电系统。IGCC的工艺过程如下:煤经气化成为中低热值煤气,经过净化,除去煤气中的硫化物、氮化物、粉尘等污染物,变为清洁的气体燃料,然后送入燃气轮机的燃烧室燃烧,加热气体工质以驱动燃气轮机作功,燃气轮机排气进入余热锅炉加热给水,产生过热蒸汽驱动蒸汽轮机作功。其原理图见下图IGCC技术把高效的燃气-蒸汽联合循环发电系统与洁净的煤气化技术结合起来,既有高发电效率,又有极好的环保性能,是一种有发展前景的洁净煤发电技术。在目前技术水平下,IGCC发电的净效率可达43%~45%,今后可望达到更高。而污染物的排放量仅为常规燃煤电站的1/10,脱硫效率可达99%,二氧化硫排放在25mg/N m3左右。(目前国家二氧化硫为1200mg/Nm3),氮氧化物排放只有常规电站的1 5%--20%,耗水只有常规电站的1/2-1/3,利于环境保护。 IGCC具有以下一些突出优点:(1)发电效率高,目前可达45%,继续提高的潜力大。(2)与传统的燃煤方式不同。它能实现98%以上的污染物脱除效率,并可回收高纯度的硫、粉尘和其他污染物在此过程中一并被脱除。(3)用水量小,约为同等容量常规火电机组的三分之一至二分之一。(4)通过采用低成本的燃烧前碳捕捉技术可实现零碳排放。(5)能与其他先进的发电技术如燃料电池等结合,并能形成制氢、化工等多联产系统。 气化炉、燃气轮机、空气分离装置和余热锅炉是IGCC关键设备。气化炉方面,我们认为壳牌气化炉具有产气热值高、煤种适应性广、停机维护时间短等特点,将成为未来IGCC 将推广的重要炉型。燃气轮机方面,适应煤气的低热值的燃气轮机将成为首选机型。空气分离装置方面,目前仍以深冷技术为主,未来将有可能在PSA变压吸附空分技术方面有所突破。 整体煤气化联合循环发电的分类 由图中可以看出IGCC整个系统大致可分为:煤的制备、煤的气化、热量的回收、煤气的净化和燃气轮机及蒸汽轮机发电几个部分。可能采用的煤的气化炉有喷流床(e ntrained flow bed)、固定床(fixed bed)和流化床(fluidized bed)三种方案。在整个IGCC的设备和系统中,燃气轮机、蒸汽轮机和余热锅炉的设备和系统均是已

联合循环燃气轮机发电厂简介

联合循环燃气轮机发电厂简介 联合循环发电:燃气轮机及发电机与余热锅炉、蒸汽轮机共同组成的 循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。形式有燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机各自推动各自发电机的多轴联合循环。胜利油田埕岛电厂采用的是美国GE公司的MS9001E然气轮机,其热效率为33.79%,余热锅炉为杭州锅炉厂的立式强制循环余热锅炉。1.燃气轮机 1.1 简介燃气轮机是一种以空气及燃气为工质的旋转式热力发动机,它的结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三部分: 1 、燃气轮机(透平或动力涡轮); 2、压气机(空气压缩机); 3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空气混合,在定压下 进行燃烧。生成的高温高压烟气进入燃气轮机膨胀作工,推动动力叶片高速 旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命 周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。重型燃 气轮机为工业型燃机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。埕岛电厂采用的 MS9001E燃气轮发电机组是50Hz, 3000转 /分,直接传动的发电机。该型燃气轮发电机组最早 于 1987年投入商 业运行,基本负荷燃用天然气时的功率为123.4MW热效率为 33.79%,排气温度539C,排气量1476X103公斤/小时,压比为12.3,燃气初

燃气轮机的空气进气和排气系统

燃气轮机的空气进气和排气系统 发表时间:2017-12-26T15:07:14.253Z 来源:《防护工程》2017年第21期作者:杨士博徐有宁[导读] 本文基于对燃气轮机空气的进气和排气系统,空气质量对燃气轮机的运行性能和可靠性有着巨大的影响。 沈阳工程学院能源与动力工程学院辽宁沈阳 110136 摘要:本文基于对燃气轮机空气的进气和排气系统,空气质量对燃气轮机的运行性能和可靠性有着巨大的影响,文中着重对进气系统的结构、工作规程,以及空气中的大颗粒悬浮物会对进气设备造成腐蚀和污染,进气系统的噪音污染进行了详细描述。关键词:进气系统排气系统进气管道和消音 燃气轮机是以空气为工质,其进口空气质量和纯净度是提高机组性能和可靠性的前提。因为空气中或多或少包含各种无机物和有机物颗粒杂质,在燃气轮机通流部分中将产生侵蚀、积垢和腐蚀,但一般不会同时发生。对于电站燃气轮机,灰尘颗粒对叶片的侵蚀是较为突出的问题,对机组的寿命有很大影响。 1、空气的进气系统 空气的进气系统包括以下部分:一带有防风雨罩的过滤器房,一个采用高效过滤元件的自动清洁的过滤系统,以及一个进气管路系统。采用了向上和向前这一方式的安排,过滤器房处于进气管道支托结构的顶部上面。进气管路系统与进口的放气加热组合件一起也安装在进气管道支托结构的上面。空气进入过滤器房,通过过道,声学的消声器,进气的加热组合件,垃圾杂质的筛网,然后通过进口的压力通风部位进入至汽轮机的压气机。过滤器房处于抬高位置的安排使系统的结构紧凑扎实,可使过滤器房中尘屑的拾取量达到最少进气系统的结构中所采用的材料和涂料,在设计上考虑到使之免于维修保养。过滤器房的外部和内部的所有面积上(因暴露于空气气流中)以及管路上都涂以一种有防腐和保护作用的无机的含锌底层涂料和环氧树脂的外层涂料。进口处的消音打孔板是用不锈钢制作而成。垃圾杂质的筛网也是不锈钢制成。所有支架的钢材都经过镀锌处理。 2、进口部分 过滤器房包括防风雨罩(其后是水分的分离器)以及一个高效的自动清洁过滤站。防风雨罩是防备大雨和防止空气中大的污染物质进入到进口处的过滤器房。方法是把空气向上引入速度则低于下落雨滴和空气中大杂质落下时达到终点的速度。对于沿海的、水上的、离岸面向海面的平台上使用场合中,建议在防护罩中装有水分分离器,在这些地方的空气中,海水中有高度的盐分能成为一个问题或者有可能需要去除掉潜在的有腐蚀性的液体。自动清洁过滤元件装在垂直的尘格板上。它们是放在一薄钢板的封闭室内,是按照确当的气流流通安排和免受天气影响而设计的。当过滤元件上载满了尘屑以及通过过滤介质后的压力降达到了一个预定数值(用一压力微分开关测量)时,换向一脉动型自动清洁装置启动。采用了一自动程控器控制,过滤元件组以规定的次序,依次进行清洁。程控器操纵着一组电磁阀,每一只控制着几个过滤器的清洁。在清洁进行时,每个阀门释放一短暂的脉冲高压空气。这一脉冲空气冲击着过滤网,造成一短暂的逆向气流,这一气流便积聚在网上的尘屑松开而跌落入存放箱中。在清洁循环完成后,尘屑然后被排放出。清洁循环会一直连续进行,直至尘屑被充分地清除掉并且该部分的压力降到达了压力微分开关上较低的一个设置值才停止。 3、进气管道和消音 空气的进气管道将空气气流从示波器房的出口导入燃气轮机压气机的进口。它包括 8 英尺消音,4 英尺结合有进口放气加热组合件的有消音衬里的管路,一个有消音衬里的90°弯管(内有杂质过滤网),一个有消音衬里的挠性连接口,以及进口处的压力通风部分。进口的消音设施包含着一有声学上处理过的衬里的导管,它含有用矿石棉构成的绝缘挡板,包裹着玻璃纤维布,并且用打着孔眼的不锈钢钢板封装。消音管道内壁的经声学上处理的衬里和消声装置的管路下游有着相似的结构。挡板的垂直-平行外形结构是为了消除压气机的基本音频而特殊设计的,同时也可降低其他频率的噪音水平。采用了一个压气机的放气加热装置后,一部分压气机排放出空气气流被用来加热进入的空气。这一点在汽轮机启动,停机和其他操作状态下可加强汽轮机的可操作性。进口放气加热装置包括一组不锈钢管,装至紧接在消音段后面的无衬里管路上,管路外的一集合总管将空气分配至伸入至管路的这些垂直的不锈钢管,在管路中,排放出的空气通过这些分配管子上所集合成的一系列孔分散至进入的空气气流中。弯管内窝藏着 2 件固定的不锈钢杂物滤网。该杂物滤网的目的在于保护压气机免受从过滤器房、管路或由于维修工作中的过失而进入弯管的硬件的散件。位于杂物滤网下游的一个可移动的出入面板用于清除和检查的目的。有消音处理衬里的膨胀接头将进气装置与燃气轮机隔开。进口处的压力通风乃是进气管路与燃气轮机空压机之间的连接点。进气管路系统也包含有露点温度传感器的设置,该传感器用以监测进口放气加热组合件的下游空气气流,可使与进口放气加热装置有相联系的工作性能的退化降低最少,通过与Mark V 的信息传递,进气系统中所有部分的相对湿度都处于结霜点以下。 4、结论 本文主要对燃气轮机的空气的进气和排气系统做了详细的描述,分析了空气质量对燃机运行和可靠性,对设备的污染和受损有什么影响。为了能够发挥出设备运行性能和可靠性的,必须配备良好的进气系统,对进入机组的空气进行过滤,必须滤掉其中的杂质,这一个能起自动清洁作用的过滤系统(装置)可以容易地和有效地除去悬浮于空气中的 10μm 或更大一些的颗粒。这些颗粒一般来说当存在有足够的数量时是造成显著腐蚀和压气机被弄脏的原因。与进气系统相联系的噪音污染问题是大家所关心的。燃气轮机运行时在进气管路中产生了一相当大的噪音。通过装在管道中成为一组成部分的消音器的应用,使噪音削弱。 参考文献: 【1】、焦树建.燃气轮机与燃气-蒸汽联合循环装置上/下[M].北京:中国电力出版社,2007.8 【2】、杨顺虎.燃气-蒸气联合循环发电设备及运行[M].北京:中国电力出版社,2003. 【3】、黄兵,魏海霞,陈涛.初效过滤器在燃机进气系统上的应用[J].冶金动力,2(4)57-59. 【4】、骆桂英,俞立凡.燃气轮机进气过滤系统的运行[J].发电设备,2008(5)398-403.

燃气轮机与联合循环-姚秀平-课后题答案-第一单元

1. 从高温热源吸收热量:a-2-3-4-5-b-a; 对外做功:1-2-3-4-5-6-1; 向低温热源放出热量:a-2-3-4-5-b-a; 效率:对外做功:1-2-3-4-5-6-1与从高温热源吸收热量:a-2-3-4-5-b-a的间接比。 2. 可用能 不可用能 1 2 3 4 a b T S 从高温热源吸收热量:a-2-3-b-a; 对外做功:1-2-3-4-1; 向低温热源放出热量:a-1-4-b-a; 效率:对外做功:1-2-3-4-1与从高温热源吸收热量:a-2-3-b-a间接比。 3 和 4、从热力学角度看,汽轮机循环利用了蒸汽可在常温下凝结的特性,达到了较低的工质平均放热温度,但工质平均吸热温度不高。燃气轮机循环的工质平均吸热温度高,但工质平均吸热温度不低。 汽轮机发展方向:开发新材料以便把主蒸汽参数从亚临界水平逐步提高到超超临界水平;采用两次再热等手段改进热力系统及设备的设计。其中,主要方向为提高工质平均吸热温度。燃气轮机发展方向:提高燃气平均吸热温度。 5、燃气轮机是工作于高温区的一种热机,易于利用高品位的热量; 汽轮机是工作于低温区的一种热机,易于利用低品位的热量; 而联合循环按照热量梯级利用的原则将燃气轮机和汽轮机结合起来,可以将高品位和低品位的热量同时利用起来。由于联合循环同时利用了燃气轮机循环平均吸热温度高和汽轮机

循环平均放热温度低的优点,又同时克服了两者的缺点,所以可以达到较高的循环效率。 6、ISO 基本功率是指在国际标准化委员会所规定的ISO 环境条件下燃汽轮机连续运行所能达到的功率。ISO 环境条件:温度15℃,压力0.01013MPa 相对湿度60%。 7、燃气轮机与汽轮机同轴,共同驱动一台发电机的联合循环机组称为单轴机组; 燃气轮机与汽轮机不同轴,各驱动一台发电机的联合循环机组成为多轴机组。 8、前置循环是工作于高温区,输入大部分热量的循环,它会产生大量的余热; 后置循环是工作于低温区以前置循环的余热为主要热源的循环。 两者通常用换热设备耦合在一起,最广泛的应用是燃气——蒸汽联合循环。 9、最基本的三种联合循环形式:余热锅炉型、补燃余热锅炉型和增压锅炉型。 余热锅炉型: 2 1C GT B 燃料 3 G 4 G 5 6 HRSG 7811 P CC 10 ST 9 燃气轮机可用能2T s 4 3 1 611 7 5 8 9 10b d c a 汽轮机可用能 燃气轮机子循环:从高温热源吸收热量:a-2-3-c-a ; 对外做功:1-2-3-4-1; 通过余热锅炉传向谁的热量:b-5-4-c-b ; 向外界放出了热量:a-1-5-b-a ; 汽轮机子循环:从余热锅炉吸收的热量:b-6-7-8-9-d-b ,与面积b-5-4-c-b 相等; 对外做功:6-7-8-9-10-11-6;通过凝汽器向外界放出的热量:b-11-10-d-b ; 补燃余热锅炉型: P C G 12 B 燃料 84 HRSG GT 3 6 7 911 ST 5 CC 10G 燃料a 1 2b 11 65 7 T c d s 10 8 4 9 3 12 汽轮机可用能 燃气轮机可用能 增压锅炉型: P C G 12燃料 84 PCB GT 367 9 11ST 5 CC 10G 12 ECO 汽轮机可用能 1 a 211 b 65 7T 燃 机可用能 3 10 c d s 8 412 9 13

联合循环燃气轮机发电厂简介(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 联合循环燃气轮机发电厂简介 (通用版) Safety management is an important part of production management. Safety and production are in the implementation process

联合循环燃气轮机发电厂简介(通用版) 联合循环发电:燃气轮机及发电机与余热锅炉、蒸汽轮机共同组成的循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。形式有燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机各自推动各自发电机的多轴联合循环。胜利油田埕岛电厂采用的是美国GE公司的MS9001E燃气轮机,其热效率为33.79%,余热锅炉为杭州锅炉厂的立式强制循环余热锅炉。 1.燃气轮机 1.1简介 燃气轮机是一种以空气及燃气为工质的旋转式热力发动机,它的结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三部分:1、燃气轮机(透平或动力涡轮);2、压气机(空气压缩机); 3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后

送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空气混合,在定压下进行燃烧。生成的高温高压烟气进入燃气轮机膨胀作工,推动动力叶片高速旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。重型燃气轮机为工业型燃机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。 埕岛电厂采用的MS9001E燃气轮发电机组是50Hz,3000转/分,直接传动的发电机。该型燃气轮发电机组最早于1987年投入商业运行,基本负荷燃用天然气时的功率为123.4MW,热效率为33.79%,排气温度539℃,排气量1476×103公斤/小时,压比为12.3,燃气初温为1124℃,机组为全自动化及遥控,从启动到满载正常时间为约20分钟,机组使用MARKⅤ控制和保护系统.

整体煤气化联合循环发电

整体煤气化联合循环发电(IGCC)简介 一整体煤气化联合循环的工作过程 整体煤气化联合循环(IGCC-Integrated Gasification Combined Cycle)发电系统,是将煤气化技术和高效的联合循环相结合的先进动力系统。它由两大部分组成,即煤的气化与净化部分和燃气-蒸汽联合循环发电部分。第一部分的主要设备有气化炉、空分装置、煤气净化设备(包括硫的回收装置),第二部分的主要设备有燃气轮机发电系统、余热锅炉、蒸汽轮机发电系统。IGCC的工艺过程如下:煤经气化成为中低热值煤气,经过净化,除去煤气中的硫化物、氮化物、粉尘等污染物,变为清洁的气体燃料,然后送入燃气轮机的燃烧室燃烧,加热气体工质以驱动燃气透平作功,燃气轮机排气进入余热锅炉加热给水,产生过热蒸汽驱动蒸汽轮机作功。其原理图见下图: 二整体煤气化联合循环的特点 IGCC(整体煤气化联合循环)发电技术是当今国际上最引人注目的新型、高效的洁净煤发电技术之一。该技术以煤为燃料,通过气化炉将煤转变为煤气,经过除尘、脱硫等净化

工艺,使之成为洁净的煤气供给燃气轮机燃烧做功,燃气轮机排气余热经余热锅炉加热给水产生过热蒸汽,带动蒸汽轮机发电,从而实现了煤气化燃气蒸汽联合循环发电过程。 IGCC 发电技术把联合循环发电技术与煤炭气化和煤气净化技术有机的结合在一起,具有高效率、清洁、节水、燃料适应性广,易于实现多联产等优点,符合二十一世纪发电技术的发展方向。 1、IGCC将煤气化和高效的联合循环相结合,实现了能量的梯级利用,提高了采用燃煤技术的发电效率。目前国际上运行的商业化IGCC电站的供电效率最高已达到43%,与超超临界机组效率相当。当采用更先进的H系列燃气轮机时,IGCC供电效率可以达到52%。 2、IGCC对煤气采用“燃烧前脱除污染物”技术,煤气气流量小(大约是常规燃煤火电尾部烟气量的1/10),便于处理。因此IGCC系统中采用脱硫、脱硝和粉尘净化的设备造价较低,效率较高,其各种污染排放量都远远低于国内外先进的环保标准,可以与燃烧天然气的联合循环电厂相媲美。 目前常规燃煤电厂脱硫主要采用尾部脱硫的方法,脱硫所产出的副产品是石膏。IGCC 一般采用物理/化学方式脱硫,其脱硫效率可达99%以上,脱硫产物是有用的化工原料-硫磺。常规燃煤电厂目前没有有效的脱除CO2的方法,IGCC具有实现CO2零排放的技术潜力。在IGCC系统中可以对煤气中的CO进行变换,生成H2和CO2,H2可以作为最清洁的燃料(如燃料电池),CO2可以进行分离、填埋回注等,以实现CO2零排放。 3、IGCC的燃料适应性广,褐煤、烟煤、贫煤、高硫煤、无烟煤、石油焦、泥煤都能适应。采用IGCC发电技术,可以燃用我国储量丰富、限制开采的高硫煤,使燃料成本大大降低。 4、IGCC机组中蒸汽循环部分占总发电量约1/3,使IGCC机组比常规火力发电机组的发电水耗大大降低,约为同容量常规燃煤机组的1/2~2/3左右。 5、IGCC的一个突出特点是可以拓展为供电、供热、供煤气和提供化工原料的多联产生产方式。IGCC本身就是煤化工与发电的结合体,通过煤的气化,使煤得以充分综合利用,实现电、热、液体燃料、城市煤气、化工品等多联供。从而使IGCC具有延伸产业链、发展循环经济的技术优势。 三整体煤气化联合循环的发展 1972年在德国Ltinen酌斯蒂克电站投运了世界上第一个以增压锅炉型燃气一蒸汽联合循环为基础的IGCC电站,该电站的发电功率为170MW,实际达到的供电效率为34%,采用以空气为气化剂的燃煤的固定床式的Lurgi气化炉。显然,这个电站开创了煤在燃气一蒸汽联

9E燃气轮机联合循环问题总结

9E燃气轮机联合循环发电厂必须知道 1.有差无差系统 (1) 2.除氧装置 (1) 3.燃机转速代号和对应转速比例 (2) 4.省煤器的再循环管的主要作用有二点: (2) 5.电缆先放电验电再装设接地线 (3) 6.主变接线方式 (3) 7. 电机缺相运行的现象与原因 (3) 8. 9E燃机开停机过程中FSR的变化 (4) 9. 操作过电压 (5) 10. 发电机中性点0PT的作用,出现异常有何现象 (5) 11. 发电机运行过程中机端电压升高和降低有哪些危害 (6) 12. 发电机转子接地 (7) 13. 进相运行: (8) 14. 励磁控制系统的限制器的分类 (9) 15. 无功 (11) 16. 主励磁机为什么是100赫兹 (13) 1.有差无差系统 简单而言就是看是否能求稳态误差,如果能求则是有差系统,否则是无差系统。 2.除氧装置 本锅炉配置的除氧装置由除氧器、给水箱和汽水分离器三大部件组成。其中除氧器和水箱对给水起到了除氧和蓄水的作用,汽水分离器主要是负责对除氧蒸发器来的汽水混合物进行分离供除氧器除氧使用。 除氧器立式布置在除氧水箱之上,除氧器顶部设有配水管和14只喷嘴,凝结水经喷头雾化成水雾后与蒸汽充分接触后加热变成饱和水。此时水中绝大部分氧气及其他不凝气体由于再也无法溶解于饱和水中而被逸出,最后由除氧器顶部排气管排出,以此达到一次除氧效果。经一次除氧的水由布水盘均匀地淋洒到乱堆的鲍尔环填料表面,使其表面积再一次增大,与除氧器下部进来蒸汽充分接触以达到深度除氧的效果。

3.燃机转速代号和对应转速比例 4.省煤器的再循环管的主要作用有二点: 第一点,启动时省煤器内的水是不流动的,而热烟气不断流过省煤器,将热量传给省煤器内的水,这样就有可能使省煤器内水局部汽化。 第二点,某些运行条件下,当省煤器内水温太低,容易引起管外壁结露,特别是烟气中含有氧化硫或氧气都会腐蚀管子。提供温度高的循环水,可以提高省煤器内水温,防止腐蚀。

整体煤气化联合循环发电技术

整体煤气化联合循环发电 简介 整体煤气化联合循环(IGCC- Integrated Gasification Combined Cycle)发电系统,是将煤气化技术和高效的联合循环相结合的先进动力系统。它由两大部分组成,即煤的气化与净化部分和燃气-蒸汽联合循环发电部分。第一部分的主要设备有气化炉、空分装置、煤气净化设备(包括硫的回收装置),第二部分的主要设备有燃气轮机发电系统、余热锅炉、蒸汽轮机发电系统。IGCC的工艺过程如下: 煤经气化成为中低热值煤气,经过净化,除去煤气中的硫化物、氮化物、粉尘等污染物,变为清洁的气体燃料,然后送入燃气轮机的燃烧室燃烧,加热气体工质以驱动燃气透平作功,燃气轮机排气进入余热锅炉加热给水,产生过热蒸汽驱动蒸汽轮机作功。 IGCC技术把高效的燃气-蒸汽联合循环发电系统与洁净的煤气化技术结合起来,既有高发电效率,又有极好的环保性能,是一种有发展前景的洁净煤发电技术。在目前技术水平下,IGCC发电的净效率可达43%~45%,今后可望达到更高。而污染物的排放量仅为常规燃煤电站的,脱硫效率可达99%,二氧化硫排放在25mg/Nm3左右。(目前国家二氧化硫为1200mg/Nm3),氮氧化物排放只有常规电站的15%--20%,耗水只有常规电站的-,利于环境保护。 分类及作用 IGCC整个系统大致可分为: 煤的制备、煤的气化、热量的回收、煤气的净化和燃气轮机及蒸汽轮机发电几个部分。可能采用的煤的气化炉有喷流床(entrained flow bed)、固定床(fixed bed)和流化床(fluidized bed)三种方案。在整个IGCC的设备和系统中,燃气轮机、蒸汽轮机和余热锅炉的设备和系统均是已经商业化多年且十分成熟的产品,因此IGCC发电系统能够最终商业化的关键是煤的气化炉及煤气的净化系统。具体来说,对 气化炉及煤气的净化系统的要求

燃气轮机及其联合循环课后题答案(姚秀平主编版)上海电力学院

第一章 3和4、从热力学角度看,汽轮机循环利用了蒸汽可在常温下凝结的特性,达到了较低的工质平均放热温度,但工质平均吸热温度不高。燃气轮机循环的工质平均吸热温度高,但工质平均吸热温度不低。 汽轮机发展方向:开发新材料以便把主蒸汽参数从亚临界水平逐步提高到超超临界水平;采用两次再热等手段改进热力系统及设备的设计。其中,主要方向为提高工质平均吸热温度。燃气轮机发展方向:提高燃气平均吸热温度。 5、燃气轮机是工作于高温区的一种热机,易于利用高品位的热量;汽轮机是工作于低温区的一种热机,易于利用低品位的热量;而联合循环按照热量梯级利用的原则将燃气轮机和汽轮机结合起来,可以将高品位和低品位的热量同时利用起来。由于联合循环同时利用了燃气轮机循环平均吸热温度高和汽轮机循环平均放热温度低的优点,又同时克服了两者的缺点,所以可以达到较高的循环效率。 6、ISO基本功率是指在国际标准化委员会所规定的ISO环境条件下燃汽轮机连续运行所能达到的功率。ISO环境条件:温度15℃,压力0.01013MPa,相对湿度60%。 7、燃气轮机与汽轮机同轴,共同驱动一台发电机的联合循环机组称为单轴机组;燃气轮机与汽轮机不同轴,各驱动一台发电机的联合循环机组成为多轴机组。 8、前置循环是工作于高温区,输入大部分热量的循环,它会产生大量的余热;后置循环是工作于低温区以前置循环的余热为主要热源的循环。两者通常用换热设备耦合在一起,最广泛的应用是燃气——蒸汽联合循环。 9、最基本的三种联合循环形式:余热锅炉型、补燃余热锅炉型和增压锅炉型。 10、余热型:优点是技术成熟。系统简单、造价低、启停速度快。缺点是余热锅炉效率低、汽轮机的功率和效率也低,所以不仅机组功率不大,而且效率也不高。 补燃型:优点是在燃气轮机排气温度较低的情况下,可使蒸汽参数及流量大幅度提高,从而使机组的容量增大、效率提高;同时机组的变工况性能也可得到改善。缺点是它并不是纯粹能量梯级利用意义上的联合循环,其中或多或少有一部分热量参与了汽轮机循环。所以,他只是在因蒸汽参数受限而无法采用高参数大功率汽轮机的条件下才可能优越于纯粹能量梯级利用意义上的余热锅炉型联合循环。 增压型:优点是在燃气轮机排气温度较低的情况下,可使蒸汽参数及流量不受限制,从而可达到较大的机组容量和较高的机组效率;同时由于燃烧是在较高的压力下进行的,且烟气的质量流速较高,所以锅炉的传热效率高,所需的传热面积小,锅炉尺寸紧凑。缺点是系统复杂、制造技术要求高、燃气轮机不能单独运行,同时兼有和补燃型类似的缺点。 综上可知,余热锅炉型联合循环将是今后的发展方向。 11、增压流化床联合循环PFBCC和整体煤气化联合循环IGCC是最有发展前途的两种燃煤型联合循环。 12、最基本的优点:高效率、低污染、低水耗。 13、 14、配置旁通烟道的好处: A、启停时,不必对燃气轮机、余热锅炉和汽轮机的工作状态进行严格协调; B、增加运行调节的灵活性,并方便临时性的检修及事故处理; C、必要时,可使燃气轮机维持单循环运行; D、可对整个工程分段建设、分期投运,从而可合理注入资金,更快地获得回报。 但配置旁通烟道需要增加投资,并且即使在正常运行的情况下,旁通挡板处也往往存在烟气泄漏损失,所以不再配置。

整体煤气化联合循环IGCC发电系统性能计算与分析

整体煤气化联合循环(I GCC)发电 系统性能计算与分析 白玉峰 (安徽华能巢湖发电有限公司,安徽巢湖230000) 摘 要:针对整体煤气化联合循环(I GCC )发电系统在技术、经济、环保综合性能上具有较大的优势,阐述了 I GCC 发电系统分类,对4种采用空气气化型的I GCC 发电系统进行了性能计算和参数分析,得到了供电效率与 燃气轮机压比、入口温度之间的关系。关键词:I GCC;煤气化;发电系统;性能分析 中图分类号:TK227.1 文献标识码:A 文章编号:1002-1663(2006)04-03 Perfor mance calcul ati on and analysis of I GCC power generati on syste m BA I Yufeng (Chaohu Power Generati on Cor porati on of China Huaneng Gr oup,Chaohu 230000,China ) Abstract:I ntegrated gasificati on combined circulati on (I GCC )power generati on syste m has many advantages in s ome as pects,such as in technol ogy,economy,envir onment p r otecti on and s o on,the paper intr oduced t o its classificati ons,and the perf or mance calculati on and para meter analysis of f our kinds of I GCC po wer genera 2ti on syste m with air gasificati on type were done,and the relati onshi p bet w een efficiency of power supp ly and inlet te mperature of gas turbine was gained . Key words:integrated gasificati on combined circulati on (I GCC );coal gasificati on;power generati on syste m;perfor mance analysis 目前,整体煤气化联合循环(I GCC )燃煤发电系统效率高、污染小,是一种洁净、高效的燃煤发 电技术[1-3] 。下面对不同型式的I GCC 发电系统进行分类和分析,并对四种不同型式的空气气化的I GCC 发电系统进行性能计算和参数分析 。 图1 氧气气化的I GCC 系统 图2 空气气化的I GCC 系统 1 整体煤气化联合循环(I GCC )系 统的分类 根据I GCC 系统气化炉型式和粗煤气净化系 统不同可以分为不同的型式。当I GCC 系统采用 收稿日期:2006-05-23 作者简介:白玉峰(1969-),男,1995年毕业于上海电力学院热能动力工程专业,硕士学位。 — 152—第28卷 第4期 黑龙江电力 2006年8月

燃气轮机与联合循环-姚秀平-课后题答案-第三单元

1.压气机在燃气轮机中的作用是什么? 连续不断地从周围环境吸取空气并将其压缩后供给燃气轮机的燃烧室。 2.燃气轮机所使用的压气机有哪两种类型?它们各有什么特点? 轴流式:流量大、效率高但级的增压能力低,多应用于大功率燃机。 离心式:级的增压能力高但流量小、效率低,多应用于中小功率燃机。 3.轴流式压气机由那两个组成部分? 由转子、静子组成。 转子:动(工作)叶片、叶轮(转鼓)、主轴。静子:静(导)叶、气缸 4.何谓扭速?何谓理论功?理论功是否可全部转换为气体的压力能? 扭速:气流经过叶栅内的流动发生了转折,气流转折所引起的相对速度圆周分量的变化 成为扭速。 理论功:基元级的动叶栅加给单位质量气体的机械功成为理论功或加功量。 不能。理论功的一部分用于气流的动能升高,也有一部分用于气流压力升高,还有一部分在气流流动过程中因摩擦等因素而转换成了热量。 5.压气机级的理论功为什么会受到限制? u 的增加要受到材料许用应力的限制,u 过大时,叶片根部截面处的离心拉应力会超过叶片材料的许用应力。 的增大要受到叶栅气动性能的限制 , 过大时,在叶栅中气流的转折角过大,叶栅 表面上的气流边界层容易分离并形成漩涡,导致流动损失大幅度增加。所以压气机级的理论 功会受到限制。 6.压气机的压比特性曲线有哪些主要特点? (1)每一转速下,压比有一最大值 (2)转速不变,流量降至一定值时→不稳定→喘振 (3)转速不变,流量增至一定值后→压比急剧下降→阻塞 (4)转速越高,特性线越陡 (5)效率的流量特性与压比类同 7. 8.试绘图说明压气机级在转速一定、体积流量增大和减小时,速度三 角形的变化情况 转速一定时,级的扭速与体积流量之间有什么关系? 随着体积流量的增大,扭速必然减小,理论功也相应减小 u w ?w u w C u =?u w ?u w ?w u w C u = ?

整体煤气化联合循环IGCC

整体煤气化联合循环发电(IGCC) 目录 一、整体煤气化联合循环的工作过程………………………… 二、整体煤气化联合循环的特点……………………………… 三、整体煤气化联合循环的发展……………………………… 四、在整体煤气化联合循环的主要设备……………………… 五、整体煤气化联合循环的发展趋势………………………… 六、对我国发展IGCC技术的若干启示………………………

一、整体煤气化联合循环的工作过程 整体煤气化联合循环(IGCC-Integrated Gasification Combined Cycle)发电系统,是将煤气化技术和高效的联合循环相结合的先进动力系统。它由两大部分组成,即煤的气化与净化部分和燃气-蒸汽联合循环发电部分。第一部分的主要设备有气化炉、空分装置、煤气净化设备(包括硫的回收装置),第二部分的主要设备有燃气轮机发电系统、余热锅炉、蒸汽轮机发电系统。IGCC的工艺过程如下:煤经气化成为中低热值煤气,经过净化,除去煤气中的硫化物、氮化物、粉尘等污染物,变为清洁的气体燃料,然后送入燃气轮机的燃烧室燃烧,加热气体工质以驱动燃气透平作功,燃气轮机排气进入余热锅炉加热给水,产生过热蒸汽驱动蒸汽轮机作功。其原理图见下图: 二、整体煤气化联合循环的特点 IGCC(整体煤气化联合循环)发电技术是当今国际上最引人注目的新型、高效的洁净煤发电技术之一。该技术以煤为燃料,通过气化炉将煤转变为煤气,经

过除尘、脱硫等净化工艺,使之成为洁净的煤气供给燃气轮机燃烧做功,燃气轮机排气余热经余热锅炉加热给水产生过热蒸汽,带动蒸汽轮机发电,从而实现了煤气化燃气蒸汽联合循环发电过程。 IGCC发电技术把联合循环发电技术与煤炭气化和煤气净化技术有机的结合在一起,具有高效率、清洁、节水、燃料适应性广,易于实现多联产等优点,符合二十一世纪发电技术的发展方向。 1、IGCC将煤气化和高效的联合循环相结合,实现了能量的梯级利用,提高了采用燃煤技术的发电效率。目前国际上运行的商业化IGCC电站的供电效率最高已达到43%,与超超临界机组效率相当。当采用更先进的H系列燃气轮机时,IGCC供电效率可以达到52%。 2、IGCC对煤气采用“燃烧前脱除污染物”技术,煤气气流量小(大约是常规燃煤火电尾部烟气量的1/10),便于处理。因此IGCC系统中采用脱硫、脱硝和粉尘净化的设备造价较低,效率较高,其各种污染排放量都远远低于国内外先进的环保标准,可以与燃烧天然气的联合循环电厂相媲美。 目前常规燃煤电厂脱硫主要采用尾部脱硫的方法,脱硫所产出的副产品是石膏。IGCC一般采用物理/化学方式脱硫,其脱硫效率可达99%以上,脱硫产物是有用的化工原料-硫磺。常规燃煤电厂目前没有有效的脱除CO2的方法,IGCC具有实现CO2零排放的技术潜力。在IGCC系统中可以对煤气中的CO进行变换,生成H2和CO2,H2可以作为最清洁的燃料(如燃料电池),CO2可以进行分离、填埋回注等,以实现CO2零排放。 3、IGCC的燃料适应性广,褐煤、烟煤、贫煤、高硫煤、无烟煤、石油焦、泥煤都能适应。采用IGCC发电技术,可以燃用我国储量丰富、限制开采的高硫煤,使燃料成本大大降低。 4、IGCC机组中蒸汽循环部分占总发电量约1/3,使IGCC机组比常规火力发电机组的发电水耗大大降低,约为同容量常规燃煤机组的1/2~2/3左右。 5、IGCC的一个突出特点是可以拓展为供电、供热、供煤气和提供化工原料的多联产生产方式。IGCC本身就是煤化工与发电的结合体,通过煤的气化,使煤得以充分综合利用,实现电、热、液体燃料、城市煤气、化工品等多联供。从而使IGCC具有延伸产业链、发展循环经济的技术优势。 三、整体煤气化联合循环的发展

联合循环燃气轮机发电厂简介

联合循环燃气轮机发电 厂简介 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

联合循环燃气轮机发电厂简介联合循环发电:燃气轮机及发电机与余热锅炉、蒸汽轮机共同组成的循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。形式有燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机各自推动各自发电机的多轴联合循环。胜利油田埕岛电厂采用的是美国GE公司的 MS9001E燃气轮机,其热效率为33.79%,余热锅炉为杭州锅炉厂的立式强制循环余热锅炉。 1.燃气轮机 1.1简介 燃气轮机是一种以空气及燃气为工质的旋转式热力发动机,它的结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三部分:1、燃气轮机(透平或动力涡轮);2、压气机(空气压缩机);3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空气混合,在定压下进行燃烧。生成的高温高压烟气进入燃气轮机膨胀作工,推动动力叶片高速旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船

舶动力。重型燃气轮机为工业型燃机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。 埕岛电厂采用的MS9001E燃气轮发电机组是50Hz,3000转/分,直接传动的发电机。该型燃气轮发电机组最早于1987年投入商业运行,基本负荷燃用天然气时的功率为123.4MW,热效率为33.79%,排气温度539℃,排气量1476×103公斤/小时,压比为12.3,燃气初温为1124℃,机组为全自动化及遥控,从启动到满载正常时间为约20分钟,机组使用MARKⅤ控制和保护系统. MS9001E型机组为户外快装机组,因此不需要专用的厂房建筑,而是用多块吸声板构成的长方形箱体,机组即放置在其内,箱体既起隔声作用,又能代替厂房使机组在各种气候条件下都能正常工作,每台机组连同发电机及控制室等均分别放置在长方体状的箱体内,在其周围还有空气进气系统,燃料供应单元和机组的冲洗装置等附属设备,组成整套燃气轮机动力装置。1.2辅机部分 主要有主润滑油泵,辅助润滑油泵,事故油泵.,油雾抽取装置 燃气轮机在正常运行时,透平功率的三分之二用来拖动压气机,其余三分之一功率为输出功率。显然,在燃机起动过程中,必须由外部动力来

燃气轮机与联合循环-姚秀平-课后题答案-第二单元

第二章 1、热力参数:压缩比π=p2*/p1*,温度比τ=T3*/T1*; 性能指标:比功ωn=ωt-ωc ; 燃气机循环热效率ηgt=ωn/(f*Hu ) 2、燃气轮机的比功大,说明在同样工质流量和同样的装置尺寸下,燃气轮机的功率大;在 同样的功率下,工质的流量下,燃气轮机的尺寸小。 3、1*11111k k n p k k c T ωτππ--???????? ?=--- ??? ??? ??????? 4、 1 11st k k ηπ-=- 5、 膨胀比πt=p3*/p4* 6、在一定的压比下,温比越高,比功越大;在一定的温比下,存在一个特定的压比πωmax ,使比功ωn 取得最大值;在一定的压比下,温比越高,效率越高,在一定的温比下,存在一 个特定的压比πηmax ,使效率ηgt 取得最大值。通常,πηmax>πωmax 。 7、联合循环中最佳压比都比简单循环要降低。简单循环燃气轮机的效率对燃气初温不很敏 感,而对压比较敏感;联合循环的效率对燃气初温较敏感而对压比不很敏感。 8 、 简单循环的效率只与压比有关,压比越大,效率越高。 联合循环时效率对压比不敏感。 9、如上图:简单循环的效率只与压比有关。联合循环效率随温度变化很大。 10、采用再热循环时,燃气轮机的最佳压比都将有所提高。 计算题 1.

* 1*31 1.3861 * * 1.38621**21288,10, 1.386, 1.315,0.8,0.85 1.03/, 1.20/,125028810546.9546.9288258.9258.9323.60.8 1.03323.6a a a g c t pa pg k k s cs s cs c c c pa c K k k C KJ Kg C KJ Kg T K T T K T T T K T T K w c T T πηηπη--===========?==-=-======?** 34 1.3151 1 1.315**34333.3/10 1250 7201012507205300.85530450.51.20450.5540.6/540.6333.3207.3/g g t s k k t ts s t t ts t pg t n t c KJ Kg T T K T T T K T T K w c T KJ Kg w w w KJ Kg πππη--=======-=-===?===?==-=-= 2. ***134**34**43 1.315*1 1.31513*4288,1600,860,0.85,0.881.386, 1.315 1600860740740840.90.881600840.9759.1160022.48759.1g g c t a g t t ts t s ts k k t s t T K T K T K k k T T T K T T K T T T K T T ηηηππ--========-=-=== ==-=-=????=== ? ????? =1 1.3861** 1.38621**21**2122.48 28822.48685.3685.3288397.3 397.3467.40.85 288467.4755.4a a k k s cs s cs c c c T T K T T T T T K T T T K ππη--===?==-=-=====+=+=

燃气轮机复习题.(DOC)

电站燃气轮机课程复习思考题 1. 词语解释: (1)循环效率:当工质完成一个循环时,把外界加给工质的热能q转化成为机械功l c的百分数。 (2)装置效率(发电效率): 当工质完成一个循环时,把外界加给工质的热能q转化成为电功l s的百分数。 (3)净效率(供电效率): 当工质完成一个循环时,把外界加给工质的热能q转化成为净功l e的百分数。 (4)比功:进入燃气轮机压气机的1kg的空气,在燃气轮机中完成一个循环后所能对外输出的机械功(或电功)l s(kJ/kg),或净功l e(kJ/kg). (5)压气机的压缩比: 压气机的出口总压与进口总压之比。 (6)透平的膨胀比: 透平的进口总压与出口总压之比。 (7)压气机入口总压保持系数:压气机的入口总压与当地大气压之比。 (8)燃烧室总压保持系数:燃烧室的出口总压与入口总压之比。 (9)透平出口总压保持系数:当地大气压与透平的排气总压之比。 (10)压气机的等熵压缩效率:对于1kg同样初温度的空气来说,为了压缩达到同样大小的压缩比,等熵压缩功与所需施加的实际压缩功之比。 (11)透平的等熵膨胀效率:对于1kg同样初温度的燃气来说,为了实现同样的膨胀比,燃气对外输出的实际膨胀功与等熵膨胀功之比。 (12)温度比:循环的最高温度与最低温度之比。 (13)回热循环:在简单循环回路中加入回热器,当燃气透平排出的高温燃气流经回热器时,可以把一部分热能传递给由压气机送来的低温空气。这样,就能降低排气温度,而使进到燃烧室燃料量减少,从而提高机组的热效率。 (14)热耗率:当工质完成一个循环时,把外界加给工质的热能q,转化成机械功(或电工)

相关文档
相关文档 最新文档