文档库 最新最全的文档下载
当前位置:文档库 › 变电所运行方式和主接线方式

变电所运行方式和主接线方式

变电所运行方式和主接线方式
变电所运行方式和主接线方式

变电所运行方式和主接线方式

一、变电所的运行方式

1、运行方式的有关规定

⑴变配电所的运行值班人员就熟悉本供电系统电气设备调度范围的划分,凡属供电处调度部门所调度的设备,根据调度协议和管理制度的规定,一切操作均应得到调度员的操作命令,严禁私自操作电气设备,以防止发生事故。

⑵用电单位严禁两路电源并列停闸操作,以防止发生事故,造成系统停电。

⑶变配电所改变运行方式的倒闸操作,必须填写执行工作票制度,不使用倒闸操作票进行倒闸操作是违章作业行为。

2、变电所的运行方式有以下二种状态(图4-1):

⑴分列运行方式:1#电源供电带1#主变压器带Ⅰ段10kV(6kV) 母线,2#电源供电带2#主变压器带Ⅱ段10kV(6kV) 母线。此运行方式为现在各矿井必须采用的运行方式。本运行方式是高压一回路发生停电时所供电的双回路负荷不会造成全部停电事故,但变压器的负荷率较低。

⑵并列运行方式:1#电源供电带1#主变压器带Ⅰ、Ⅱ段10kV(6kV) 母线,1#电源热备用状态;2#电源供电带2#主变压器带Ⅰ、Ⅱ段10kV(6kV) 母线,1#电源热备用状态。此运行方式为硬下疳症状现在各矿井已不采用的运行方式。本运行方式为运行高压回路发生停电事故时,全部负荷均停电,倒到备用电源时需要有一定时间才能完成,容易造成全矿井停电。

二、变电所主接线方式

⑴外桥接线

它由主变压器一次侧两断路器和外桥上的联络断路器组成,进线由隔离开关受电。这种接线在外部系统和受电线路保护对变电所受电侧无要求时和变电所内主变压器要求经常切换时使用(图4-2)。

优点:高压断路器数量最少;

缺点:变压器的投入和切除较复杂,需动作两台断路器,影响一回线路的暂时停运;桥联络断路器检修时,两个回路需解烈运行;变压器侧的断路器检修时,变压器需较长时间停运。

使用范围:适用于较小容量的变电所,并且变压器的切换较频繁或线路较短、故障率较少的情况。此外,线路有穿越功率时,也宜采用外桥接线。

⑵内桥接线:

它有两台受电线路的断路器和内桥上的母联断路器组成,主变压器与一次母线由隔离开关连接。受电线路较长,有条件装设平行线横联差动电力方向保护以提高供电质量与可靠性或是环形系统中母线需要通过功率的变电所,经常采用这种接线方式(图4-3)。

优点:高压断路器数量最少;

缺点:变压器的切除和投入较复杂,需两台断路器动作,影响一回线路的暂时停运;桥联络断路器检修时,两个回路需解烈运行;出线断路器检修时,线路需较长时间停运。

使用范围:适用于较小容量的变电所,并且变压器不经常切换或线路较长、故障率较高的情况。

⑶全桥接线

主变压器一次侧由隔离开关与母线连接,环形系统中的变电所在操作时常被迫用隔离开关切合空载变压器。主变压器容量:35kV在7500kVA及以上;60kV在10000kVA及以上;110kV在31500kVA及以上时,超过了隔离开关切合空载变压器的能力,此时必须改由五个断路器组成的全桥接线方式(图4-4)。

电气主接线基本形式

电气主接线基本形式 第一节 单母线接线 一 单母线接线 1.接线特点 单母线接线如图10-1所示 单母线接线的特点是每一回路均经过一台断路器QF 和隔离开关QS 接于一组母线上。断路器用于在正常或故障情况下接通与断开电路。断路器两侧装有隔离开关,用于停电检修断路器时作为明显断开点以隔离电压,靠近母线侧的隔离开关称母线侧隔离开关(如11QS ),靠近引出线侧的称为线路侧隔离开关(如13QS )。在主接线设备编号中隔离开关编号前几位与该支路断路器编号相同,线路侧隔离开关编号尾数为3,母线侧隔离开关编号尾数为1(双母线时是1和2)。在电源回路中,若断路器断开之后,电源不可能向外送电能时,断路器与电源之间可以不装隔离开关,如发电机出口。若线路对侧无电源,则线路侧可不装设隔离开关。 图10-1 单母线接线 L1 1QF 4QF 13QS 11QS 2QF

二、单母线分段接线 1.接线特点 单母线分段接线,如图10-2所示。 正常运行时,单母线分段接线有两种运行方式: (1)分段断路器闭合运行。正常运行时分段断路器0QF 闭合,两个电源分别接在两段母线上;两段母线上的负荷应均匀分配,以使两段母线上的电压均衡。在运行中,当任一段母线发生故障时,继电保护装置动作跳开分段断路器和接至该母线段上的电源断路器,另一段则继续供电。有一个电源故障时,仍可以使两段母线都有电,可靠性比较好。但是线路故障时短路电流较大。 (2)分段断路器0QF 断开运行。正常运行时分段断路器0QF 断开,两段母线上的电压可不相同。每个电源只向接至本段母线上的引出线供电。当任一电源出现故障,接该电源的母线停电,导致部分用户停电,为了解决这个问题,可以在0QF 处装设备自投装置,或者重要用户可以从两段母线引接采用双回路供电。分段断路器断开运行的优点是可以限制短路电流。 图10-2 单母线分段接线 L1 1QF 0QF 01QS I 段 Ⅱ段 13QS 11QS 2QF 02QS

110kva变电站电气主接线图分析

把变电站内的电气设备都要算上啊 一次设备:主变(中性点隔离开关、间隙保护、消弧线圈成套设备)、断路器(或开关柜、GIS等)、电压互感器(含保险)、电流互感器、避雷器、隔离开关、母线、母排、电缆、电容器组(电容、电抗、放电线圈等等),站用变压器(或接地变),有的变电站还有高频保护装置 二次设备:综合自动化、. 、逆变0000.、小电流接地选线、站用电、直流(蓄电池)、逆变、远动通讯等等 其他:支持瓷瓶、悬垂、导线、接地排、穿墙套管等等,消防装置、SF6在线监测装置等等 好像有点说多了,也可能有少点的,存在差异吧 35KV高压开关柜上一般都设有哪些保护各作用是什么? 过电流保护:1.速断电流保护:用于保护本开关以后的母排、电缆的短路故障。 2.定时限电流保护:用于下一电压级别的短路保护。 3.反时限电流保护:作用与2相同,但灵敏度比2高。 4.电压闭锁过电流保护:防止越级跳闸和误跳闸,提高供电可靠性。 5.纵联差动电流保护:专用于变压器内部故障保护。 6.长延时过负荷保护:用于保护专用设备或者电网的过负荷运行,首选发信,其次跳闸。 零序电流保护:1.零序电流速断保护:保护线路和线路后侧设备对地短路、严重漏电故障。 2.定时限零序电流保护:保护线路和线路后侧设备的轻微对地短路和小电流漏电,监测绝缘状况。可以选择作用于跳闸或发信。 过电压保护:1.雷电过电压保护。 2.操作过电压保护。1、2两种过电压通常都是用避雷器来保护,可防止线路或设备绝缘击穿。

3.设备异常过电压保护:通过电压继电器和综保定值整定来实现跳闸或发信,用于保护设备在异常过压下运行造成的发热损坏。 低电压保护:瞬时低电压保护只发信不跳闸,用于避免瞬间短路或大负荷启动造成的正常设备误跳闸。俗称躲晃电。 非电量保护:1.重瓦斯保护:用于变压器内部强短路或拉弧放电的严重故障保护。选择跳闸。 2.轻瓦斯保护:用于变压器轻微故障的检测,选择发信报警。 3.温度保护:用于检测变压器顶层油温监测,轻超温发信报警,重超温跳闸。 以上都是针对一次侧设计的保护。 二次侧的保护:1.直流失压保护,用于变电所直流设备故障时防止设备在保护失灵状况下运行。一般设备通常选择发信报警。重要设备选择跳闸。 2.临柜直流消失保护,用于监测相邻高压柜的直流电压状态,选择发信报警。 随着技术的发展,继电保护的内容越来越多,供人们在不同情况下选用。 目前使用的微机型综合保护器内都设计了各种保护功能,可以通过控制字的设定很方便地选择所需要的保护功能组合。

电气主接线的基本形式及优缺点

第四章电气主接线 第2节单母线接线 主接线的基本形式,就是主要电气设备常用的几种连接方式。概括的讲可分为两大类:有汇流母线的接线形式;无汇流母线的接线形式。 变电所电气主接线的基本环节是电源(变压器)、母线和出线(馈线)。各个变电所的出线回路数和电源数不同,且每路馈线所传输的功率也不一样。在进出线数较多时(一般超过4回),为便于电能的汇集和分配,采用母线作为中间环节,可使接线简单清晰,运行方便,有利于安装和扩建。但有母线后,配电装置占地面积较大,使用断路器等设备增多。无汇流母线的接线使用开关电器较少,占地面积小,但只适于进出线回路少,不再扩建和发展的变电所。有汇流母线的接线形式主要有:单母线接线和双母线接线。 一、单母线接线 单母线接线的特点是整个配电装置只有一组母线,每个电源线和引出线都经过开关电器接到同一组母线上。供电电源是变压器或高压进线回路,母线即可以保证电源并列工作,又能使任一条出线路都可以从电源1或2获得电能。每条回路中都装有断路器和隔离开关,靠近母线侧的隔离开关称作母线隔离开关,靠近线路侧的称为线路隔离开关(在实际变电所中,通常把靠近电源侧的隔离开关称为甲刀闸,把靠近负荷侧的隔离开关称为乙刀闸。 断路器具有开合电路的专用灭弧装置,可以开断或闭合负荷电流和开断短路电流,用来作为接通或切断电路的控制电器。 隔离开关没有灭弧装置,其开合电流能力极低,只能用作设备停运后退出工作时断开电路,保证与带电部分隔离,起着隔离电压的作用。同一回路中在断路器可能出现电源的一侧或两侧均应配置隔离开关,以便检修断路器时隔离电源。 同一回路中串接的隔离开关和断路器,在运行操作时,必须严格遵守下列操作顺序:如对馈线L1送电时,须先合上隔离开关QS1和QS2,再投入断路器QF2;如欲停止对其供电,须先断开QF2,然后再断开QS3和QS2。为了防止误操作,除严格按照操作规程实行操作票制度外,还应在隔离开关和相应的断路器之间,加装电磁闭锁、机械闭锁。接地开关(又称接地刀闸)QS4是在检修电路和设备时合上,取代安全接地线的作用。当电压在110kV及以上时,断路器两侧的隔离开关和线路隔离开关的线路侧均应配置接地开关。对35kV及以上的母线,在每段母线上亦应设置1~2组接地开关或接地器,以保证电器和母线检修时的安全。

电气主接线方式优缺点

电气主接线方式优缺点 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

电气主接线方式优缺点 1、单母线接线 优点:接线简单、清晰、操作方便、扩建容易; 缺点:运行方式不灵活、供电可靠性差。 2、单母线分段接线 单母线分段接线就是将一段母线用断路器分为两段或多段 优点:母线故障或检修时缩小停电范围; 缺点:当一段母线或母线隔离开关故障或检修时,必须断开该分段上的所有电源或出现,这样就减少了系统的发电量,并使该分段单回路供电的用户停电。 3、双母线接线 双母线接线就是将工作线、电源线和出线通过一台断路器和两组隔离开关连接到两组(一次/二次)母线上,且两组母线都是工作线,而每一回路都可通过母线联络断路器并列运行。 优点:与单母线相比,它的优点是供电可靠性大,可以轮流检修母线而不使供电中断。 缺点:每一回路都增加了一组隔离开关,使配电装置的构架及占地面积、投资费用都相应增加;同时由于配电装置的复杂,在改变运行方式倒闸操作时容易发生误操作,且不宜实现自动化;尤其当母线故障时,须短时切除较多的电源和线路,这对特别重要的大型发电厂和变电站是不允许的。4、双母线分段接线

优点:可缩小母线故障停电范围、提高供电可靠性; 缺点:保护及二次接线复杂。 5、双母线带旁路接线 双母线带旁路接线就是在双母线接线的基础上,增设旁路母线。 优点:具有双母线接线的优点,当线路(主变压器)断路器检修时,仍可继续供电。 缺点:旁路的倒换操作比较复杂,增加了误操作的机会,也使保护及自动化系统复杂化,投资费用较大。 6、双母线分段带旁路接线? 双母线分段带旁路接线就是在双母线带旁路接线的基础上,在母线上增设分段断路器。 优点:具有双母线带旁路的优点。 缺点:投资费用较大,占用设备间隔较多。 一般采用此种接线的原则为: (1)当设备连接的进出线总数为12~16回时,在一组母线上设置 分段断路器; (2)当设备连接的进出线总数为17回及以上时,在两组母线上 设置分段断器。 7、3/2接线 3/2断路器接线就是在每3个断路器中间送出2回回路,一般只用于500kV(或重要220kV)电网的母线主接线。 优点:

110kV变电站电气主接线及运行方式

110kV变电站电气主接线及运行方式 变电站电气主接线是指高压电气设备通过连线组成的接受或者分配电能的电路。其形式与电力系统整体及变电所的运行可靠性、灵活性和经济性密切相关,并且对电气设备选择、配电装置的布置、继电保护和控制方式的拟定有较大影响。所以,主接线设计是一个综合性问题,应根据电力系统发展要求,着重分析变电所在系统中所处的地位、性质、规模及电气设备特点等,做出符合实际需要的经济合理的电气主接线。 一变电所主接线基本要求 1.1 保证必要的供电可靠性和电能质量。 保证供电可靠性和电能质量是对主接线设计的最基本要求,当系统发生故障时,要求停电范围小,恢复供电快,电压、频率和供电连续可靠是表征电能质量的基本指标,主接线应在各种运行方式下都能满足这方面的要求。 1. 2 具有一定的灵活性和方便性。 主接线应能适应各种运行状态,灵活地进行运行方式切换,能适应一定时期内没有预计到的负荷水平变化,在改变运行方式时操作方便,便于变电所的扩建。 1. 3 具有经济性。 在确保供电可靠、满足电能质量的前提下,应尽量节省建设投资和运行费用,减少用地面积。 1. 4 简化主接线。 配网自动化、变电所无人化是现代电网发展的必然趋势,简化主接线为这一技术的全面实施创造了更为有利的条件。 1. 5 设计标准化。 同类型变电所采用相同的主接线形式,可使主接线规范化、标准化,有利于系统运行和设备检修。 1. 6 具有发展和扩建的可能性。 变电站电气主接线应根据发展的需要具有一定的扩展性。 二变电所主接线基本形式的变化 随着电力系统的发展,调度自动化水平的提高及新设备新技术的广泛应用,变电所电气主接线形式亦有了很大变化。目前常用的主接线形式有:单母线、单母线带旁路母线、单母线分段、单母线分段带旁路、双母线、双母线分段带旁路、一个半断路器接线、桥形接线及线路变压器组接线等。从形式上看,主接线的发展过程是由简单到复杂,再由复杂到简单的过程。在当今的技术环境中, 随着新技术、高质量电气产品广泛应用,在某些条件下采用简单主接线方式比复杂主接线方式更可靠、更安全,变电所主接线日趋简化。因此,变电所电气主接线形式应根据可靠性、灵活性、经济性及技术环境统一性来决定。 三 110kV变电站的主接线选择 在电力系统和变电所设计中,根据变电所在系统中的地位和作用,可把电网中110kV变电所分为终端变电所和中间变电所两大类。下面就这两类变电所高压侧电气主接线模式作一分析。 3. 1 110kV终端变电所主接线模式分析

第一章变电所电气主接线的设计

前言 电力工业为现代化生产提供主要动力。电力科学的发展和广泛应用,对我国工农业的迅速发展及人民生活水平的提高起到了巨大的作用和深远的影响。 通过对理论的学习理解以及实际的工作,我对变电所的原理和设备有了初步的解了。为了增加自己的动手能力,为以后的工作打下良好的基础,我选择了110kV/35kV/10kV系统设计作为自己的毕业课题。 随着大规模农网发行事业的深入实施,一个优质、安全、可靠、宽松的供电环境已实步形成,我们国家的电力事业逐渐和国际接轨。为了适应我国电力事业的发展及将所学的知识运用到实际生产中去,我进行了变电所设计。 我国大部分电网薄弱,变电所数量少,供电半径长,线路损耗大,致使线路末端用户电压过低,影响人民正常的生活和生产,为了达到迅速改变我国农村电网目前的状况,满足人民生活用电兼顾工农业发展,本变电所属于中小型变电所,进线端电压为110kV变电所。 本文首先根据老师所给的设计任务书上所给的材料系统及线路所给的负荷参数,分析负荷发展趋势。从负荷增长方面阐明了建立变电所的必要性,然后通过对拟定建设的变电所的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济方面及可靠性方面来考虑,确定了110kv、35kv 、10kv以及变电所用电的主接线,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,同时也确定了变电所用变压器的容量吉型号,最后,根据最大持续工作电流及短路计算的计算结果,对高压熔断器,隔离开关,母线,绝缘子和穿墙套管,电压互感器进行了选择型号,从而完成110kv西海变电所的电气一次设备的设计。 由于知识的欠缺及设计资料的不足,设计中必然存在着很多问题,希望各位老师能够热情帮助,提出宝贵意见。

10kV配电工程电气主接线方式选择原则

10kV配电工程电气主接线方式选择原则 目录 1 10kV中压公用电缆网 (2) 1.1 一般原则 (2) 1.2 10kV典型接线模式 (2) 2 20kV中压公用电缆网 (4) 2.1 一般原则 (4) 2.2 20kV典型接线模式 (4) 3 中压架空网 (6) 3.1 一般原则 (6) 3.2 典型接线模式 (6) 4 混合型网架 (8) 5 10kV中心开关站 (8) 5.1 一般原则 (8) 5.2 中心开关站接线方式 (8) 6 室内配电站 (8) 7 10kV箱式变 (9) 8 低压配电网 (9) 8.1 典型接线模式 (9) 9 用户专用配电网结线方式 (10) 9.1一般原则 (10) 9.2 电气主接线的主要型式 (11) 9.3 电气主接线的确定 (11) 9.4 用户专用配电网结线方式 (11)

1 10kV中压公用电缆网 1.1 一般原则 1.1.1 10kV每回线路最终总装见容量不宜超过12000kVA。 1.1.2 环网中线路应在适当位置设置开关站或综合房,每个开关站或综合房每段母线实际负荷电流不宜超过100A。 1.1.3 10kV开关站电气接线采用单母线或单母线分段,每段母线接4~6面开关柜;综合房电气接线采用单母线,宜接4~6面开关柜。开关站应按终期规模一次性建成。 1.1.4 在原有线路新增开关站或综合房应以“π”接形式接入。 1.2 10kV典型接线模式 1.2.1电缆网“2-1”环网接线 (1)电缆网“2-1”环网接线如图1.2.1所示。 图1.2.1电缆网“2-1”环网接线 (2)电缆网“2-1”环网接线应满足: ?电缆网“2-1”环网接线应按平均每回线路不超过50%额定载流量运行。 ?构建电缆网“2-1”环网接线必须结合考虑区域电网规划,为今后将线路改造成“3-1”环网接线提供可能和便利。 1.2.2电缆网“3-1”环网接线 (1)电缆网“3-1”环网接线(3回线路为1组)、(4回线路为1组)分别如图1.2.2-1、图1.2.2-2所示。

课程设计kV变电站电气主接线及配电装置平面布置图的设计

电气工程及其自动化专业 电力系统方向课程设计任务书和指导书 题目: 110kV变电站电气主接线及配电装置平面布置图的设计 指导教师:江静 电气主接线及配电装置平面布置图课程设计任务书 题目: 110kV变电站电气主接线及配电装置 平面布置图的设计 一、课程设计的目的要求 使学生巩固和应用所学知识,初步掌握部分工程设计基本方法及基本技能。二、题目: 110kV变电所电气主接线设计 三、已知资料 为满足经济发展的需要,根据有关单位的决定新建1座降压变电气。原始资料:1变电所的建设规模 ⑴类型:降压变电气 ⑵最终容量和台数:2×31500kV A:年利用小时数:4000h。 2电力系统与本所连接情况 ⑴该变电所在电力系统中的地位和作用:一般性终端变电所; ⑵该变电所联入系统的电压等级为110kV,出线回路数2回,分别为18公里与电力 系统相连;25公里与装机容量为100MW的水电站相连。 ⑶电力系统出口短路容量:2800 MV A; 3、电力负荷水平 ⑴高压10 kV负荷24回出线,最大输送2MW,COSΦ=0.8,各回出线的最小负荷 按最大负荷的70%计算,负荷同时率取0.8,COSΦ=0.85,Tmax=4200小时/年; ⑵24回中含预留2回备用; ⑶所用电率1% 4、环境条件 该所位于某乡镇,有公路可达,海拔高度为86米,土壤电阻系数Р=2.5×104Ω.cm,土壤地下0.8米处温度20℃;该地区年最高温度40℃,年最低温度-10℃,最热月7月份其最高气温月平均34.0℃,最冷月1月份,其最低气温月平均值为1℃; 年雷暴日数为58.2天。

四、设计内容 1、设计主接线方案 ⑴确定主变台数、容量和型式 ⑵接线方案的技术、经济比较,确定最佳方案 ⑶确定所用变台数及其备用方式。 2、计算短路电流 3、选择电气设备 4、绘制主接线图 5、绘制屋内配电装置图 6、绘制屋外配电装置平断面图 五、设计成果要求 1、设计说明书1份 编写任务及原始资料 ⑴编写任务及原始资料 ⑵确定主变压器台数、容量和型式 ⑶确定主接线方案(列表比较) ⑷计算短路电流(包括计算条件、计算过程、计算成果) ⑸选择高压电气设备(包括初选和校验,并列出设备清单)。 2、变电站电气主接线图1份 采用75×50 cm方格纸,图形符号必须按国家标准符号绘制,并有图框和标签框,字体采用仿宋体字,用铅笔绘图和书写。接线按单线图绘制,仅在局部设备配置不对称处绘制三线图,零线绘成虚线。在主母线位置上注明配电装置的额定电压等级,在相应的方框图上标明设备的型号、规范。 3、屋内10kV配电装置图1份 采用75×50 cm方格纸,图形符号必须按国家标准符号绘制,并有图框和标签框,字体采用仿宋体字,用铅笔绘图和书写。该图应能显示开关柜的排列顺序、各柜的接线方案编号、柜内的一次设备内容(数量的规格)及其连接,设备在柜内的大致部位,以及走廊的大致走向等。 4、屋外110kV配电装置平断面图1份 采用75×50 cm方格纸,图形符号必须按国家标准符号绘制,并有图框和标签框,字体采用仿宋体字,用铅笔绘图和书写。该图应能显示各主要设备的布置位置及走廊的大致走向等。 5、编制设计说明书及计算书 六、日程安排 第一天:布置任务、介绍电气设备选择 第二天:电气主接线最佳方案的确定 第三天:短路电流计算 第四、五天:电气设备选择

主接线的基本形式

(一)单母线接线 1、单母线无分段接线 接线的特点:只有一组母线WB,所有的电源回路和出线回路,均经过必要的开关电器连接在该母线上并列运行。 优点:接线简单、清晰,所用的电气设备少,操作方便,配电装置造价便宜。 缺点:只能提供一种单母线运行方式,对状况变化的适应能力差;母线或母线隔离开关故障或检修时,全部回路均需停运(有条件进行带电检修 的例外);任意断路器检修时,其所在的回路也将停运。 适用范围:单母线接线的工作可靠性和灵活性都较差,只能用于某些出线回路较少,对供电可行性要求不高的小容量发电厂与变电站中。 2、单母线分段接线 接线特点:利用分段断路器QFd将母线适当分段。母线分段的数目,取决于电源的数目、容量、出线回数、运行要求等,一般分为2~3段。应尽量将电 源与负荷均衡的分配与各母线段上,以减少各分段间的功率交换。对 于重要用户,可从不同母线段上分别引出两个及以上回路向其供电。 优点:可以提供单母线运行、各段并列运行、各段分列运行等运行方式,且便于分段检修母线,减小母线故障的影响范围。当任一段母线故障时, 继电保护装置可使分段断路跳闸,保证正常母线段继续运行。若分段 断路器平时断开,则当任一段母线失去电源时,可由备用电源自动投 入装置使分段断路器合闸,继续保持该母线段的运行。 缺点:是在一段母线故障检修期间,该段母线上的所有回路均需停电;任一断路器检修时,所在回路也将停电。 适用范围:单母线分段接线,可应用于6~220KV配电装置中。 3、单母线分段带旁路母线接线 接线特点:增设了一组旁路母线WP及各出线回路中相应的旁路隔离开关QSp,分段断路器QSd兼作旁路断路器QFp,并设有分段隔离开关QSd. 运行特点:平时旁路母线不带电,QS1、QS2及QFp合闸,QS3、QS4及QSd断开,主接

城市轨道交通主降压变电所主接线的设计

摘要 城轨主降压变电所主要给牵引变电所和降压变电所供电,对地铁的正常运营具有很重要的作用。在我国加快地铁工程建设,解决公共交通问题的背景下,研究地铁主降压变电所主接线的工程设计,具有十分的重要意义。 首先,本文研究了主变电所主接线的选择问题,按照主变电所主接线的行业共识分别提出了高压侧和中压侧的主接线设计方案,通过对比分析,在满足可靠性、灵活性和经济性的要求下确定了主接线的设计方案。其次,根据主变电所的容量要求和变压器的发展,完成变压器台数和型号的选择。接着,将电力系统原始网络图用标幺值法转换,画出其等值电路图,并且按照方便电气设备选择和校验的原则选择短路点,进行短路容量的计算。最后,根据短路电流的计算结果和我国电气设备的发展情况,进行电气设备的选择。根据主接线确定的方案和电气设备的选择结果,利用CAD软件画出主接线图,按照国标规定、电气设备的尺寸和主变电所实际情况进行电气设备的布置,画出了平面布置图和断面图。 关键词:主接线;变压器;短路容量

Abstract The main subway Step-down Substation mainly supply power to Traction Substation and Step-down Substation, it has a crucial role for the normal operation of the whole subway. Under the background of accelerating the construction of the subway engineering and solving the problem of public transportation in our country, it is vital significance to study design of the main wiring of the mian subway Step-down Substation engineering Firstly, this paper studies the problem of selection of main wiring of main substation, and come up with the main wiring design and conduct a comparative analysis. Under the requirement of reliability, flexibility and economy to determine the design scheme of the main wiring. Secondly, according to design requirements of the main transformer’s capacity, completed the selection of the transformer. Then, based on the equivalent network simplification, selection and calculation of short-circuit point short-circuit capacity. Finally, according to the short-circuit current calculation results and the development of electrical equipment of our country, to complete electrical equipment selection and layout. The program established under main wiring and electrical equipment selection resultsusing the CAD software to draw the main wiring diagram, according to the national standard, electrical equipment size and the actual situation of the main substation electrical equipment layout, draw a floor plan and sectional view. Key Words: The main wiring, Transformers, Short-circuit capacity

变电站主接线图设备命名规则

变电站主接线图设备命名规则(2) 双母线分段,分别称1号、2号母线、3号、4号母线(#1M、#2M、#3M、#4M)。旁路母线,称5号母线(#5M)。 (若旁路母线为两段,则称为#5M1、#5M2)。 3.4 断路器编号: 断路器编号用四位数字表示,前两位数码“50”代表500kV电压等级,后两位数码依结线方式做以下规定: 3.4.1 完全一个半断路器结线开关编号: 完全一个半断路器结线设备按矩阵排列编号,如第一串的三个断路器,分别为5011(靠#1M)、5012(中间)、5013(靠#2M),第二串为5021(靠#1M)、5022(中间)、5023(靠#2M)(参见附图3)。 串序自固定端向扩建端依序排列。 3.4.2 不完全一个半断路器结线开关编号: 3.4.2.1 如图1所示不完全一个半断路器结线方式,不完整串当一完整串处理,照完全一个半断路器结线的编号法编号。 3.4.2.2 图2所示一个半断路器结线方式,变压器高压侧开关按主变压器开关编号。 3.4.3 母联断路器及旁路断路器编号: 母联断路器及旁路断路器划分为(1)母联断路器、(2)旁路断路器、(3)母联兼旁路断路器(如图3接线)、(4)旁路兼母

联断路器(如图4接线)四种。其中母联兼旁路断路器按母联断路器编号,旁路兼母联断路器按旁路断路器编号。 母联断路器用被联结的二条母线编号组成,小数在前,大数在后。 例如:1、2号母线间的联络断路器为5012。 3、4号母线间的联络断路器为5034。 4号母线与5号旁路母线间断路器为5045。3.4.4 出线断路器编号: 出线断路器从5051起,按出线间隔顺序编号。 如:从固定端起第一个出线间隔的断路器为5051,从固定端起第二个出线间隔断路器为5052,……。 3.4.5 主变压器断路器编号: 按主变压器序号,其高压侧断路器相应编号为5001~5010。 主变压器中、低压侧断路器按1.3编号。 3.4.6 500kV的高压备用厂用变压器高压侧的断路器编号为5000。 3.4.7 500kV联络变压器断路器编号: 对双绕组500kV联络变压器序号确定和断路器编号问题可按以下原则之一处理: a.按全厂、站主变压器序号统一编号。断路器编号与主变序号相对应。

电气主接线基本形式

电气主接线基本形式 第一节单母线接线 一单母线接线 1.接线特点 单母线接线如图10-1所示 单母线接线的特点是每一回路均经过一台断路器QF 和隔离开关QS 接于一组母线上。断路器用于在正常或故障情况下接通与断开电路。断路器两侧装有隔离开关,用于停电检修断路器时作为明显断开点以隔离电压,靠近母线侧的隔离开关称母线侧隔离开关(如11QS ),靠近引出线侧的称为线路侧隔离开关(如13QS )。在主接线设备编号中隔离开关编号前几位与该支路断路器编号相同,线路侧隔离开关编号尾数为3,母线侧隔离开关编号尾数为1(双母线时是1和2)。在电源回路中,若断路器断开之后,电源不可能向外送电能时,断路器与电源之间可以不装隔离开关,如发电机出口。若线路对侧无电源,则线路侧可不装设隔离开关。 二、单母线分段接线 1.接线特点 单母线分段接线,如图10-2所示。 图10-1 单母线接线 L1 1QF 4QF 13QS 11QS 2QF

正常运行时,单母线分段接线有两种运行方式: (1)分段断路器闭合运行。正常运行时分段断路器0QF 闭合,两个电源分别接在两段母线上;两段母线上的负荷应均匀分配,以使两段母线上的电压均衡。在运行中,当任一段母线发生故障时,继电保护装置动作跳开分段断路器和接至该母线段上的电源断路器,另一段则继续供电。有一个电源故障时,仍可以使两段母线都有电,可靠性比较好。但是线路故障时短路电流较大。 (2)分段断路器0QF 断开运行。正常运行时分段断路器0QF 断开,两段母线上的电压可不相同。每个电源只向接至本段母线上的引出线供电。当任一电源出现故障,接该电源的母线停电,导致部分用户停电,为了解决这个问题,可以在0QF 处装设备自投装置,或者重要用户可以从两段母线引接采用双回路供电。分段断路器断开运行的优点是可以限制短路电流。 三、单母线分段带旁路母线接线 图10-2 单母线分段接线 L1 1QF 0QF 01QS I 段 Ⅱ段 13QS 11QS 2QF 02QS

变电所常用主接线

变电所常用主接线4.5.4 总降压变电所主接线4.5.5 独立变电所主接线4.5.6 车间变电所主接线4.5.7 配电所主接线4.5.8 主接线2.1 电气主接线及设备选择(1) 主接线方式:农村小型变电所一般为用电末端变电所,35kV进线一回,变压器单台容量不大于5000kVA,设计规模为一台或两台变压器。35kV进线可不设开关,采用单母线方式,出线一般不超过6回。接在母线上的避雷器和电压互感器可合用一组隔离开关,接在变压器引出线上的避雷器不宜装设隔离开关。另外并联电容器补偿装置可根据具体情况决定是否设置。(2) 主变选用低损耗、免维护变压器,为适应用电负荷变化大、农村小水电多及电压变化大等特点,按有载调压设计,调压范围为35±3×2.5%。变压器35kV侧采用户外真空断路器(亦可选择SF6型)或负荷加熔断器保护,当采用负荷加熔断器保护时,负荷开关用于正常运行时操作变压器,熔断器用于变压器保护,熔断器选用K型熔丝,因它具有全范围内有效和可靠地开断最小过负荷电流至最大故障电流;10kV侧采用户外真空断路器。(3) 10kV出线采用户外真空断路器。10kV户外真空重合器是农村小型化变电所的新型产品,具有自动化程度高、技术性能好、适合农村电网的特点等优点。根据大量的运行经验和应用要求,变电所采用重合器作为保护开关时,应采用低压合闸线圈机构的分布式重合器。当采用断路器时,宜采用弹簧操作机构或小容量的直流操作机构。10kV设0.2级母线电压互感器一组,每回出线设0.2s电流互感器,以提高计量准确性,达到商业化运营的要求。(4) 所用变设计:装设35/0.4kV,50kVA所用变一台,供变电所照明、检修及二次保护用电。为保证变电所内部全部停电情况下,有可靠的操作和检修电源,所用变装于35kV进线隔离开关前面。当可靠性不满足时,应在低压侧、母线侧或联络线上各设一台所用变,并能互相备用。(5) 电压调整方式及电容器补偿方案:变电所的电压调整主要通过调整变压器分接头的方式实现。农村无功补偿应根据就地平衡的原则,采用集中补偿与分散补偿相结合的方式进行配置。电容器主要补偿变压器所耗无功,补偿容量一般取变压器容量的10%~15%,用户侧所耗无功采用配网分散补偿、就地平衡的原则。

变电站主接线图(解释)

变电站一次系统图 1、单母线接线 特点:只有一组母线,所有电源回路和出线回路,均经过必要的开关电器连接到该母线上并列运行。 主要优点:接线简单、清晰,所用电气设备少,操作方便,配电装置造价便宜。 主要缺点:适应性差,母线故障或检修,全部回路均需停电;任一回路断路器检修,该回路停电。 适用范围:单电源的发电厂和变电所,且出线回路数少,用户对供电可靠性要求不高的场合;10kV纯无功补偿设备出线(电容器、电抗器)。 2、单母线分段接线 特点:与单母线接线方法相比,增加了分段断路器,将母线适当分段。当对可靠性要求不高时,也可利用分段隔离开关进行分段。母线分段的数目,决定于电源的数目,容量、出线回数,运行要求等。母线分段一般分为2-3段。 优点:母线发生故障时,仅故障母线段停电,缩小停电范围;对重要用户由两侧共同供电,提高供电可靠性; 缺点:当一段母线故障或检修时,与该段所连的所有电源和出线均需断开,单回供电用户要停电;任一出线断路器检修,该回路要停电。适用:6~10kV,出线6回以上;35~66kV,出线不超过8回时;110~220kV,出线不超过4回时。 3、单母线分段带旁路母线接线 优点:增设旁路母线,增设各出线回路中相应的旁路隔离开关,解决出线断路器检修时的停电问题。为了节省投资,可不专设旁路断路器,而用母线分段断路器兼作旁路断路器。因为电压越高,断路器检修所需的时间越长,停电损失越大,因此旁路母线多用于35kV以上接线。适用:6~10kV接线一般不设旁路母线;35~66kV,可设不专设旁路断路器的旁路母线;110kV出线6回以上,220 kV出线4回以上,宜用专设旁路断路器的旁路母线;出线断路器使用可靠性较高的SF6断路器时,可不设旁路母线。 4、双母线接线 优点:两条母线互为备用,一条母线检修时,另一条母线可以继续工作,不会中断对用户的供电;任一母线侧隔离开关检修时,只需断开

电气主接线设计原则和设计程序

电气主接线设计原则和设计程序 4.5.1电气主接线的设计原则 电气主接线的设计是发电厂或变电站电气设计的主体。它与电力系统、电厂动能参数、基本原始资料以及电厂运行可靠性、经济性的要求等密切相关,并对电气设备选择和布置、继电保护和控制方式等都有较大的影响。因此,主接线设计,必须结合电力系统和发电厂或变电站的具体情况,全面分析有关影响因素,正确处理它们之间的关系,经过技术、经济比较,合理地选择主接线方案。 电气主接线设计的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 在工程设计中,经上级主管部门批准的设计任务书或委托书是必不可少的。它将根据国家经济发展及电力负荷增长率的规划,给出所设计电厂(变电站)的容量、机组台数、电压等级、出线回路数、主要负荷要求、电力系统参数和对电厂(变电站)的具体要求,以及设计的内容和范围。这些原始资料是设计的依据,必须进行详细的分析和研究,从而可以初步拟定一些主接线方案。国家方针政策、技术规范和标准是根据国家实际状况,结合电力工业的技术特点而制定的准则,设计时必须严格遵循。设计的主接线应满足供电可靠、灵活、经济、留有扩建和发展的余地。设计时,在进行论证分析阶段,更应合理地统一供电可靠性与经济性的关系,以便于使设计的主接线具有先进性和可行性。 4.5.2 电气主接线的设计程序 电气主接线的设计伴随着发电厂或变电站的整体设计进行,即按照工程基本建设程序,历经可行性研究阶段、初步设计阶段、技术设计阶段和施工设计阶段等四个阶段。在各阶段中随要求、任务的不同,其深度、广度也有所差异,但总的设计思路、方法和步骤基本相同。 电气主接线的设计步骤和内容如下: 1.对原始资料分析 (1)工程情况,包括发电厂类型(凝汽式火电厂,热电厂,或者堤坝式、引水

变电所电气主接线

第1章变电所电气主接线 电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。用规定的设备文字和图形符号并按工作顺序排列,详细地表示电气设备或成套装置的全部基本组成和连接关系的单线接线图,称为主接线电路图。电气主接线是变电所电气设计的首要部分,也是构成电力系统的首要环节。对电气主接线的基本要求概括地说应包括电力系统整体及变电所本身运行的可靠性、灵活性和经济性。 对电气主接线的基本要求和原则 5.1.1电气主接线的基本要求 1.可靠性 所谓可靠性是指主接线能可靠的工作,以保证对用户不间断的供电。衡量可靠性的客观标准是运行实践。经过长期运行实践的考验,对变电所采用的主接线经过优选,现今采用主接线的类型并不多。主接线的可靠性不仅要考虑—次设备对供电可靠性的影响,还要考虑继电保护二次设备的故障对供电可靠性的影响。同时,可靠性不是绝对的,而是相对的。一种主接线对某些变电所是可靠的,而对另一些变电所可能是不可靠的。 2.灵活性 主接线的灵活性有以下几方面要求; 1)调度要求。可以灵活的投入和切除变压器、线路、调配电源和负荷,能够满足系统在事故运行方式下、检修方式下以及特殊运行方式下的调度要求。 2)检修要求。可以方便的停运断路器、母线及其继电保护设备,进行安全检修,且不致影响对用户的供电。

3)扩建要求。可以容易的从初期过渡到终期接线,使在扩建时,无论一次和二次设备改建量最小。 3.经济性 经济性主要是投资省、占地面积小、能量损失小。 5.1.2电气主接线的原则 1.考虑变电所在电力系统中的地位和作用 变电所在电力系统中的地位和作用是决定主接线的主要因素。变电所不管是枢纽变电所、地区变电所、终端变电所、企业变电所还是分支变电所,由于它们在电力系统中的地位和作用不同,对主接线的可靠性、灵活性、经济性的要求也不同。 2.考虑近期和远期的发展规模 变电所主接线设计应根据5—10年电力系统发展规划进行。应根据负荷的大小和分布、负荷增长速度以及地区网络情况和潮流分布,并分析各种可能的运行方式,来确定主接线的形式以及所连接电源数和出线回数。 3.考虑负荷的重要性分级和出线回数多少对主接线的影响 对一级负荷,必须有两个独立电源供电,且当一个电源失去后,应保证全部一级负荷不间断供电;对二级负荷,一般要有两个电源供电,且当一个电源失去后,能保证大部分二级负荷供电。三级负荷一般只需一个电源供电。 4.考虑主变台数对主接线的影响 变电所主变的容量和台数,对变电所主接线的选择将产生直接的影响。通常对大型变电所,由于其传输容量大,对供电可靠性要求高,因此,其对主接线的可靠性、灵活性的要求也高。而容量小的变电所,其传输容量小,对主接线的可靠性、灵活性要求低。 5.考虑备用容量的有无和大小对主接线的影响 发、送、变的备用容量是为了保证可靠的供电、适应负荷突增、设备检修、故障停运情况下的应急要求。电气主接线的设计要根据备用容量的有无而有所

电气主接线的基本形式及优缺点

电气主接线的基本形式及 优缺点 Last revision on 21 December 2020

第四章电气主接线 第2节单母线接线 主接线的基本形式,就是主要电气设备常用的几种连接方式。概括的讲可分为两大类:有汇流母线的接线形式;无汇流母线的接线形式。 变电所电气主接线的基本环节是电源(变压器)、母线和出线(馈线)。各个变电所的出线回路数和电源数不同,且每路馈线所传输的功率也不一样。在进出线数较多时(一般超过4回),为便于电能的汇集和分配,采用母线作为中间环节,可使接线简单清晰,运行方便,有利于安装和扩建。但有母线后,配电装置占地面积较大,使用断路器等设备增多。无汇流母线的接线使用开关电器较少,占地面积小,但只适于进出线回路少,不再扩建和发展的变电所。有汇流母线的接线形式主要有:单母线接线和双母线接线。 一、单母线接线 单母线接线的特点是整个配电装置只有一组母线,每个电源线和引出线都经过开关电器接到同一组母线上。供电电源是变压器或高压进线回路,母线即可以保证电源并列工作,又能使任一条出线路都可以从电源1或2获得电能。每条回路中都装有断路器和隔离开关,靠近母线侧的隔离开关称作母线隔离开关,靠近线路侧的称为线路隔离开关(在实际变电所中,通常把靠近电源侧的隔离开关称为甲刀闸,把靠近负荷侧的隔离开关称为乙刀闸。 断路器具有开合电路的专用灭弧装置,可以开断或闭合负荷电流和开断短路电流,用来作为接通或切断电路的控制电器。

隔离开关没有灭弧装置,其开合电流能力极低,只能用作设备停运后退出工作时断开电路,保证与带电部分隔离,起着隔离电压的作用。同一回路中在断路器可能出现电源的一侧或两侧均应配置隔离开关,以便检修断路器时隔离电源。 同一回路中串接的隔离开关和断路器,在运行操作时,必须严格遵守下列操作顺序:如对馈线L1送电时,须先合上隔离开关QS1和QS2,再投入断路器QF2;如欲停止对其供电,须先断开QF2,然后再断开QS3和QS2。为了防止误操作,除严格按照操作规程实行操作票制度外,还应在隔离开关和相应的断路器之间,加装电磁闭锁、机械闭锁。接地开关(又称接地刀闸)QS4是在检修电路和设备时合上,取代安全接地线的作用。当电压在110kV及以上时,断路器两侧的隔离开关和线路隔离开关的线路侧均应配置接地开关。对35kV及以上的母线,在每段母线上亦应设置1~2组接地开关或接地器,以保证电器和母线检修时的安全。 图4—1单母线接线 QF—断路器;QS—隔离开关 1.单母线接线的优缺点 优点:接线简单清晰、设备少、操作方便、便于扩建和采用成套配电装置。 缺点:灵活性和可靠性差,当母线或母线隔离开关故障或检修时,必须断开它所连接的电源;与之相连的所有电力装置在整个检修期间均需停止工作。此外,在出 线断路器检修期间,必须停止该回路的工作。 2.单母线接线的适用范围: 一般适用于一台主变压器的以下三种情况: (1)6~10kV配电装置的出线回路数不超过5回。 (2)35~63kV配电装置的出线回路数不超过3回。 (3)110~220kV配电装置的出线回路数不超过2回。

变电站电气主接线设计课程设计复习过程

变电站电气主接线设计课程设计

摘要 本次设计以火力发电厂电气主接线110KV、220KV高压母线和10.5KV低压母线为主要设计对象,分为任务部分、设计部分两部分,同时还有一些计算选择,以及必要的保护。本次设计为变电所电气主接线初步设计,进行了对电气主接线设计的基本认识、变压器的选择和电气主接线短路点等值网络的化简等等。同时还介绍了怎么去认识和用到断路器、隔离开关、电流互感器、电压互感器等相关方面的知识。本设计选择选择两台主变压器,其他设备如断路器,隔离开关,电流互感器,电压互感器,无功补偿装置和继电保护装置等等也按照具体要求进行选型、设计和配置,力求做到运行可靠,操作简单、方便,经济合理,具有扩建的可能性和改变运行方式时的灵活性。使其更加贴合实际,更具现实意义。该变电站设有两台主变压器,站内主接线分为10.5KV、110KV和220KV三个电压等级。电压等级10.5KV采用单母线分段的接线方式。电压等级110KV、220KV采用双母带旁路接线形式,电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素,若选择错误的电气设备,轻则引起电气设备的损坏,重则导致大面积的事故,影响电力系统,造成重大事故。限于自己水平有限,内容难免有错误与不足之处,希望老师和同学能给与批评指正

目录 第一部分设计任务书介绍····································第二部分电气主接线方案确定······························一.电气主接线设计原则···············································二.拟定主接线方案··················································· 1.原始资料分析······················································· 2.各类接线的适用原则················································· 3.拟定方案中设计方案比较············································· 4.画出主接线草图····················································· 第三部分主变形式确定···········································一.相数确定·························································二.主变电器绕组及接线方式···········································

相关文档
相关文档 最新文档