文档库 最新最全的文档下载
当前位置:文档库 › 高功率因素开关电源的数字化控制方案

高功率因素开关电源的数字化控制方案

高功率因素开关电源的数字化控制方案
高功率因素开关电源的数字化控制方案

高功率因素开关电源的数字化控制方案

【摘要】该文介绍了基于DSP的功率因素校正开关电源的一种数字化实现方案,提出了一种数字电源的系统结构,分析了系统的总体性能,设计了各模块的实现方案。对功率因素校正的工作原理、实现方案及部分程序做了具体分析。通过Matlab的仿真与样机的测试,实验结果与仿真结果显示该方案实现了较高的功率因素和稳定的输出。

【关键词】功率因素校正;高功率因素;数控开关电源

1.引言

传统的功率因数校正技术采用的是模拟控制系统,经过多年的研究与实践,其技术已十分成熟。但模拟控制系统具有许多不可克服的缺点,电路比较复杂适应性差、容易受到噪声的干扰、调试不便,而且元件有老化、温漂等现象,导致性能下降[1]。随着数字控制技术的不断发展,高速度廉价的数字信号处理器DSP 的出现,控制策略更多的需要通过数字信号处理器加以实现,在功率因数校正中使用数字控制已成为发展的趋势[2,3]。本文提出了一种DSP作为控制器实现较高功率因素的一种方案,克服了模拟控制系统的不足,能灵活采用控制策略,可与后级DC—DC模块共用控制器。

2.功率因素和总谐波畸变

常用的开关电源前级都是整流与大电容滤波电路的这种非线性元件和储能元件的组合,虽然输入交流市电电压是正弦的,但输入交流电流发生了严重的畸变,其可分解为多次谐波电流,谐波的丰富程度可用总谐波畸变来表示:

3.系统结构

该开关电源系统由主电路和DSP控制电路构成,主电路包括EMI滤波、工频整流、PFC转换器和DC—DC变换模块。DSP控制的PFC转换器实现功率因素的校正之后实现电流基本跟随电压的变化,输出到DSP控制的DC—DC变换器产生满足各项指标的直流输出,从而实现具有高功率因素的开关电源,如图1所示。

在本方案中DSP器件具有控制PFC转换器和DC—DC变换器的双重任务,为此需要具有大量具有较高速度的A/D转换通道和一定数据处理能力的DSP器件,所以选择了美国TI公司的TMS320F2812作为电路的主控芯片。

对于PFC电路的结构选择的是平均电流控制法的Boost拓扑结构。从原理上来讲,任何一种DC—DC PWM转换器主电路都可以用作PFC转换器的主电路,但由于Boost转换器的一些特殊优点,如输入端有大电感,输入电流可以连续,电路简单高效等,使得其应用最为广泛。PFC转换器一般需要采用电流型控制,CCM模式下主要有峰值电流控制、滞环电流控制、平均电流控制等。因为平均电流控制法具有较小的THD、对噪声不敏感、电感电流峰值与平均值之间的误差小等优点,所以本方案中采用平均电流型控制。

4.平均电流PFC实现方案

基于TMS320F2812控制的功率因数校正电路所示。系统的主电路采用的是Boost型拓扑结构,系统输入电流即为电感电流,采用的是平均电流控制模式,最终可以得到接近正弦的输入电流波形。为了实现控制策略,系统需检测以下3个量:整流输入电压、输入电感电流、直流输出电压。经过信号调理电路送至DSP的3路AD采样通道:ADCIN0、ADCIN1、ADCIN2进行采样并送入DSP

功率回退技术

1dB压缩点(P1dB) 在小信号区域,放大器的输出和输入呈线性关系。当输入功率增加时,输出功率逐渐接近非线性区,1dB压缩点被定义为放大器的增益比小信号增益低1dB时的输出功率,或说是被压缩1dB时的输出功率P1dB。通常将1dB压缩点作为一个放大器的线性区和非线性区的分界点。 图1 1dB压缩点 三次交调截取点(IP3) 在射频或微波多载波通讯系统中,三阶交调截取点OIP3是一个衡量线性度或失真的重要指标。交调失真对模拟微波通信来说,会产生临近信道的串扰,对数字微波通信来说,会降低系统的频谱利用率,并使误码率恶化;因此容量越大的系统,要求IP3越高,IP3越高表示线性度越好和更少的失真。IP3通常用两个输入音频测试,这里所指的音频与我们低频电子线路的音频没有区别,实际上是两个靠的比较近的射频或微波频率。 图2 放大器的输出功率和互调分量岁输入功率的变化 如放大器,基频是1:1增长,3rd是3:1增长,IP3点就是3rd信号影响超过基频的点。 从图2 中可以发现输出电平按照1:1的斜率随输入信号电平变化,而三阶互调失真则按照3:1的斜率变化。虽然输出和三阶互调都会在某个电平上饱和,但将二条曲线的线性区分延长并获得相交点,这个交点对应X轴和Y轴的读数分别被称为输入和输出三次截断点IP3;而二者之差即为放大器的小信号增益,如输入IP3为5dBm,输出IP3为50dBm,则放大器增益为45dB。

功率放大器的线性化技术主要有:功率回退法、负反馈法、预失真法、前馈法。 功率回退法: 功率回退法就是把功率放大器的输入功率从1dB压缩点(放大器有一个线性动态范围,在这个范围内,放大器的输出功率随输入功率线性增加。随着输入功率的继续增大,放大器渐渐进入饱和区,功率增益开始下降,通常把增益下降到比线性增益低1dB时的输出功率值定义为输出功率的1dB压缩点,用P1dB表示。)向后回退6-10dB,工作在远小于1dB压缩点的电平上,使功率放大器远离饱和区,进入线性工作区,从而改善功率放大器的三阶交调系数。一般情况,当基波功率降低1dB时,三阶交调失真改善2dB。 A类放大器具有良好的线性放大性能,一般来讲,A类放大器在1dB压缩点输出时,三阶交调系数约为-23.7dBc(一般取-20dBc)。 采用回退方式的传统RF功率放大器往往采用固定栅压偏置或带温度补偿的栅压偏置方式(如图3所示),放大器的输出功率和偏置栅压没有进行关联控制,因此输出功率只能在回退到较小时才能达到较好的线性度,随着输出功率的增大线性指标将快速恶化。 功率回退法简单且易实现,不需要增加任何附加设备,是改善放大器线性度行之有效的方法,缺点是效率大为降低。另外,当功率回退到一定程度,当三阶交调制达到-50dBc以下时,继续回退将不再改善放大器的线性度。因此,在线性度要求很高的场合,完全靠功率回退是不够的。 图3 采用传统控制方式的功率放大器的示意图 放大管的偏置栅压输出功率具有一组相对应最佳值使其在零输出至满输出之间均能保持较好的线性输出能力。在输出功率较小时,删压维持一较高值,输出功率过了临界点后随着输出功率的加大,必须减小删压。 为了使功率放大器的偏置删压能够跟随输出功率的变化来实时的进行调节,我们采用如图4所示的电路结构并使用单片机的查表技术来实现这一目标。采用功率——删压关联偏置技术,将首先对输出功率进行检测,然后和单片机内的功率——删压表进行比对,找出输出功率和最佳匹配的删压值送给功放的栅极进行动态偏置。因此不同的输出功率,均有一个对应的最佳删压值,也就是说功率放大器可以在每个不同的输出功率下都可以具有较好的线性和效率指标,从而实现功率放大器在零输出至满输出之间,同时具有良好的线性和较高的效率。 图4 采用输出功率—栅压关联方式的功放示意图

开关电源的发展前景

开关电源的发展前景 提高开关电源的功率密度,使之小型化、轻量化,是人们不断努力追求的目标。电源的高频化是国际电力电子界研究的热点之一。电源的小型化、减轻重量对便携式电子设备(如移动电话,数字相机等)尤为重要。使开关电源小型化的具体办法有: 一是高频化。为了实现电源高功率密度,必须提高PWM变换器的工作频率、从而减小电路中储能元件的体积重量。 二是应用压电变压器。应用压电变压器可使高频功率变换器实现轻、小、薄和高功率密度。压电变压器利用压电陶瓷材料特有的"电压-振动"变换和"振动- 电压"变换的性质传送能量,其等效电路如同一个串并联谐振电路,是功率变换领域的研究热点之一。 三是采用新型电容器。为了减小电力电子设备的体积和重量,必须设法改进电容器的性能,提高能量密度,并研究开发适合于电力电子及电源系统用的新型电容器,要求电容量大、等效串联电阻ESR小、体积小等。 电源系统中应用大量磁元件,高频磁元件的材料、结构和性能都不同于工频磁元件,有许多问题需要研究。对高频磁元件所用磁性材料有如下要求:损耗小,散热性能好,磁性能优越。适用于兆赫级频率的磁性材料为人们所关注,纳米结晶软磁材料也已开发应用。 高频化以后,为了提高开关电源的效率,必须开发和应用软开关技术。它是过去几十年国际电源界的一个研究热点。 对于低电压、大电流输出的软开关变换器,进一步提高其效率的措施是设法降低开关的通态损耗。例如同步整流SR技术,即以功率MOS管反接作为整流用开关二极管,代替萧特基二极管(SBD),可降低管压降,从而提高电路效率。

分布电源系统适合于用作超高速集成电路组成的大型工作站(如图像处理站)、大型数字电子交换系统等的电源,其优点是:可实现DC/DC变换器组件模块化;容易实现N+1功率冗余,易于扩增负载容量;可降低48V母线上的电流和电压降;容易做到热分布均匀、便于散热设计;瞬态响应好;可在线更换失效模块等。 现在分布电源系统有两种结构类型,一是两级结构,另一种是三级结构。 由于AC/DC变换电路的输入端有整流元件和滤波电容,在正弦电压输入时,单相整流电源供电的电子设备,电网侧(交流输入端)功率因数仅为~。采用PFC(功率因数校正)变换器,网侧功率因数可提高到~,输入电流THD小于10%。既治理了电网的谐波污染,又提高了电源的整体效率。这一技术称为有源功率因数校正APFC单相APFC国内外开发较早,技术已较成熟;三相APFC的拓扑类型和控制策略虽然已经有很多种,但还有待继续研究发展。 一般高功率因数AC/DC开关电源,由两级拓扑组成,对于小功率AC/DC开关电源来说,采用两级拓扑结构总体效率低、成本高。 如果对输入端功率因数要求不特别高时,将PFC变换器和后级DC/DC变换器组合成一个拓扑,构成单级高功率因数AC/DC开关电源,只用一个主开关管,可使功率因数校正到以上,并使输出直流电压可调,这种拓扑结构称为单管单级即S4PFC变换器。 电压调节器模块是一类低电压、大电流输出DC-DC变换器模块,向微处理器提供电源。 现在数据处理系统的速度和效率日益提高,为降低微处理器IC的电场强度和功耗,必须降低逻辑电压,新一代微处理器的逻辑电压已降低至1V,而电流

几种实用的直流开关电源保护电路

几种实用的直流开关电源保护电路 1 引言 随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源[1-3].同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间[4].但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。 2 开关电源的原理及特点 2.1工作原理 直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。它主要由开关三极管和高频变压器组成。图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。实际上,直流

开关电源的核心部分是一个直流变压器。 2.2特点 为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。 直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高, 3 直流开关电源的保护 基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多

功率因数控制器RVC的使用说明

功率因数控制器RVC的使用 1)、控制器RVC上电后可看到其默认界面为自动状态(Auto),按Mode键进入手动界面; 2)、按Mode键进入自动设定参数的界面; 3)、按Mode键进入手动设定目标功率因数cosψ的界面,通过按“+”和“-”键调整其大小,推荐cosψ为0.92--0.98; 4)、按Mode键进入设定灵敏系数C/k的界面,通过按“+”和“-”键调整其大小,可查阅RVC使用说明书的C/k表得到其值,也可通过下面的方法计算: 其中: Q:单步无功功率(kvar); U:系统电压(V); K:电流互感器变比。 5)、按Mode键进入手动设定相位值PHASE的界面,通过按“+”和“-”键调整其大小。严格按照RVC使用说明书要求的接线方式进行电压电流互感器信号的输入接线的前提下,可查阅使用说明书中的相位表得到相位值,也可以用以下方法设置: 确定RVC测试点实际的功率因数cosψ,然后调整相位值,进入RVC的自动界面查看其显示的功率因数是否与先前的实际值一致,若否,则调整相位值直到与实际值一致; 6)、按Mode键进入手动设定投切延迟时间Delay的界面,通过按“+”和“-”键调整其大小,推荐运行时的延迟时间为10秒,也可根据调试需要将其增大至40秒; 7)、按Mode键进入手动设定输出组数Output的界面,通过按“+”和“-”键调整其大小,补偿柜中的组数即为其值; 8)、按Mode键进入手动设定序列Sequence的界面,通过按“+”和“-”键调整其设定,可参见下表: 序列类型(组间容量的比例关系)显示值 1∶1∶1∶1∶1∶…∶1 1.1.1 1∶2∶2∶2∶2∶…∶2 1.2.2 1∶2∶4∶4∶4∶…∶4 1.2.4 1∶2∶4∶8∶8∶…∶8 1.2.8 1∶1∶2∶2∶2∶…∶2 1.1.2 1∶1∶2∶4∶8∶…∶8 1.1.8 1∶2∶3∶3∶3∶…∶3 1.2.3 1∶2∶3∶6∶6∶…∶6 1.2.6 1∶1∶2∶3∶3∶…∶3 1.1.3 1∶1∶2∶3∶6∶…∶6 1.1.6 9)、按Mode键进入自动界面(Auto),显示值即为测试到的功率因数值。若显示值与实际值不符,可以通过调整相位值PHASE改变相位关系,直到与实际值一致,

开关电源试题(有答案)

开关整流器的基本原理 一、填空 1、功率变换器的作用是()。 将高压直流电压转换为频率大于20KHZ的高频脉冲电压 2、整流滤波器电路的作用是()。 将高频的脉冲电压转换为稳定的直流输出电压 3、开关电源控制器的作用是将输出()取样,来控制功率开关器件的驱动脉冲的(),从而调整()以使输出电压可调且稳定。 直流电压、宽度、开通时间。 4、开关整流器的特点有()、()、()、()、()、()及()。 重量轻、体积小、功率因数同、可闻噪声低、效率高、冲击电流小、模块式结构。 5、采用高频技术,去掉了(),与相控整流器相比较,在输出同等功率的情况下,开关整流器的体积只是相控整流器的(),重量已接近()。 工频变压器、1/10、1/10。 6、相控整流器的功率随可控硅()的变化而变化,一般在全导通时,可接近()以上,而小负载时,仅为左右,经过校正的开关电源功率因数一般在(),以上,并且基本不受()变化的影响。 导通角、、。 7、在相控整流设备件,工频变压器及滤波电感工作时产生的可闻噪声较大,一般大于(),而开关电源在无风扇的情况下,可闻噪声仅为()左右。 60db、45db。

8、开关电源采用的功率器件一般(比较)较小,带功率因数补偿的开关电源其整流器效率可达()以上,较好的可做到()以上。 88%、91%。 9、目前开关整流器的分类主要有两种,一类是采用()设计的整流器,一般称之为(),二是采用()设计的整流器,主要指()开关整流器。 硬开关技术、SMR、软开关技术、谐振型 10、谐振型技术主要是使各开关器件实现()或()导通或截止,从而减少开关损耗,提高开关频率。 零电压、零电流。 11、按有源开关的过零开关方式分类,将谐振型开关技术分为()—ZCS、()—ZVS两大类。 12、单端正激变换电路广泛应用于()变换电路中,被认为是目前可靠性较高,制造不复杂的主要电路之一。 13、单端反激变换电路一般用在()输出的场合。 14、全桥式功率变换电路主要应用于()变换电路中。 15、半桥式功率变换电路得到了较广泛的应用,特别是在()和()的场合,其应用越来越普遍。 16、开关电源模块的寿命是由模块内部工作()所决定,温升高低主要是由模块的()高低所决定,现在市场上大量使用的开关电源技术,主要采用的是()技术。 17、功率密度就是功率的(),比值越大说明单位体积的功率越大。 18、计算功率有两种方法,一种是(),另一种是模块允许的,在交流和直流变化的全电压范围内所能提供的()。

避免DC-DC电源输出端带大电容满载启动时发生过流保护的方法

避免DC-DC电源输出端带大电容满载启动时发生过流保护的方法 引言 随着大规模集成电路的核心电压越来越低,所需供电电流却越来越大,用于大规模集成电路供电的DC-DC 开关电源也必须满足在极低输出电压下可提供高达数十安培电流的要求,这给电源设计带来了极大的挑战。实际应用中,DC-DC开关电源往往需要外接一组很大的电容以降低电源在负载变化时在输出端产生的电压跳变,在这种情况下,如果电流检测电路设计不当,在输出端外接很大电容且加满载启动时,就很容易在启动过程中引发过流保护,从而导致DC-DC电源无法正常启动。 电源输出端带大电容满载启动时可能遇到的问题 DC-DC电源在给大规模集成电路供电时,输出电压一般很低,而输出电流却很大。以输出电压为3.3V 的八分之一砖模块为例,现在主流的输出电流规格一般为30A。为了防止输出电压在负载变化时跳变过大,在应用3.3V/30A的八分之一砖模块时,其输出端一般需要外接约10000μF的电解电容。 输出电流以25%的比例变化时,输出电压变化量的计算过程如下。 输出电流的变化为30A×25%=7.5A。 输出端外接10000μF电容时,如果电源的动态恢复时间为100μS,那么在负载发生25%变化时电源输出电压的跳变约为: 对于输出电压为3.3V的开关电源,150mV大约相当于输出电压的4.55%,小于一般集成电路供电要求的±5%,可以满足系统中集成电路的需求。 然而,对于开关电源来说,当输出端的外部接10000μF电容时,在开关电源启动的过程中,输出端不得不持续为这组大电容充电,由于电容的等效阻抗很低,电源相当于被这个10000μF的电容短路,这样就造成开关电源在带大电容启动时一直处于被短路的状态。如果启动电路和过流检测电路设计不当,在这种情况下,很容易造成在带大电容启动时开关电源一直处于过流保护状态(OCP)而无法正常启动和输出额定电压,这一过程如图1所示。

电机和功率控制解决方案

借助ADI 公司业界领先的转换器、放大器和处理器技术,电机控制和逆变器客户能够设计出精度更高、更加节能、通信能力更强的产品。此外,ADI 公司丰富多样的模拟和处理器产品支持核心信号链,可加快产品上市时间,提高能效和工厂自动化集成度,降低维护成本。 ADI 公司的收发器和Blackfin ?处理器所提供的通信技术可将工厂自动化提升到更高层次。ADI MEMS 技术支持振动检测和定位控制,有助于实现更准确的预见性维护,降低运营成本。 ADI 公司的电源管理产品支持以更高的能效和控制水平实现所有这些功能。 电机和功率控制解决方案 目录 反馈和检测 ...............................2隔离 ...........................................5过程解决方案 ..........................6通信和系统集成 ......................7电源和支持功能 .......................8演示与参考设计 .....................11资源与工具............................. 12 https://www.wendangku.net/doc/c010092904.html,/zh/motorcontrol

利用ADI 公司的RDC 优化速度/分辨率与负载位置的关系 许多电机控制系统以可变的轴转速工作。为提供最精确的位置信息,要求系统具有灵活可变的分辨率。AD2S1210正是这样一种能够即时改变分辨率的旋变数字转换器。这款转换器是一款集成解决方案,包括一个具有可编程频率的激励振荡器、可编程阈值电平、非常宽的模拟输入范围以及指示故障确切性质的信息。AD2S1210提供以更少的外部元件与旋转变压器接口所需的高级功能。AD2S1210 特性 ? 可变分辨率:10位至16位? 精度:2.5弧分 (16位分辨率) ? 最大跟踪速率:3125 rps (10位分辨率)? 可编程故障检测阈值? 可编程激励频率 利用ADI 公司的同步采样ADC 实现精密位置检测 电机控制伺服驱动器应用广泛,精密机器人、CNC(计算机数控)加工和工厂自动化就是其中的几例。这些系统集成轴位置反馈功能,以便精确检测位置,确保系统操作准确。此反馈功能由具备不同输出特性的各种编码器提供。 AD7262/AD7264集成有PGA 和双通道同步采样差分输入ADC ,能够与各种编码器直接接口,不同的设计都可以采用同一种器件,从而减少不同位置反馈平台的硬件变更,并提高软件重用率,最终缩短开发周期。 AD7262/AD7264内置4个比较器以与极点传感器接口,同时具有内部ADC 失调、系统失调和增益校准功能,以确保ADC 最终结果的准确性。这种单芯片解决方案在一个封装中集成了与位置传感器成功接口所需的全部功能,物料(BOM)成本和PCB 板复杂性得以降低,而性能则达到同类最高水平。 特性 ? 14位、1 MSPS 、双通道同步采样ADC ? 可编程增益放大器,具有14个不同的增益级? 高模拟输入阻抗,无需ADC 驱动电路 ? 4个片内比较器 反馈和检测 2 | 电机和功率控制解决方案

功率控制

功率控制培训讲义 一、背景 控制无线路径上的发射功率的目的是在不需要最大发射功率,就能达到较好的传输质量的情况下,降低发射功率。这样做,既能保持传输质量高于给定门限,又能降低移动台和基站的平均广播功率,减少对其它通信的干扰。 功率控制分为上行功率控制和下行功率控制,上下行控制独立进行。上行功率控制移动台(MS),下行功率控制基站(BTS)。同一方向的连续两次控制之间的时间间隔由O&M设定。 功率控制包括移动台和基站的功率控制。 移动台功率控制的目的是调整MS的输出功率,使BTS获得稳定接收信号强度,以限制同信道用户的干扰,减少BTS多路耦合器的饱和度,降低移动台功耗;基站功率控制目的是调整BTS输出功率,使MS获得稳定接收信号强度,以限制同信道干扰,降低基站功耗。 基站动态功率控制目的是调整BTS输出功率,使MS获得稳定接收信号强度,以限制同信道干扰,降低基站功耗。基站动态功率控制仅使用稳态功率控制算法。 实现功率控制有两种算法——0508功率控制算法和华为动态功率控制算法(简称0508算法和动态功控算法)。 二、功率控制过程 1.移动台功率控制 移动台功率控制分为两个调整阶段——Stationary稳态调整和Initial初始调整。稳态调整是功率控制算法执行的常规方式,初始调整使用于呼叫接续最开始的时刻。当一个接续发生,MS以所在小区的名义功率输出,(名义功率即在收到功率调整命令之前,MS发射功率为所在小区BCCH信道上广播的系统消息中MS 最大发射功率MS_TXPWR_MAX_CCH。而如果MS不支持这一功率级别,则采用与之最接近的可支持的功率级别,如在建立指示消息中上报的MS类标Classmark所支持的最大输出功率级别)。但因为BTS可同时支持多个呼叫,必须在一个新的接续中尽快降低接收信号强度,否则该BTS支持的别的呼叫的质量会由于BTS 多路耦合器饱和而恶化,并且另外小区的呼叫质量也会由于强干扰而受到影响。

开关电源保护电路

开关电源保护电路 为使开关电源在恶劣环境及突发故障状况下安全可靠,提出了几种实用的保护电路,并对电路的工作原理进行了详尽分析。 关键词:开关电源;保护电路;可靠性 1 引言 评价开关电源的质量指标应该是以安全性、可靠性为第一原则。在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。 2 开关电源常用的几种保护电路 2.1 防浪涌软启动电路 开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。 图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。当电容器C充电到约80%额定电压时,逆变器正常工作。经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。 图1 采用晶闸管和限流电阻组成的软启动电路

图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源V cc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。限流的延迟时间取决于时间常数(R2C2),通常选取为0.3~0.5s。为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。 图2 采用继电器K1和限流电阻构成的软启动电路 图3 替代RC的延迟电路 2.2 过压、欠压及过热保护电路 进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。 温度是影响电源设备可靠性的最重要因素。根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。

20170605-开关电源中的功率开关基础知识(四)

开关电源中的功率开关基础知识(四) 普高(杭州)科技开发有限公司张兴柱博士 电子开关的其它分类方式: 1:按制作材料分类 组成电子开关的材料已经经历了许多代,早期是硅(Si)、锗(Ge)、和镓(Ga),然后是砷化镓(GaAs),现在是碳化硅(SiC),以后可能会是氮化镓(GaN),再以后可能将是钻石(Diamond)。随着组成电子开关的材料的不断升级,其各种特性也在大幅度地提高,如目前的SiC器件,它的开关速度、通态压降等均比之前的其它器件要好许多 2:按是否可控分类 电子开关按控制方式可以分成三类:一类是完全不控型器件,如二极管,它没有控制极,二极管的通断由加在其两端的电压控制,当二极管P-N结加上正向电压时,二极管就导通,当二极管P-N结加上反向电压时,二极管就截止。 第二类是半控型器件,如普通可控硅,它有一个控制极(门极),在普通可控硅的门栅之间加上一个合适的控制电压,如此时的阳极和栅极之间为正电压,那么可控硅就导通,导通后其控制电压就会失去控制作用,也即在导通期内去掉控制电压信号,可控硅仍然导通,只有当可控硅的电流为零,且电压反向后,其才能被关断。另外当阳极和栅极之间为负电压时,普通可控硅是无法控制开通的,也即此时即使在普通可控硅的门栅之间加上一个合适的控制电压,它也不会导通。 第三类是全控型器件,根据控制信号是电压还是电流,又将其分成两个子类。第一个子类是电压型控制器件,如MOSFET、IGBT等;第二个子类是电流型控制器件,如GTR和GTO。例如N沟道MOSFET这种电压型全控器件,只要在它的门源之间加上一个合适的正电压信号后,它就会导通,在门源之间去掉这个控制电压后,它就会关断。又例如NPN GTR这种电流型全控器件,只要在的它的基极通上一个合适的基极电流后,它就会导通,在它的基极将这个基流抽走并给一个小的反向基流后,它就会关断。这些全控型器件作为电子开关时,可以非常方便地控制其通断,在开关处理同样的功率时,GTR所需的控制功率最大,GTO 所需的控制功率其次,MOSFET和IGBT所需的控制功率最小。 3:按工作频率分类 不同的电子开关,其开关工作方式下的最高频率是不同的。按可工作的最高频率也可以将电子开关分成三类:第一类是低频功率器件,如可控硅、普通二极管等,它们的工作频率一般在1KHz以内。第二类是中频功率器件,如GTR和IGBT等,它们的工作频率一般在(20~30)KHz以内。第三类是高频功率器件,如MOSFET、快恢复二极管、萧特基二极管等,它们的工作频率一般在100KHz~1MHz之间。 4:按额定可处理的最大功率容量分类 不同的电子开关,其能处理的最大功率容量,即导通时允许流过的最大电流和截止时允许承受的最大电压,是不同的。从这个角度,也可以将功率电子器件分成三类:第一类是小功率电子器件,如MOSFET,萧特基二极管等。第二类是中功率电子器件,如IGBT、GTR等。第三类是大功率电子器件,如GTO、普通二极管等。 5:按导电粒子的性质分类

开关电源保护电路实例

开关电源保护电路实例 摘要:为使开关电源在恶劣环境及突发故障状况下安全可靠,提出了几种实用的保护电路,并对电路的工作原理进行了详尽分析。 1 引言 评价开关电源的质量指标应该是以安全性、可靠性为第一原则。在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。 2 开关电源常用的几种保护电路 2.1 防浪涌软启动电路 开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。 图1 采用晶闸管V和限流电阻R1组成的防浪涌电流电路 图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。当电容器C充电到约80%额定电压时,逆变器正常工作。经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。

图2 采用继电器K1和限流电阻R1构成的防浪涌电流电路 图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。限流的延迟时间取决于时间常数(R2C2),通常选取为0.3~0.5s。为了提高延迟时间的准确性及防止继电器动作抖动。 2.2 过压、欠压及过热保护电路 进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。温度是影响电源设备可靠性的最重要因素。根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。

功率控制

功率控制

功率控制 前向快速功率控制 -速率可达到800b/s CDMA2000 1x系统反向内环功率控制速率为(800 ) CDMA2000 1x系统反向外环功率控制速率为(50 ) DO反向功率控制信道数据速率为600bps 对于外环功率控制主要检验各项业务得到需要的服务质量(如PER),对于内环功率控制主要检验其按照外环指定的Eb/N0目标值调整AT发射功率的能力。 CDMA EV-DO 系统只有反向链路采用功率控制机制,反向功率控制的目标是与反向速率控制配合实现反向吞吐量与反向业务容量的均衡,保证反向链路PER 的稳定。反向功率控制与1X 系统类似,包括:开环功率控制(Open Loop Power Control)、闭环功率控制(Close LoopPower Control)及外

环功率控制(Outer Loop Power Control) [attach]221757[/attach] 开环功率控制如图2 所示,AT 通过Rx power estimation 模块测量前向链路的接收功率来确定Pilot Channel Gain,其他信道根据Pilot Chnanel Gain 来调整发射功率; Pilot Channel Gain 的计算公式如下: X0 = –Mean Received Power (dBm) + OpenLoopAdjust + ProbeInitialAdjust OpenLoopAdjust + ProbeInitialAdjust 的可调整范围从-81 dB到-66dB,与1X系统中的Offset power有所不同。不同厂家的OpenLoopAdjust默认值有所不同。 其他反向信道的发射功率均参照Pilot Channel Gain来确定 Cdma功率控制技术-FREE Cdma功率控制技术

欧盟开关电源的待机功耗的标准要求:0新

EMI 滤波器原理与设计方法详解 输入端差模电感的选择: 1. 差模choke置于L线或N线上,同时与XCAP共同作用F=1 / (2*π* L*C) 2.波器振荡频率要低于电源供给器的工作频率,一般要低于10kHz。 3. L = N2AL(nH/N2)nH 4. N = [L(nH)/AL(nH/N2)]1/2匝 5. AL = L(nH)/ N2nH/N2 6. W =(NI)2AL / 2000μJ 输入端共模电感的选择: 共模电感为EMI防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI特性及温升,以同样尺寸的Common Choke而言,线圈数愈多(相对的线径愈细),EMI防制效果愈好,但温升可能较高。传导干扰频率范围为0.15~30MHz,电场辐射干扰频率范围为30~100MHz。开关电源所产生的干扰以共模干扰为主。产生辐射干扰的主要元器件除了开关管和高频整流二极管还有脉冲变压器及滤波电感等。注意:1. 避免电流过大而造成饱和。2.Choke温度系数要小,对高频阻抗要大。3.感应电感要大,分布电容要小。4.直流电阻要小。 B = L * I / (N * A) (B shall be less than 0.3) L = Choke inductance. I = Maximum current through choke. N = Number of turns on choke. A = Effective area of choke. (for drum core, can approximate with cross section area of center pole.) 假设在50KHZ有24DB的衰减则,共模截止频率Fc = Fs*10Att/4 0 = 50*10-24/40=12.6KHZ 电感值L= (RL*0.707)/(∏*Fc) = (500.707)/(3.14*12.6) = 893uH 使用磁芯和磁棒作滤波电感时应注意自身的阻抗,对于共模电感不能使用低阻抗的磁芯和磁棒,否则会造成炸机现象。作共模电感用的磁芯应用DC500V测量其绝缘阻抗应大于己于100M。 在电源设备中采用噪声滤波器的作用如下: (1)防止外来电磁噪声干扰电源设备本身控制电路的工作; (2)防止外来电磁噪声干扰电源的负载的工作; (3)抑制电源设备本身产生的EMI; (4)抑制由其它设备产生而经过电源传播的EMI。 在国际上的电磁噪声限制规则,如美国有FCC,德国有FTZ,VDE等标准。 在电源设备输入引线上存在二种EMI噪声:共模噪声和差模噪声,把在交流输入引线与地之间存在的EMI噪声叫作其共模噪声,它可看作为在交流输入线上传输的电位相等、相位相同的干扰信号。而把交流输入引线之间存在的EMI噪声叫作差模噪声,它可看作为在交流输入线传输的相位差180°的干扰信号。共模噪声是从交流输入线流入大地的干扰电流,差模噪声是在交流输入线之间流动的干

开关电源中几种过流保护方式的电路比较分析

找电源工作上----------------------------电源英才网 开关电源中几种过流保护方式的电路比较分析 引言 电源作为一切电子产品的供电设备,除了性能要满足供电产品的要求外,其自身的保护措施也非常重要,如过压、过流、过热保护等。一旦电子产品出现故障时,如电子产品输入侧短路或输出侧开路时,则电源必须关闭其输出电压,才能保护功率MOSFET和输出侧设备等不被烧毁,否则可能引起电子产品的进一步损坏,甚至引起操作人员的触电及火灾等现象,因此,开关电源的过流保护功能一定要完善。 1开关电源中常用的过流保护方式 过电流保护有多种形式,如图1所示,可分为额定电流下垂型,即フ字型;恒流型;恒功率型,多数为电流下垂型。过电流的设定值通常为额定电流的110%~130%。一般为自动恢复型。 图1中①表示电流下垂型,②表示恒流型,③表示恒功率型。 图1过电流保护特性 1.1用于变压器初级直接驱动电路中的限流电路 在变压器初级直接驱动的电路(如单端正激式变换器或反激式变换器)的设计中,实现限流是比较容易的。图2是在这样的电路中实现限流的两种方法。 图2电路可用于单端正激式变换器和反激式变换器。图2(a)与图2(b)中在MOSFET的源极均串入一个限流电阻Rsc,在图2(a)中,Rsc提供一个电压降驱动晶体管S2导通,在图2(b)中跨接在Rsc上的限流电压比较器,当产生过流时,可以把驱动电流脉冲短路,起到保护作用。 图2(a)与图2(b)相比,图2(b)保护电路反应速度更快及准确。首先,它把比较放大器的限流驱动的门槛电压预置在一个比晶体管的门槛电压Vbe更精确的范围内;第二,它把所预置的门槛电压取得足够小,其典型值只有100mV~200mV,因此,可以把限流取样

卫星通信系统中的功率控制技术

卫星通信系统中的功率控制技术 王 喜* 朱小流** 廖晓谈*** 摘 要 本文讨论了卫星通信系统中的功率控制技术,在保证用户通信质量的前提下,最低限度的降低发射功率,减少系统干扰,增加系统余量。本文给出了功率控制的 具体方案。 关键词:卫星通信 功率控制 Po w er Contro l T echnology i n Satellite Co mm unication Syste m W ang X i Zhu X iao li u Liao X iaotan A bstract Th is paper presents discussion on t h e po w er contro l techno logy to obta i n ed the lo w estm u n i m um trans m it po w er reqired for the pur pose of reduced syste m i n terferencce and in creased syste m a llo w rance.The paper g i v es the deta ils of po w er contro l sche m e. K ey w ords:satellite co mm unication po w er contr o l 卫星通信系统由卫星和地球站两部分组成。卫星在空中起中继站的作用,即把地球站发上来的电磁波放大后再返送回另一地球站。地球站则是卫星系统与地面公众网的接口,地面用户通过地球站出入卫星系统形成链路。卫星通信具有通信范围大、不易受陆地灾害影响、建设速度快、易于实现广播和多址通信和电路和话务量可灵活调整等优点。 随着卫星业务向宽带化发展,越来越多的卫星将工作在Ka频段,该频段雨衰严重,功率控制也是抗雨衰的重要策略之一,因此,研究卫星移动通信中的功率有效控制技术具有十分重要的意义。 * 作者系南京熊猫汉达科技有限公司系统部工程师 ** 作者系南京熊猫汉达科技有限公司系统部工程师 *** 作者系南京熊猫汉达科技有限公司系统部助理工程师

开关电源过流保护方式比较分析

开关电源过流保护方式比较分析 引言 电源作为一切电子产品的供电设备,除了性能要满足供电产品的要求外,其自身的保护措施也非常重要,如过压、过流、过热保护等。一旦电子产品出现故障时,如电子产品输入侧短路或输出侧开路时,则电源必须关闭其输出电压,才能保护功率MOSFET和输出侧设备等不被烧毁,否则可能引起电子产品的进一步损坏,甚至引起操作人员的触电及火灾等现象,因此,开关电源的过流保护功能一定要完善。 1 开关电源中常用的过流保护方式 过电流保护有多种形式,如图1所示,可分为额定电流下垂型,即フ字型;恒流型;恒功率型,多数为电流下垂型。过电流的设定值通常为额定电流的110%~130%。一般为自动恢复型。 图1中①表示电流下垂型,②表示恒流型,③表示恒功率型。 图1过电流保护特性 1.1 用于变压器初级直接驱动电路中的限流电路 在变压器初级直接驱动的电路(如单端正激式变换器或反激式变换器)的设计中,实现限流是比较容易的。图2是在这样的电路中实现限流的两种方法。 图2电路可用于单端正激式变换器和反激式变换器。图2(a)与图2(b)中在MOSFET 的源极均串入一个限流电阻Rsc,在图2(a)中,Rsc提供一个电压降驱动晶体管S2导通,在图2(b)中跨接在Rsc上的限流电压比较器,当产生过流时,可以把驱动电流脉冲短路,起到保护作用。 图2(a)与图2(b)相比,图2(b)保护电路反应速度更快及准确。首先,它把比较放大器的限流驱动的门槛电压预置在一个比晶体管的门槛电压Vbe更精确的范围内;第二,它把所预置的门槛电压取得足够小,其典型值只有100mV~200mV,因此,可以把限流取样电阻Rsc的值取得较小,这样就减小了功耗,提高了电源的效率。

TD_LTE系统功率控制技术的研究

摘要:分析了TD-SCDMA 的长期演进系统(TD-LTE )中的无线资源管理(R R M )技术,介绍了TD-LTE 系统的功率控制(Power Control )原理以及流程设计,提出了一种基于目标SINR 的室外开环上行功率控制算法,研究了在功率控制中目标SINR 对系统吞吐量的影响,仿真结果表明随着目标SINR 的增长,小区边缘用户SINR 迅速增大到达一定的峰值之后缓慢下降并趋于稳定, 由此产生增益。关键词:R R M;TD-LTE;FDD-LTE;功率控制 陈俊彭木根王文博(北京邮电大学信息与通信工程学院北京100876) TD-LTE 系统功率控制技术的研究 为了使移动通信与宽带无线接入BWA (Broad -band Wireless Access )技术相互融合,并同时应对WiM AX 和4G 的挑战,3GPP 启动了LTE 项目。LTE 采用 正交频分复用(OFDM )、多输入多输出(MIMO )等先进的无线传输技术、扁平网络结构和全IP 系统架构,支持最大20M Hz 的系统带宽、超过200M bit/s 的峰值速率和更短的传输延时,频谱效率达到3GPP R6标准的3~5倍。 TD-LTE 作为TD-SCDMA 的演进技术,目前已成为3GPP 唯一的基于TDD 技术的LTE 标准。中国全面启动的TD-LTE 产业与国际LTE 产业基本同步,并已被国际广泛接受,将为中国在引领移动通信产业的发展带来重要的机遇。TD-LTE 一方面继承了TD-SCDM A 智能天线、特殊时隙等的核心专利;另一方面, TD-LTE 可以提供更高的带宽,通过更灵活的频谱配置方案(1.4~20MHz )来提升网络效率和单个基站效率,并且采用公共无线资源管理控制基站来简化系统结构,减少网络节点,从而更加有效地为用户提供服务[1]。 在所有蜂窝系统中,无线资源管理(RRM )的功能对于系统的性能非常重要,它决定了容量、覆盖和 服务质量(QoS )及无线接口资源的使用效率。RRM 提供空中接口的无线资源管理的功能,目的是能够提 供一些机制保证空中接口无线资源的有效利用,实现最优的资源使用效率、 更高的数据速率、更低的时延,从而满足系统所定义的无线资源相关的需求[2]。 1LTE 系统架构 LTE 系统在设计之初便在基于分组交换的提高 数据速率、降低传输时延、提高系统性能、降低系统复杂度等系统需求方面进行了严格的定义,现有3G 系统架构难以满足LTE 的系统需求,为全面满足LTE 系统需求,系统架构也重新进行了设计。 从整体上说,TD-LTE 系统和FDD-LTE 系统采用相同的系统架构,与3GPP 系统类似,分为核心网和接入网两部分; TD-LTE 和FDD-LTE 之间的差别主要表现在帧结构(TDD 帧包含特殊时隙DwPTS 和UpPTS ) 和多天线配置上(TDD 沿用智能天线技术, 支持8天线的波束赋形技术,FDD 最多支持4天线)[4] 。 如图1所示, LTE 系统的整体架构包括演进后的核心网EPC (Evolved Packet Core network ),即图中的 M M E/S-GW 和演进后的接入网E-UTRAN 。LTE 接入网仅由演进后的节点B 即eNB (evolved Node B )组成,提供到UE 的E-UTRA 控制面与用户面的协议终止点。eNB 之间通过X2接口进行连接,并且在需要通信 的两个不同eNB 之间总是会存在X2接口。 LTE 接入网收稿日期:2010-08-02 28

相关文档
相关文档 最新文档