文档库 最新最全的文档下载
当前位置:文档库 › 现代信号处理报告:语音增强

现代信号处理报告:语音增强

现代信号处理报告:语音增强
现代信号处理报告:语音增强

现代数字信号处理阅读报告

在认真阅读本课程相关文献的过程中,加深了对维纳滤波、小波变换、语音信号处理方面知识的理解,本人近期主要是针对语音增强领域相关文献进行了阅读,并查阅了相关文献,学习了语音增强的一般方法。下文主要是本人在阅读文献后的一些学习记录和体会。

一、语音增强研究现状

语音增强是指当语音信号被各种各样的噪声干扰、甚至淹没后,从噪声背景中提取有用的语音信号,抑制、降低噪声干扰的技术。语音通信领域中,由于受到周围环境以及传输信道的影响,纯净语音添加了背景噪声,导致音质恶化。语音增强的目的是降低噪声分量,提高语音清晰度和可懂度,减轻听觉疲劳,主要应用在嘈杂环境下的噪声抑制、语音压缩和语音识别等场合。

由于噪声干扰干扰通常都是随机的,从带噪语音中提取完全纯净的语音几乎不可能。在这种情况下,语音增强的目的主要有两个:一是改进语音质量,消除背景噪音,使听者乐于接受,不感觉疲劳,这是一种主观度量;二是提高语音可懂度,这是一种客观度量。这两个目的往往不能兼得。语音增强方法分时域方法和频域方法两种。由于语音的短时幅度谱对听觉的影响远大于短时相位谱对听觉的影响,基于频域增强方法的研究较多。常见的语音增强方法有大致可分为两类:1、基于语音统计特性的方法:如谱减法,最大似然估计法(ML),最小均方误差估计法(MMSE)。2、基于人类感知特性的方法:如利用人耳的听觉带通滤波器组特性或听觉掩蔽效应改善增强效果。例如基于谱相减的语音增强算法、基于小波分析的语音增强算法、基于卡尔曼滤波的语音增强算法、基于信号子空间的增强方法、基于听觉掩蔽效应的语音增强方法、基于独立分量分析的语音增强方法、基于神经网络的语音增强方法等都是近年来应用较为广泛的语音增强算法。

二、阅读文献主要内容

在目前的频域语音增强方法存在着一个明显的缺点:在增强过程中,由于是利用有声/无声检测技术以无声期间的噪声方差作为当前分析帧各频率点的噪声频谱分量的估计,而噪声频谱具有高斯分布,其幅度随机变化范围较宽,便会产生随机误差。若某帧某频率点的实际噪声分量超过估计值较多,则对纯净信号幅

度估计时,就会在这些频率点上残留较大的噪声分量,在频谱上呈现为随机出现的尖峰,在听觉上会形成有节奏性起伏的类似音乐的残留噪声,也就是著名的“音乐噪声”。针对这一情况,相关研究者提出了一系列语音增强算法。

1 谱减法

语音信号是一种典型的非平稳信号,但在一个短时间范围内其特性基本保持不变及相对稳定,因而可以看成一个短时平稳过程进行“短时分析”,即将信号分为一段一段来分析,其中每一段称为一帧。通过定义第k 个频谱分量的增益函数k k k R A G ∧= 及后验性噪比)(2

k Y r d k k λ=,既谱减法相当于对带噪语音每一个频谱分量乘以系数k G ,当信噪比高时,含有语音的可能性大,衰减小。反之,则认为含有语音的可能性小,衰减则增大。

2 最小均方误差增强方法(MMSE)

带有背景噪声的语音信号可以表示为)()()(n d n x n y +=,)ex p(k k k j A X θ=表

示对纯净语音信号进行FFT 变换后的第k 个频谱分量,k A ∧

作为k A 的MMSE 估计值。由贝叶斯公式可得:

????∞

∧=ππ200200

k ),(),(),(),(k

k k k k k k k k k k k k k k da da a a p a a Y p da da a a p a a Y p a A 再根据假设噪声谱和语音频谱是服从零均值高斯分布可得:

k k k k

R v M v A ),5.0()5.1(k --Γ=∧γ

定义一个增益函数MMSE G ,则k MMSE R G A .k =∧,由此可得到纯净语音频谱幅度

的估值k ∧

A ,对其添加带噪信号的相位,并进行IFFT 即可得到增强后的声音。 3 基于AR 模型的语音增强方法

带噪语音包含的均是平稳噪声。因此,可以对除白噪声以外的噪声进行建模,并设计得到白化滤波器,带噪语音经过白化滤波器后,可有效抑制色噪声,但会残留相当能量的白噪声,这是用AR 模型法很难滤除的。假设3种不同色噪声均

为0均值、平稳随机过程,对其进行零化处理,同时由于已知数据足够大,所以暂不考虑数据长度对参数估计的影响。首先确定模型阶数,采用从低阶到高阶搜索的办法,即从 n=1开始对噪声进行拟合,每次拟和结果用检验准则来判断其适用性,直至达到符合要求的阶数。

经计算模型参差}{a t 的自相关系数

),2,1(,121

, ==∑∑+=+=-∧k x x

x N k t t

N k t k t t k a ρ 根据自相关系数检验准则:如果}{a t (t=1,2….N)是白噪声,当数据长度N>(200~300),k 从1取到(20~30)时,k a ,∧ρ近似于正态分布。根据这一理论,取置信度水平为0.95,可得检验式96.1,≤∧k a N ρ,当k a ,∧

ρ满足此式时,则认为相应的模型为适用模型。

在纯净语音上混入-5dB 、0dB 、5dB 的三种较低信噪比的带噪语音,用谱减法、MMSE 法、AR 模型法进行语音增强实验,实验结果表明:谱减法剩余噪声较大,语音失真也较为严重。MMSE 增强结果较好,但语音失真较严重。AR 模型方法增强后噪声得到了“白化”,谐波结构的色噪声得到了有效地抑制,原始语音保留较好,但剩余的白噪声能量较大。AR 模型法增强后语音信噪比在谱减法和MMSE 方法之间,其主要原因就是其增强后语音残留的白噪声能量较大,导致信噪比较低。

三、 课程学习心得体会

通过对现代数字信号处理课程的学习,加深了自己对信号处理方面的认识,知识体系在本科学习数字信号课程的基础上进一步得到了提升与完善。在本课程的学习中学到了维纳滤波、卡尔曼滤波、自适应滤波器等相关知识,并系统学习了各种功率谱估计模型,对语音信号处理和视频信号处理方面加深了认识,在本科学习的基础上更加注重在理论水平上的提升。

近期的课程主要讲解关于语音信号的处理知识,本人对语音增强方面的知识较为感兴趣,通过阅读相关文献,对语音增强领域有了大体的了解,学习到语音

增强的一般方法,在时域和频域方面都研究出诸多有效的增强算法,而不同的方法又有不同的利弊。通过阅读相关文献,了解目前较为常见的谱减法、MMSE 法、AR模型法等语音增强方法,学习了这三种方法的一般处理过程,并了解了这三种算法的性能比较。通过对这些文献的学习,我获益良多,但在学习的过程中也存在着不少的疑问。对于文献中提到了复杂公式没有进行深入研究,有好多具体公式不懂;对于语音增强的一般方法还停留在对其过程的一般了解上,还没有系统细致的理解;在学习文献的过程中一直思考着如何将各种方法应用到自己研究方向上,但是不得其果,希望在今后的研究中能够得以实现,忘老师能给予指导。

现代信号处理_公开题

1. (必选,10分)在统计信号处理中,人们常常假设信号或噪 声服从高斯分布, 充分说明这个假设的理论根据以及在实际应用中带来的优点。 2. (必选,10分) (高阶累积量) 设1()[(),,()]T N N t x t x t C =∈x 为一复值 矢量随机过程,假设()t x 的每个分量的均值和奇次矩都为零,给出123456***6[(),(),(),(),(),()]m m m m m m Cum x t x t x t x t x t x t 的M-C 公式,其中 12345,6,,,,1,,m m m m m m N = ,上标T 和*依此表示取转置和复共轭。 3.1(三选一,10分)假设存在一个由11个阵元构成的立体阵 列,建立x-y-z 直角坐标系,11个阵元的坐标分别为(1, 1,1) ,(1,2,1),(2,1,1),(2,2,1),(1,1,2),(1,2,2),(2,1,2),(2,2,2),(1,2,3),(2, 1,3) ,(2,2,3),空间远场处一信号源发射电磁波,假设信号源方位角为?,俯仰角为θ,波长为λ,试写出阵列相对于该信号源的导向矢量。 3.2(三选一,10分) 证明导向矢量矩阵与信号子空间之间可 以互相(张成)表示。

3.2(三选一,10分)推导Levinson 递推公式。 4.1(二选一,10分)在卡尔曼滤波中,用下标“i ”表示时刻“i t ” 。给定状态方程和观测方程的离散形式分别为 .11,111i i i i i i i i -----=++x Φx Γu w i i i i =+z H x v 式中i x 是1n ?维状态向量;i u 是1r ?维控制向量,它是确定的非随机向量;已知的.1i i -Φ和,1i i -Γ分别为n n ?的状态转移矩阵和n r ?的控制矩阵;i w 为1n ?维随机噪声;i z 为1m ?维观测向量;已知的i H 为的m n ?维矩阵;i v 为-1m ?维量测噪声向量。假定两个噪声向量i w 和i v 皆为空时白的。1)给出预测值估计/1?i i -x 和滤波估计 /?i i x 及其相应的协方差矩阵的递推公式(6分);2) 从滤波估计/?i i x 的协方差矩阵估计出卡尔曼滤波的增益矩阵i K (4分)。 4.2 (二选一,10分)分析算式的计算复杂性(仅记乘除次数,精确到最高二次) 5.1(二选一,10分)推导多参数估计的Cramer-Rao 下界。 5.2 (二选一,10分)在白噪声干扰下,给出用方程误差方法 和矩阵结构分析方法无偏估计ARMA 系统参数的理论。

基于dsp的语音信号采集与回放系统的设计--开题报告

HEFEI UNIVERSITY 课程设计开题报告 题目:《基于DSP系统的语音采集与回放系统》 专业:11 级电子信息工程 姓名:章健吴广岭何志刚 学号:1105011029 1105011030 1105011044 指导老师:汪济洲老师 完成时间:2014年12月1日

一、开题报告题目 基于DSP系统的语音采集与回放系统。 二、研究背景与意义 语音处理是数字信号处理最活跃的研究方向之一,它是信息高速公路、多媒体技术、办公自动化、现代通信及职能系统等新兴领域应用的核心技术之一。用数字化的方法进行语音的传送、存储、分析、识别、合成、增强等是整个数字化通信网中的最重要、最基本的组成部分之一。一个完备的语音信号处理系统不但要具有语音信号的采集和回放功能, 还要能够进行复杂的语音信号分析和处理。通常这些信号处理算法的运算量很大, 而且又要满足实时的快速高效处理要求, 随着DSP 技术的发展, 以DSP 为内核的 设备越来越多。为语音信号的处理提供了优质可靠的平台. 软件编程的灵活性给很多设备增加不同的功能提供了方便, 利用软件在已有的硬件平台上实现不同的功能已成为 一种趋势。近年来,随着DSP的功能日益增强,性能价格比不断上升,开发手段不断改进,DSP在数据采集系统的应用也在不断完善。 三、主要内容与目标 随着计算机多媒体技术,网络通信技术和DSP(Digital Signal Processor)技术的飞速发展,语音的数字通信得到越来越多的应用,语音信号的数字化一直是通信发展的主要方向之一,语音的数字通信和模拟通信相比,无疑有着更大的优越性,这主要体现在以下几个方面:数字语音比模拟语音具有更好的话音质量;具有更强的干扰性,并易于加密;可节省带宽,能更有效的利用网络资源;更加易于存储和处理。最简单的数字化就是直接对原始语音信号进行A/D 转换,但这样得到的语音的数据量非常大。为了减少语音信号所占用的带宽或存储空间,就必须对数字语音信号进行压缩编码。语音编码的目的就在于在保证语音音质和可懂度的条件下,采用尽可能少的比特数来表示语音,即尽可能的降低编码比特率,以便在有限的传输带宽内让出更多的信道来传输图像和其他数据流,从而达到传输资源的有效利用和网络容量的提高。在通信越来越发达的当今世界,尤其最近几十年,语音压缩编码技术在移动通信、IP 电话通信、保密通信、卫星通信以及语音存储等很多方面得到了广泛的应用。 语音信号处理在手持设备、移动设备和无线个人设备中的应用正在不断增加。今天的个人手持设备语音大多时候仅仅局限于语音拨号,但是已经出现了适用于更广泛开发语音识别和文本到语音应用的技术。语音功能为用户提供自然的输入和输出方式,它比其他形式的I/O更安全,尤其是当用户在开车期间。在大多数应用中,语音都是键盘和显示器的理想补充。其他潜在的语音应用包括如下几个方面。 (1)语音电子邮件。包括浏览邮箱、利用语音输入写电子邮件以及收听电子邮件的读出。 (2)信息检索。股票价格、标题新闻、航班信息、天气预报等都可以通过语音从互联网收听。例如,用户不用先进入某个网址并输入股票名字或者浏览预定义列表,可以通过语音命令实现。 (3)个人信息管理。允许用户通过语音指定预约、查看日历、添加联络信息等等。 (4)语音浏览。利用语音程序菜单,用户可以在网上冲浪、添加语音收藏夹并收听网页内容的读出。 (5)语音导航。在自动和人眼不够用的条件下获取导航的完全语音输入/输出驾驶

语音信号处理实验报告

语音信号处理实验 班级: 学号: 姓名:

实验一 基于MATLAB 的语音信号时域特征分析(2学时) 1) 短时能量 (1)加矩形窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32; for i=2:6 h=linspace(1,1,2.^(i-2)*N);%形成一个矩形窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if (i==2) ,legend('N=32'); elseif (i==3), legend('N=64'); elseif (i==4) ,legend('N=128'); elseif (i==5) ,legend('N=256'); elseif (i==6) ,legend('N=512'); end end 00.51 1.52 2.5 3 x 10 4 -1 100.5 1 1.5 2 2.5 3x 10 4 024 N=3200.5 1 1.5 2 2.5 3x 10 4 05 N=6400.5 1 1.5 2 2.5 3x 10 4 0510 N=12800.5 1 1.5 2 2.5 3x 10 4 01020 N=2560 0.5 1 1.5 2 2.5 3x 10 4 02040 N=512 (2)加汉明窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32;

for i=2:6 h=hanning(2.^(i-2)*N);%形成一个汉明窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if (i==2), legend('N=32'); elseif (i==3), legend('N=64'); elseif (i==4) ,legend('N=128'); elseif (i==5) ,legend('N=256'); elseif (i==6) ,legend('N=512'); end end 00.51 1.52 2.5 3 x 10 4 -1 100.5 1 1.5 2 2.5 3x 10 4 012 N=3200.5 1 1.5 2 2.5 3x 10 4 024 N=6400.5 1 1.5 2 2.5 3x 10 4 024 N=12800.5 1 1.5 2 2.5 3x 10 4 0510 N=2560 0.5 1 1.5 2 2.5 3x 10 4 01020 N=512 2) 短时平均过零率 a=wavread('mike.wav'); a=a(:,1); n=length(a); N=320; subplot(3,1,1),plot(a); h=linspace(1,1,N); En=conv(h,a.*a); %求卷积得其短时能量函数En subplot(3,1,2),plot(En); for i=1:n-1 if a(i)>=0 b(i)= 1;

现代信号处理课程设计报告

中南大学 课程设计报告 题目现代信号处理 学生姓名任秋峥 指导教师张昊、张金焕 学院信息科学与工程学院 学号 0909090711 专业班级电子信息专业0901班 完成时间 2011年9月7号

目录 第一章、课程设计题目 (3) 1.1题目 (3) 1.2课程设计要求 (3) 第二章、设计思想概述 (4) 2.1离散时间L TI系统及其脉冲响应 (4) 2.1.1、离散时间L TI系统 (4) 2.1.2离散时间系统的脉冲响应 (5) 2.2、采样定理及连续时间信号的傅里叶变换 (6) 2.3序列FFT (7) 2.4滤波器的设计 (9) 2.4.1、IIRDF的设计 (9) 2.4.2 FIRDF的设计 (11) 第三章、程序设计及关键部分功能说明 (13) 3.1、差分方程的单位脉冲响应程序设计 (13) 3.1.1差分方程在各个点的单位脉冲响应设计和分析 (13) 3.2、验证采样定理 (14) 3.2.1、连续时间信号的傅里叶变换 (14) 3.2.2、采样定理 (16) 3.3、冲击序列和矩形序列的8点和16点FFT (17) 3.3.1冲击序列的FFT (17) 3.3.2矩形序列的fft (18) 3.4、滤波器的设计 (18) 3.4.1、IIRDF的设计 (18) 3.4.2、FIRDF的设计 (19) 第四章、程序实现 (21) 4.1、差分方程 (21) 4.2采样定理 (22) 4.3、FFT (25) 4.4滤波器的设计 (28) 4.4.1、IIRDF设计 (28) 4.4.2、FIR滤波器的设计 (29) 第五章、附录 (33) 5.1源程序代码 (33) 5.2参考文献 (39) 第六章、小结与体会 (39)

现代数字信号处理复习题

现代数字信号处理复习题 一、填空题 1、平稳随机信号是指:概率分布不随时间推移而变化的随机信号,也就是说,平稳随机信号的统计特性与起始 时间无关,只与时间间隔有关。 判断随机信号是否广义平稳的三个条件是: (1)x(t)的均值为与时间无关的常数:C t m x =)( (C 为常数) ; (2)x(t)的自相关函数与起始时间无关,即:)(),(),(ττx i i x j i x R t t R t t R =+=; (3)信号的瞬时功率有限,即:∞<=)0(x x R D 。 高斯白噪声信号是指:噪声的概率密度函数满足正态分布统计特性,同时其功率谱密度函数是常数的一类噪 声信号。 信号的遍历性是指:从随机过程中得到的任一样本函数,好象经历了随机过程的所有可能状态,因此,用一个 样本函数的时间平均就可以代替它的集合平均 。 广义遍历信号x(n)的时间均值的定义为: ,其时间自相关函数的定义为: 。 2、连续随机信号f(t)在区间上的能量E 定义为: 其功率P 定义为: 离散随机信号f(n)在区间 上的能量E 定义为: 其功率P 定义为: 注意:(1)如果信号的能量0

集成电路工程领域085209

集成电路工程领域(085209) 全日制攻读工程硕士专业学位研究生培养方案 一、培养目标 培养掌握集成电路工程专业领域坚实的基础理论和宽广的专业知识,具有较强的解决实际问题的能力,能够承担相应的专业技术或管理工作,特别是为大中型企业培养应用型、复合型高层次工程技术和工程管理人才。具体要求为:1.拥护党的基本路线和方针政策,热爱祖国,具有良好的职业道德和敬业精神,具有科学严谨、求真务实的学习态度和工作作风,身心健康。 2.掌握集成电路工程专业领域的基础理论和专业知识,掌握解决工程问题的先进技术方法和现代技术手段;具有独立承担专业技术或工程管理工作的能力和良好的职业素养。 3.掌握一门外国语。 二、研究方向 1. 集成电路系统设计技术 主要研究集成电路及各类信息系统的设计理论、方法与技术,包括软硬件协同设计,IC设计过程,系统级设计方法与工具,集成电路系统模型研究,系统级规范与建模语言,集成电路系统指标研究及噪声分析、集成电路测试与可测性设计以及模拟和混合信号测试等。 2. SOC与嵌入式系统技术方向 研究数字集成电路设计技术SOC设计方法、SoC设计的性能验证方法,微处理器结构设计、处理器建模与设计工具,嵌入式基础理论、嵌入式软件建模与设计,数字低功耗设计技术、具备嵌入式系统在移动数字通信、移动多媒体、网络技术、信息家电、工业控制等领域的软件与系统设计、开发能力。 3.MEMS建模、优化与控制技术 针对MEMS器件制造工艺不同于常规的机械加工,性能受到尺度效应影响以及具有小惯性和大耗散阻尼的特点,研究MEMS器件遵循的微观物理规律,在此基础上对其进行性能分析,并且设计出低成本的、易于实现单片集成的控制装置。 4.基于FPGA的SOPC嵌入式系统设计 基于FPGA的片上可编程系统设计、嵌入式系统编程和测试技术研究、模拟可编程电路设计、操作系统的移植和系统的编程和配置技术,集成验证技术等。

课程名称:现代信号处理-------高阶统计量及其谱分析(精)

课程名称:现代信号处理 -------高阶统计量及其谱分析 课程编号:0211007(博士生 0221024(硕士生学分:3 学时:46 授课对象:博士 /硕士研究生任课教师:姬红兵教授 联系电话:88204144 地点 :办公楼 424室 Email: 教材: 1. Higher-Order Spectral Analysis, C. L. Nikias and A. P. Petropulu, Prentice Hall, 1993. 参考资料: 1、“高阶统计量及其谱分析” ,张贤达,清华大学出版社。 2、“现代信号处理” ,张贤达,清华大学出版社。 3、期刊:IEEE Transactions on Signal Processing, Proceedings of IEEE, IEEE Signal Processing Magazine等。 6、 HOS 主页:. 先修课程:信号与系统,随机信号分析(处理 ,数字信号处理。 课程介绍:本课程主要介绍现代信号处理中的“高阶统计量及其谱分析”和“时频分析” 等内容。重点介绍随机信号和确定性信号的矩和累积量以及高阶谱的定义和基本性质; 高阶累积量和高阶谱的估计方法, 包括常规非参数估计法和基于 AR 、MA 和 ARMA 模型的参数估计法。并介绍高阶累积量及其谱在信号检测、系统辩识、非线性检测等方面的应用。

课程目的:通过本课程的学习,使学生对高阶统计量及其谱的性质和估计算法, 估计性能、计算复杂性, 以及这些算法在信号处理和相关研究领域的应用奠定一个坚实的基础。 考核方式及要求: 1、考核方式:笔试(硕士生+综述或研究报告 2、提交内容:文献专题综述(或翻译报告或研究报告 1篇。要求打印稿和电子版文件一同提交。电子版文件命名格式:“现代信号处理 07(博 /硕 -姓名”发至 hbji@https://www.wendangku.net/doc/c310181550.html,。 3、提交期限:于 2007年 6月 30日前; 更新日期:2007年 3月 1日 课程内容第一部分基本定义与性质 一 . 绪论 1.1 功率谱 1.2 信号处理中为什么用多谱? 1.3 应用 二 . 随机信号的累积量谱 2.1 引言 2.2 矩和累计量 2.3 累积量谱 2.4 非高斯线性过程的累计量谱

语音信号处理实验报告

通信与信息工程学院 信息处理综合实验报告 班级:电子信息工程1502班 指导教师: 设计时间:2018/10/22-2018/11/23 评语: 通信与信息工程学院 二〇一八年 实验题目:语音信号分析与处理 一、实验内容 1. 设计内容 利用MATLAB对采集的原始语音信号及加入人为干扰后的信号进行频谱分析,使用窗函数法设计滤波器滤除噪声、并恢复信号。 2.设计任务与要求 1. 基本部分

(1)录制语音信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (2)对所录制的语音信号加入干扰噪声,并对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (3)分别利用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman 窗几种函数设计数字滤波器滤除噪声,并画出各种函数所设计的滤波器的频率响应。 (4)画出使用几种滤波器滤波后信号时域波形和频谱,对滤波前后的信号、几种滤波器滤波后的信号进行对比,分析信号处理前后及使用不同滤波器的变化;回放语音信号。 2. 提高部分 (5)录制一段音乐信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (6)利用MATLAB产生一个不同于以上频段的信号;画出信号频谱图。 (7)将上述两段信号叠加,并加入干扰噪声,尝试多次逐渐加大噪声功率,对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (8)选用一种合适的窗函数设计数字滤波器,画出滤波后音乐信号时域波形和频谱,对滤波前后的信号进行对比,回放音乐信号。 二、实验原理 1.设计原理分析 本设计主要是对语音信号的时频进行分析,并对语音信号加噪后设计滤波器对其进行滤波处理,对语音信号加噪声前后的频谱进行比较分析,对合成语音信号滤波前后进行频谱的分析比较。 首先用PC机WINDOWS下的录音机录制一段语音信号,并保存入MATLAB软件的根目录下,再运行MATLAB仿真软件把录制好的语音信号用audioread函数加载入MATLAB仿真软件的工作环境中,输入命令对语音信号进行时域,频谱变换。 对该段合成的语音信号,分别用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman窗几种函数在MATLAB中设计滤波器对其进行滤波处理,滤波后用命令可以绘制出其频谱图,回放语音信号。对原始语音信号、合成的语音信号和经过滤波器处理的语音信号进行频谱的比较分析。 2.语音信号的时域频域分析 在Matlab软件平台下可以利用函数audioread对语音信号进行采样,得到了声音数据变量y,同时把y的采样频率Fs=44100Hz放进了MATALB的工作空间。

《语音信号处理》实验报告材料

实用 中南大学 信息科学与工程学院 语音信号处理 实验报告 指导老师:覃爱娜 学生班级:信息0704 学生名称:阮光武 学生学好:0903070430 提交日期:2010年6月18日

实验一 语音波形文件的分析和读取 一、实验的任务、性质与目的 本实验是选修《语音信号处理》课的电子信息类专业学生的基础实验。通过实验: (1)掌握语音信号的基本特性理论:随机性,时变特性,短时平稳性,相关性等; (2)掌握语音信号的录入方式和*.WAV音波文件的存储结构; (3)使学生初步掌握语音信号处理的一般实验方法。 二、实验原理和步骤: WAV文件格式简介 WAV文件是多媒体中使用了声波文件的格式之一,它是以RIFF格式为标准。每个WAV文件的头四个字节就是“RIFF”。WAV文件由文件头和数据体两大部分组成,其中文件头又分为RIFF/WAV文件标识段和声音数据格式说明段两部分。常见的WAV声音文件有两种,分别对应于单声道(11.025KHz采样率、8Bit的采样值)和双声道(44.1KHz采样率、16Bit的采样值)。采样率是指声音信号在“模拟→数字”转换过程中,单位时间内采样的次数;采样值是指每一次采样周期内声音模拟信号的积分值。对于单声道声音文件,采样数据为8位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16位的整数(int),高八位和低八位分别代表左右两个声道。WAV文件数据块包含以脉冲编码调制(PCM)格式表示的样本。在单声道WAV文件中,道0代表左声道,声道1代表右声道;在多声道WAV文件中,样本是交替出现的。WAV文件的格式见表1。

现代信号处理课设报告

中南大学 本科生课程设计报告 课程名称现代信号处理 指导教师赵亚湘 学院信息科学与工程学院专业班级通信工程班 姓名 学号

题目一语音信号去噪处理 一、设计要求 1)在windows系统下的录音机录制一段1s左右的语音信号作为原声信号,在 MATLAB软件平台下,利用函数wavread对语音信号进行采样,记住采样频率和采样点数; 2)画出语音信号的时域波形,对采样后的语音进行fft变换,得到信号的频谱特 性;对语音信号分别加入正弦噪声和白噪声,画出加噪信号的时域波形和频谱图; 3)根据对加噪语音信号谱分析结果,确定滤除噪声滤波器的技术指标,设计合适 的数字滤波器,并画出滤波器的频域响应; 4)用所设计的滤波器对加噪的信号进行滤波,在同一个窗口画出滤波前后信号的 时域图和频谱图,对滤波前后的信号进行对比,分析信号变化; 5)利用sound(x)回放语音信号,验证设计效果。 二、设计思想和系统功能分析 1、设计原理 对语音信号进行读取 加正弦/高斯白噪声 对比分析加噪声前后信号时域、频域图 设计滤波器 滤波,与原信号比较 2、本课题的研究基本步骤如下: ①确定已知声音信号的存储路径。

②在MATLAB平台上读入语音信号。 ③绘制频谱图并回放原始语音信号。 ④利用MATLAB编程加入一段正弦波噪音,设计滤波器去噪。 ⑤利用MATLAB编程加入一段随机噪音信号,设计FIR和IIR滤波器去噪,并分别绘制频谱图、回放语音信号。 ⑥通过仿真后的图像以及对语音信号的回放,对比两种去噪方式的优缺点。 三、设计中关键部分的理论分析与计算,关键模块的设计思路 1、语言的录入及处理 在MATLAB软件平台下,利用函数wavread()对语音信号采集,并记录采样频率和采样点数。将语音信号转换成计算机能够运算的有限长序列。用FFT(傅里叶变换)对其作谱分析。对信号添加噪声,然后通过窗函数法设计滤波器滤掉该语音信号的噪声,对比滤波前后的语音波形和频谱。 2、时域信号的FFT分析 FFT即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。在MATLAB 的信号处理工具箱中函数FFT和IFFT用于快速傅立叶变换和逆变换。函数FFT 用于序列快速傅立叶变换,其调用格式为y=fft(x),其中,x是序列,y是序列的FFT,x可以为一向量或矩阵,若x为一向量,y是x的FFT且和x相同长度;若x为一矩阵,则y是对矩阵的每一列向量进行FFT。如果x长度是2的幂次方,函数fft执行高速基-2FFT算法,否则fft执行一种混合基的离散傅立叶变换算法,计算速度较慢。函数FFT的另一种调用格式为y=fft(x,N),式中,x,y意义同前,N为正整数。函数执行N点的FFT,若x为向量且长度小于N,则函数将x补零至长度N;若向量x的长度大于N,则函数截短x使之长度为N;若x 为矩阵,按相同方法对x进行处理。 3、滤波方法 将信号中特定波段频率滤除的操作称为滤波,它是抑制和防止干扰的一项重要

语音信号虚拟分析仪开题报告

燕山大学 本科毕业设计(论文)开题报告 课题名称:语音信号虚拟分析 仪 学院(系):里仁学院电子工程 系 年级专业:08 电子信息工程 学生姓名:徐柳坡 指导教师:孟玲玲 完成日期:2012.03.16

一、综述本课题国内外研究动态,说明选题的依据和意义 语音信号处理分析的发展可以说是从1940年前后Dudley的声码器和Potter等人的可见语音开始的;20世纪60年代中期形成的一系列数字信号处理方法和技术,如数字滤波器、快速傅立叶变换等成为语音信号数字处理的理论和技术基础;到了80年代,由于矢量量化、隐马尔可夫模型和人工神经网络等相继被应用于语音信号处理,并经过不断改进与完善,使得语音信号处理技术产生了突破性的进展。进入90年代以来,语音信号处理在实用化方面取得了许多实质性的进展。一方面,对声学语音学统计模型的研究逐渐深入,鲁棒的语音识别、基于语音段的建模方法及隐马尔可夫模型与人工神经网络的结合成为研究的热点。另一方面,为了语音识别实用化的需要,讲者自适应、听觉模型、快速搜索识别算法以及进一步的语言模型的研究等课题倍受关注。 笔者研究本课题是因为信号处理技术几乎涉及到所有的工程技术领域,而频谱分析正是信号处理中一个非常重要的分析手段。基于LabVIEW的虚拟频谱分析仪由数据采集、信号分析和处理、结果输出显示3大部分组成。利用I/O接口设备完成信号的采集,数据分析和处理则由LabVIEW软件完成。 语音信号分析有非常重要的意义。信号处理几乎涉及到所有的工程技术领域,如,军事,航空航天,生物医学等。而频谱分析正是信号处理中一个非常重要的分析手段。 总之,研究用LabVIEW分析语音信号既具有学术价值也具有实际应用价值。 二、研究的基本内容,拟解决的主要问题 研究的基本内容:利用声卡,在计算机上开发虚拟仪器功能,实现音频信号分析及特性参数测试。 软件设计:波形显示,电压测量,频谱分析及典型参数计算。主要使用LabVIEW图形化编程语言来代替传统仪器对被测信号进行采集、分析处理以及对测量结果的表达与输出。 最后,输入信号调理。对输出结果进行分析判断,改善设计的不足和错

语音信号处理实验报告实验二

通信工程学院12级1班 罗恒 2012101032 实验二 基于MATLAB 的语音信号频域特征分析 一、 实验要求 要求根据已有语音信号,自己设计程序,给出其倒谱、语谱图的分析结果,并根据频域分析方法检测所分析语音信号的基音周期或共振峰。 二、 实验目的 信号的傅立叶表示在信号的分析与处理中起着重要的作用。因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更深入地说明信号的各项红物理现象。 由于语音信号是随着时间变化的,通常认为,语音是一个受准周期脉冲或随机噪声源激励的线性系统的输出。输出频谱是声道系统频率响应与激励源频谱的乘积。声道系统的频率响应及激励源都是随时间变化的,因此一般标准的傅立叶表示虽然适用于周期及平稳随机信号的表示,但不能直接用于语音信号。由于语音信号可以认为在短时间内,近似不变,因而可以采用短时分析法。 三、 实验设备 1.PC 机; 2.MATLAB 软件环境; 四、 实验内容 1.上机前用Matlab 语言完成程序编写工作。 2.程序应具有加窗(分帧)、绘制曲线等功能。 3.上机实验时先调试程序,通过后进行信号处理。 4.对录入的语音数据进行处理,并显示运行结果。 5.依次给出其倒谱、语谱图的分析结果。 6. 根据频域分析方法检测所分析语音信号的基音周期或共振峰。 五、 实验原理及方法 1、短时傅立叶变换 由于语音信号是短时平稳的随机信号,某一语音信号帧的短时傅立叶变换的定义为: 其中w(n -m)是实窗口函数序列,n 表示某一语音信号帧。令n -m=k',则得到 ()()()jw jwm n m X e x m w n m e ∞-=-∞= -∑

现代数字信号处理习题

1.设()u n 是离散时间平稳随机过程,证明其功率谱()w 0S ≥。 证明:将()u n 通过冲激响应为()h n 的LTI 离散时间系统,设其频率响应()w H 为 ()001,w -w w 0, w -w w H w ???? 输出随机过程()y n 的功率谱为()()()2y S w H w S w = 输出随机过程()y n 的平均功率为()()()00201 1r 022w w y y w w S w dw S w dw π π π+?-?= =?? 当频率宽度w 0???→时,上式可表示为()()()01 r 00y S w w π =?≥ 由于频率0w 是任意的,所以有()w 0 S ≥ 3、已知:状态方程 )()1,()1()1,()(1n n n n x n n F n x ν-Γ+--=观测方程 )()()()(2n n x n C n z ν+= )()]()([111n Q n n E H =νν )()]()([222n Q n n E H =νν 滤波初值 )]0([)|0(0x E x =ξ } )]]0([)0()]][0([)0({[)0(H x E x x E x E P --= 请简述在此已知条件下卡尔曼滤波算法的递推步骤。 解:步骤1 状态一步预测,即 1 *11)|1(?)1,()|(N n n C n x n n F n x ∈--=--∧ ξξ 步骤2 由观测信号z(n)计算新息过程,即 1*11)|(?)()()|(?)()(M n n C n x n C n z n z n z n ∈-=-=--ξξα 步骤3 一步预测误差自相关矩阵 N N H H C n n n Q n n n n F n P n n F n n P *1)1,()1()1,() 1,()1()1,()1,(∈-Γ--Γ+---=- 步骤4 新息过程自相关矩阵M M H C n Q n C n n P n C n A *2)()()1,()()(∈+-= 步骤5 卡尔曼增益M N H C n A n C n n P n K *1)()()1,()(∈-=- 或 )()()()(1 2n Q n C n P n K H -= 步骤6 状态估计 1*1)()()|(?)|(?N n n C n n K n x n x ∈+=-αξξ 步骤7 状态估计自相关矩阵 N N C n n P n C n K I n P *)1,()]()([)(∈--= 或 )()()()]()()[1,()]()([)(2n K n Q n K n C n K I n n P n C n K I n P H H +---= 步骤8 重复步骤1-7,进行递推滤波计算 4、经典谱估计方法:

控制科学与工程一级学科硕士研究生培养方案2020

控制科学与工程一级学科硕士研究生培养方案 (学科代码0811) 一、学科简介 控制科学与工程一级学科是以工程技术领域内的控制系统为对象,采用现代控制理论和方法以及传感器仪表、电子测量、计算机与通讯、图象处理、模式识别等技术,研究系统运行过程的建模、分析、设计、实现和优化控制的理论、方法和技术的一门学科。 本学科针对经济建设和社会发展中出现的各类复杂控制问题,研究、应用和发展新的控制理论和控制技术,以推动它们在工程和国民经济其他领域中的有效应用,从而产生显著的经济和社会效益。目前主要研究方向有:非线性系统分析、建模与控制、智能控制理论及应用、复杂工业过程综合自动化、过程监测、诊断与优化控制、现场总线与网络控制, 决策与管理一体化技术、信号检测与智能仪表、光电测量与控制、智能信息处理与系统、图像处理与分析、模式识别与机器视觉、机器人技术与应用等。它包含了本学科领域的基础理论研究、应用技术开发和工程项目实现三个不同层次,对于提高自动化技术领域的学术研究水平,服务于经济建设和实现国防军事现代化具有重要意义。 控制科学与工程学科是安徽工业大学最早建立的优势学科之一。自1978年开始招收自动化专业本科生,后来又相继招收测控技术与应用和计算机专业本科生;1991年开始与东北大学和北京科技大学联合培养硕士生,1999年获得检测技术与自动化装置硕士学位授权点,后来又于2003年、2007年相继获得控制理论与工程、模式识别与智能系统学2个硕士学位授权点,2009年获得控制工程领域工程硕士学位授予点,并与合肥工业大学、安徽大学联合招收培养博士生,2010年成为博士学位授予点建设支撑学科。2008年,检测技术与自动化学科成为安徽省重点学科。本学科设有“电力电子与运动控制安徽省重点实验室”,西门子过程装备与控制工程研究中心、安徽省电子与自动化技术实验教学示范中心、传感器与仪表设计研究所、测控技术研究所、复杂系统建模与化控制研究所、系统集成与综合自动化技术研究所、运动控制与工业机器人应用研究所。“复杂系统控制”于2014年被评为安徽省高校省级科研创新团队。 本学科师资队伍结构合理,整体素质较高,综合实力较强,现有30名高职人员,其中教授11人,博士学位的17人,安徽省高校领军人才、“皖江学者”特聘教授各1人,省教学名师3人、安徽省学术和技术带头人4人。

情感语音识别开题报告

太原理工大学信息工程学院 本科毕业设计(论文)开题报告 毕业设计(论文)题目 语音情感识别及其特征提取的研究 学生姓名付建梅导师姓名张雪英 专业通信工程 报告日期2011.4 班级0701 指导教 师意见 签字年月日 专业(教 研室)主 任意见 年月日系主任 意见 年月日

1. 国内外研究现状及课题意义 1.1课题研究意义 现在社会,人类跟计算机的交往越来越受到研究者的重视。自然和谐的人机界面的沟通应该能理解用户的情绪和意图,对不同用户、不同环境、不同任务给予不同的反馈和支持。情感计算研究就是试图创建一种能感知、识别和理解人的情感,并针对人的情感做出智能、灵敏、友好反应的计算系统,即赋予计算机像人一样地观察、理解和生成各种情感特征的能力,使计算机能够更加自动适应操作者。实现这些,首先必须能够识别操作者的情感,而后根据情感的判断来调整交互对话的方式。 情感计算研究内容主要包括脸部表情处理、情感计算建模方法、情感语音处理、姿态处理、情感分析、自然人机界面、情感机器人等。情感计算,受到越来越多的国内外学者和研究机构的重视。美国的各大信息技术实验室正加紧进行情感计算系统的研究。例如,麻省理工学院媒体实验室的情感计算小组研制的情感计算系统,通过记录人面部表情的摄像机和连接在人身体上的生物传感器来收集数据,然后由一个“情感助理”来调节程序以识别人的情感。目前国内的情感计算研究重点在于,通过各种传感器获取由人的情感所引起的生理及行为特征信号,建立“情感模型”,从而创建个人的情感计算系统。情感计算已经应用到生活中的各个领域:在信息家电和智能仪器中增加自动感知人们情绪状态的功能,可以提供更好的服务:在信息检索过程中,通过情感分析解析功能,则可提高智能信息检索的精度和效率:在远程教育平台中,情感计算技术的应用能提升教学效果;利用多模式的情感交换技术,还可以构筑更贴近人们生活的智能空间和虚拟场景。此外,情感计算还能应用在机器人、智能玩具、可视会议、唇读系统、可视电话系统的应用场合,在传输语音信号的时候能够显示视频动画,将有助于人类特别是听力有障碍的人对语音的理解。 正是基于以上课题对于科研、社会的重要意义,我的毕业论文的主要任务是建立带有情感的音视频数据库,研究音频信号中能体现情感的特征,分析哪些特征可以有效地表达情感,进行特征提取并进行情感识别实验。这些工作是为后面进行带有感情的音视频合成动画系统建立基础。 1.2国内外研究现状 语音信号处理中,语音识别作为一个重要的研究领域,已经有很长的研究历史,其中语音特征提取与情感识别又是其中的一个重要方面。 在1972 年,Williams 发现人的情感变化对语音的基音轮廓有很大的影响,这是国外最早开展的语音情感方面的研究之一。1990 年,麻省理工学院多媒体实验室构造了一个“情感编辑器”对外界各种情感信号进行采样,如人的语音信号、脸部表情信号等来识别各种情感。1996 年日本东京Seikei 大学提出情感空间的概念并建立了语音情感模型。2000 年,Maribor 大学的Vladimir Hozjan 研究了基于多种语言的语音情感识别。2009 年4月,日本产业技术综合研究所(AIST)研制一个具有丰富表情的新型女性机器人“HRP-4C”。通过对主人语音信号的识别,机器人可以做出喜、怒、哀、乐和惊讶的表情等。在国内,语音情感识别的研究起步较晚。2001 年,东南大学赵力等人提出语音信号中的情感识别研究。2003 年,北京科技大学谷学静等人将BDI Agent 技术应用与情感机器人的语音识别技术研究中。另外,2003 年12 月中科院自动化所等单位在北京主办了第一届中国情感计算及智能交互学术会议,2005 年10 月又在北京主办了首届国际情感计算及智能交互学术会议。

数字语音信号处理实验报告

语音信号处理实验报告 专业班级电子信息1203 学生姓名钟英爽 指导教师覃爱娜 完成日期2015年4月28日 电子信息工程系 信息科学与工程学院

实验一语音波形文件的分析和读取 一、实验学时:2 学时 二、实验的任务、性质与目的: 本实验是选修《语音信号处理》课的电子信息类专业学生的基础实验。通过实验 (1)掌握语音信号的基本特性理论:随机性,时变特性,短时平稳性,相关性等; (2)掌握语音信号的录入方式和*.WAV音波文件的存储结构; (3)使学生初步掌握语音信号处理的一般实验方法。 三、实验原理和步骤: WAV 文件格式简介 WAV 文件是多媒体中使用了声波文件的格式之一,它是以RIFF格式为标准。每个WAV 文件的头四个字节就是“RIFF”。WAV 文件由文件头和数据体两大部分组成,其中文件头又分为RIFF/WAV 文件标识段和声音数据格式说明段两部分。常见的WAV 声音文件有两种,分别对应于单声道(11.025KHz 采样率、8Bit 的采样值)和双声道(44.1KHz 采样率、16Bit 的采样值)。采样率是指声音信号在“模拟→数字”转换过程中,单位时间内采样的次数;采样值是指每一次采样周期内声音模拟信号的积分值。对于单声道声音文件,采样数据为8 位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16 位的整数(int),高八位和低八位分别代表左右两个声道。WAV 文件数据块包含以脉冲编码调制(PCM)格式表示的样本。在单声道WAV 文件中,道0 代表左声道,声道1 代表右声道;在多声道WAV 文件中,样本是交替出现的。WAV 文件的格式 表1 wav文件格式说明表

2012《现代数字信号处理》课程复习...

“现代数字信号处理”复习思考题 变换 1.给出DFT的定义和主要性质。 2.DTFT与DFT之间有什么关系? 3.写出FT、DTFT、DFT的数学表达式。 离散时间系统分析 1.说明IIR滤波器的直接型、级联型和并联型结构的主要特点。 2.全通数字滤波器、最小相位滤波器有何特点? 3.线性相位FIR滤波器的h(n)应满足什么条件?其幅度特性如何? 4.简述FIR离散时间系统的Lattice结构的特点。 5.简述IIR离散时间系统的Lattice结构的特点。 采样 1.抽取过程为什么要先进行滤波,此滤波器应逼近什么样的指标? 维纳滤波 1.画出Wiener滤波器结构,写出平稳信号下的滤波方程,导出Wiener-Hopf方程。 2.写出最优滤波器的均方误差表示式。 3.试说明最优滤波器满足正交性原理,即输出误差与输入信号正交。 4.试说明Wiener-Hopf方程和Yule-Walker方程的主要区别。 5.试说明随机信号的自相关阵与白噪声的自相关阵的主要区别。 6.维纳滤波理论对信号和系统作了哪些假设和限制? 自适应信号处理 1.如何确定LMS算法的μ值,μ值与算法收敛的关系如何? 2.什么是失调量?它与哪些因素有关? 3.RLS算法如何实现?它与LMS算法有何区别? 4.什么是遗忘因子,它在RLS算法中有何作用,取值范围是多少? 5.怎样理解参考信号d(n)在自适应信号处理处理中的作用?既然他是滤波器的期望响应,一般在滤波前是不知道的,那么在实际应用中d(n)是怎样获得的,试举两个应用例子来加以说明。 功率谱估计 1.为什么偏差为零的估计不一定是正确的估计? 2.什么叫一致估计?它要满足哪些条件? 3.什么叫维拉-辛钦(Wiener-Khinteche)定理? 4.功率谱的两种定义。 5.功率谱有哪些重要性质? 6.平稳随机信号通过线性系统时输入和输出之间的关系。 7.AR模型的正则方程(Yule-Walker方程)的导出。 8.用有限长数据估计自相关函数的估计质量如何? 9.周期图法谱估计的缺点是什么?为什么会产生这些缺点? 10.改进的周期图法谱估计有哪些方法?它们的根据是什么? 11.既然隐含加窗有不利作用,为什么改进周期图法谱估计是还要引用各种窗? 12.经典谱估计和现代谱估计的主要差别在哪里? 13.为什么AR模型谱估计应用比较普遍? 14.对于高斯随机过程最大熵谱估计可归结为什么样的模型? 15.为什么Levison-Durbin快速算法的反射系数的模小于1? 16.什么是前向预测?什么是后向预测? 17.AR模型谱估计自相关法的主要缺点是什么? 18.Burg算法与Levison-Durbin算法的区别有哪些?

现代信号处理

现代信号处理课程设计实验报告 实验课题:现代信号处理 专业班级: 学生姓名: 学生学号: 指导老师: 完成时间:

目录 一.前言-------------------------------------------------2 二.课程设计内容要求及题目-------------------------3 三.设计思想和系统功能结构及功能说明-----------4 四.关键部分的详细描述和介绍,流程图描述关键模块和设计思想--------------------------------------------------7 五.问题分析及心得体会--------------------------20 六.参考文献------------------------------------------21 七.附录:程序源代码清单------------------------21

一、前言 数字滤波在通信、图像编码、语音编码、雷达等许多领域中有着十分广泛的应用。目前,数字信号滤波器的设计在图像处理、数据压缩等方面的应用取得了令人瞩目的进展和成就。它是数字信号处理理论的一部分。数字信号处理主要是研究用数字或符号的序列来表示信号波形,并用数字的方式去处理这些序列,以便估计信号的特征参量,或削弱信号中的多余分量和增强信号中的有用分量。具体来说,凡是用数字方式对信号进行滤波、变换、调制、解调、均衡、增强、压缩、固定、识别、产生等加工处理,都可纳入数字信号处理领域。数字信号处理学科的一项重大进展是关于数字滤波器设计方法的研究。关于数字滤波器,早在上世纪40年代末期就有人讨论设计它的可能性问题,在50年代也有人讨论过数字滤波器,但直到60年代中期,才开始形成关于数字滤波器的一整套完整的正规理论。在这一时期,提出了各种各样的数字滤波器结构,有的以运算误差最小为特点,有的则以运算速度高见长,而有的则二者兼而有之。出现了数字滤波器的各种实现方法,对递归和非递归两类滤波器作了全面的比较,统一了数字滤波器的基本概念和理论。 数字滤波器与模拟滤波器相比,具有精度高、稳定、体积小、重量轻、灵活、不要求阻抗匹配以及能实现模拟滤波器无法进行的特殊滤波等优点。 上学期学习了《数字信号处理》这门课,这学期的课程设计使我更加形象具体的掌握这门课程,并且可以熟练的运用MATLAB进行编程,

相关文档
相关文档 最新文档