文档库 最新最全的文档下载
当前位置:文档库 › 液压控制系统改造

液压控制系统改造

液压控制系统改造
液压控制系统改造

基于DCS的汽轮机DEH系统的改造与研究

2009-02-04 10:22:52 作者:林平来源:微计算机信息

关键字:DCS DEH TSI汽轮机

1. 概论

汽轮机控制系统由调节系统和保安系统组成。

调节系统是为了保证汽轮机组稳定运行和获得运行所需的静态特性;保安系统的作用则是当机组出现危险工况时,保护机组的安全。

汽轮机的主要用途,是用来驱动发电机发电,向用户输送电能。发电用汽轮机分为凝汽式和中间再热凝汽式。另有一些型式的汽轮机,除驱动发电机发电外,还在其中某一级或一级以上抽汽,向热用户供热。这些汽轮机称为热电联供机组或称供热机组。发电用汽轮机具有转速调节系统,简称调节系统,用来维持机组等转速运行,以保证所提供的电能频率稳定。热电联供汽轮机,除具有调速系统外,还具有调压系统,用以维持供热抽汽压力的稳定。转速调节和抽汽压力调节是汽轮机的基本控制策略。

发电用汽轮机的运行方式有两种,即单机运行和多机并列运行。其中多机并列运行构成电力网,又称并网运行。

当机组为单机运行时,用户电负荷的变化全部由本机组承担。要求调速系统能适应用户负荷的变化,稳定地调节功率,以维持等转速运行。当机组并网运行时,用户的负荷由电网中各机组共同承担,所导致的电网频率变化的调节是在各机组调速系统共同承担的基础上由某些指定的机组进行二次调节,这些指定的机组称为调频机组。由于电负荷由多台机组承担,便引出负荷分配和负荷调整问题。单台机组负荷调整可以引起电网频率的变化,从而引起网中各机组负荷的再分配。频率的二次调整、负荷调整、和各机组负荷分配,都是在调速系统特性的基础上进行的。

现代大型汽轮发电机组,几乎毫无例外地都是并网运行。电网的调度管理,将网中的机组分为基本负荷机组、调峰机组、调频机组和尖峰负荷机组。这些机组的调节特性,要求在调速系统的基础上增加相应的调节功能,这就使现代大型机组控制系统的控制策略变得复杂化和多样化。

现代大型电站大多采用单元制结构,即汽轮发电机组与锅炉系统是一个完整的体系,汽轮发电机的控制与锅炉的控制密切相关,必须紧密协调。所以现代大型汽轮发电机组的控制策略又包含了锅炉及庞大的辅机系统协调控制的要求。

对于热电联供机组,汽轮机的控制策略还应包括热网控制。

现代汽轮机控制系统的控制策略是在传统的基本控制策略的基础上,考虑了电网控制,热网控制和机炉协调控制的需要而发展起来的。数字电液控制系统DEH

(Digital Electro-Hydraulic Control System)是现代汽轮机控制系统的典型形式。

保安系统是汽轮机控制系统不可分割的部分。各种汽轮机保安系统的组成大致相同,主要包括超速保护系统、危急遮断系统、挂闸系统和各种试验系统。其中遮断系统与汽轮机监

视系统TSI(Turbine Supervisory Instrumentation System)的遮断信号和其它设备来的遮断信号接口。

2. 汽轮机调节系统的分类

汽轮机传统的调节系统为液压调节系统,它由测量元件给定机构放大元件和执行机构环节组成。根据测速元件的不同,液压调节系统又分为机械液压式和纯液压式两大类。

机械液压式调节系统的测速元件为机械式离心调速器。哈尔滨汽轮机厂和北京重型电机厂采用的调节系统为机械液压式,调速器为弹簧片式高速离心调速器,是前苏联列宁格勒金属工厂的典型形式。

全液压调节系统采用液压式离心调速器作为测速元件,我国东方汽轮机厂和上海汽轮机厂的液压系统属于这种类型。其中东汽厂采用径向钻孔泵,液压系统仍属列宁格勒金属工厂类型。上汽厂采用旋转阻尼,其液压系统源自美国西屋公司。

此外,还有一种用于小汽机的全液压系统,其特征为调速泵与主油泵合用一个径向钻孔泵。

3. 调节系统的基本组成

如上所述,调节系统由测速元件,给定机构放大器和执行机构等环节组成。根据这些环节功能不同,可将调节系统划分为两部分,即控制器和执行器。控制器的主要任务是完成控制策略运算,执行器的任务是根据调节器(控制器)的运算结果驱动和定位调节机构。

液压调速系统控制器,由调速器、同步器、放大器、信号分配器等环节组成,控制策略为转速有差调节。由调速器和同步器给出转速偏差信号,经过液压放大器放大,形成总阀位信号,经过信号分配器控制各执行器,即油动机,由油动机驱动和定位汽轮机的调节机构,即调节阀。单机运行时,同步器用来调整汽轮机转速;并网后,同步器用来调整分配给本机的负荷。

为了适应现代汽轮机控制系统复杂的控制策略,数字电液控制系统应运而生。数字电调称为纯电调或称全电调,简称DEH。DEH控制器由微机系统组成,执行器由多个油动机组成的液压执行系统。

根据液压执行系统所采用的工质不同,DEH又分为低压透平油型和高压抗燃油型。

此外,还有一种过渡型DEH,称为电液并存型。其控制策略的运算采用计算机控制器,同时保留了液压控制器作为备用。

4.电调改造方案基本原理

电调改造的主要工作,是将汽轮机液压调节系统改造为电液控制系统的执行器,然后配上计算机控制器,构成完整的电液控制系统。电调改造的关键是液压系统的改造。

液压系统改造的主要要求,一是要根据机组原有液压系统的状况和特性,采用尽可能简单的方案实现计算机控制器接口,实现要求的控制策略。

基本改造方案可归纳为三种

1)从液压控制器的某一中间环节引入电液放大器,以实现与算机控制器接口,实现全电调控制。这种方案称为电液放大器型纯电调。其液压系统可以完整保留,作为备用。

2)将油动机改造为电液油动机,实现与计算机控制器接口,实现全电调控制。这种方案称为电液油动机型纯电调,油动机前各环节可以拆除,不再保留液压备用。

3)高压抗燃油纯电调,原有的液压调节系统各环节全部拆除,液压执行系统需重新设计。

前两种方案部分保留了原液压系统,或者说是原液压调节系统改造而成的全电调,都是低压透平油纯电调,改造效果与改造方案的设计关系很大。第三种方案是一种全新设计,与原系统已无关系。

图1 低压透平油纯电调改造方案原理

下面以低压透平油纯电调为例做以阐述:

电液放大器型透平油纯电调:

图2

5. 改造要点描述

?中间滑阀下至调速器滑阀的二次脉动油排油口堵列。调速器滑阀与调速原可保留,不用。但附加超速保护管路应堵死。

?若机组有电液转换器,切换阀和跟踪滑阀,则应折除,并将中间浮雕阀下油压与超速限制滑阀、危急遮断器滑阀和启动阀接通,在这些部套原安装位置加装盖板。

?中间滑阀便成为二位工作方式,可接受启动阀、危急遮断器滑阀和超速限制滑阀控制,使各油动机建立开启条件,实现快关和遮断。

?对于哈汽和北重型系统,还应拆徐微分器,或切断其二次脉动油输出管路,防止其误动影响系统正常工作。

?保留超速限制滑阀。若原系统中争超速限制滑阀,则应增加OPC电磁阀,以实现超速限制功能。

?保留各油动机、配汽杠杆、凸轮配汽机构,将各油动机改造为电液油动机。

?电液油动机由DDV阀、油动机滑阀、油动机活塞、双冗余LVDT组成,接受PI伺服板控制,构成位移闭环反馈回路,使油动机行程正比于DEH总阀位信号。油动机原有的液压反馈机构和反馈滑阀,反馈杠杆等,予以拆除。

? DDV阀与可调节流阀一起,装在液压集成块上,每个油动机液压集成块可装在油动机原反馈阀位置上,可以利用原有的三次脉动油液压油路。各集成块电可集中在原中间滑阀附近,利用原来的三次脉动油管路将液压集成块与油动机联系起来。可调节流用业调整油动机的机械0偏,使DDV阀工作在压力油口微开位置,使DDV阀失电时油动机能自然关闭。

?设置—外置式滤油器,向各液压集成块提供经过过滤的液压油。滤油器为双联可切换式,配有压差监视器和切换阀可在线更换滤芯。过滤精度为25μm。

? DDV阀采用D634

?液压保安系统、启动操作系统和各种试验系统不列入改造范围。如用户有特殊要求时,可针对用户要求另作处理。

? DEH控制器可按纯电调的控制功能进行控制策略配置。

6. 结论

本改造方案及论文的创新点在于:将原调节系统大部份套退出使用,只保留油动机滑阀、油动机活塞及其以后的配汽部套。这些部套是原系统中故障率最低的部套,因而可以将原系统存在的主要缺陷予以排除。电液电动机具有很高的灵敏度,其值高于原灵每度的最高值,且在全行程范围内都存相同的灵敏度。所保留的凸轮配汽机构,为混合调节方式,其控制我与两屋型阀门管理相同。由于电调的功能取决于DEH控制器,所以本方案可实现纯电调全部控制功能。

C12-50/5汽轮机全液压控制系统改造

发布时间:2008-9-1

珠江啤酒集团有限公司热电厂备有两台C12-50/5抽气式汽轮机,2#机自投入运行后,每次开机投入抽气运行不久,调速系统发生低压油动机摆动,导致电负荷的摆动,发生的周期不等。而停止抽气运行后,再重新投入,摆动现象消除,运行不久再次发生低压油动机摆动。同时,机组在停止油气运行时,会发生甩负荷现象,据了解,该类机型大多数存在这种现象,有的厂采用将旋转隔板焊死在某一位置,用调整电负荷的办法来调整抽气压力。热电厂备有两台75t/h蒸汽锅炉,单机运行时,如不投入抽气,仅能带电负荷8MW,热负荷由0.6减温减压器供给,经济效益差。随着珠江啤酒集团发展、壮大,生产用汽量越来越大,变化幅度也很大(20~65t/h),特别是:在变工况过程中,需要综合控制的因素很多,汽轮机原全液压调节系统已经很难满足生产要求。机组调节系统存在的隐患,对电厂安全、经济生产,保证公司生产的高品质供汽带来极大大威胁,为此,决定利用大修期,采用汽轮机数字电液控制系统,对该机进行全液压调节系统改造。

汽轮机数字电液控制系统(DEH控制系统)运用计算机技术、自动控制理论及液压控制理论,完成对汽轮机的调节控制及保护,使得汽轮机的控制与操作更加合理、简单、灵活,而且提高了控制系统的可靠性和精度。汽轮机数字电液控制系统改造,关键在于设计的思路,改造部件与原机组油系统的连接。如果采用全套更新、更换调速器,配自带调速油泵方案显然是较稳妥,但是投资大。本着投入少,效果好的原则在保留原调速器大量部件的前提下,采用如下设计方案(图1):①消压力变换器,调压器,②油动机的反馈油路堵塞,③保留原有的保护系统电路、油路。

经过大修,电液控制系统完成设备安装和静态调试,机组进行第一次启动,机组在低、中转速暖机时,机组运转状况良好,数字电液控制系统控制正常,但当机组转速达到调速油泵动作转速时(2400-2500r/min),机组转速出现摆动,数字电液控制系统不能稳定机组转速。停机进行分析,原因如下:

(1)调速油泵没有拆除,只在出口将油路堵死,当机组转速达到调速油泵工作时,调速油压升高,产生憋压。

(2)调速油压升高,也引起主油泵进口油压变化(观察主油泵进口油压原为0.08MPa,当调速油泵工作时,主油泵进口油压在0.08~0.12MPa范围变化),从而导致控制脉冲油压波动,错油门位移,影响调速系统稳定。

(3)主油泵与高压电动油泵切换时,油压变化也会导致机组转速摆动。

为此,将调速油泵进行拆除,再次启动,机组转速从零到满速,调速系统控制正常,机组转速无摆动现象。

机组并网带负荷时,观察发现负荷有摆动的现象(摆幅在500~800kw)。对负荷摆动进行分析,其原因主要由错油门引起:从理论上,压力油经过DDV伺服阀,DEH发出阀位指令信号,经伺服放大器后,DDV伺服阀将电信号转换成脉冲控制油压信号控制动态进油,直接控制油动机带动调节汽门改变机组的转速和功率,在油动机移动时,带动LVDT位移传感器,作为负反馈与阀位信号相加,两电信号相平衡时,伺服放大器的输出就保持原稳态值不变,DDV伺服阀回到原平衡位置,保持脉动控制油不变。此时能使错油门的滑阀回到中间位置,油动机就稳定在一个新的平衡值。而事实上,错油门在弹簧的作用下下移,高压油进入油动机上部,打开调节汽门。机组原来的滑阀上部由弹簧作为平衡力,与脉动油进行平衡,由于错油门弹簧的弹力特性,迟缓率非常大,要使错油门回到中间位置,DDV伺服阀必须过开,这种过程引起调速系统迟缓,导致系统不稳定。

处理办法:

(1)恢复油动机原来的反馈油路。在油动机移动时,利用反馈窗口,使错油门的滑阀回到中间位置。同时,带动LVDT位移传感器作为负反馈与阀位信号相加,提高了系统的稳定性。

(2)改造错油门,拆掉错油门滑阀上部弹簧。滑阀更换为上下油压平衡的方式,降低了滑阀的动作速度,减少迟缓,对油压波动也有较好的自适应能力,提高了系统的稳定性。

由于电脑控制程序原因,采用(2)方案,更改后控制系统示意如图2。

改造后,机组转速从零到满速,从并网到满负荷运行,热负荷从零到50t/h,电液控制系统控制正常,机组转速无摆动现象。

关于汽轮机液压控制系统改造问题

【关键词】汽轮机【摘要】关于汽轮机液压控制系统改造问题

一、概况

汽轮机液压调节系统的机组,需要进行改造的初步估计有500多台。其中:国产300MW 机组50台;国产200MW机组200台;

国产125MW机组160台;国产50MW抽汽机组近100台。

这些机组是上汽、哈汽、东汽、北京等主要汽轮机制造厂生产的。

液压调节保护系统类型分两种:一种是哈汽型(包括东汽和北重的机组)滑阀放大器、凸轮配汽结构。另一种为上汽型,

蝶阀放大器,杠杆配汽结构。

液压系统主要存在问题:

1. 采用手动同步器加减负荷难于实现CCS协调控制和AGC控制。

2. 液压调节器(滑阀或蝶阀放大器),不能满足定功率的要求。易卡涩、迟缓率大、调节品质差。

3. 低压双侧油动机,体积大、关闭时间长、甩负荷易超速,不安全。

4. 杠杆或凸轮配汽机械,不能实现单/多阀方式,阀门重叠度大,进汽节流损失大。效率低。

5. 保护系统不完善,可*性差。

6. 监测系统欠缺,自动化水平低,运行、维持不方便。

汽轮机液压控制系统的机组,数量多、容量大,存在问题不少。为了提高机组的经济性、可*性和自动化水平,必须对汽

机液压控制系统进行改造。

采用何种改造方案好呢?根据我们的经验就125机组液压控制系统改造方案问题作一分析,供用户参考。

二、各种改造方案的初步分析

1.汽机控制系统的主要环节

汽轮机控制分为调节系统和超速保护系统两部分。就调节系统而言,主要环节包括:

给定:转速、负荷、抽汽压力的目标值给定和速率给定。这就是人机接口部分。

检测:被控参数的测量,如旋转阻尼、磁阻发讯器、功率MW、压力P的变送器。

调节器:液压放大器、转速n、功率MW、抽汽压力P等的PI调节器。

执行机构:电液转换器、油动机配汽机构、阀门。

汽轮机保护主要指超速保护:机械危急保安系统、电超速系统(ETS)和OPC超速保护。按照汽轮机控制系统主要环节的改造程度来划分,其改造方案基本上可以分为:同步器方案、电液并存方案、低压纯电调

方案、高压纯电调方案。各方案改造环节主要特点详见改造方案表。

2.同步器改造方案

原液压调节、保护基本不变,只改造同步器、启动阀。

原同步器由一般的马达驱动,控制特性差。手动操作还可以,但与CCS自动接口有困难。采用高性能的矢量变换马达或高

级电动执行器,控制性能好,接口方便易实现CCS协调控制。

同步器的控制可以由CCS系统直接控制或者做一套独立的PI调节器,与原液压系统构成串级调节系统,实现升速、负荷控

制。

这种方案简单,无切换跟踪问题。对于原液压系统运行还基本,正常只求解决汽机与CCS 接口问题的机组,采用此方案是

合理的。例如安徽芜湖电厂125机组改造方案(改同步器),山东黄岛电厂125机组方案(同步器、汽机PI调节器)。

3.电液并存方案

原液压系统全部保留,增加一套电调系统,二套系统并存,切换运行。

主要特点:

1) 油动机、配汽机构保持不变。

2) 两套调节器并存,切换、跟踪运行。

3) 电调与油动机之间通过电液转换器接口。一般为一个电液转换器带多个油动机,一个油动机带几个阀门。

这种系统一般用大油箱的油,开式循环,油的清洁度难于保证。电液转换器易卡涩。跟踪误差大,切换有扰动。原液压执

行机构的缺点无法消除,调节品质差。系统复杂、维护麻烦。

对于要求不高的中小机组,采用此方案也是可行的,但对于125MW以上的大机组不宜采用此方案。

4.低压纯电调方案

液压调节器取消,采用数字调节器,执行机构、保护系统基本保留。构成低压纯电调系统。

此系统主要特点:

1) 油动机不改,只改调节器。

2) 只有电的调节器无液压调节器,无跟踪切换问题,系统简单、维护方便。

3) 电液转换器一般一个电液转换器带一个油动机,一个油动机带几个阀门。

4) 增加OPC超速控制和超速保护和阀门非线性修正。

5) 改造成本相对高压系统来说相对较低。

5.高压纯电调系统

液压系统改造为高压抗燃油数字电液调节系统。除了阀门以外,调节系统基本上全部进行改造。改造后系统与引进型300MW机

组DEH系统差不多。

给定:取消同步器、启动阀给定,改为DEH的操作员站、工程师站、遥控接口给定。

测量:液压测速取消,改用磁阻测速,功率变送器、压力变送器测取功率和压力。

调节器:采用多路PI调节器。

油动机:取消低压双侧油动机,改为高压单侧油动机。

配汽:一个油动机带一个阀门直接驱动方式。阀门管理由计算机完成实现单阀(节流调节)多阀(喷嘴调节)两种配汽方式。

超速保护:机械危急遮断保留,增OPC-103超速控制,AST-110超速保护,实现OPC

-AST-机械危急遮断三重保护。

主要特点:

* 高压抗燃油,防火、油质清洁度能保证,安全、可*。

* 纯电调无切换跟踪问题。

* 阀门管理,实现二种配汽方式,启动热应力小,启动快,寿命长。优化阀门管理,减少重叠度,进汽损失小,效率高,一

般可提高1%左右。

* 高压单侧油动机,关闭快,关时不耗油。快速、安全,能有效防止机组超速。

* 多回路、多参数调节器能满足各种运行工况的要求。

* 转速、功率、调节级压力、主汽压、抽汽压力、油开关和挂闸信号一般为三取二结构,可*性高。

* 工程师站、操作员站的人机接口方式,监控、协调、维护方便,自动化水平高。

对要求比较高的大机组的改造采用此方案合理的。例如200MW,300MW,125MW机组的改造,一般都采用高压纯电调方案。

三、方案选择问题

新华公司在10多年国产机组改造过程中,通过近60台机组改造实践,得出下面几点看法:

1. 各种方案各有其特点,但从发展趋势看,电液并存向纯电调发展,低压透平油向高压抗燃油发展。最初做同步器方案,进而用电液并存方案,目前大多采用高压纯电调方案。有些已改造为电液并存方案的机组再改为高压纯电调方案。这种变化,一方面由于引进型300MW机组高压纯电调系统大量投入运行,对高压系统的快速性、可*性得到证实。另一方面是将引进技术移植到国产200MW、300MW机组取得了丰富的经验。同时,随着电力工业的发展,要求大机组参与调峰,AGC控制、快速启动、高经济性、高可*性,只有采用高压系统才能做到。

以上三方面的变化,促使大机组改造基本上都采用高压纯电调方案。

2. 对哈汽、东汽、北重、俄罗斯生产的200MW等级的机组,液压系统基本相同,都有同样的毛病。采用高压抗燃油系统,取消凸轮配汽,才能从根本上解决调节系统问题。200MW机组的改造选用高压纯电调系统是合理的。

3. 国产125MW机组

125MW机组液压调节系统旋转阻尼测速,蝶阀放大器为调节器,这些部套卡涩机率比滑阀机构小。但液压系统的缺点仍然

存在,也要改造。三种都可选用,根据情况分别考虑:

A.同步器方案:当主要解决液压调节器与CCS接口问题,实现协调控制,调峰运行,改造资金有限的情况下可采用

同步器方案,而且,DEH调节器与CCS做在一起。如安徽芜湖电厂125MW改造方案,同步器可改为高性能的矢量变换

马达或电动执行器。

B.低压纯电调方案:低压纯电调方案的关键部套是电液转换器。采用力矩马达-蝶阀放大结构的电液转换器更为合理。

此种电液转换器抗油污性能好,不容易卡,可*性高。主油泵的油经过一般的过滤、稳压就可以。

例如闵行电厂125MW改造方案。

C.高压纯电调方案:125MW机组也可采用高压纯电调改造方案。此系统类似于200MW

机组高压纯电调系统。取消杠杆

配汽,在阀门座上加阀门操纵座,油动机直接安装在操纵座上。

例如浙江半山电厂、金竹山电厂、安徽淮北电厂等电厂的125MW机组改造方案。目前125MW改造大多采用此方案。

4.50MW抽汽机组

国产50MW抽汽机组有近100台。液压抽汽调节器、阀门特性的线性化处理困难,不能实现全程解藕。抽汽和功率相互干扰大,调节品质差。抽汽机组多参数控制,多回路调节,系统跟踪困难,一般不采用电液并存系统,采用纯电调系统更为合理。

阀门管理、线性化处理、系统解藕运算由计算机完成。

50MW抽汽机组可采用高压纯电调系统,也可采用低压纯电调系统。马鞍山钢铁厂50MW 抽汽机组改造采用的是高压纯电调系统。

高压纯电调系统改造费用大些。

以上是我们对汽轮机液压控制系统改造的初步看法

汽轮机电液联调DEH系统设计与应用

1 前言

随着我国电力自动化程度的提高和用电形势的变化,对电网调度和机组调峰的要求越来越高,而我国90年代前投产的125MW等老机组汽轮机使用纯液压调节系统,即采用双磁场换向式单相串激交直流两用电动机、控制同步器。由于电动机本身的惰走和惯性等原因,控制精度不太理想,由液压调速系统和同步器组成的控制系统,在可控性和保护功能上不能完全满足机组协调控制(CCS)和自动发电控制(AGC)的要求,一种简易可行的DEH系统被开发并成功应用于电厂,以下进行介绍。

2 系统组成及原理

系统由液压部分、高中压油动机行程传感器、基于DCS的控制系统平台及网络、超速保护(OP C)装置、手操盘等组成,改造后的油系统见图1。

(1)淮压集成块:在原有调速系统的二次脉动油压管路上开孔引一油管进入液压集成块(图

2),排油口进入油系统排油母管,液压集成块上装有电液伺服阀(D634)、截止阀、差压开关、旁路节流阀、进排油口、隔离电磁阀及动力油接口。

①电液伺服阀:这是DEH系统的主要部件,其主要工作原理如下:电液伺服阀D634是一种直接驱动式伺服阀,简称DDV阀,用集成电路实现阀芯位置的闭环控制,阀芯的驱动装置是永磁直线马达,阀芯位置闭环控制电子线路和脉宽调制驱动电子线路固化为一块集成块,用特殊的技术固定在伺服阀内,取消了传统的喷嘴—挡板前置级,简化了线路,提高了可靠性,却保持了带喷挡前置级的两级伺服阀的基本性能与技术指标。一个电指令信号施加到阀芯位置控制器集成块上,电子线路在直线马达上产生一个脉宽调制电流,震荡器就使阀芯位置传感器励磁。经解调以后的阀芯位置信号和指令位置信号进行比较,阀芯位置控制器产生一个电流输给直线力马达,力马达驱动阀芯,使阀芯移动到指令位置。其示意图如图2。

②同步器控制装置:保留原有同步器马达,在马达线圈回路中加装大功率限流电阻等措施来克服马达的惰走和惯性,在本系统中作为DEH系统故障或检修情况下的调节手段,本文不再详细叙述。

(2)DEH系统主要检测参数

利用DCS操作平台,所有检测信号参数直接进入DCS系统,因而无须专门操作员及管理员系统,主要信号有:

转速三路WS进入同一块测速卡HS2M200

功率一路:MW

主汽压力一路TP

汽机挂闸:ASL,由主汽门全开、安全油压、启动油压三取二所得。

(3)OPC功能:当转速达3090r/min(103%)关调门,转速小于3090r/min时恢复,当转速达3300r/min时关主汽门及调门,联跳发电机。为确保机组安全,以上系统均由软逻辑和硬逻辑同时发出工作信号。

(4)手操盘

作为紧急手操备用,手操盘上有DDV阀控制电流的百分数,50对应DDV阀排油口全关,100对应DDV阀排油口全开,操作盘上还有阀门增减按钮及指示灯,电调和同步器控制手、自动切换按钮。

(5)位移传感器

选用0-200mmTDZ-1D200中频位移传感器来显示高中压油动机的位移。

3 控制方式及主要设计功能

DEH系统输出的信号到伺服单元,先经过函数变换(凸轮特性),变换为阀位指令去DDV阀控制二次油压来调节油动机位移,而达到控制转速及负荷的目的。控制方式有:

(1)手动就地挂闸后的冲转、升速,临界转速的变速率控制

(2)同期、并网控制

(3)协调控制

(4)参与一次调频

(5)超速限制(OPC)功能

(6)电调和同步器后备手操方式

(7)超速试验功能

4 电液联调DEH系统在铜陵电厂的应用

(1)试验数据

首先经过试验确认汽轮机的凸轮特性,找出二次油压,油动机,阀位指令之间的关系。试验数据如下:

由数据表知,当二次油压为0.109MPa时油动机开始开启,阀位指令定为5%,当二次油压为0.286时油动机开足,阀位指令定为100%,其它按插值法填上述表的阀位指令信号。为保证此函数关系能真实反映实际,规定机组油系统检修后均重新试验并记录二次油压与阀位指令之间的关系,以修正函数曲线。

(2)启动过程

系统按照凸轮特性的要求进行组态后,机组采用本套系统控制汽轮机冲转。启动时,同步器置于上限位置,手动挂闸主汽门开启后由DEH启动控制回路逐渐提升DDV阀,使控制油口逐渐关小实现冲转、升速、定速、并网,再由DEH负荷控制回路继续完成升负荷控制,一组系统冲转过程曲线如图5。

由图可知:①0-500r/min升速,500r/min暖机

②500-1650r/min 1650rmin暖机

③1650-2500r/min升速2500r/min暖机

④转速在1100-1420r/min、1800-2150r/min为一阶惯性区和二阶惯性区,速率自动变为500r /min,快速冲过,避免机组振动过大。

机组转速在3000±5r/min时发“同期允许”信号至电气,此时电气投同期,热工接受到其信号,投入“自动同期”同期范围为3000±20r/mi n进入自动同期方式后,DEH系统可以接受自动同期装置来的触点脉冲输入信号,将脉冲信号转换成速度给定值,以±1r/min的速率使得机组转速等于网频,实现并网。

DEH系统的负荷控制主要由频差控制、功率控制、压力控制、阀位控制和被控对象(汽轮机组)等环节组成,它是一个多参数、多回路反馈的闭环控制系统。经过参数的优化整定,无论转速还是负荷均达到较高的水准,转速控制精度:±1r/min,负荷控制精度:±0.5MW,主汽压控制精度达:±0.1MPa。

5 结论

根据本DEH系统在铜陵电厂投用半年多的实践,我们认为:(1)本系统投资小,只需几万元,控制精度基本达到高压纯电调的水平,电调投用后,有功合格率明显提高,运行劳动强度大为降低,深受运行人员欢迎。

(2)本系统利用原有的DCS操作平台,无需增加操作员,组态方便。

(3)维护量小,所增加硬件设备不多。

(4)机组更加安全,增加OPC功能代替原有的由油压信号表示的转速信号,准确度高,可达±1r/min。

该系统还存在下列问题:

(1)三路测速信号进入同一测速板,按分散度考虑应分别进入各自测速板。

(2)运行中曾出现电调紧急切手动现象,说明系统抗干扰能力有待进一步提高。

(3)对透平油系统要求提高,需加强油质管理,否则会造成DDV阀卡涩,调节失灵。

总之,本系统投资少,控制精度高,功能比较全面,适合于老机组技术改造,具有一定的推广价值。

液压传动课程设计液压系统设计举例

液压系统设计计算举例 液压系统设计计算是液压传动课程设计的主要内容,包括明确设计要求进行工况分析、确定液压系统主要参数、拟定液压系统原理图、计算和选择液压件以及验算液压系统性能等。现以一台卧式单面多轴钻孔组合机床动力滑台液压系统为例,介绍液压系统的设计计算方法。 1 设计要求及工况分析 设计要求 要求设计的动力滑台实现的工作循环是:快进 → 工进 → 快退 → 停止。主要性能参数与性能要求如下:切削阻力F L =30468N ;运动部件所受重力G =9800N ;快进、快退速度υ1= υ3=0.1m/s ,工进速度υ2=×10-3m/s ;快进行程L 1=100mm ,工进行程L 2=50mm ;往复运动的加速时间Δt =;动力滑台采用平导轨,静摩擦系数μs =,动摩擦系数μd =。液压系统执行元件选为液压缸。 负载与运动分析 (1) 工作负载 工作负载即为切削阻力F L =30468N 。 (2) 摩擦负载 摩擦负载即为导轨的摩擦阻力: 静摩擦阻力 N 196098002.0s fs =?==G F μ 动摩擦阻力 N 98098001.0d fd =?==G F μ (3) 惯性负载 N 500N 2.01 .08.99800i =?=??= t g G F υ (4) 运动时间 快进 s 1s 1.0101003 11 1=?==-υL t 工进 s 8.56s 1088.010503 322 2=??==--υL t 快退 s 5.1s 1.010)50100(3 3 2 13=?+=+= -υL L t 设液压缸的机械效率ηcm =,得出液压缸在各工作阶段的负载和推力,如表1所列。

军用与民用设备自动调平系统进行研究

军用与民用设备自动调平系统研究 研究目的 本论文是怎对现代高科技条件下的各种场合,对许多军用与民用设备自动调平系统进行研究。许多军用与民用设备正常工作是都需要一个高精度的水平平台,例如车载雷达,自行火炮,静力压桩机,重型车辆等。对平台水平度的调节是这些设备正常就位工作极重要的一环,因此提高重型车辆,军用设备,以及高空作业平台的机动性,缩短它们工作前的预调整时间提高它们的调平精度及工作的可靠性,是非常有必要的。 研究意义 随着我国经济,国防等各方面飞速发展,平台调平也与越来越受到重视,平台调平系统的研究越来越深入,这就需要我们不断地完善平台调平系统来为更多的设备服务。平台调平系统是解决现有的调平系统在调平时不能用偶小地进行调平或是调平不准确从而使工作生产产生不能有效率的进行的一种调平技术。本设计是基于电液控制的调平系统。 国内外研究现状分析 国内的军用民用调平设备起步较晚,所以这些设备主要采用的都是手动调整螺杆货液压千斤顶,通过目测气泡水平仪,由多人反复操作调节各螺杆支腿达到水平,近年来,这些设备都采用了自动调平系统,主要有机械式调平系统,和电液调平系统,这样大大缩短了调平时间。我国目前的液压调平系统是通过芯片PLC或是单片机来实现功能的。而国际上对液压自动调平系统研究都有了属于自己的准用芯片,它们在机械工作精度上,自动化程度上和系统响应速度都已经达到了很高的程度。现在液压自动调平系统一种比较先进的方法是采用NIOS II嵌入式处理器来实现液压自动调平系统工作的。 中国电子科技集团公司第14研究所研制的某高机动雷达车采用的液压调平系统,采用了搞灵敏度,搞精度的遂平传感器作为水平误差的检测反馈原件,实现了闭环调节。3分钟内精度可达到0.05°以内。 华东电子工程研究所面向模块化技术制作的机电式自动调平装置,该装置使用滚珠丝杠传动,搞功率晶体管模块驱动,双轴液体摆平和传感器等先进技术,精度可达0.05°以内,调平时间2分钟。 本文主要研究工作 研发民用自动调平系统有一系列的关键技术问题。需呀解决包括设计方案、控制策略,结构设计、仿真分析等问题。本文只对该课题进行预先的初步研究,并做了以下几个方面的工作。 1)查阅了大量的国内外有关电液控制的调平系统的文献资料,了解国内外的发展状况和最新技术水晶瓶的基础上,分析并总结国内外的成功研发经验,比较了各方案的优缺点并结合本课题的实际情况拟定了自动调平系统的总体方案。 2)调平系统设计:对调平过程进行了分析与建模,对解耦方法和水平误差度进行了探讨,提出了可行的调平方案,设计了调平系统。 总体研究方案 总体技术要求 调平系统技术要求 可移动载体,例如车载雷达,无线发射架,重型车辆等设备到达指定位置后,要求快速架设精确的水平基准。车载自动调平系统平台必须满足以下要求: 1)在移动状态下车载自动调平系统平台由载车运载进入工作状态时,平台由支撑系统支撑。 2)电液自动调平系统平台应在一定时间内(小于4分钟调平,并满足调平范围在4°,

液压控制系统设计说明

目录 第一章引言..................................................... - 2 - 1.1 虚拟仪器技术............................................ - 2 - 1.2 CAT技术在液压测试系统中的应用.......................... - 3 - 1.3 本课题研究目的和意义.................................... - 3 - 1.4 课题提出及研究方案...................................... - 4 - 第二章电液伺服阀特性........................................... - 5 - 2.1电液伺服阀的组成......................................... - 5 - 2.1.1 电气—机械转换器................................... - 5 - 2.1.2 液压放大器......................................... - 6 - 2.1.3 检测反馈装置....................................... - 6 - 2.1.4 伺服阀的特性及测试原理............................. - 6 - 2.2伺服阀的静态特性......................................... - 6 - 2.2.1负载流量特性曲线................................... - 7 - 2.2.2空载流量特性曲线................................... - 8 - 2.2.3压力特性........................................... - 9 - 2.2.4静耗流量特性(泄特性)............................. - 9 - 2.3本章小结................................................ - 10 - 第三章测试系统硬件设计........................................ - 11 - 3.1传感器.................................................. - 12 - 3.1.1 压力传感器的选型.................................. - 13 - 3.1.2 温度传感器选型.................................... - 15 - 3.1.3 直线位移传感器.................................... - 17 - 3.1.4 线速度传感器...................................... - 18 - 3.2信号放大................................................ - 19 - 3.3流量计.................................................. - 20 - 3.4数据采集设备............................................ - 21 - 3.4.1 数据采集卡的基本性能指标.......................... - 21 - 3.4.2数据采集卡选型.................................... - 22 - 3.5本章小结................................................ - 23 - 第四章基于LabVIEW的伺服阀静态特性测试........................ - 24 - 4.1 面向仪器和测控过程的图形化开发平台-LabVIEW ............. - 24 - 4.1.1 LabVIEW简述...................................... - 24 - 4.1.2 LabVIEW的特点.................................... - 25 - 4.1.3 LabVIEW的仪器驱动程序............................ - 25 - 4.2用LabVIEW进行数据分析和处理............................ - 26 - 4.2.1加窗处理.......................................... - 26 - 4.2.2数字滤波器........................................ - 27 - 4.2.3频域转换.......................................... - 28 - 4.3静态测试系统软件及编程.................................. - 29 - 4.3.1用LabVIEW设计虚拟仪器的方法...................... - 30 - 4.3.2信号激励模块...................................... - 32 -

调平支撑装置液压控制系统设计

调平支撑装置液压控制系统设计

论文结构 ?绪论 ?平衡支撑装置整体方案的拟定?平衡支撑装置液压缸的设计?液压系统的设计 ?液压站的设计 ?PLC控制程序的设计

?调平支撑装置用液压缸作为支腿,通过控制液压缸的位移(高度),实现支撑装置的调平控制,需要完成液压原理图画四号图幅,PLC原理画四号图幅,液压站零号图,阀块零号图,油箱零号图的绘制,完成设计论文的编写。负载为6T。

?调平系统按支撑结构方式一般分有三点支撑调平、四点支撑调平和六点支撑调平等。根据驱动方式选取的不同,调平系统可以分为液压调平系统和机电式调平系统,其中液压调平由于负载能力较强、加速度性好等特点,多用于载荷较重场合,而机电式调平的稳定性好,结构简单、但承载能力有限等特点,多用于相对较轻载荷调平。 ?调平系统通常是采用工控机、微控制器、PLC或者单片机作为系统控制核心。 随着电子技术和自动控制技术的迅速发展,目前应用微机控制已经非常普遍,一般多采用单片机或可编程控制器(PLC)作为控制中心,以液压元件或机电元件作为执行机构。 ?现阶段,国内外的调平技术都已逐步成熟,但随着设备机动性的要求的不断提高,对调平系统调平时间和调平精度的要求也想要提高,与之相适应的自动精致调平技术也不断发展。今后的自动调平系统将向以下几个方向发展: 1.精确性, 2.稳定性, 3.快速性, 4.可操作性。

? 1.调平原理:工作台采用四点支撑,每个油缸的缸径一致,当工件放在工作台上,若想达到平衡,必须每个油缸的输出的力一致,因此四个油缸的无杆腔位置配有压力继电器,通过调节压力继电器动作所需压力,从而达到输出力相等的目的。 ? 2.液压回路设计:考虑到换向阀损坏,或者油管爆裂导致的工作台坠落,所以每个油缸上配有液压锁,防止油缸跌落。 ? 3.控制方面:考虑到电气故障配有急停开关,在正常工作调平时,通过一键按钮自动完成调平工作。控制系统采用三菱FX1N系列PLC,成本底,相对继电器控制系统结构紧凑,系统出现故障时容易排查。

液压传动与控制

液压传动与控制 1.液压传动得工作原理 以液体作为工作介质,并以其压力能进行能量传递得方式,即为液压传动。 2.液压传动得特征 ⑴力(或力矩)得传递就是按照帕斯卡原理(静压传递定律)进行得 ⑵速度或转速得传递按容积变化相等得原则进行。“液压传动”也称“容积式传动”。 3.液压传动装置得组成 ⑴动力元件即各种泵,其功能就是把机械能转化成压力能。 ⑵执行元件即液压缸(直线运动)与马达(旋转运动),其主要功能就是把液体压力能转化成机械能、 ⑶控制元件即各种控制阀,其主要作用就是通过对流体得压力、流量及流动方向得控制,来实现对执行元件得作用力、运动速度及运动方向等得控制;也用于实现过载保护、程序控制等。 ⑷辅助元件上述三个组成部分以外得其她元件,如管道、接头、油箱、过滤器等,它们对保证系统正常工作就是必不可少得。 ⑸工作介质就是用来传递能量得流体,即液压油、 4.液压油得物理性质 ⑴密度 ⑵可压缩性表示液体在温度不变得情况下,压力增加后体积会缩小、密度会增大得特性、 ⑶液体得膨胀性液体在压力不变得情况下,温度升高后其体积会增大、密度会减小得特性。 ⑷粘性液体受外力作用而流动或有流动趋势时,液体内分子间得内聚力要阻止液体分子得相对运动,由此产生一种内摩擦力。液体内部产生摩擦力或切应力得性质,称为液体得粘性。 ①动力粘度(绝对粘度)根据牛顿摩擦定理(见流体力学)而导出得粘度称为动力粘度,通常以μ表示、 ②运动粘度同一温度下动力粘度μ与密度ρ得比值为运动粘度,用v表示。

③相对粘度(条件粘度) 粘压特性在一般情况下压力对粘度得影响比较小,在工程中当压力低于5Mpa时,粘度值得变化很小,可以不考虑。 粘温特性液压油粘度对温度得变化就是十分敏感得,当温度升高时,其分子之间得内聚力减小,粘度就随之降低。 5.液压泵得主要性能参数 ⑴压力 ①工作压力P液压泵实际工作时得输出压力称为工作压力。 ②额定压力Ps液压泵在正常工作条件下,按试验标准规定连续运转得最高压力称为液压泵得额定压力。 ③峰值压力Pmax在超过额定压力得条件下,根据试验标准规定,允许液压泵短暂运行得最高压力值,称为液压泵得峰值压力、 ⑵排量与流量 ①排量V液压泵每转一周,由其密封容积几何尺寸变化计算而得出得排出液体得体积称为液压泵得排量、 ②理论流量qt 在不考虑液压泵泄漏得情况下,在单位时间内所排出得液体体积得平均值称为理论流量。 ③实际流量q液压泵在某一具体工况下单位时间内所排出得液体体积称为实际流量。 ④额定流量qn 液压泵在正常工作条件下,按试验标准规定必须保证得流量,亦即在额定转速与额定压力下泵输出得流量称为额定流量、 ⑶功率与效率 ①液压泵得功率损失 容积损失液压泵流量上得损失 机械损失液压泵在转矩上得损失 ②液压泵得功率 输入功率Pi 作用在液压泵主轴上得机械功率 输出功率Po 液压泵在工作过程中得实际吸、压油口间得压差Δp与输出流量q得

液压传动装置电气控制系统的设计说明

天津渤海职业技术学院 毕业设计说明书 专业电气自动化 课题名称液压传动装置电气控制系统的设计学生蕊蕊 指导老师秦立芳利 电气工程系 2009年3月

容摘要 液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。液压系统利用液压泵将原动机的机械能转换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和管路的传递,借助于液压执行元件(缸或马达)把液体压力能转换为机械能,从而驱动工作机构,实现直线往复运动和回转运动而进行能量传递的一种传动方式。由于液压执行结构尺寸小,反应速度快,调节性能好,传递的力和扭矩较大,操纵、控制、调节比较方便,容易实现功率放大和过载保护,因此被广泛应用于机械制造、冶金、工程机械、农业、汽车、航空、船舶、轻纺等行业。近年来,又被应用于太空跟踪系统,海浪模拟装置,宇航环境模拟火箭发射助飞装置。 在机械加工中,例如组合机床加工长孔,为满足其技术要求并达到相应的自动化水平,加工前,应按工艺工程进行可行性模拟加工试验。本方案即为满足液压试验装置设计电气控制和自动控制。 本课题属于典型的机电技术结合项目,通过对课题的设计,研究和制作过程可达到综合利用自动化专业理论知识,提高专业综合操作技能,提高分析、组织能力,拓展学科领域的目的,并为机械加工生产技术改革提供试验操作平台。 常用词;液压装置、电器控制、PLC可编程控制器 致谢: 在本次毕业设计过程中得到了众多老师的帮助,在此表示忠心的感谢!同时也感谢这三 年来在学习和生活上给予帮助的所有老师!

目录 第1章设计对象及基本要求 (4) 1.1 设计对象 1.2 基本要求 1.3 技术要求 第2章电气线路的设计 (5) 2.1 线路设计的基本原理 2.2 绘制原理图 2.3 元器件的选择 2.4 元器件的分布图 第3章柜体电气线路的安全 (11) 第4章电气控制柜的通电试验 (15) 4.1 通电前的检查 4.2 电气控制柜的调试 第5章按给定实验项目进行的调试 (15) 5.1 用PLC可编程控制项目进行编程设计 第6章使用说明书 (18) 第7章结果分析 (18) 参考文献 (19)

车辆平台液压自动调平装置方案

车辆平台液压自动调平方案 1 引言 特种车辆在到达预定位置后,要求能快速架设精确的水平基准。高水平度的稳定平台对于车辆特种仪器操作有重要影响。以往车辆平台主要采用手动调整螺杆或手动液压千斤顶,通过目测气泡水平仪,由多人反复操作调节各螺杆支腿达到水平,这种方法调节时间长、水平精度低,操作难度大,且需要多人配合操作。近年来,车辆平台的调平采用了自动调平系统,其中主要有机电调平系统和电液调平系统,大大缩短了调平的时间,提高了调平的精度,只需要启动电源即可完成全部架设与调平。本方案论述电液调平的关键技术。 2 调平方案 2.1 调平系统 调平系统由检测、执行机构和控制系统3部分组成,具体包括双轴水平传感器、阀控液压缸和基于DSP的数字液压控制系统及相关连接电缆等组成。 (1) 检测装置为角度检测器,用来检测平台左右及前后的不平度。其检测值的大小是系统判断是否进行调平的依据,其检测精度的高低直接决定了系统的最终调平精度。 (2) 调平执行机构采用4 个带有自锁功能的液压支腿,将其对称布置在车辆底座的两侧,由相应的电液阀控制,通过支腿的上下伸缩,实现车辆的调平。 (3) 控制系统是自动调平系统的核心组成部分,本方案采用基于DSP处理器的数字控制系统完成控制算法,采用智能功率驱动模块替代传统的继电器方式对液压缸电磁阀进行控制;通过数字控制器的软件程序控制

液压机构动作,完成车辆的自动调平。 本方案设计考虑到安装的便利性将角度传感器集中在数字控制器内。 自动调平控制原理图如下: 2.2 水平度误差分析 图2 是4 点式承载平台示意图,采用4 个垂直液压缸来支撑平台。 图2 平台支撑示意图 水平传感器沿X 、Y 方向布置, X 、Y 两个方向的水平倾角为α和β,两传感器间的夹角为γ,则平台的倾斜角度θ可由α和β合成为 : 给 定 控 制 精 度 DSP 模块 电平 转换 驱动 模块 电磁阀 1 2 3 4 液压缸1 液压缸2 液压缸3 液压缸4 车 辆 平 台 两自由度角度传感器 数据采集模块 液压泵 电源模块 图 1 液压自动调平系统原理框图 CPLD 逻辑 控制

PLC控制的四点自动调平系统

1 引言 某火炮发射车为了提高命中率,在发射火炮前,必须先进行承载平台的调平。承载平台由四条支腿和四个轮胎支撑,为了保证调平后水平度的稳定,调平时首先让轮胎离地,只让四条支腿支撑平台,以克服轮胎变形引起的平面变化。要实现自动调平,就必须使电气控制系统和液压系统在计算机的控制下,成为一个有机的整体,协调、高效、准确地运行。平台控制的关键技术是调平算法的选择和自动调平技术的实现。我们使用了2个水平传感器,分别检测前后和左右的倾斜度,而每个支腿的升高都可能引起它们的变化,因此从控制系统来看,这是一个多输入多输出的强耦合的动态过程[1]。 火炮发射平台应该满足以下要求: (1) 调平后,平台由四条支腿支撑并与车体脱离; (2) 调平过程应在短时间内完成,并满足精度指标的要求; (3) 平台调平后,应进行锁定以保证平台的状态至少24小时不变。 为了提高火炮的机动性,我们研究开发了PLC控制的自动调平系统,这种系统调平时间短,调平精度高,操作简单可靠,对提高火炮的机动性能具有重大意义。 2 四点式平台的调平方法 图1是四点式承载平台示意图。按照对称矩形方式,采用4个垂直油缸来支撑平台。这种支撑形式具有稳定性好、抗倾覆能力强等优点,因此被广泛用于机动火炮的发射过程[2]。 图1 四点式承载平台示意图 调平系统中水平传感器安装如图2所示,水平传感器与平台的一条对角支点连线平行安装。平台有4个支点,平台重心不在两水平传感器交叉点上。如图2所示,2个方向倾角为α和β,传感器夹角为γ,则平台的倾斜度θ可以由α和β 合成为:

如果2个方向的控制精度为±δ,则调平后平台的水平误差为: 从(2)式可以得到,控制度δ一定,当γ=90°时,平台的水平误差θ取最小值,因此在大多数的调平系统中,两个传感器都互相垂直安装。此时 也就是说,两边的水平控制度应为整个平台水平控制度的,比如要求整个平 台的倾斜度为2′,则控制时2个方向的控制度应该为。 图2 传感器安装示意图 根据水平传感器测出的水平倾角可以判断出4个支承点的高低,找出最高点,按照“只升不降”的原则,采用升调平技术,把其他3个支点升高至与最高点处于同一水平面后,调平过程结束。其技术关键是如何根据2个水平倾角决定各支点应该升高的高度,以及采用哪种方法去精确控制各支点升高的高度。 3 调平的PLC实现及系统构成 由于PLC的高可靠性和接口的简易性,使用PLC实现自动调平是一种很好的方法。假定最高支点高度为A,某一支点高度为B,按照升调平方法,则B点需要升高的垂直高度为AB,我们可以用下面的公式计算出该支腿升高AB时所需要的脉冲数n,从而控制该支腿升高的高度,达到调平目的。 式中ΔP是产生1mm位移的固定脉冲,可以用实验方法精确测出支点升高1mm 所需的时间,编程控制加于液压开关的脉冲个数就可实现要求的位移。 本系统选用德国Siemens公司的SIMATIC S7-300系列的PLC作为主控元件,其结构框图如图3所示。该PLC系统包含电源模块、CPU模块、模拟量输入(AI)模块、数字量输入(DI)模块和数字量输出(DO)模块[3]。通过2个水平传感器检测平台的左右倾角和前后倾角是否满足精度。检测出的倾角信号经相敏整流电路后送给模拟量输入模块。模拟量输入模块用来输入水平检测信号,自动完成A/D

液压传动及控制系统复习题(1)

液压传动及控制复习题 一、单项选择题。在每小题列出的四个备选项中只有一个符合题目要求,请将其代码写在题后的括号。错选、多选或未选均无分。 1.液压缸的运动速度取决于(B) 。 (A) 压力和流量(B) 流量(C) 压力(D)负载 2. 当工作行程较长时.采用(C) 缸较合适。 (A) 单活塞杆(B) 双活塞杆(C) 柱塞 3、常用的电磁换向阀是控制油液的(C) 。 (A) 流量(B) 压力(C) 方向 4.在三位换向阀中,其中位可使液压泵卸荷的有(B) 型。 (A) O (B) H (C) K (D) Y 5. 在液压系统中,(A) 可作背压阀。 (A) 溢流阀(B) 减压阀(C) 液控单向阀 6. 节流阀的节流口应尽量做成(A) 式。 (A) 薄壁孔(B) 短孔(C) 细长孔 7、减压阀利用(A) 压力油与弹簧力相平衡,它使的压力稳定不变。 (A) 出油口(B) 进油口(C) 外泄口 8. 某一系统的压力大于大气压力,则其绝对压力为(A)。 (A) 大气压力加相对压力 (B) 大气压力加真空度 (C) 大气压力减真空度 9. 液压马达是将(A) 。 (A) 液压能转换成机械能(B) 电能转换为液压能 (C) 机械能转换成液压能 10. 对于双作用叶片泵的叶片倾角,应顺着转子的回转方向(B) 。 (A)后倾(B) 前倾(C) 后倾和前倾都可 12. 在测量油液粘度时,直接测量油液的哪个粘度?[ C ] A. 动力粘度 B. 运动粘度 C. 相对粘度 D. 粘性 13. 以下哪种情况下,液体会表现出粘性?[ C ] A. 液体处于静止状态 B. 运动小车上的静止液体 C. 液体流动或有流动趋势时 D. 液压受到外力作用 14. 额定压力为6.3MPa的液压泵,其出口接,则液压泵的出口压力为[ B ] A. 6.3MPa B. 0 C. 6.2MPa D. 不确定 15. 当工作行程较长时,采用以下哪种液压缸较合适?[ D ]

车床液压系统自动机床控制系统设计

新疆大学 实习(实训)报告 实习(实训)名称:电气控制与PLC综合实践 学院:新疆大学科学技术学院 专业、班级:电气12-1班 指导教师:努尔哈孜·朱玛力 报告人:郜志强 学号:20112450079 时间:2015年6月19日--7月3日

1设计部分 设计题目:车床液压系统自动机床控制系统设计 在机械工业中,传统普通车床仍占有相当比例,其中部分车床采用液压系统来控制刀具的自动切换,机床电气控制部分多应用继电器——接触器控制来实现,这类系统元器件多,体积大,连线复杂,可靠性和可维护性低,故障率高,工作效率低,而随着计算机技术、电子技术等的发展,计算机控制技术在液压传动控制中也得到了广泛的应用。以计算机技术为核心的PLC(可编程序控制器)具有抗干扰性强,运行可靠等诸多优点在工业自动化领域已被广泛应用。本文即是利用PLC控制技术,对传统液压回路进行系统控制设计,变传统电气控制为PLC

控制。 1.1车床液压控制回路的液压元件构成 此车床液压控制回路主要由以下原件组成:左夹紧液压缸用于夹紧工件和卸下工件,中横向进给液压缸带动刀具横向进给,右纵向进给液压缸带动刀具纵向进给,6个电磁换向阀控制进给液压缸的前进与后退,2个调速阀控制进给液压缸进给速度,双联泵提供液压油输出,另外采用3个单向阀控制液压油流动方向,减压阀和压力继电器监控夹紧缸的油压。 1.2 车床液压控制回路的工作原理 液压控制回路如图1所示,其作用主要是能够控制车床完成完整的切削加工过程,并且工作一个循环,分为8个步聚:1、装件夹紧;2、横快进;3、横工进;4、纵工进;5、横快退;6、纵快退;7、卸下工件;8、原位停止;各步骤的切换分别由行程开关SQ1、SQ2、SQ3、SQ4、SQ5、SQ6、SQ7控制,具体工作循环如图2所示。行程开关用于控制液压回路中6个电磁换向阀电磁铁的通电与否,进而改变液压油流向,影响液压缸实现动作顺序,完成切削过程。断电情况如表1所示。

典型液压传动系统实例分析

第四章典型液压传动系统实例分析 第一节液压系统的型式及其评价 一、液压系统的型式 通常可以把液压系统分成以下几种不同的型式。 1.按油液循环方式的不同分 按油液循环方式的不同,可将液压系统分为开式系统和闭式系统。 (1)开式系统 如图4.1所示,开式系统是指液压泵1从油 箱5吸油,通过换向阀2给液压缸3(或液压马 达)供油以驱动工作机构,液压缸3(或液压马 达)的回油再经换向阀回油箱。在泵出口处装溢 流阀4。这种系统结构较为简单。由于系统工作 完的油液回油箱,因此可以发挥油箱的散热、沉 淀杂质的作用。但因油液常与空气接触,使空气 易于渗入系统,导致工作机构运动的不平稳及其 它不良后果。为了保证工作机构运动的平稳性, 在系统的回油路上可设置背压阀,这将引起附加 的能量损失,使油温升高。 在开式系统中,采用的液压泵为定量泵或单 向变量泵,考虑到泵的自吸能力和避免产生吸空 现象,对自吸能力差的液压泵,通常将其工作转 速限制在额定转速的75%以内,或增设一个辅助 泵进行灌注。工作机构的换向则借助于换向阀。 换向阀换向时,除了产生液压冲击外,运动部件 的惯性能将转变为热能,而使液压油的温度升高。 图4.1 开式系统 但由于开式系统结构简单,因此仍为大多数工程 机械所采用。 (2)闭式系统 如图4.2所示。在闭式系统中,液压泵的进油管直接与执行元件的回油管相联,工作液体在系统的管路中进行封闭循环。闭式直系统结构较为紧凑,和空气接触机会较少,空气不易渗入系统,故传动的平稳性好。工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了在开式系统换向过程中所出现的液压冲击和能量损失。但闭式系统较开式系统复杂,由于闭式系统工作完的油液不回油箱,油液的散热和过滤的条件较开式系统差。为了补偿系统中的泄漏,通常需要一个小容量的补油泵进行补油和散热,因此这种系统实际上是一个半

机电式自动调平系统的方案

车载雷达机电式自动调平系统的方案 现代战争对雷达机动性能的要求越来越高,特别是机动陆面载体如车载雷达天线、发射架等设备,到达预定位置后,要求快速架设精确的水平基准。车载平台的人工手动调平已很难满足军方对雷达快速架设、快速撤收,以及平台高精度调平的要求。机电式自动调平与人工调平相比具有调平时间短、调平精度高、可靠性高等特点。本设计是以单片机和CPLD为控制核心,伺服控制器和伺服电机为执行单元的机电式四点支撑自动调平随动控制系统,能够实现机电式车载平台自动调平的全自动化、全闭环控制。其优点在于调平时间短(少于3分钟)、调平精度高(小于3’)、可靠性高、可在恶劣环境下工作等方面。 系统组成 调平原理 调平方式通常有3点式或4点式,特殊的还有多点式如6腿或更多腿平台。本系统根据实际的应用情况,采用4点式调平方式。四点支撑的工作平台X 轴、Y 轴是根据水平传感器的安装位置确定工作平台面上互相垂直的两个轴向,调平原理如图1所示。 在工作平台的支撑腿着地后, 控制系统开始进行调平。通过水平传感器的检测信号,可以找出工作平台的最高点。将水平传感器按如图1 所示方向安置于工作平台上,传感器输出含有X 和Y 轴信号,它们是与水平误差(角度) 成线性关系的数字信号。当X>0,Y<0时,撑腿A为最高点;X<0,Y<0时,撑腿B为最高点;X<0,Y>0时,撑腿C为最高点;X>0,Y >0 时,撑腿D为最高点。 假设撑腿着地后撑腿A为最高点(其他撑腿为最高点的情况相似),根据水平传感器的信号,可以分别进行X轴和Y轴方向的调节。如先进行X轴调节,其过程如下:撑腿A和D不动,撑腿B和C同时上升一定位移,即工作平台绕撑腿A和D为轴线旋转,撑腿B和C同时上升,上升的数值由控制系统根据水平传感器的X轴反馈值决定,直至X轴呈水平状态。Y轴调节与X轴类似。若工作台的X轴和Y轴调节成水平状态,则可认为工作台已处于水平状态。4点调平的水平误差为q2=q12+q22,q1和q2分别为水平传感器的角度精度。若两个传感器的控制精度都为δ时,则水平误差。 4点及多点调平设计面临的一个主要问题是虚腿现象,即有一个腿受力很小或者悬空,这在调平过程中是不能允许的。当平台的负载均匀时,4个支撑点的受力应该均匀。本系统设计的处理办法是把平台支撑起来后,先进行一次粗调平(设定一个粗精度),目的是使4个支撑点的受力比较接近。然后,再按照系统设定的调平精度进行调平。这样,调节的过程就中不会出现一腿受力过小(虚腿),从而有效的预防虚腿现象的出现。

液压控制系统设计

1 液压缸选型 四足机器人大腿上的液压缸所受的推力较大,而小腿上的液压缸所受的推力较小,而且,4个大腿上的液压缸所受的最大推力接近,4个小腿上的液压缸所受的最大推力也接近。因而,在设计液压缸时,大腿上的液压缸设计成相同尺寸,小腿上的液压缸设计成相同尺寸。 而四足机器人髋上的液压缸仅在四足机器人受到横向冲击的情况下工作。根据仿真结果可知,髋上的4个液压缸所受到的最大推力为 1.8kN,最大速度为130mm/s。由于髋上的液压缸推力和速度比大腿与小腿上的液压缸推力和速度小很多,在设计时,总流量主要考虑大腿和小腿上液压缸的叠加,髋上的液压缸流量由蓄能器供给。 根据仿真计算结果图,大腿上的液压缸所受最大推力取8kN,小腿上的液压缸所受的最大推力取4kN,即液压系统的最大载荷为8kN。查阅《液压工程师技术手册》如下表所示, 当载荷为5~10kN时,工作压力宜取1.5~2MPa,为了使液压控制系统的动态性能更好,同时使机械结构更紧凑,取液压缸的负载压力为6MPa。 液压缸暂定交由常州恒力液压有限公司生产。 1.1 大腿上的液压缸 大腿上的液压缸设计成相同尺寸,该液压缸的最大负载压力为P Lm=6MPa,所受最大负载推力为F m=8kN。 P1A1?P2A2=F 其中,P1——液压缸无杆腔压力; P2——液压缸有杆腔压力; D2; A1——液压缸无杆腔有效面积,A1=π 4 (D2?d2); A1——液压缸无杆腔有效面积,A2=π 4 F——负载推力; 液压缸负载压力F满足:

P Lm=F m A1 =P1?P2 A2 A1 =6MPa 由上式可以得到 A1=F m P Lm = 8000 6 mm2=1333.3mm2 所以, D=4A1 π = 4×1333.3 π =41.2mm 圆整后取D=40mm。 查阅《液压工程师技术手册》如下表所示, 取d=25mm。根据仿真结果,液压缸行程大于70mm即可。液压缸和伺服阀组合成的液压包外形图按照之前设计的电动缸伺服电机外形图设计。 1.2 小腿上的液压缸 小腿上的液压缸设计成相同尺寸,该液压缸的最大负载压力也为P Lm=6MPa,所受最大负载推力为F m=4kN。 P1A1?P2A2=F 其中,P1——液压缸无杆腔压力; P2——液压缸有杆腔压力; A1——液压缸无杆腔有效面积,A1=π 4 D2; A1——液压缸无杆腔有效面积,A2=π 4 (D2?d2); F——负载推力; 液压缸负载压力F满足: P Lm=F m 1 =P1?P2 A2 1 =6MPa 由上式可以得到 A1=F m Lm = 4000 mm2=666.6mm2 所以,

基于PLC控制的大载荷四点支撑液压自动调平系统

? 158 ? 基于PLC控制的大载荷四点支撑液压自动调平系统设计 安徽博微长安电子有限公司 席广辉 王 峰 皇淼淼 陶 烨 【摘要】液压自动调平系统的驱动力大,负载能力强,结构紧凑,适合在重型移动载体上运用。采用液压马达(带制动器、霍尔传感器)以及双向液压锁能使液压系统得到较高的锁紧精度,同时采用四点支撑结构,抗倾覆能力强,系统操作简单、使用方便,调平速度快,能有效提高车载平台的机动性。【关键词】自动调平;PLC;液压 1 引言 自动调平系统是雷达的重要组成部分,对于提高雷达车机动架设、测平性能,以及精确地测量目标的位置等其它参数都起着决定性的作用。本文介绍了采用电液结合的PLC液压系统技术来实现液压调平系统的控制与动力驱动的要求[1],通过对水平倾角传感器的水平倾角角度的智能实时检测,控制液压马达驱动,实现雷达车四条撑腿联动并调至水平状态。 2 液压系统设计 液压系统采用小型车载工程用液压站,液压站由动力源、控制阀站、调平腿、管路等组成。系统由交流伺服电机和液压泵组成的动力源来提供动力,通过控制相关液压阀的工作状态,将油液通过液压管路传送给液压马达,液压马达驱动调平腿实现车辆的调平功能。系统的液压泵选用PARKER高压齿轮泵,通过控制伺服电机的转速来控制泵的输出流量,进而实现调平撑腿速度的改变。系统的最高压力通过安全阀(溢流阀)来设定,防止系统因故障而造成破坏。 液压系统工作原理如图1所示。启动电机2,电机带动双联泵运转,电磁阀4、7、13得电,此时液压马达通过液压油实现解锁。解锁完成后电磁阀7失电,电磁阀4、9、14~17得电,液压油经双向液压锁、平衡阀进入马达,带动马达旋转,进而带动撑腿运动。当四条调平撑腿均检测到着地信号后,系统进入调平状态。电磁换向阀3、9失电,马达低速带动调平腿运动。水平传感器发出信号到控制器PLC中,信号经过PLC处理后发出控制命令,驱动相应的马达运动,直到工作平台达到调平精度为止。当达到调平精度后,换向阀14~17、13、7、3失电,电机失电,泵停止工作[2]。 3 硬件设计 系统在硬件设计上,选用PLC为核心控制单元,通过 与外部人机界面单元、液压马达驱动单元、水平仪传感器单元以及方舱通信接口联接,构成完整的座车调平伺服系统[3]。硬件系统方案设计框图如图2所示。 图1 液压系统原理图 图2 硬件系统设计框图 主机控制部分是整个系统的核心,主要负责处理各传感器提供的信号,经程序处理后,变成输出信号传送

机电课程设计压力机液压系统的电气控制设计全解

课程设计任务书 2013—2014学年第二学期 机械工程学院(系、部)机械设计制造及其自动化专业机设1105 班级课程名称:机床电气控制技术 设计题目:压力机液压系统的电气控制设计 完成期限:自 2014 年 6 月 13 日至 2014 年 6 月 20 日共 1 周 内容及任务一、设计的主要技术参数 具体要求见课程设计指导书 二、设计任务 完成系统的继电器控制原理图、PLC控制原理图及设计说明书一份三、设计工作量 电气图2-3张,不得少于15页 进度安排 起止日期工作内容 6.13 讲解设计目的、要求、方法,任务分工 6.14 根据指导书和任务书要求确定控制系统的输入输出点 数、类型,确定输入、输出设备及元器件种类、数量, 初步选定PLC型号 6.15 根据指导书和任务书绘制控制系统工作流程图,确定每 个动作实现和解除必须的条件 6.16-6.17 绘制继电器控制原理图、电路计算、元器件选择列表 编制控制系统的PLC控制程序 6.18-6.20 编写设计说明书 主 要参考资料【1】郁建平主编《机电控制技术》. 北京:科学出版社,2006. 【2】张万奎主编《机床电气控制技术》. 北京:中国林业出版社,2006. 【3】李伟主编《机床电器与PLC》. 西安:西安电子科技大学出版社,2006. 【4】芮静康主编《实用机床电路图集》. 北京:中国水利水电出版社,2006. 指导教师(签字): 2014年 6 月 20 日系(教研室)主任(签字): 2014年 6 月 20 日

机床电气控制技术 设计说明书 压力机液压系统的电气控制设计 起止日期:2014 年6 月13 日至2014 年6 月20 日学生姓名邓文强 班级机设1105 学号11405701424 成绩 指导教师(签字) 机械工程学院(部) 2014年6月20日

(完整版)液压传动系统的概论.

液压传动技术的历史进展与趋势 从公元前200多年前到17世纪初,包括希腊人发明的螺旋提水工具和中国出现的水轮等,可以说是液压技术最古老的应用。 自17世纪至19世纪,欧洲人对液体力学、液体传动、机构学及控制理论与机械制造做出了主要贡献,其中包括:1648年法国的B.帕斯卡(B.Pascal)提出的液体中压力传递的基本定律;1681年D.帕潘(D.Papain)发明的带安全阀的压力釜;1850年英国工程师威廉姆.乔治.阿姆斯特朗(William George Armstrong)关于液压蓄能器的发明;19世纪中叶英国工程师佛莱明?詹金(F.Jinken)所发明的世界上第一台蒸气喷射器差压补偿流量控制阀;1795年英国人约瑟夫?布瑞玛(Joseph Bramah)登记的第一台液压机的英国专利;这些贡献与成就为20世纪液压传动与控制技术的发展奠定了科学与工艺基础。 19世纪工业上所使用的液压传动装置是以水作为工作介质,因其密封问题一直未能很好解决以及电气传动技术的发展和竞争,曾一度导致液压技术停滞不前,卷板机。此种情况直至1905年美国人詹涅(Janney)首先将矿物油代替水作液压介质后才开始改观,折弯机。20世纪30年代后,由于车辆、航空、舰船等功率传动的推动,相继出现了斜轴式及弯轴式轴向柱塞泵、径向和轴向液压马达;1936年Harry Vickers发明了先导控制压力阀为标志的管式系列液压控制元件。第二次世界大战期间,由于军事上的需要,出现了以电液伺服系统为代表的响应快、精度高的液压元件和控制系统,从而使液压技术得到了迅猛发展。 20世纪50年代,随着世界各国经济的恢复和发展,生产过程自动化的不断增长,使玻璃冷却器技术很快转入民用工业,在机械制造、起重运输机械及各类施工机械、船舶、航空等领域得到了广泛发展和应用。同期,德国阿亨工业大学(TH Aachen)在仿形刀架

液压PLC控制系统设计

机电一体化专业综合实验液压PLC控制系统设计

目录 一、实验总体规划............................................................................... 错误!未定义书签。 1.1实验目的 ......................................................................................................... 错误!未定义书签。 1.2实验器材 ......................................................................................................... 错误!未定义书签。 1.3实验要求 ......................................................................................................... 错误!未定义书签。 1.4实验内容 ......................................................................................................... 错误!未定义书签。 二、系统设计........................................................................................................... 错误!未定义书签。 2.1 总体方案设计 ................................................................................................ 错误!未定义书签。 2.2 零件图 ............................................................................................................ 错误!未定义书签。 2.3 加工示意图、动作循环图 ............................................................................ 错误!未定义书签。 2.3.1加工工艺流程设计 ............................................................................... 错误!未定义书签。 2.3.2工件加工工艺过程设计 ....................................................................... 错误!未定义书签。 2.3.3动作循环图 ........................................................................................... 错误!未定义书签。 2.4液压回路设计 ................................................................................................. 错误!未定义书签。 2.4.1 设计思路 .............................................................................................. 错误!未定义书签。 2.4.2 液压回路得电顺序表 (6) 2.5 PLC控制系统设计 (6) 2.5.1系统功能设计 (6) 2.5.2 I/O口的点数及地址分配、PLC选型 (7) 2.6 电气原理回路设计(见附录) (8) 2.8 PLC程序设计 (10) 2.8.1流程图 (10) 2.8.2 全局变量表 (11) 2.8.3程序设计 (12) 三、PLC程序设计、调试遇到的问题 (19) 四、结论 (19) 五、自我总结 (20)

相关文档
相关文档 最新文档