文档库 最新最全的文档下载
当前位置:文档库 › NUMECA使用准则V1[1].0

NUMECA使用准则V1[1].0

NUMECA使用准则V1[1].0
NUMECA使用准则V1[1].0

NUMECA

使用准则V1.0

尤迈克(北京)流体工程技术有限公司编写

2008年3月

目 录

一. 计算域的设定及几何一致性 (3)

二. 网格质量相关性 (4)

三. 边界条件设置 (5)

四. 收敛判别标准 (5)

五. 流场特征分析基础 (6)

六. 文件夹管理标准化 (8)

附:4个标准化计算和检查文件 (8)

附录1:文件管理布局 (9)

附录2:叶片网格生成流程图 (10)

附录3:计算设置检查流程图 (11)

一. 计算域的设定及几何一致性

为了保证数值计算结果的准确性与可信度,几何一致性就显得至关重要。

在准备几何数据,提取几何完成之后,在IGG中测量检查叶轮几何文件(*.geomturbo)和蜗壳几何文件(*.dat)尺寸与原始二维/三维CAD图纸相一致,下一步的网格划分就是对现有几何空间的离散化,以此来控制数值模拟误差的几何误差部分。

一般地,几何数据可通过三种途径获得: CAD文件、数据文件或加工图纸、。如果是CAD文件,则要在CAD软件中仅选中与流动部分(如叶片,流道内侧的几何、蜗壳内侧的几何等)相关的几何线或面,输出为NUMECA软件可辩认的格式(如IGES、Parasolid、Catia等格式)。当把这些文件输入到IGG或IGG/Autogrid 中时,首先要查对是否有线或面遗漏。在确认都正确的前提下,再开始制做网格。如果是加工图纸或数据文件,就要通过IGG(如果几何比较简单)或任意CAD软件把加工图纸转换成CAD文件,再重复上面的工作。如果只做叶片流道部分的数值模拟,那么加工图纸或数据文件给出的只是叶型和子午流道的几何,这样就可把加工图纸转换成数据文件,并写成IGG可辩认的格式,直接读入到IGG/Autogrid中。读入以后,也要先认真检查叶片和流道的几何是否正确,特别是叶片的安装角是否正确,叶轮转向是否正确,叶轮进口为Z轴正方向等。还要注意叶片在轴向的安装位置是否正确。叶片排之间的周向位置尽量重合,对计算结果没有任何影响,但方便在后处理中对流场结果进行对比分析。

如果几何数据点比较少,需要在几何曲率较大的区域增加若干控制点,以保证曲线或曲面的连续光滑。

有时设计给出的数据在叶片前后缘没有导圆,那么在制做网格以前首先要在IGG或CAD软件中进行导圆。在导圆时要按照设计的要求,或者保证弦长、或者保证前后缘的安装位置。

为了实现与试验得到的性能结果的可对比性,计算域的选取是至为关键的。

如果要与实验数据进行比较,建议选择与实验段相对应的计算域。在设置计算边界条件时,特别是入口条件时,要考虑计算与前部的流动历程,如速度、气

流方向、以及总压等的分布。

特别地,对于压气机部分,进口条件比较好取:如果计算域设置在压气机的入口,就直接按照均匀的大气条件给定总温,总压和轴向进气条件;如果计算域的入口设在叶轮前缘不远的上游,那么在设置总压和气流方向时最好要考虑内外环壁边界层的影响,比如可按照指数率给出其分布,边界层厚度可去1~10mm(与入口面的轴向位置有关,越靠近叶片前缘,厚度越大)。对于气流方向,可按照内外环壁的曲率给出分布。

对于涡轮,计算域入口最好的选中进气蜗壳的入口,这里的气流均匀,总压、总温和气流方向均容易确定。但有时或者由于计算资源的限制、或者关心的重点是叶轮部分,需要把入口边界设置在叶轮的上游,这时边界条件就比较难以准确的给出。近似的办法是:可按照蜗壳或导叶出口的条件(特别是气流角)来给出。这时在分析计算结果时,要考虑由于入口边界条件所可能带来的误差。

对于计算域出口和转静子面,这个位置尽量放置在流场已充分掺混均匀的位置,但要确信在出口处流动不会发生大尺度的回流。如果可能有回流发生,就要把出口的位置适当地向下游延伸。例如:压气机的转静子面设置在无叶扩压器的中段(叶轮尾缘与蜗壳进口的中点)为了叶轮出口射流尾迹区的充分掺混,涡轮的出口位置距离叶片尾缘至少1.5倍叶高的尺寸。

在FINE/Turbo软件中,宏观物理量采用的是质量平均的数据处理方式,在一些实验中采用面积平均的数据处理方式,避免数据处理的不同方式来进行数值计算和试验结果的错误对比。

二. 网格质量相关性

CFD数值模拟的可信度主要取决于求解器的精度的数值精度(如离散格式和计算方法)。在给定求解器的条件下,其计算精度和收敛速度在很大程度上依赖于网格的质量。所以,可以说网格质量很大程度上决定着求解器的数值误差部分。具体准则如下:

2.1.网格不能存在负网格,否则计算无法进行。

2.2.原则上,最小正交性角度越接近90°越好;最大网格长宽比越接近1越好;最大网格延展比越接近1越好。但由于边界层、激波和尾迹等的存在,以及几何的复杂性,实际上很难得到三者兼得的网格质量,所以一般推荐:

最小网格正交性角度>10°

最大网格长宽比<5000

最大网格延展比<10

2.3.应当尽可能地提高网格质量,以避免不必要的数值误差。

2.4.对于网格正交性而言,在某些算例中,可能甚至会出现角度小于1的情况。但一般而言,只要不存在负网格,计算就可以进行。但收敛速度会放慢,收敛曲线会剧烈振荡,CFL数不能太大(小于2)。如果这时整体性能收敛很好,那么由网格引起的误差只是局部性的,因此计算结果可以接收。

2.5. 对于延展比,不仅要考虑计算区块内部的网格分布,也要考虑块与块直接连接处的延展比。

2.6.导入原始几何文件,检查网格边界是否与原始几何完全重合,再次保证计算域的正确性。

三. 边界条件设置

当计算软件和网格确定以后,计算结果将紧密地与边界条件相关。因此,边界条件一定要按照物理的实际来给定。

对于进出口条件,在第一节“计算域的设定及几何一致性”中已经做了部分说明。对于进口处的具体数值(总压、总温和气流角),要按照实际实验或设计数据给出。在给定出口边界条件时(压力条件或流量条件),一定要牢记:任何旋转机械均是在一定的工作范围内(如流量范围)运行的,因此给定的值不能超出这个范围。一般地对于压缩机,建议先从堵塞流量点附近算起,然后再逐渐减少流量或提高背压。固壁边界条件:对于不可压流体的效率计算,需要输出扭矩和轴向力的计算结果时,应采用区域定义转速方式,并设置TORR专家参数为1.

四. 收敛判别标准

残差——是迭代过程中各个基本方程(连续方程、动量方程、能量方程和湍流量输运方程等)是否趋于稳定(收敛)的重要评估参数。计算域内的最大残差或者RSM残差的大小直接反应了收敛精度。一般地将,残差越小越好。由于存在数值精度问题,不可能得到理想的0残差,对于单精度计算的机器,残差一般应该低于1e-06以下为好,这时的计算可以认为是完全收敛。只有在完全收敛的条件下才可相信计算所获得的结果。但对于流动分离严重的计算条件或工况(如小

流量工况区)、或者较差的网格质量等情况还是要具体问题具体分析。

4.1.全局残差:建议全局残差下降六个量级以上。但如果实际流动中存在大范围的分离、或低的网格质量等,残差降到三个量价一下也可认为收敛,满足工程精度。

4.2.各块中残差:由于各块中网格质量以及流动特性的不同,每一块中的残差下降幅度也会不同。但仍然推荐计算中,每一块中的残差下降五个量级以上。如果某个块区的流动复杂,残差在三个量价以下不再下降,也可认为收敛了

4.3.总体性能(进出口流量、压比、效率、功率、扭矩和升力等):收敛准则中最重要的一个参数。一般地讲,这些总体特性参数要比计算残差容易收敛。这些量的收敛表面总体特性已经稳定,残差收敛表面流动细节达到稳定。建议进出口流量相对误差小于0.5%,且流量不再发生变化。对于有大分离涡的流动(尤其在进出口处),流量收敛曲线会发生振荡,此时由于迭代中分离涡的位置和强度都会发生不同程度的变化,呈现非定常特性,因此流量也会随之发生变化(但这种变化近似为周期性)。在这种情况下,也可认为计算收敛,或曰:振荡收敛。在有些情况下,效率的收敛要慢一些,因为效率直接与流动损失即流动细节相关,如果要进行效率的京西比较,就要在其它总体性能和残差都收敛后在都计算若干步,实现效率曲线的收敛。

4.4.流场当地值:计算迭代收敛时,流场每一点处的参数值不应当再发生变化,或者对于有分离涡的情况,涡内某一点的参数应当为周期性变化。用户可以在FINE介面中跟踪某一特性点的参数,并观察其变化参数。

4.5.总体参数:对于定常计算,所有的总体性能(效率、扭矩、推力等)都应当变为恒定值,不再随迭代步数而发生变化。对于有大分离的情况,这些参数则会呈现周期性变化。这两种情况下都可认为计算收敛。对于非定常计算,所有的参数都应当呈现近似周期性变化。

五. 流场特征分析基础

在保证计算域设定、几何一致性、网格质量、边界条件正确的基础上,进行CFD求解过程。在判别达到收敛标准后,开始进行CFD后处理工作。我们不但要得到产品的宏观性能,而且要从流场特征中分析判断其产生原因和对流动的影响,以提供产品优化改型的依据。流场的分析包括S1流面(叶片到叶片截面)

分析,可通过CFView截取不同叶高的截面,常常关心的截面有中叶高截面和靠近内环壁(hub,如10%叶高)和靠近外环壁(shroud,如90%叶高);S2截面分析,包括流道中央截面和靠近叶片吸力面和压力面的截面;固体壁面分析,包括内外环壁面和叶片表面;周向平均分析;以及笛卡尔图分析等。在这些面上可以分析等值线(或云图),或流线,或速度矢量图。下面以几个例子予以说明:

1.从某叶高截面(S1面)的相对速度(相对马赫数)或相对总压云图上分析叶片到叶片的流动

1)设计流量下的相对速度矢量图,如图1所示。从叶片前缘前方的流线或速度矢量可定性地看出气流冲角,或来流与叶片中弧线在前缘处切线(或进口几何角)的夹角。图中所示的冲角近似为0度。如果要知道准确的角度值,可通过在这个截面上做气流角的云图获得。

2)叶片表面的边界层流动情况(包括边界层的厚度,是否发生边界层分离,这些都与翼型损失有关),可通过S1面的相对速度、或相对马赫数、或熵等的云图观察。如图2和3所示。图2中的低马赫数区域和图3中的高熵值区域均对应着局部边界层损失大。

2.子午平均的参数分布。这显示了流道内周向质量平均量的变化规律。对于工程师来说,也非常重要。例如图4和图5分布给出了压气机子午平均相对速度矢量图和速度流线和熵增云图。由图4中的流线或速度矢量可以看出,流道在外环壁附近的低速区和叶轮出口区域发生了角大区域的回流,由此将会产生能量损失,对应于图5中的高熵值区。

3.叶片的载荷分布也是工程师们常常关心的。这可通过叶片吸力面和压力面的静压云图或笛卡尔图来观察,如图6、7和8所示。图8中上下两条线间的差值就是载荷,因此由该图可以看出叶片载荷沿流向的变化。由于叶顶间隙流动和间隙涡(对于开式叶轮)直接与载荷有关,因此由该图还可间接反映间隙泄漏流和强弱程度。另外,有图6和7中的等值线还可以看出沿流向的压力梯度变化和流道内的增压过程。

4.蜗壳或管道的流场特征

以下图9和10分别是进气管及蜗壳内的总压损失分布和排气管内的总压损失分布。

六. 文件夹管理标准化

在长期CFD工程计算文件管理中,建立一个清晰的文件夹目录是建立产品CFD性能数据库的基本条件。

每一个计算的工程文件夹下应包括以下Excel文件。其它见附录1~3。

附:4个标准化计算和检查文件

1. 湍流数据.xls

标准化计算第一层网格尺度和运动粘性系数

2. Check_Mesh_Quality_AG8.py & 网格质量.xls

标准化检查及衡量网格质量文件

3. 计算项目检查.xls

标准化检查计算设置文件

附录1:文件管理布局

附录2:叶片网格生成流程图

附录3:计算设置检查流程图

网格划分主要软件

网格划分主要软件 网格划分——连续空间的离散化。 主要软件: ICEM-CFD(Ansys Inc): 最NB的网格划分软件,主要四个模块:Tetra(水平最高)、Hexa(用起来方便)、Global(难得的笛卡尔网格划分软件)、AutoHexa(算是垃圾,有那幺一点点用处)。接口贼多,几乎支持所有流行的CFD软件!!!使用方便,一个月内可以学会,两个月就可以针对课题努力了。这个软件还有后处理模块Visual3,但是目前说来还没有听过哪个兄弟用过,我也没用过。 Gridgen(Poinwise Inc): 你要学习网格理论,用它比较好,你要和它一起来完成网格,不能靠它自动给你个复杂网格。结构网格划分很好。帮助文档有些标新立异了,很多术语就是难为大家这些入门级别的,实体不叫实体,它非得说是Database,何必呢! Gambit(Fluent Inc): 好学、好用。就是要拖着一个Exceed当靠山,功能强大。但是占用内存比较多,常常会跑死机(不是个别的问题)。 CFX-build(Ansys Inc): 基于Patran的非结构网格划分软件,会Patran就会它!功能自不用说,Patran有多猛,搞FEA/CAE的兄弟都知道。 CFD-Geom(CFDRC Inc): 好学,不过有些概念要仔细领会,最好是对拓扑与网格结构、类型比较熟悉。 Patran(Msc Inc)、Hypermesh(Altair Inc): 这两个不说了FEA方面的猛将,CFD也可以借鉴。 以上按功能和在CFD领域的适用范围分类。 TrueGrid六面体网格划分工具 TrueGrid六面体网格划分工具 中文名称:TrueGrid六面体网格划分工具 英文名称:Scientific.Truegrid

numeca 的中文帮助文件帮助文档

numeca 的中文帮助文件帮助文档2-5 FINE求解 2-5.1 工程控制台 Project Management 78. In the FINE, interface project parameters, select the item Project Management/Project Settings (default). 在Import a grid file 中输入刚刚保存过的*.igg格式的文件。 79. 在主菜单Mesh中选择Properties.设定度量单位。 80. In the Project units section, choose meters as the rotor37.geomTurbo file contained the geometry in meters (default) 81. In the Computations area, rename "computation_1" in "coarse_choked" yh-1在左边列表框中,选择/Parameters/Configuration/ /Fluid Model 选取流体类型,如:理想气体,真实气体,水,等~ /Flow Model 选择流动模型,定常或非定常流动,1)欧拉方程或NS方程2; 2)湍流模型(NS);3)是否考虑重力作用。 /Rotating Machinery 设置旋转参数,如转速等~ 2-5.2 步长和时间步设置 82. 时间步长设置。选择Configuration / space & time 83. 时间选取定常解模式。 84. 选择3D流动 85. 定义这个例子为内流,采用圆柱坐标系统。 86. 激活IGG/Autogrid网格

蜗壳及尾水管的水力计算

第二章 蜗壳及尾水管的水力计算 第1节 蜗壳水力计算 一.蜗壳尺寸确定 水轮机的引水室是水流进入水轮机的第一个部件,是反击式水轮机的重要组成部分。引水室的作用是将水流顺畅且轴对称的引向导水机构。引水室有开敞式、罐式和蜗壳式三种。蜗壳式是反击式水轮机中应用最普遍的一种引水室。它是用钢筋混凝土或者金属制造的封闭式布置,可以适应各种水头和流量的要求。水轮机的蜗壳可分为金属蜗壳和混凝土蜗壳两种。 1.蜗壳形式 蜗壳自鼻端到进口断面所包围的角度称为蜗壳的包角,水头大于40m 时一般采用混凝土蜗壳,包角 ;当水头较高时需要在混凝土中布置大量的钢筋,造价可能 比混凝土蜗壳还要高,同时钢筋布置过密会造成施工困难,因此多采用金属蜗壳,包角 。本电站最高水头为174m ,故采用金属蜗壳。 2.座环参数 根据水轮机转轮直径D 1查[1].P 128页表2—16得: 座环出口直径: ()()mm D b 27252600180019001800 20002600 2850=+---= 座环进口直径: ()()mm D a 32503100180019001800 20003100 3400=+---= 蜗壳常数K =100(mm )、r =200(mm ) 3.蝶形边锥角ɑ 取 4.蝶形边座环半径 ()m k D r a D 725.11.02 25 .32=+=+= 5.蝶形边高度h ()m k b h 29.055tan 1.02 76.0tan 20=+=+= ? 6.蜗壳圆形断面和椭圆形断面界定值s ()m h s 51.055 cos 29 .055cos == 7.座环蝶形边斜线L ()m h L 354.055sin == 8.座环蝶形边锥角顶点至水轮机轴线的距离

蜗壳的型式及主要尺寸的确定

蜗壳的型式及主要尺寸的确定 根据设计资料提供,水轮机型号为 HL160—LJ —410及水电站工作水头H=118.5m>40m ,故采用金属蜗壳。金属蜗壳只承受内水压力,而机墩传下的荷载和水轮机层的荷载是由金属蜗壳外围的混凝土承受。为使金属蜗壳与其外围混凝土分开,受力互不传递,我国通常是在金属蜗壳上半部表面铺设沥青、麻刀、锯末或软木沥青、塑料软垫3——5cm 厚的软垫层,靠近座环处不铺。使外压不传到金属蜗壳,内水压力不传到蜗壳外的混凝土上。 蜗壳主要参数的选择 ① 设计资料提供,每台机组的最大引用流量,则蜗壳进口处的 流量s m Q Q 300 max 00 088.117123360 345360=?==? ②、蜗壳进口断面平均流速《水力机械》第二版P99图4—30(b)曲线得s m V c 9= ③、座环内、外径选择 由水轮机的型号 HL160—LJ —410,查到cm D 4101=的座环尺寸, 当H=118.5m<170m 时,其座环内径mm D b 5450=, 115m

i a i r R ρ2+= 蜗壳断面计算表 0 0 0 0 3.23 15 5.13 0.57 0.43 4.08 30 10.25 1.14 0.60 4.43 45 15.38 1.71 0.74 4.70 60 20.50 2.28 0.85 4.93 75 25.63 2.85 0.95 5.13 90 30.75 3.42 1.04 5.31 105 35.88 3.99 1.13 5.48 120 41.00 4.56 1.20 5.63 135 46.13 5.13 1.28 5.78 150 51.25 5.69 1.35 5.92 165 56.38 6.26 1.41 6.05 180 61.50 6.83 1.48 6.18 195 66.63 7.40 1.54 6.30 210 71.75 7.97 1.59 6.41 225 76.88 8.54 1.65 6.52 240 82.00 9.11 1.70 6.63 255 87.13 9.68 1.76 6.74 270 92.25 10.25 1.81 6.84 285 97.38 10.82 1.86 6.94 300 102.50 11.39 1.90 7.03 315 107.63 11.96 1.95 7.13 330 112.75 12.53 2.00 7.22 345 117.88 13.10 2.04 7.31

numeca 的中文帮助文件帮助文档(三)

numeca 的中文帮助文件帮助文档(三)Tutorial 2: rotor 37 (例题2,动叶37) 2-1.1 technical aspects (步骤) *概述 -对象管理 -开始/退出 FINE,IGG/Autogrid,CFView *IGG/Autogrid -输入geometry(*.geomturbo)文件 -3D网格自动生成 -检查网格质量 *FINE -3D涡轮定常流结构 -涡轮边界条件设置 -完整的多网格设置 -使用收敛判定工具 *CFView -通用视图 -叶片-叶片视图 -侧型面 -云图 and 等值线 -矢量图 and 流线 -清理求解方案(sweep the solution) -叶片表面压力分布 -打印视图

2-1.2 理论 这是一个典型的例子 2-2 例题描述 (case description) *亚音速,可压缩,轴向流动 *流体:空气 *工作转速:17188rpm 2-3 FINE求解方案 1. 运行FINE,必须有下列条件;在Unix系统下 , type fine(FINE类型,) , 单击(Return),在PC/NT , 双击FINE图标 2. 在FINE菜单中新建一个(project), [Project/New] 3. 输入新项目的名字(rotor37.iec) 此时FINE会自动在当前目录下创建一个 文件夹,文件夹名为刚输入的名字(rotor37) 4. 单击创建网格,程序自动转到IGG,在IGG中,[选择Modules/AutoGrid] 2-4 IGG/Autogrid几何结构和网格创建 2-4.1 第一步:几何和网格创建 5. 单击图标,弹出[Set-Up And Check]对话框 2.4.1.1 几何 对话框具有如下图的形式

蜗壳断面设计公式及说明

第三节:反击式水轮机的引水室 一、简介 一般混流式水轮机的引水室和压力水管联接部分还装有阀门,小型水轮机为闸阀或球阀,大型多为碟阀。阀的作用式在停机时止水,机组检修时或机组紧急事故时导叶又不能关闭时使用,绝不能用来调节流量 水轮机引水室的作用: 1.保证导水机构周围的进水量均匀,水流呈轴对称,使转轮四周受水流的作用力均匀,以便提高运行的稳定性。 2.水流进入导水机构签应具有一定的旋转(环量),以保证在水轮机的主要工况下导叶处在不大的冲角下被绕流。 二、引水室 引水室的应用范围 1.开敞式引水室

2.罐式引水室 3.蜗壳式引水室 混凝土蜗壳一般用于水头在40M以下的机组。由于混凝土结构不能承受过大水压力,故在40M以上采用金属蜗壳或金属钢板与混凝土联合作用的蜗壳 蜗壳自鼻端至入口断面所包围的角度称为蜗壳的包角蜗壳包角图 金属蜗壳的包角340度到350度

三、金属蜗壳和混凝土蜗壳的形状及参数 1.蜗壳的型式 水轮机蜗壳可分为金属蜗壳和混凝土蜗壳 当水头小于40M时采用钢筋混凝土浇制的蜗壳,简称混凝土蜗壳;一般用于大、中型低水头水电站。 当水头大于40M时,由于混凝土不能承受过大的内水压力,常采用钢板焊接或铸钢蜗壳,统称为金属蜗壳。 蜗壳应力分布图 椭圆断面应力分析图

金属蜗壳按制造方法有焊接铸焊和铸造三种。 ,

尺寸较大的中、低水头混流一般采用钢板焊接,其中铸造和铸焊适用于尺寸不大的高水头混流水轮机 2.蜗壳的断面形状 金属蜗壳的断面常作成圆形,以改善其受力条件,当蜗壳尾部用圆断面不能和座环蝶形边相接时,采用椭圆断面。 金属蜗壳与有蝶形边座环的连接图 金属蜗壳的断面形状图

金属蜗壳水力计算和尾水管设计

金属蜗壳的水力计算 在选定包角?0及进口断面平均流速v 0后,根据设计流量Q r ,即可求出进口断面面积F 0。由于要求水流沿圆周均匀地进入导水机构,蜗壳任一断面?i 通过的流量Q ?应为 Q Q i r ??=360 (7—6) 于是,蜗壳进口断面的流量为 Q Q r 00 360 = ? (7—7) 进口断面的面积为 F Q v Q v r 00000 360= =? (7—8) 圆形断面蜗壳的进口断面半径为 ρπ ?πmax = = F Q v r 00 360 (7—9) 采用等速度矩方法计算蜗壳内其它断面的参数。取蜗壳中的任一断面,其包角为?i ,如图7—15所示,通过该断面的流量为 Q v bdr u r R a i ?= ? (7—10) 因v r K u =,则v K r u =/,代入式(7—10)得: Q K b r dr r R a i ?=? (7—11) 式中:r a ──座环固定导叶的外切圆 半径; R i ──蜗壳断面外缘到水轮机轴线半径; r ──任一断面上微小面积到水轮机轴线的半径: b ──任一断面上微小面积的高度。 一、圆形断面蜗壳的主要参数计算 对圆形断面的蜗壳,断面参数b 从图7—15中的几何关系可得 b r a i i =--222ρ() (7—12) 式中:ρi ──蜗壳任一断面的半径; a i ──任一断面中心到水轮机轴线距离。 图7—15 金属蜗壳的平面图和断面图 水轮机 轴 r a a i r R i d r ρi b v u v r v i ?

将式(7—12)代入式(7—11),并进行积分得: Q K a a i i i ?πρ=--222() (7—13) 由式(7—6)与式(6-13)得 ?πρi r i i i K Q a a = --72022 () (7—14) 令C K Q r =720 π,称为蜗壳系数,则有 ?ρi i i i C a a =--()22 (7—15) 或 ρ??i i i i a C C =-?? ? ? ?22 (7—16) 以上两式中的蜗壳系数C 可由进口断面作为边界条件求得。两式表明了蜗壳任一圆形断面半径ρi 与其包角?i 之间的关系。当知道式中a i 的变化规律后,每给出一个包角?i 值,即可计算出该断面的半径ρi 值。各断面的a i 值取决于蜗壳与座环的连接方式。蜗壳与座环的连接方式一般有:金属蜗壳与座环蝶形边相接;钢板焊接蜗壳与无蝶形边座环相接;铸造蜗壳与座环以圆弧相切。现以常见的蜗壳与座环蝶形边相接的方式为例,如图7—16(a )所示。若A 点是座环蝶形边与蜗壳的焊接点,则由图示的几何关系得:a r h i i =+-022ρ (7—17) (K D r a +=2/0、 )10~5(2/sin 2/0mm tg r b h ++=αα) 将式(7—17)代入式(7—15),并令x h i i =-ρ22得 ?i i i C r x r r x h =+-+-002022 (7—18) 由上式可解出 x C r C h i i i = +-??20 2 (7—19) 上式得到了x i 与?i 的关系,式中r 0、C 、h 均已知,这样每给定一个?i 值,可求出x i ,并由图7—16(a )的几何关系得到相应断面的ρi 、a i 和R i 等参数: a r x x h R a i i i i i i i =+=+=+? ??? ? ??022ρρ (7—20) 上述计算中与座环连接部位的几何尺寸,由座环设计给定。 综上所述,可将圆形断面蜗壳的水力计算步骤小结如下:

NUMECA中文帮助(4)

求各种numeca资料(renmu@https://www.wendangku.net/doc/c49991795.html,)thx 2-5 FINE求解 2-5.1 工程控制台Project Management 78. In the FINE interface project parameters, select the item Project Management/Project Settings (default). 在Import a grid file 中输入刚刚保存过的*.igg格式的文件。 79.在主菜单Mesh中选择Properties.设定度量单位。 80.In the Project units section, choose meters as the rotor37.geomTurbo file contained the geometry in meters (default) 81.In the Computations area, rename "computation_1" in "coarse_choked" yh-1在左边列表框中,选择/Parameters/Configuration/ /Fluid Model选取流体类型,如:理想气体,真实气体,水,等! /Flow Model选择流动模型,定常或非定常流动,1)欧拉方程或NS 方程2;2)湍流模型(NS);3)是否考虑重力作用。 /Rotating Machinery 设置旋转参数,如转速等! 2-5.2 步长和时间步设置 82.时间步长设置。选择Configuration / space & time 83.时间选取定常解模式。 84.选择3D流动 85.定义这个例子为内流,采用圆柱坐标系统。 86.激活IGG/Autogrid网格 87.设置旋转速度。-17188RPM 80-87这几步在6.0以上版本中方法不同,不必激活IGG。参考上面yh-1 2-5.3 在FINE查看网格

FLUENT相对于NUMECA的优势

FLUENT相对于NUMECA的优势 1、关于数值算法 FLUENT软件基于有限体积法,提供了三种数值算法,包括基于压力的分离算法、基于密度的耦合显式算法、基于密度的耦合隐式算法,是商用软件中最多的。 (1)Pressure Based Segregate Solver:该算法源于经典的SIMPLE算法,其适用范围为不可压缩流动和中等可压缩流动。 (2)Density Based Explicit Solver:这种算法由Fluent公司与NASA联合开发,主要用来求解可压缩流动(跨音速、超音速流动乃至高超音速)。 (3)Density Based Implicit Solver:该算法对Navier-Stokes方程组进行联立求解,由于采用隐式格式,因而计算精度与收敛性要优于Density Based Explicit 方法,但却占用较多的内存。该算法另一个突出的优点是可以求解全速度范围,即求解范围从低速流动到高超音速流动。 Fluent6.3版本以后在压力-速度耦合方法新增了耦合压力基算法,比压力基算法可以达到更好的收敛性,比密度基算法计算代价小。在方程离散格式新增了三阶精度的MUSCL格式,而且新增的密度基算法可以用于高马赫数流动计算中,可以实现隐式耦合计算,在通量离散中ROE格式基础上新增AUSM三阶离散精度格式,可以更好地捕捉高马赫数下的激波。 而NUMECA只有一种求解器,在求解不可压的问题上存在明显缺陷,605所研究的水上飞机将来肯定会涉及如水这样不可压问题的数值模拟计算。 2、多相流模型 多相流混合物广泛应用于工业中,FLUENT软件是在多相流建模方面的领导者,其丰富的模拟能力可以帮助工程师洞察设备内那些难以探测的现象,Eulerian 多相流模型通过分别求解各相的流动方程的方法分析相互渗透的各种流体或各相流体,对于颗粒相流体采用特殊的物理模型进行模拟。 FLUENT标准模块中还包括许多其他的多相流模型,对于其他的一些多相流流动,如喷雾干燥器、煤粉高炉、液体燃料喷雾,可以使用离散相模型(DPM)。飞机结冰的物理现象就可以用该模型进行数值模拟。 VOF模型(Volume of Fluid)可以用于对界面的预测比较感兴趣的自由表面

NUMECA帮助文档(六)

第十二章跨叶片截面模块 12.1绪言 本章针对透平机械讲述快速三维跨叶片截面模块的分析过程。这个模块是全自动完成的并且利用一些NUMECA工具。 此外,附加模块FINE?/Design2D这些工具联系起来,可以进行叶片重新设计,改善叶片表面压力分布,关于这些详见第13章。 这个模块假设流动是轴对称的,并且流面形状和厚度也由用户提供或由参数自动生成(利用根部和顶部边界)。 几何输入数据必须由用户提供: 1、流面及叶片这个流面上的截面或 2、完整的叶片轮廓及端壁 本模块由网格自动生成与NS湍流方程组成。 在下一节讲述这个跨叶片截面模块的界面及对用户的建议。12-4节讲述自动生成网格的理论和求解方程。12-5节讲述几何数据和输出结果。12-6讲述实例。 12-2跨叶片截面模块的界面 在FINE?/Design2D界面之下运行跨叶片截面模块,这些可以高速,简单,交互式求解。所有参数可以在用户界面中选取,并自动创建输入文件及求解。监视工具,MonitorTurbo,可以在计算中和计算后检查收敛情况及结果。它可以实时查看叶片表面压力分布的收敛过程及叶片几何形状。 结果分析利用NUMECA CFViwe?后处理工具进行,自动进入跨叶片截面模式。 几何数据以ASCII输入文件列出,但是求解参数定义及边界条件在这个界面

中列出。 这个截面的描述由FINE?/Design2D界面中的菜单创建。更详细的说明见12-5. 12.2.1开始新的或打开现存S1面计算 在开始界面下,Project Selection窗口允许创建新工程或打开现存工程。对于创建新的跨叶片截面工程,按如下操作: 1、单击按扭Create a New Project 2、选取工程保存路径及输入文件名 3、关闭Grid File Selection窗口,Design 2D不需要输入网格文件 4、进入S1流面模块,菜单Modules/Design 2D 如果要打开现存工程,在Project Selection窗口中单击Open an Existing Project 按扭,并在File chooser窗口中选取一个文件。最近使用过的文件在最近工程列表中列出。如果所选取的文件是以Design2D模式保存的,则FINE?界面自动转到这个相应的模块,显示界面如图12.2.1-1所示。 FINE?/Design2D界面如同FINE?/Trubo界面一样,包括菜单,工具栏,计算设置与参数区域。在菜单中同样也有一个Modules项,可以快速转到其它模块。Design2D模块的图标栏仅包括2D计算内容。界面左侧的参数列表也是与2D计算一致的。这一项的大多数内容与FINE?/Turbo工程是相似的。之间的差别仅在于: ●在Flow Model页:Design2D模块不能进行非定常计算。 ●Boundary Conditions页的说明见12-2.3 ●Blade-to-blade data页的说明见12-2.2 ●Initial Solution页的说明见12-2.5

蜗壳的水力计算

蜗壳的水力计算 蜗壳水力计算的目的是要确定在中间不同包角i ?时蜗壳断面的形状和尺寸。 计算是在给定的水轮机设计水头r H 、最大引流量max Q 、导叶高度0b 、座环尺寸(外径a D 、内径b D 等)和选择的蜗壳断面形式、包角0?、进口平均流速c V 的情祝下进行的. 水流在进入蜗壳后,其流速可分解为园周速度u V 和径向速度r V ,在进入导叶时,按照均匀轴对称的入流要求,则r V 应为—常数;其值为 r V = max a Q D b π 对于圆周速度u V 的变化规律,计算时有不同的假定,一般常用的有下列两种假定: (一)速度矩u V r=C(C 为一常数) 假定蜗壳中的水流是一种轴对称的有势流动,并忽略其内摩擦力,这样就可以近似的认为水流除了绕轴的旋转外,没有任何外力作用在水流上并使其能量发生变化,即 () u d mV r dt =0 则 u mV r = C u V r = C 上式说明蜗壳中距水轮机轴线半径r 相同的各点上,其水流的园周速度是相同的,u V 随着半径r 的增大而减小。 (二)圆周速度u V =C 此假定即认为蜗壳各断面的圆周速度u V 不变,且等于蜗壳进口断面的平均流速c V 。这样使得在蜗壳尾部的流速较以u V r=C 所得出的流速为小,得出的断面尺寸较大,从而减小了水力损失并便于加工制造.按照这种假定计算蜗壳的尺寸,方法简单,所得出的结果与前一种假定的结果也很近似。 以下仅介绍按照假定u V =c V =C 的计算方法,对于按照假定u V r=C 的计算可参考其他有关书籍。 1.金属蜗壳的水力计算

1)对于进口断面 断面的面积 0F = 0c Q V = max 0 360c Q V ?? 断面的半径 max ρ = 从轴中心线到蜗壳边缘的半径 max R =a r +2max ρ 2)对中间任一断面 i Q = max 360i Q ?? i ρ i R =a r +2i ρ 式中 a r ——座环外半径; i ?——从蜗壳鼻端起算至计算断面的角度; i Q 、i ρ、i R ——分别为计算断面i ?处的流量、断面半径及边缘半径。 由此便可绘制出蜗壳断面和平面的单线图。 2.混凝土蜗壳的水力计算 混凝土蜗壳的水力计算采用半图解法极为方便,如下图所示,现将其计算方法及步骤分述如下: 1)按下式计算蜗壳进口断面的面积 c F = max 0 360c Q V ?? 2)根据水电站的具体情况选择断面形式,并规划进口断面的尺寸使其包括的面积符合c F 的要求,然后将进口断面画在图的右上方; 3)选择顶角和底角的变化规律(图中选择的是直线变化规律),以虚线表示,并画出若干个中间断面(如图上1、2、3、……断面); 4)计算各断面的面积,并在断面图的下面对应地绘制出F=f(R)的关系曲线; 5)按下列关系式在左下方并列绘制出F=f(?)的直线,

传热模拟CFD 总结

CFD总结一 CFD是英文computational Fluid Dynamics(计算流体力学)的简称。它是伴随着计算机技术和数值计算技术的发展而发展的。简单地说,CFD相当于虚拟的在计算机内做实验,用它模拟仿真实际流体的流动情况。而其基本的原理是数值求解控制流体的微分方程,得出流体流动的流场在连续区域上的离散分布,从而近似模拟流体流动的情况。即CFD=流体力学+热学+数值分析+计算机科学。 流体力学就不用多说了,很多专业都要用到,主要的概念有层流和湍流,牛顿流体和非牛顿流体等等。热学包括热力学和传热学。数值分析就是如何用计算机解人工很难完成的计算,如何处理无解析解得方程。计算机科学主要是计算机语言,如c、fortran)还包括一些图形处理技术,如在后处理,为了使用户对结论有一个很直观的认识,就需要若干图表。以下就对经常在CFD使用的软件做简单的介绍。 一、CFD的结构: 1、提出问题——流动性质(内流、外流;层流、湍流;单相流、多项流;可压、不可压……),流体属性(牛顿流体:液体、单组分气体、多组分气体、化学反应气体;非牛顿流体) 2、分析问题——建模——N-S方程(连续性假设),Boltzmann方程(稀薄气体流动),各类本构方程与封闭模型。 3、解决问题——差分格式的构造/选择,程序的具体编写/软件的选用,后处理的完成。 4、成果说明——形成文字,提交报告,赚取应得的回报。 二、CFD实现过程: (一)建模——物理空间到计算空间的映射。 主要软件: 二维: AutoCAD: 大家不要小看它,非常有用。一般的网格生成软件建模都是它这个思路,很少有参数化建模的。相比之下 AutoCAD的优点在于精度高,草图处理灵活。可以这样说,任何一个网格生成软件自带的建模工具都是非参数化的,而对于非参数化建模来说,AutoCAD应该说是最好的,毕竟它发展了很多很多年! 三维: 1、CATIA: 航空航天界CAD的老大,法国人的东西,NB,实体建模厉害,曲面建模独步武林。本身可以生成有限元网格,前几天又发布了支持ICEM-CFD的插件ICEM-CFD CAA V5。有了它和ICEM-CFD,可以做任何建模与网格划分! 2、UG: 软件本身不错,大公司用得也多,可是就这么打市场,早晚是走下坡路。按CAD建模的功能来说它排不上第一,也不能屈居第二,尤其是加上了I-DEAS更是如虎添翼。现在关键是看市场了。 3、Solidworks: Solidworks讲的是实用主义,中端CAD软件它功能最强,Solidedge功能是不比它差,但是Solidworks的合作伙伴可能是SE的十几倍,接口也比SE多很多,相比之下Solidworks是最佳选择。Autodesk Inventor也只能算是中端软件,目前说来,我是处于观望态度,看发展再决定。总之,Solidworks目前的发展如日中天,合作伙伴多如牛毛。用起来极其顺手。这里极力向大家推荐的是ICEM-CFD DCI FOR Solidworks!有了这个东西画个全机网格也很容易了。

蜗壳计算讲解

第五章 蜗壳 45 蜗壳形式与其主要尺寸的选择 现代的中型及大型水轮机都是用蜗壳引导进水的。各种水力实验中所进行的试验指出,设计合理的蜗壳,它的引水能力及效率与小型水轮机所采用的明槽式装置及罐式机壳相比较并无明显的降低。蜗壳的优点是可以大大缩短机组之间的距离,这在选择电站厂房的大小时,有着很大的意义。 从蜗壳的研究当中,可以确定各种不同水头下蜗壳内的最佳水流速度,最合理的蜗壳形式,经及制造它的材料。 大部分的转桨式及螺桨式水轮机都采用梯形截面的混凝土蜗壳。目前设计混凝土蜗壳的最高水头是30~35公尺。然而,有很多大型水电站,在水头低于35公尺时还应用金属蜗壳。 轴向辐流式水轮机通常采用金属蜗壳,按照水头及功率的不同,金属蜗壳可由铸铁或铸钢浇铸(图62),焊接(图63)或铆接而成。图64所示是根据水轮机的水头及功率,对于各种不同型式蜗壳通常所建议采用的范围。 蜗壳的大小决定了它的进水截面,而进水截面是与所采取的进水速度有关的。最通用的进水速度与水头之间的关系,对于12~15公尺以下的水头来说如下式所示: H k v v c = (84) 式中 c v —蜗壳中的进水速度;H —有效水头;v k —速度系数,约为1.0。 中水头或高水头则常应用下列关系: 30v c H k v = (85) 如果把列宁格勒斯大林金属工厂和其它制造厂所出品的中水头及高水头水轮机的现有蜗壳进水速度画在圆上,那么对于水头超过12~15公尺时,我们可得符合下式的曲线: 30c H v 5.1= 然而,有许多由列宁格勒斯大林金属工厂及外国厂家制造的良好的蜗壳,进水速度大大超过了所示的数值。 图65所示为根据有效水头选择蜗壳进水速度用的诺模图,此图是根据上述的公式而做成的。 46 蜗壳的水力计算 当工质—水,流经水轮机的运动机构—转轮时,由于运动量的变化而产生流体能量的转变。这可用水轮机的基本方程式来表示: gh ηu v u v r u u 2211=-

numeca帮助文档(三)

Tutorial 2: rotor 37 (例题2,动叶37) 2-1.1 technical aspects (步骤) *概述 -对象管理 -开始/退出FINE,IGG/Autogrid,CFView *IGG/Autogrid -输入geometry(*.geomturbo)文件 -3D网格自动生成 -检查网格质量 *FINE -3D涡轮定常流结构 -涡轮边界条件设置 -完整的多网格设置 -使用收敛判定工具 *CFView -通用视图 -叶片-叶片视图 -侧型面 -云图and 等值线 -矢量图and 流线 -清理求解方案(sweep the solution) -叶片表面压力分布 -打印视图

2-1.2 理论 这是一个典型的例子 2-2 例题描述(case description) *亚音速,可压缩,轴向流动 *流体:空气 *工作转速:17188rpm 2-3 FINE求解方案 1.运行FINE,必须有下列条件;在Unix系统下 ●type fine(FINE类型?) ●单击(Return),在PC/NT ●双击FINE图标 2. 在FINE菜单中新建一个(project),[Project/New] 3.输入新项目的名字(rotor37.iec) 此时FINE会自动在当前目录下创建一个文件夹,文件夹名为刚输入的名字(rotor37) 4.单击创建网格,程序自动转到IGG,在IGG中,[选择Modules/AutoGrid] 2-4 IGG/Autogrid几何结构和网格创建 2-4.1 第一步:几何和网格创建 5.单击图标,弹出[Set-Up And Check]对话框 2.4.1.1 几何 对话框具有如下图的形式

蜗壳设计

17.1 进气蜗壳类型 按通道数目划分,向心涡轮进气蜗壳可分为单通道和多通道两种。 图17-3 双通道串列进气蜗壳 在图17-5中示出向心涡轮进气蜗壳常见的截面形状。为今后叙述方便,每一种都取一个象形的名称。 图17-5 进气蜗壳常见截面形状 17.2 蜗壳流动 流动假定:不可压缩流体,稳定,等熵,等环量流动。蜗壳进口处气流马赫数很低,可合理地假定为不可压缩流体。在蜗壳出口处气流马赫数己很高,特别是无叶喷嘴环向心涡轮蜗壳出口,不可压缩流体必然导致较大误差。内燃机出口气流是脉动的,稳定流动假定并不合理。因非稳定流动的求解非常复杂,此假定是不得己而为之。等熵流动假定意昧着计算中不考虑损失系数修正。由于蜗壳中流体遵守动量距守恒规律,故等环量流动是比较符合实际的合理假定。 图17-1 单通道进气蜗壳 图17-2双通道并列进气蜗壳图 17-2 图17-4 双通道串列进气蜗壳周向布置

图17-6 进气蜗壳流动示意图 进口流动:图17-6为进气蜗壳流动示意图。在蜗壳进口处(O-O 截面)有, ?=RC RE i Ui dR b C G ρ0 (1) 式中,0G 蜗壳进气流量。ρ流体密度,不可压缩,故为常数。i U C ,微流管周向分速。i b 微流管宽度。按气流流动是等环量分布的假定,Γ=i i U R C ,,可将上式改写成, ? Γ=RC RE i i dR R b G ρ0 ……………………………………….(2) 令 ?= RC RE i dR b A 0,即蜗壳进口截面面积。若设 = 0R A 0S dR R b RC RE i i =?,则 00S G Γ=ρ=0 R A Γ ρ ……………………………………….(3) 式中,0R 是进口截面当量平均半径,由下式计算, ? = RC RH i i dR R b A R 0 0 ………………………………………. (4) 出口流动:蜗壳出口截面是宽度为b ,半径为h R 的圆柱面。假定蜗壳出口气流沿周向

numeca帮助文档(五)

2-7 Monitoring 查看求解过程 当计算进行时,可以通过两种方法查看收敛参数。 ·在文本窗口 ·以残差曲线的方式 2-7.1任务管理器 139.在左侧控制面板,打开任务管理器(Task Manager)下面的收敛过程菜单(Convergence History)。如下图(1) 如上图中(2)(3),你可以选择想要查看的用以判定收敛的参数 140.在FINE菜单中选择Monitor 141.设置Residual File项下的Block值为2.如下图(A)所示。

142.查看残差收敛图形,判定收敛标准还是以自已的经验为主,本文中的质量误差小于1%,等等只是作为参考,初学NUMECA可以此为据。 2-8 Suspend the calculation 暂停求解 143.在进行在约350步的计算后,单击Solver/Suspend,并退出监视图形。 2-9 Results analysis with CFView 用CFView分析结果144.开始CFView,在FINE菜单中下选择,并在弹出对话框中选择确定145.将计算结果文件读入CFView 2-9.1 Colour contours and Isolines 云图和等值线

146.在菜单Geometry下选择Select Surface….这一项,弹出对话框,这个对话框共有三项,选取第一项。 147.选取总压在菜单Quantity/Field Data/Basic Quantities 中 148.选取Smooth项,在CFView菜单Representation/Colour contour 149.选取Range Set项Representation/Scalar Range 150. 在消息区输入90.000-220.000,并单击鼠标右键,退出 151.选择Relative Mach(马赫数)(Quantity/Field Data/Basic Quantities) 152.选择Isolines…(Representation/Isolines/Isolines…) 153.输入:如下图 ? 15 isolines (default); ? Range = 0 to 1.5; ? Uniform (i.e. Black and White); ? Click on the Apply button.

风机蜗壳设计

0 引言 蜗壳的作用是将离开叶轮的气体导向蜗壳出口,并将部分动压转变为静压。蜗壳的结构是复杂的空间曲面体,理论上,蜗壳的型线是螺旋线,但是由于螺旋线结构较复杂,难于手工绘制。因此,在生产中通常用简化的模型来近似。由于蜗壳是离心通风机的关键部件,蜗壳型线的绘制不仅直接关系到蜗壳内的流动损失,还对叶轮的气动性能有很大影响,它直接影响风机的效率及输出流量、压力等性能参数,当工况变化时,需要重新计算并设计 , 使得产品设计周期延长。本文应用三维建模工具CATIA,对蜗壳型线进行精确参数化建模,实现蜗壳的快速设计。 1 蜗壳的型线及结构参数 1. 1 蜗壳的对数螺线型线及结构 蜗壳的型线见图1。图中R为蜗壳处半径,R 2 为叶道出口半径。对于每一个角度φ值都可以得到一个R值,把各点连接起来就是蜗壳的型线。其中:截面a-a 称为终了截面,A称为终了截面的张开度。蜗壳的尺寸与张开度A有关,任意角度φ处的张开度Aφ为

理论上,为了便于分析和计算,假定气流在蜗壳中为定常流动,忽略气体的粘性,气体沿着整个叶轮出口均匀地流出[1]。 图2表示在蜗壳型线起始段气体在蜗壳内的流动。图中:R2为叶轮半径(即叶道出口半径),c为距离轮心R处的气流速度,a为气流角,c u、c m分别为R处的周向速度和径向速度。c′2为叶道出口速度,c′2u、c′2m、a′2分别为叶道出口后的周向速度、径向速度及气流角(叶道出口后速度——刚出口时气流未充满截面,很快即互相混合,混合后的速度也即蜗壳的进口速度)。 蜗壳整个截面充满有效气流,由于忽略空气黏性,蜗壳内的流动满足动量守恒定律,当蜗壳宽度B为常数时,得任意截面处R与φ的函数关系式[1]为

numeca帮助文档(四)

2-5 FINE求解 2-5.1 工程控制台Project Management 78. In the FINE interface project parameters, select the item Project Management/Project Settings (default). 在Import a grid file 中输入刚刚保存过的*.igg格式的文件。 79.在主菜单Mesh中选择Properties.设定度量单位。 80.In the Project units section, choose meters as the rotor37.geomTurbo file contained the geometry in meters (default) 81.In the Computations area, rename "computation_1" in "coarse_choked" yh-1在左边列表框中,选择/Parameters/Configuration/ /Fluid Model选取流体类型,如:理想气体,真实气体,水,等! /Flow Model选择流动模型,定常或非定常流动,1)欧拉方程或NS 方程2;2)湍流模型(NS);3)是否考虑重力作用。 /Rotating Machinery 设置旋转参数,如转速等! 2-5.2 步长和时间步设置 82.时间步长设置。选择Configuration / space & time 83.时间选取定常解模式。 84.选择3D流动 85.定义这个例子为内流,采用圆柱坐标系统。 86.激活IGG/Autogrid网格 87.设置旋转速度。-17188RPM 80-87这几步在6.0以上版本中方法不同,不必激活IGG。参考上面yh-1 2-5.3 在FINE查看网格

NUMECA使用准则V1[1].0

NUMECA 使用准则V1.0 尤迈克(北京)流体工程技术有限公司编写 2008年3月

目 录 一. 计算域的设定及几何一致性 (3) 二. 网格质量相关性 (4) 三. 边界条件设置 (5) 四. 收敛判别标准 (5) 五. 流场特征分析基础 (6) 六. 文件夹管理标准化 (8) 附:4个标准化计算和检查文件 (8) 附录1:文件管理布局 (9) 附录2:叶片网格生成流程图 (10) 附录3:计算设置检查流程图 (11)

一. 计算域的设定及几何一致性 为了保证数值计算结果的准确性与可信度,几何一致性就显得至关重要。 在准备几何数据,提取几何完成之后,在IGG中测量检查叶轮几何文件(*.geomturbo)和蜗壳几何文件(*.dat)尺寸与原始二维/三维CAD图纸相一致,下一步的网格划分就是对现有几何空间的离散化,以此来控制数值模拟误差的几何误差部分。 一般地,几何数据可通过三种途径获得: CAD文件、数据文件或加工图纸、。如果是CAD文件,则要在CAD软件中仅选中与流动部分(如叶片,流道内侧的几何、蜗壳内侧的几何等)相关的几何线或面,输出为NUMECA软件可辩认的格式(如IGES、Parasolid、Catia等格式)。当把这些文件输入到IGG或IGG/Autogrid 中时,首先要查对是否有线或面遗漏。在确认都正确的前提下,再开始制做网格。如果是加工图纸或数据文件,就要通过IGG(如果几何比较简单)或任意CAD软件把加工图纸转换成CAD文件,再重复上面的工作。如果只做叶片流道部分的数值模拟,那么加工图纸或数据文件给出的只是叶型和子午流道的几何,这样就可把加工图纸转换成数据文件,并写成IGG可辩认的格式,直接读入到IGG/Autogrid中。读入以后,也要先认真检查叶片和流道的几何是否正确,特别是叶片的安装角是否正确,叶轮转向是否正确,叶轮进口为Z轴正方向等。还要注意叶片在轴向的安装位置是否正确。叶片排之间的周向位置尽量重合,对计算结果没有任何影响,但方便在后处理中对流场结果进行对比分析。 如果几何数据点比较少,需要在几何曲率较大的区域增加若干控制点,以保证曲线或曲面的连续光滑。 有时设计给出的数据在叶片前后缘没有导圆,那么在制做网格以前首先要在IGG或CAD软件中进行导圆。在导圆时要按照设计的要求,或者保证弦长、或者保证前后缘的安装位置。 为了实现与试验得到的性能结果的可对比性,计算域的选取是至为关键的。 如果要与实验数据进行比较,建议选择与实验段相对应的计算域。在设置计算边界条件时,特别是入口条件时,要考虑计算与前部的流动历程,如速度、气

相关文档