文档库 最新最全的文档下载
当前位置:文档库 › 竖直面内圆周运动(杆、绳模型)一轮复习学案

竖直面内圆周运动(杆、绳模型)一轮复习学案

竖直面内圆周运动(杆、绳模型)一轮复习学案
竖直面内圆周运动(杆、绳模型)一轮复习学案

高三物理竖直平面内的圆周运动(绳、杆模型)复习学案

学习目标:

1、加深对向心力的认识,会在绳、杆两类问题中分析向心力的来源。

2、知道两类问题的“最高点”、“最低点”临界条件。

注意知识点:

1、对于物体在竖直平面内做的圆周运动是一种典型的变速曲线运动,该类运动常有临界问题,并伴有“最大”、“最小”、“刚好”等词语,常分析两种模型:绳模型、杆模型。两种模型过最高点的临界条件不同,其实质原因主要是:

(1)“绳”(或圆轨道内侧)不能提供支撑力,只能提供拉力。

(2)“杆”(或在圆环状细管内)既能承受压力,又能提供支撑力。

2、向心力来源:做曲线运动的物体在任意位置的向心力是有提供的。

一、绳模型:

如图所示小球在细绳的约束下,在竖直平面内做圆周运动,小球质量为m,绳长为R,

1、在最低点时,对小球受力分析(画图),则向心力方程为:

得:F =

说明:

2、在最高点时,对小球受力分析(画图),则向心力方程为:

分析:在最高点时,v越大,所需的向心力,v越小,所需的向心力。如果v 不断减小,那么绳的拉力就不断,在某时刻绳的拉力F就会减小到,这时小球的向心力最小F向= ,这时只有提供向心力。故:

(1)小球能过最高点的临界条件:绳子(或轨道)对小球刚好没有力的作用,只有重力提供向心力,小球做圆周运动刚好能过最高点。

=

此时向心力方程为: v

临界

(2)小球能过最高点条件:v Rg

(当v >Rg时,绳对球产生拉力或轨道对球产生压力,向心力由重力和绳的拉力共同提供)(3)不能过最高点条件:v Rg

(实际上球还没有到最高点时,就脱离了轨道)

二、杆模型:

如图,小球在轻杆的约束下在竖直平面内做圆周运动,小球质量为m,杆长为R,

1、在最低点时,对小球受力分析(画图),

则向心力方程为:(在最低点情况和绳模型一样)

2、在最高点时,对小球受力分析,杆的弹力F N 有可能是拉力,也可能是支持力。

(1)若球压杆,即杆对球的作用力为支持力; 对小球受力分析(画图),

则向心力方程为:

(2)若球拉杆,即杆对球的作用力为拉力; 对小球受力分析(画图),

则向心力方程为:

(3)若杆的作用力为零时,小球仅受竖直向下的重力;

则向心力方程为:

(4)小球在最高点时,若速度为零,则杆对球的支持力 重力,小球的向心力为 。 注:小球在圆形管道内运动过圆周最高点的情况与此相同。

故杆或者圆形管道内运动过圆周最高点的情况可总结为:

(1)小球能最高点的临界条件:v = ,F = mg (F 为 力)

(2)当0< v F > 0(F 为 力)

(3)当v

Rg 时,F = (4)当v Rg 时,F 随v 增大而增大,且F >0(F 为 力)

另注意:在杆、绳模型中均有v 临界=

Rg ,其区别为: 。 三、典例分析:

例1.长为L 的细绳,一端系一质量为m 的小球,另一端固定于某点,当绳竖直时小球静止,给小球一水平初速度0v ,使小球在竖直平面内做圆周运动,且刚好能过最高点,则说法中正确的是( )

A .球过最高点时,速度为零

B .球过最高点时,绳的拉力为mg

C .开始运动时,绳的拉力为2v m L

D .球过最高点时,速度大小为Lg 。 例2.如右图示,一轻杆一端固定质量为m 的小球,以另一端

O 为圆心,使小球做半径为R 的圆周运动,以下说法正确的是 ( ) A .球过最高点时,杆所受的弹力可以等于零 B .球过最高点时,最小速度为Rg C .球过最高点时,杆对球的弹力一定与球的重力方向相反

D .球过最高点时,杆对球的弹力可以与球的重力反向,此时重力一定大于杆对球的弹力

例3.如图,质量为0.5kg 的小杯里盛有1kg 的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为1m ,小杯通过最高点的速度为4m/s ,g 取10m/s 2,求:

(1) 在最高点时,绳的拉力?

(2) 在最高点时水对小杯底的压力?

(3) 为使小杯经过最高点时水不流出, 在最高点时最小速率是多少?

O

四、针对训练:

1.汽车以—定速率通过拱桥时,下列说法中正确的是 ( )

A .在最高点汽车对桥的压力大于汽车的重力

B .在最高点汽车对桥的压力等于汽车的重力

C .在最高点汽车对桥的压力小于汽车的重力

D .汽车以恒定的速率过桥时,汽车所受的合力为零

2.如图,用长为l 的细绳拴着质量为m 的小球在竖直平面内做圆周运动,则说法中正确的是( )

A .小球在圆周最高点时所受的向心力一定为重力

B .小球在最高点时绳子的拉力不可能为零

C .若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为gL

D .小球过最低点时绳子的拉力一定大于小球重力 3.长度为L =0.5m 的轻质细杆OA ,A 端有一质量为m =3.0kg 的小球,如

图所示,小球以O 点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是

2.0 m/s ,g 取10m/s 2,则此时细杆OA 受到( )

A .6.0N 的拉力

B .6.0N 的压力

C .24N 的拉力

D .24N 的压力

4.如下左图所示,长为L 的轻杆,一端固定着一个小球,另一端可绕光滑的水平轴转,

使小球在竖直平面内运动,设小球在最高点的速度为v ,则 ( )

A .v 的最小值为gL

B .v 若增大,向心力也增大

C .当v 由gL 逐渐增大时,杆对球的弹力也增大

D .当v 由gL 逐渐减小时,杆对球的弹力也逐渐减小 5.如右上图示,小球m 在竖直放置的光滑圆形管道内做圆周运动,下列说法中正确的有 ( )

A .小球通过最高点的最小速度为v Rg =

B .小球通过最高点的最小速度为0

C .小球在水平线ab 以下管道中运动时,外侧管壁对小球一定有作用力

D .小球在水平线曲以上管道中运动时,内侧管壁对小球一定有作用力

6.如图所示,小物体位于半径为R 的半球顶端,若给小物体以水平初速度v 0时,

小物体对球顶恰无压力,则 ( )

A .物体立即离开球面做平抛运动

B .物体落地时水平位移为2R

C .物体的初速度0v gR =

D .物体着地时速度方向与地面成45°角 7.质量为m 的小球在竖直平面内的圆形轨道内侧运动,若经最高点不脱离轨道的临界速度为v ,则当小球以2v 速度经过最高点时,小球对轨道压力的大小为 ( )

A .0

B .mg

C .3mg

D .5mg

8.一质量为m 的物体,沿半径为R 的向下凹的圆形轨行,如图6-8-7所示,经过

最低点的速度为v ,物体与轨道之间的动摩檫因数为μ,则它在最低点时受到的

摩檫力为:( )

A .μmg

B .μmv 2/R

C .μm(g+v 2/R)

D .μm(g-v 2

/R)

A L m O L

ω

9.如图,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质

量为m的小环(可视为质点),从大环的最高处由静止滑下。重力加速度大小为g,

当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )

A.Mg-5Mg B.Mg+mg C.Mg+5mg D.Mg+10mg

10.如图所示,AB为半径为R的半圆形导轨,a、b分别为沿轨道上、下表面做圆周

运动的小球.要使小球不脱离轨道,a、b在轨道最高点的速度v a、v b应满足的条件是( )

A. .,

B.,

C ,

D ,

11.一辆质量m=2.0t的小轿车,驶过半径R=90m的一段圆弧形桥面,

重力加速度g=10m/s2.求:

(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?

(2)若桥面为凸形,汽车以l0m/s的速度通过桥面最高点时,对桥面压力是多大?

(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力

12.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B点脱离后做平抛运动,经过0.3秒后又恰好垂直与倾角为450的斜面相碰到.已知圆轨道半径为R=1m,小球的质量为m=1kg,g取10m/s2.求

(1)小球在斜面上的相碰点C与B点的水平距离

(2)小球经过圆弧轨道的B点时,所受轨道作用力N B的大小和方向?

13.如图所示,一不可伸长的轻绳上端悬挂于O点,下端系一质量m=1.0kg的小球。现将小球拉到A 点(保持绳绷直)由静止释放,当它经过B点时绳恰好被拉断,小球平抛后落在水平地面上的C点。地面上的D点与OB在同一竖直线上,已知绳长L=1.0m,B点离地高度H=1.0m,A、B两点的高度

差h=0.5m,重力加速度g取10m/s2,不计空气阻力影响,求:

(1)地面上DC两点间的距离s;

(2)轻绳所受的最大拉力大小。

2020高考物理一轮复习 考点大通关 专题4-3 圆周运动学案

【2019最新】精选高考物理一轮复习考点大通关专题4-3 圆周运 动学案 考点精讲 1.匀速圆周运动 (1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动. (2)特点:加速度大小不变,方向始终指向圆心,是变加速运动. (3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心. 2.描述圆周运动的物理量 描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:

二、匀速圆周运动的向心力 1.作用效果 向心力产生向心加速度,只改变速度的方向,不改变速度的大小. 2.大小 F=m=mω2r=mr=mωv=4π2mf2r. 3.方向 始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力. 4.来源 向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.轨道的确定 确定圆周运动的轨道所在的平面,确定圆心的位置.寻找与半径相关的已知量. 3.受力分析

分析物体的受力,画出物体受力示意图,利用力的合成或分解把力分解到三个方向上. (1)与轨道圆垂直的方向,此方向受力平衡. (2)轨道圆的切线方向,匀速圆周运动中此方向受力平衡;变速圆周运动中速度最大或最小的点,此方向也受力平衡. (3)轨道圆的径向,此方向合力指向圆心即向心力,使用牛顿第二定律. 根据三个方向上所列方程求解. 三、离心现象 1.定义 做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动. 2.本质 做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的趋势. 3.受力特点 当F=mrω2时,物体做匀速圆周运动;当F=0时,物体沿切线方向飞出;当F

圆周运动中绳模型和杆模型的一般解析

圆周运动中绳模型和杆模型的一般解析 一:绳模型:若已不可伸长的绳子长L ,其一端栓有一质量m 的小球(可看成质点)。现使绳子拉着小球绕一点O 做匀速圆周运动,则(1)小球恰好通过最高点的速度v 。 (2)当能通过最高点时,绳子拉F 。 解:(1)小球恰能通过最高点的临界条件是绳子没有拉力, 则对小球研究,其只受重力mg 作用, 故,由其做圆周运动得: L v m mg 2= 故 gL v = (2)由分析得,当小球到最高点时速度gL v v =>'时, 则,mg L mv F -=2 ' 而,当gL v v =<'时,那么小球重力mg 大于其所需向心力,因此小球做向心运动。 二:杆模型:若一硬质轻杆长L ,其一端有一质量m 的小球(可看成质点)。现使杆和小球绕一点O 做匀速圆周运动, 则 (1)小球恰好通过最高点的速度v 。 (2)当能通过最高点时,杆对小球的作用力F 。 解:(1)因为杆具有不可弯曲不可伸长的性质,所以小球在最高点,当速度为0时,恰好能通过。 (2)①由绳模型可知,当小球通过最高点速度gL v =时,

恰好有绳子拉力为0,则同理可知,当杆拉小球到最高点时, 若小球速度gL v =时,小球所需向心力恰好等于重力mg , 故,此时杆对小球没有作用力。 ②当小球通过最高点时速度gL v >时, 则小球所需向心力比重力mg 大,所以此时杆对小球表现为拉力,使小球不至于做离心运动 故对小球有, L mv mg F 2=+ ③同理,当小球通过最高点时速度gL v <时, 则小球所需向心力小于重力mg ,所以此时小球对杆有压力作用,有牛顿第三定律得,杆对小球表现为支持力作用, 故对小球有, L mv F mg 2=-

圆周运动的三种模型

一、圆锥摆模型: 如图所示:摆球的质量为 m ,摆线长度为L ,摆动后摆球做圆周运动,摆线与竖直方向成 分析, 正交分法解 得: 竖直方向: ________________ 水平方向: F<= _______ 最终得 F 合= _________ 用力的合成法得 F 合= _________ 。半径 r = _______ ,圆周运动 F 向= _________ = ________ , 由F 合=卩向可得V= ________ , 3= ______ 圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。分析方法同样适用自行车, 摩托车,火车转弯,飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。 力的合力提供向心力,向心力方向水平。 1、小球在半径为 R 的光滑半球内做水平面内的匀速圆周运动,试分析图中 的夹角)与线速度 V ,周期T 的关系。(小球的半径远小于 R ) 2、如图所示,用一根长为 1= 1m 的细线,一端系一质量为 m = 1kg 的小球(可视为质点),另一端固定在一光 滑锥体顶端,锥面 9 3时, 圆周运动的三种模型 共同点是由重力和弹 0 (小球与半球球心连线跟竖直方向 细线的张力为T 。求(取g = 10m/s 2,结果可用根式表示): (1 )右要小球离开锥面,则小球的角速度 30至少为多大? (2)若细线与竖直方向的夹角为 60°则小球的角速度 3Z 为多大?

二.轻绳模型 (一)轻绳模型的特点: 1. 轻绳的质量和重力不计; 2. 只能产生和承受沿绳方向的拉力; (二)轻绳模型在圆周运动中的应用 小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题: 1?临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: ______ = _____ ,v 临界= 2?小球能通过最高点的条件: v ____ v 临界(此时,绳子对球产生 —力) 3. 不能通过最高点的条件: v v 临界(实际上小球还没有到最高点时,就脱离了轨道) 练习: 质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为 v ,当小球以2v 的速度经过最高点时,对轨道的压力是( ) A . 0 B. mg C .3mg D 5mg (一)轻杆模型的特点: 1. 轻杆的质量和重力不计; 2. 能产生和承受各方向的拉力和压力 (二 )轻杆模型在圆周运动中的应用 轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况: 1. 小球能通过最高点的最小速度 v= ___ ,此时轻杆对小球的作用力 N= ___ ( 2 2. 当 _______ =m v 临界(轻杆对小球的作用力 N= 0 ), V 临界 __ j gR (即0v 临界)时,有

圆周运动学案

第4节圆周运动 预习:1.描述圆周运动的物理量 (1)线速度 ①线速度的大小:做圆周运动的物体_______ ________叫线速度的大小. ②物理意义:描述质点沿圆周运动的______ _____. ③线速度的大小计算公式_____________. ④线速度的方向:_______________. 注意:线速度是做圆周运动的瞬时速度,是矢量,不仅有大小.而且有方向,且方向时刻改变. (2)角速度 ①定义:在圆周运动中_______ __________叫质点运动的角速度. ②物理意义:描述质点___________ ___________ ③公式___________,单位__________ (3)周期、频率、转速 ①周期:做圆周运动的物体运动_____ _________叫周期. 符号:_______,单位:________ ②频率:周期的倒数叫频率. 符号:__________,单位:__________ ③转速:做圆周运动的物体__________沿圆周绕圆心转过的__________叫转速.符号__________单位__________.

2.匀速圆周运动 (1)定义:物体沿圆周运动并且_____ _______处处相等,这种运动叫匀速圆周运动. (2)匀速圆周运动的性质是_______ _____的曲线运动. 3.线速度、角速度、周期间的关系 线速度和周期的关系式__________,角速度和周期的关系式__________,线速度与角速度的关系式__________, 周期与频率的关系式__________. 探究:1.如何描述匀速圆周运动的快慢?2.角速度大,线速度一定大吗?3.匀速圆周运动是匀速运动吗? 例1:做匀速圆周运动的物体,10 s内沿半径为20 m的圆周运动100 m,试求物体做匀速圆周运动时: (1)线速度的大小;(2)角速度的大小;(3)周期的大小. 例2:关于做匀速圆周运动的物体的线速度、角速度、周期的关系,下面说法中正确的是() A.线速度大的角速度一定大 B.线速度大的周期一定小 C.角速度大的半径一定小 D.角速度大的周期一定小

2021届高考物理人教版一轮复习教学案:第20讲 常见的圆周运动动力学模型 (含解析)

第20讲常见的圆周运动动力学模型 能力命题点一水平面内的圆周运动 1.向心力的来源 向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力。 2.几种典型的运动模型 运动模型向心力的来源图示 飞机水平转弯 火车转弯 (以规定速度行驶) 圆锥摆 飞车走壁 如图所示,用一根长为l=1 m的细线,一端系一质量为m=1 kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T(sin37°=0.6,cos37°=0.8, g取10 m/s2,结果可用根式表示)。求:

(1)若要小球离开锥面,则小球的角速度ω0至少为多大? (2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大? 解析 (1)小球刚好离开锥面时,小球受到重力和细线拉力,如图所示。 小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用 牛顿第二定律及向心力公式得mg tan θ=mω20l sin θ 解得ω0= g l cos θ=52 2 rad/s 。 (2)当细线与竖直方向成60°角时,小球已离开锥面,由牛顿第二定律及向心力公式得mg tan60°=mω′2l sin60° 解得ω′= g l cos60° =2 5 rad/s 。 答案 (1)522 rad/s (2)2 5 rad/s 求解圆周运动问题的“一、二、三、四”

1.(2019·北京期末)(多选)如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则下列说法不正确的是() A.球A的线速度必定大于球B的线速度 B.球A的角速度必定等于球B的角速度 C.球A的运动周期必定小于球B的运动周期 D.球A对筒壁的压力必定大于球B对筒壁的压力 答案BCD 解析以A为例对小球进行受力分析,可得支持力和重力的合力充当向心力, 设圆锥筒的锥角为θ,则F N=mg sinθ,F n=mg tanθ =m v2 r =mω2r=m4π2 T2r,A、B质量相 等,A做圆周运动的半径大于B做圆周运动的半径,所以球A的线速度必定大于球B的线速度,球A的角速度必定小于球B的角速度,球A的运动周期必定大于球B的运动周期,球A对筒壁的压力必定等于球B对筒壁的压力,A正确,B、C、D错误。 2.(2019·北京期末)如图所示为火车车轮在转弯处的截面示意图,轨道的外轨高于内轨,在此转弯处规定的火车行驶速度为v,则() A.若火车通过此弯道时速度大于v,则火车的轮缘会挤压外轨

人教版 高一物理 必修二 第五章 曲线运动 章末复习导学案设计(无答案)

21m ω 第五章 曲线运动 复习 学习目标:1、熟记线速度、角速度、周期、频率的物理意义及它们间的关系表达式。 2、深入理解向心加速度物理意义,掌握向心力的四个(v,w,T,f )表达式。 3、会在具体问题中分析向心力的来源。熟练应用F 提供=F 需要计算相关物理量。 4、结合“离心运动”条件,继续深入理解圆周运动几种代表物理模型。 学习重点:准确记忆、应用圆周运动的相关公式。 学习难点:竖直方向上的圆周运动两种物理模型区别与理解。 学法指导:1、本章引入了很多新的物理量、物理公式。应该先去理解记忆每个物理量的物理含义、 代表符号和单位,然后整理公式,多次翻阅记忆,决不能死记。 2、圆周运动依然是满足牛顿第二定律的运动,和直线运动的区别是加速度的效果不是 改变速度的大小,而是改变了速度的方向。 整体复习★知识梳理 要求:先独立思考填空,不会的翻阅课本、资料和6到12份学案准确完成。书写整洁。 1、圆周运动的快慢可以用物体通过的 与所用 的比值来量度,我们把此比值称为线速度,用v 表示。线速度是 ,其方向沿 方向。 2、物体沿着圆周运动,并且线速度的大小 的运动叫做匀速圆周运动。注意,匀速圆周运动的线速度的 是不断变化的,因此匀速圆周运动是一种 运动,这里的“匀速”是指 不变。 3、物体做圆周运动的快慢还可以用它与圆心连线扫过角度的快慢来描述,我们把比值称为 ,用ω表示。角速度的单位是 ,符号是 或 。 4、圆周运动的快慢还常用转速n 、周期T 等物理量来描述。转速指 ;周期是指做匀速圆周运动的物体 。 5、线速度与角速度的关系:在圆周运动中,线速度的大小等于半径与角速度大小的乘积,即 。 6、做匀速圆周运动的物体,加速度方向始终指向 ,这个加速度叫做 。 7、向心加速度的大小表达式有a n = 、a n = 、a n = 、a n = ___; 8、匀速圆周运动是一个加速度大小不变、方向时刻变化的变加速曲线运动。 9、做匀速圆周运动的物体受到的合外力方向总指向 ,这个合力叫做向心力。 向心力是产生 的原因,它使物体速度的 不断改变,但不能改变速度的 。向心力是按 命名的力,它可由重力、弹力、摩擦力等提供,也可以是这些力的合力或它们的分力来提供。 10、 线速度公式 角速度公式 周期共识 频率公式 向心加速度: 向心力: 向心力的方向总是沿半径指向圆心,方向时刻改变,所以向心力是变力。 11、① 当物体受到的合外力 所需的向心力时,物体做离圆心越来越近的曲线运动; ② 当物体受到的合外力 所需的向心力时,物体做离圆心越来越远的曲线运动; ③ 当物体受到的合外力 所需的向心力时,物体做轨道半径不变的稳定的圆周运动。 夯实基础★知识应用 要求:梳理本章概念规律后,完成下列基础检测题,先独立思考再小组内相互订正答案。 1、一质点做匀速圆周运动,轨道半径为r ,在时间t 内从A 到B 转过的弧长为s ,则质点通过C 点时线速度的大小为 ,方向沿 的切线方向;质点通过C 点时角速度的大小为 ;质点做圆周运动的周期为 ;质点在C 点时的加速度大小为 ,方向从 指向 。 2、关于向心加速度的物理意义,下列说法正确的是( ) A. 它描述的是线速度方向变化的快慢 B.它描述的是线速度大小变化的快慢 C. 它描述的是转速变化的快慢 D.它描述的是角速度变化的快慢 3、如图,在皮带传动装置中,主动轮A 和从动轮B 半径不等,皮带与轮之间无相对滑动,则下列说法中正确的是( ) A.两轮的角速度相等 B.两轮边缘的线速度大小相等 C.两轮边缘的向心加速度大小相等 D.两轮转动的周期相同 知识迁移★能力提升 要求:先独立思考课前完成,再小组内交流讨论整理出答案,并选一名代表进行展示。 4、如图所示,线段OA =2AB .A 、B 两球质量相等,当它们绕O 点在光滑的水平桌面上以相同的角速度转动时,线段OA 、AB 的拉力之比为多少? 5、如图,长为L 的细线,拴一质量为m 的小球,一端固定于O 点. 让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动).求摆线L 与竖直方向的夹角是θ时,求 (1)线的拉力F ; (2)小球运动的线速度的大小; (3)小球运动的角速度及周期. 6、一人用一根长1m ,只能承受46N 的绳子,拴着一个质量为1kg 的小球,在竖直平面内作圆周运动,已知转轴O 离地21m ,如图 所示,(g=10m/s2) (1)若小球到达最低点时绳恰好断,求小球到达最低点的速率。 (2)此条件下小球落地点到O 点的水平距离。

圆周运动学案

5.4 圆周运动(预习案) 班级小组姓名 【学习目标及方法指导】 1.了解物体做圆周运动的特征。 2.理解线速度、角速度和周期的概念,知道它们是描述物体做匀速圆周运动快慢的物理量,会用它们的公式进行计算。 3.理解线速度、角速度、周期之间的关系。 【学习重点、难点】 线速度、角速度、周期概念,及其相互关系的理解和应用,匀速圆周运动的特点。【自主学习过程】 一、线速度 1.定义:做圆周运动的质点通过的与的比值叫做圆周运动的线速度。 2.公式: 3.单位: 4.矢量性:量,方向: 5.匀速圆周运动:如果物体沿着,并且处处相等,这种运动叫做匀速圆周运动。 注意:“匀速”指的是? 练习:质点做匀速圆周运动,则( ) A.在任何相等的时间里,质点的位移都相等 B.在任何相等的时间里,质点通过的路程都相等 C.在任何相等的时间里,连接质点和圆心的半径转过的角度都相等 D.在任何相等的时间里,质点运动的平均速度都相等 二、角速度 1.定义:角速度等于和的比值角速度是描述的物理量。 2.公式: 3.单位:三、周期,频率,转速 1.周期的定义: 周期的符号:,单位: 2.频率的定义:物质在1秒内完成周期性变化的次数叫做频率。 常用 f 表示,单位Hz 3.转速的定义: 4.转速的符号:,单位: 四、线速度、角速度、周期之间的关系 分析:一物体做半径为r的匀速圆周运动,问: 1.它运动一周所用的时间叫,用T表示,它在周期T内转过的弧长为。由此可知它的线速度为。 2.一个周期T内转过的角度为,物体的角速度为。 思考总结得到角速度与线速度的关系: 讨论:(1)当v一定时,与成反比。 (2)当ω一定时,与成正比。 (3)当r一定时,与成正比。 思考:物体做匀速圆周运动时,v、ω、T是否改变? 五、匀速圆周运动的特点 由于匀速圆周运动是不变的运动,物体单位时间通过的弧长相等,所以物体在单位时间转过的角也相等。因此可以说,匀速圆周运动是.的圆周运动。 【自主检查】 1.对于做匀速圆周运动的物体,下列说法中正确的是() A.线速度不变B.周期不变 C.角速度大小不变D.运动状态不变 2.关于角速度和线速度,下列说法正确的是() A.半径一定,角速度与线速度成反比 B.半径一定,角速度与线速度成正比 C.线速度一定,角速度与半径成正比 D.角速度一定,线速度与半径成反比

圆周运动中的临界问题分析+教案+教学设计

《圆周运动中的临界问题》教学设计 高一物理组龙 一、教材分析 圆周运动的临界问题继是人教版高中《物理》必修2第五章的内容。在此之前,学生已经学习了直线运动的相关内容,和曲线运动的基本知识,自然界和日常生活中运动轨迹为圆周的许多事物也为学生的认知奠定了感性基础,本节课主要是帮助学生在原有的感性基础上进一步认识圆周运动,为今后学习万有引力等知识打下基础。 二、学情分析 高一(14)班是二层次班级,学生基础、领会能力相对较弱。不过学生已经学习了圆周运动、向心加速度、向心力等圆周运动的相关知识,已基本了解和掌握了圆周运动的特点和规律,对圆周运动的临界问题的学习已打下了基础。 三、学习目标 1. 通过学生讨论,小组合作,老师引导,让学生进一步熟练圆周运动问题的解题步骤; 2. 通过学生讨论,小组合作,老师讲解,达到知道临界状态的目标; 3. 通过学生讨论,小组合作,老师讲解,达到知道圆周运动中的临界问题,并能正确解题的目标。 四、教学重难点 1. 重点

a圆周运动问题的解题步骤 b 竖直水平圆周运动的临界状态 c 运用所学知识解决圆周运动中的临界问题 2. 难点 a竖直水平圆周运动的临界状态 b 运用所学知识解决圆周运动中的临界问题 五、导入 播放视频—电唱机做匀速圆周运动,创设情境,导入新课六、教学设计 (一) 预习案 1.公式默写 角速度: 线速度: 运行周期:

向心加速度: 向心力: 复习巩固 (二) 探究案 1.圆周运动问题的解题步骤

例、例. 如图所示,半径为R的圆筒绕竖直中心轴OO′转动,小物块A靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使A不下落,则圆筒转动的角速度ω至少为( D ) 小组讨论,得出结果,并归纳总结出圆周运动解题步骤。 解:A物体不下落,说明静摩擦力等于重力,A随着转动过程中,支持力提供向心力 即 且 联立解得

圆周运动的三种模型

圆周运动的三种模型 一、圆锥摆模型: 如图所示:摆球的质量为m,摆线长度为L ,摆动后摆球做圆周运动,摆线与竖直方向成θ角,对小球受力 分析, 正交分法解得:竖直方向:水平方向:F X=最终得F合=。 用力的合成法得F合=。半径r=,圆周运动F向==,由F合=F向可得V=,ω= 圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。分析方法同样适用自行车, 摩托车,火车转弯,飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。共同点是由重力和弹力的合力提供向心力,向心力方向水平。 1、小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中θ(小球与半球球心连线跟竖直方向的夹角)与线速度V ,周期T 的关系。(小球的半径远小于R) 2、如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T。求(取g=10m/s2,结果可用根式表示): (1)若要小球离开锥面,则小球的角速度ω0至少为多大? (2)若细线与竖直方向的夹角为60°,则小球的角速度ω'为多大?

二.轻绳模型 (一)轻绳模型的特点: 1. 轻绳的质量和重力不计; 2. 只能产生和承受沿绳方向的拉力; (二)轻绳模型在圆周运动中的应用 小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题: 1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: = ,v 临界 = 2. 小球能通过最高点的条件: v v 临界(此时,绳子对球产生 力) 3. 不能通过最高点的条件: v v 临界 (实际上小球还没有到最高点时,就脱离了轨道) 练习: 质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v 的速度经过最高点时,对轨道的压力是( ) A . 0 B. mg C .3mg D 5mg 三.轻杆模型: (一)轻杆模型的特点: 1.轻杆的质量和重力不计; 2.能产生和承受各方向的拉力和压力 (二)轻杆模型在圆周运动中的应用 轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况: 1. 小球能通过最高点的最小速度v= ,此时轻杆对小球的作用力N= ( N 为 力) 2. 当 =R v m 2临界 ( 轻杆对小球的作用力N= 0 ),gR v 临界 3 当 (即0v 临界)时,有 =R v m 2 (轻杆对小球的作用力N 为 力) 练习: 半径为R=0.5m 的管状轨道,有一质量为m=3kg 的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则( ) A. 外轨道受到24N 的压力 B. 外轨道受到6N 的压力 C. 内轨道受到24N 的压力 D. 内轨道受到 6N 的压力

圆周运动及其运用学案

圆周运动及其运用 一、描述匀速圆周运动的物理量 1.概念:线速度、角速度、周期、转速、向心力、向心加速度,比较如表所示: 二、匀速圆周运动和非匀速圆周运动 1.匀速圆周运动 (1)定义:线速度_________的圆周运动. (2)性质:向心加速度大小_____,方向总是_________的变加速曲线运动. (3)质点做匀速圆周运动的条件合力______不变,方向始终与速度方向______且指向圆心. 【答案】大小不变 不变指向圆心 大小垂直 2.非匀速圆周运动 (1)定义:线速度大小、方向均__________的圆周运动. (2)合力的作用.

①合力沿速度方向的分量Ft产生切向加速度,Ft=mat,它只改变速度的______. ②合力沿半径方向的分量Fn产生向心加速度,Fn=man,它只改变速度的______. 【答案】发生变化 大小方向 三、离心运动和近心运动 1.离心运动 (1)定义:做_________的物体,在所受合外力突然消失或不足以提供圆周运动所需________的情况下,所做的逐渐远离圆心的运动. (2)本质:做圆周运动的物体,由于本身的______,总有沿着圆周__________飞出去的倾向. 【答案】圆周运动向心力 惯性切线方向 (3)受力特点. ①当F=mω2r时,物体做__________运动; ②当F=0时,物体沿______方向飞出; ③当F

【答案】匀速圆周切线远离 2.近心运动 当提供向心力的合外力大于做圆周运动所需向心力时,即F>mω2r,物体将逐渐______圆心,做近心运动. 【答案】靠近 考点一水平面内的匀速圆周运动 1.在分析传动装置的物理量时,要抓住不等量和相等量的关系,表现为: (1)同一转轴的各点角速度ω相同,而线速度v=ωR与半径R成正比,向心加速度大小a=Rω2与半径r成正比. (2)当皮带不打滑时,用皮带连接的两轮边沿上的各点线速度大小相 等,由ω=v R可知,ω与R成反比,由a=v2 R可知,a与R成反比. 2.用动力学方法解决圆周运动中的问题 (1)向心力的来源. 向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避

圆周运动复习课教学案例

创新平台条件下的课堂教学案例 圆周运动复习课 [设计思想]: 本教学设计以新课程三维目标为依据,充分借助创新平台优势,落实“学生主体,教师主导”的生本教学理念,促进学生的全面发展。 [设计特点]: 1、重视学生的自主学习过程。通过课前学案发布,借助问题的引导和学习资源的 帮助,最大限度的促进学生自主学习的成果。 2、重视学习中的生生互动、师生互动,促进学生思维的发展,让学生感受与体验 认知的过程;借助平台的互动功能,让学生在活跃、宽松、平等的氛围中发表见解,展开讨论,促进课堂上每一名学生的认知发展。 3、利用平台的丰富教学资源,实现对各层次学生的因材施教;教学设计中,教师 可以根据学生不同层次设计不同的教学要求,也可以根据学生的认知特点设计相应的教学提示帮助不同学生达到统一的教学要求,真正实现让每一名学生都“跳一跳,够得着”,促进每一名学生的发展。 4、: 5、利用平台高效的统计分析功能,对学生学习现状即时检测,及时反馈修正,保 证教学不留死角; 6、借助资源中心丰富的案例储备,实现对重点、难点问题的突破,提高学习效率。[教材分析]: 本节课是人教版普通高中课程标准实验教科书必修2第六章曲线运动的圆周运动部分,主要内容:复习描述圆周运动的基本物理量,掌握线速度、角速度、周期、频率、转速、向心加速度、向心力的概念,掌握各量之间的关系;掌握匀速圆周运动的特点,理解向心加速度的概念,理解圆周运动中向心力与合力的关系;解决圆周运动的具体实例,会分析向心力的来源,能列出动力学方程并解决。 [教学目标]: 知识与技能: 1、掌握描述圆周运动的物理量,理解物理量的概念,掌握各物理量间的关系;

大全圆周运动模型

圆周运动模型 一、匀速圆周运动模型 1.随盘匀速转动模型 1.如图,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是: A .受重力、支持力、静摩擦力和向心力的作用 B .摩擦力的方向始终指向圆心O C .重力和支持力是一对平衡力 D .摩擦力是使物体做匀速圆周运动的向心力 2. 如图所示,质量为m 的小物体系在轻绳的一端,轻绳的另一端固定在转轴上。轻绳长度为L 。现在使物体在光滑水平支持面上与圆盘相对静止地以角速度 做匀速圆周运动,求: (1)物体运动一周所用的时间T ; (2)绳子对物体的拉力。 3、如图所示,MN 为水平放置的光滑圆盘,半径为1.0m ,其中心O 处有一个小孔,穿过小孔的细绳两端各系一小球A 和B ,A 、B 两球的质量相等。圆盘上的小球A 作匀速圆周运动。问 (1)当A 球的轨道半径为0.20m 时,它的角速度是多大才能维持B 球静止? (2)若将前一问求得的角速度减半,怎样做才能使A 作圆周运动时B 球仍能保持静止? 4、如图4所示,a 、b 、c 三物体放在旋转水平圆台上,它们与圆台间的动摩擦因数均相同,已知a 的质量为2m ,b 和c 的质量均为m ,a 、b 离轴距离为R ,c 离轴距离为2R 。当圆台转动时,三物均没有打滑,则:(设最大静摩擦力等于滑 动摩擦力)( ) A.这时c 的向心加速度最大 B .这时b 物体受的摩擦力最小 C.若逐步增大圆台转速,c 比b 先滑动 D .若逐步增大圆台转速,b 比a 先滑动 5、如右图所示,某游乐场有一水上转台,可在水平面内匀速转动,沿半径方向面对面手拉手坐着甲、乙两个小孩,假设两小孩的质量相等,他们与盘间的动摩擦因数相同,当圆盘转速加快到两小孩刚好还未发生滑动时,某一时刻两小孩突然松手,则两小孩的运动情况是( ) A .两小孩均沿切线方向滑出后落入水中 B .两小孩均沿半径方向滑出后落入水中 C .两小孩仍随圆盘一起做匀速圆周运动,不会发生滑动而落入水中 D .甲仍随圆盘一起做匀速圆周运动,乙发生滑动最终落入水中 6、线段OB=AB ,A 、B 两球质量相等,它们绕O 点在光滑的水平面上以相同的角速度转动时,如图4所示,两段线拉力之比T AB :T OB =______。 2.转弯模型 1.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时:[ ] A .对外轨产生向外的挤压作用 B .对内轨产生向外的挤压作用 C .对外轨产生向内的挤压作用 D .对内轨产生向内的挤压作用 2.火车通过半径为R 的弯道,已知弯道的轨道平面与水平面的夹角为θ,要使火车通过弯道时对内外轨道不产生挤压,求火车通过弯道时的速度? O ω ω m

(完整版)《圆周运动》教学设计

《圆周运动》教学设计 六盘水市第二实验中学卢毅 一、教材分析 本节课的教学内容为新人教版第五章第四节《圆周运动》,它是在学生学习了曲线运动的规律和曲线运动的处理方法以及平抛运动后接触到的又一类曲线运动实例。本节作为该章的重要内容之一,主要向学生介绍了描述圆周运动快慢的几个物理量,匀速圆周运动的特点,在此基础上讨论这几个物理量之间的变化关系,为后续学习圆周运动打下良好的基础。 二、学情分析 通过前面的学习,学生已对曲线运动的条件、运动的合成和分解、曲线运动的处理方法、平抛运动的规律有了一定的了解和认识。在此基础上了,教师通过生活中的实例和实物,利用多媒体,引导学生分析讨论,使学生对圆周运动从感性认识到理性认识,得出相关概念和规律。在生活中学生已经接触到很多圆周运动实例,对其并不陌生,但学生对如何描述圆周运动快慢却是第一次接触,因此学生在对概念的表述不够准确,对问题的猜想不够合理,对规律的认识存在疑惑等。教师在教学中要善于利用教学资源,启发引导学生大胆猜想、合理推导、细心总结、敢于表达,这就能对圆周运动的认识有深度和广度。 三、设计思想 本节课结合我校学生的实际学习情况,对教材进行挖掘和思考,始终把学生放在学习主体的地位,让学生在思考、讨论交流中对描述圆周运动快慢形成初步的系统认识,让学生的思考和教师的引导形成共鸣。 本节课结合了曲线运动的规律及解决方法,利用生活中曲线运动实例(如钟表、转动的飞轮等)使学生建立起圆周运动的概念,在此基础上认识描述圆周运动快慢的相关物理量。总体设计思路如下:

四、教学目标 (一)、知识与技能 1、知道什么是圆周运动、匀速圆周运动。理解线速度、角速度、周期的概念,会用线速度角速度公式进行计算。 2、理解线速度、角速度、周期之间的关系,即r r T v ωπ ==2。 3、理解匀速圆周运动是变速运动。 4、能利用圆周运动的线速度、角速度、周期的概念分析解决生活生产中的实际问题。 (二)、过程与方法 1、知道并理解运用比值定义法得出线速度概念,运用极限思想理解线速度的矢量性和瞬时性。 2、体会在利用线速度描述圆周运动快慢后,为什么还要学习角速度。能利用类比定义线速度概念的方法得出角速度概念。 (三)、情感、态度与价值观 1、通过极限思想的运用,体会物理与其他学科之间的联系,建立普遍联系的世界观。 2、体会物理知识来源于生活服务于生活的价值观,激发学生的学习兴趣。 3、通过教师与学生、学生与学生之间轻松融洽的讨论和交流,让学生感受快乐学习。 五、教学重点、教学难点

2020高三物理一轮复习教学案(27)圆周运动中的临界问题

2020高三物理一轮复习教学案(27)圆周运动中的临界问题【学习目标】 1.熟练处理水平面内的临界咨询题 2.把握竖直面内的临界咨询题 【自主学习】 一.水平面内的圆周运动 例1:如图8—1所示水平转盘上放有质量为m的物快,当物块到转轴的距离为r时,假设物块始终相对转盘静止,物块和转盘间最大静摩擦力是正压力的μ倍,求转盘转动的最大角速度是多大? 注:分析物体恰能做圆周运动的受力特点是关键图8—1 二.竖直平面内圆周运动中的临界咨询题 图8—2甲图8—3甲图8—3乙 1.如图8—2甲、乙所示,没有支撑物的小球在竖直平面作圆周运动过最高点的情形 ○1临界条件 ○2能过最高点的条件,现在绳或轨道对球分不产生______________ ○3不能过最高点的条件 2.如图8—3甲、乙所示,为有支撑物的小球在竖直平面做圆周运动过最高点的情形 竖直平面内的圆周运动,往往是典型的变速圆周运动。关于物体在竖直平面内的变速圆周运动咨询题,中学时期只分析通过最高点和最低点的情形,同时经常显现临界状态,下面对这类咨询题进行简要分析。○1能过最高点的条件,现在杆对球的作用力 ○2当0gr时,杆对小球的力为其大小为____________ 讨论:绳与杆对小球的作用力有什么不同? 例2.长度为L=0.50m的轻质细杆OA,A端有一质量为m=3.0kg的小球,如图8—4所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m/s,〔g=10m/s2〕那么现在细杆OA受 的〔〕 A. 6.0N的拉力 B. 6.0N的压力 C.24N的压力 D. 24N的拉力

圆周运动中的几种模型

圆周运动中的几种模型 一.轻绳模型 (一). 轻绳模型的特点: 1. 轻绳的质量和重力不计; 2. 只能产生和承受沿绳方向的拉力; (二).轻绳模型在圆周运动中的应用 小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题: 1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: 2. 小球能通过最高点的条件:(当时,绳子对球产生拉力) 3. 不能通过最高点的条件:(实际上小球还没有到最高点时,就脱离了轨道) 例:质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v的速度经过最高点时,对轨道的压力是() A . 0 B. mg C .3mg D 5mg

分析:内侧轨道只能对小球产生向下的压力,其作用效果同轻绳一样,所以其本质是轻绳模型 当小球经过最高点的临界速度为v ,则 当小球以 2v的速度经过最高点时,轨道对小球产生了一个向下的压力N ,则 因为所以 根据牛顿第三定律,小球对轨道压力的大小也是,故选 c. 二.轻杆模型: (一). 轻杆模型的特点: 1.轻杆的质量和重力不计; 2.能产生和承受各方向的拉力和压力 (二). 轻杆模型在圆周运动中的应用 轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况: 1. 小球能通过最高点的临界条件:v=0 ,N=mg ( N为支持力) 2. 当时,有( N为支持力)

3 当时,有(N=0 ) 4 当时,有(N 为拉力) 例:半径为R=0.5m 的管状轨道,有一质量为m=3kg的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则() A. 外轨道受到24N的压力 B. 外轨道受到6N的压力 C. 内轨道受到24N 的压力 D. 内轨道受到 6N的压力 分析:管状轨道对小球既有支持力又有压力,所以其本质属于杆模型: 当小球到最高点轨道对其作用力为零时:有 则, =>2m/s 所以,内轨道对小球有向上的支持力,则有 代入数值得: N=6N 根据牛顿第三定律,小球对内轨道有向下的压力大小也为6N ,故选 D 三.圆锥摆模型: 圆锥摆模型在圆周运动中的应用:

匀速圆周运动教学设计

匀速圆周运动 一、教学内容分析 “匀速圆周运动”选自人教版高中《物理》第一册第五章第4节。在此之前,学生已经学习了直线运动的相关内容,和曲线运动的基本知识,自然界和日常生活中运动轨迹为圆周的许多事物也为学生的认知奠定了感性基础,本节课主要是帮助学生在原有的感性基础上建立匀速圆周运动的几个概念,为今后进一步学习向心力、向心加速度以及万有引力的知识打下基础。 此外,匀速圆周运动与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有重要的意义。 二、学习情况分析 本节内容是继学生学习平抛运动后,又一种变速曲线运动。在曲线运动的学习中,学生已经知道了曲线运动的速度方向在曲线这一点的切线方向并知道曲线运动是变速运动,此前,学生也已经掌握了直线运动及其快慢描述方法。这些知识都为匀速圆周运动的学习奠定了基础。此外,高一学生已具备一定观察能力和经验抽象思维能力,并对未知新事物有较强的探究欲望。 三、设计思想 “匀速圆周运动”是以概念教学为主的一节课,对物理概念的理解和认识是教学要达到的目标之一,也是教学的出发点。物理是一门培养和发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,我在整节课的教学设计中,以建构主义理论为指导,辅以多媒体手段,采用情景教学法和引导式教学法,结合师生共同讨论、归纳,以“情境产生问题”,注重知识的形成过程,针对“什么是匀速圆周运动”以及“匀速圆周运动快慢的描述”展开探究活动,在问题交流讨论中发展学生观点,最终形成对概念的理解。 四、教学目标 知识目标 1、知道匀速圆周运动的概念; 2、理解线速度、角速度和周期; 3、理解线速度、角速度和周期三者之间的关系。 能力目标 能够用匀速圆周运动的有关公式分析和解决实际问题。 情感目标 具有协作意识和探究精神,并在活动中感受学习物理的乐趣。 五、教学重点和难点 重点

第五章 曲线运动归类复习学案

姓名 《第五章 曲线运动》知识点、题型归类分析 一、曲线运动 1.概念: 轨迹是曲线的运动叫曲线运动。 2.速度方向:曲线运动中速度的方向是时刻改变的,质点在某一点(或某一时刻)的速度方向沿曲线在这一点的 方向。 3.运动的性质:曲线运动是 运动,一定有 ,合力不为 。 4.物体做曲线运动的条件:当物体所受合力的方向跟它速度的方向 时, 5.曲线运动的轨迹弯曲特点:轨迹总是沿着 方向朝 方向弯曲。 对应训练: 1.关于曲线运动,下列说法正确的是( ) A .曲线运动一定是变速运动 B .曲线运动速度的方向不断地变化,但速度的大小可以不变 C .曲线运动的速度方向可能不变 D .曲线运动的速度大小和方向一定同时改变 2.下面说法中正确的是( ) A .做曲线运动的物体速度方向必定变化 B .速度变化的运动必定是曲线运动 C .加速度恒定的运动不可能是曲线运动 D .加速度变化的运动必定是曲线运动 3.某物体受同一平面内的几个力作用而做匀速直线运动,从某时刻起撤去其中一个力,而其它力不变,则该物体 ( ) A 、一定做匀加速直线运动 B 、一定做匀减速直线运动 C 、其轨迹可能是曲线 D 、其轨迹不可能是直线 4.如图所示,物体在恒力F 作用下沿曲线从A 运动到B ,这时突然使它 所受的力方向改变而大小不变(即由F 变为-F ),在此力作用下物体以后运动情况,下列说法正确的是( ) A .物体不可能沿曲线Ba 运动 B .物体不可能沿直线Bb 运动 C .物体不可能沿曲线Bc 运动 D .物体不可能沿原曲线由B 返回A b

2 图甲 图乙 图丙 二、运动的合成和分解 1.合运动与分运动的特征 ①等时性:合运动和分运动是 发生的,所用时间相等. ②等效性:合运动跟几个分运动共同叠加的效果 . ③独立性:一个物体同时参与几个运动,各个分运动 进行,互不影响. 2.已知分运动求合运动,叫做运动的合成,包括位移、速度和加速度的合成.遵循 定则. ①两分运动在同一直线上时,先规定正方向,凡与正方向相同的取正值,相反的取负值,合运动为各分运动的代数和. ②不在同一直线上,按照平行四边形定则合成(如图所示). ③两个分运动垂直时,正交分解后的合矢量为: s =合 v =合a =合 3.已知合运动求分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解. 典型模型: (一) 小船渡河: 1.处理方法:船在有一定流速的河中过河时,实际上参与了两个方向的运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动. 例1.一条宽度为L 的河流,水流速度为Vs,已知船在静水中的速度为Vc ,那么: (1) 怎样渡河时间最短?(2)若Vc>Vs ,怎样渡河位移最小?(3)若Vc

专题一圆周运动绳杆模型

专题一:《圆周运动中的临界问题》 一.两种模型: (1)轻绳模型:一轻绳系一小球在竖直平面内做圆周运动.小球能到达最高点(刚好做圆周运 动)的条件是小球的重力恰好提供向心力,即mg =m r v 2 ,这时的速度是做圆周运动的最小速度v min = . (绳只能提供拉力不能提供支持力). 类此模型:竖直平面内的内轨道 (2)轻杆模型:一轻杆系一小球在竖直平面内做圆周运动,小球能到达最高点(刚好做圆周运动)的条件是在最高点的速度 . (杆既可以提供拉力,也可提供支持力或侧向力.) ①当v =0 时,杆对小球的支持力 小球的重力; ②当0gr 时,杆对小球提供 力. 类此模型:竖直平面内的管轨道. 1、圆周运动中绳模型的应用 【例题1】长L =0.5m 的细绳拴着小水桶绕固定轴在竖直平面内转动,筒中有质量m =0.5Kg 的水,问:(1)在最高点时,水不流出的最小速度是多少?(2)在最高点时,若速度v =3m/s ,水对筒底的压力多大? 【训练1】游乐园里过山车原理的示意图如图所示。设过山车的总质量为m ,由静止从高为h 的斜轨顶端A 点开始下滑,到半径为r 的圆形轨道最高点 B 时恰好对轨道无压力。求在圆形轨道最高点B 时的速度大小。 【训练2】.杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求: (1)最高点水不流出的最小速率。 (2)水在最高点速率v =3 m /s 时,水对桶底的压力. 2、圆周运动中的杆模型的应用 【例题2】一根长l =0.625 m 的细杆,一端拴一质量m=0.4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,求: (1)小球通过最高点时的最小速度; (2)若小球以速度v 1=3.0m /s 通过圆周最高点时,杆对小球的作用力拉力多大?方向如何?

相关文档
相关文档 最新文档