文档库 最新最全的文档下载
当前位置:文档库 › 半导体光催化

半导体光催化

半导体光催化
半导体光催化

论文题目:半导体光催化综述学生姓名:

学生学号:

专业班级:化学工程与工艺2班学院名称:化学化工学院

指导老师:

目录

摘要 (3)

关键词 (3)

绪论 (3)

半导体光催化原理 (4)

半导体光催化反应影响因素 (5)

提高半导体光催化效率的方法 (6)

代表性光催化剂 (9)

应用 (9)

存在的问题和发展趋势 (11)

结论 (12)

参考文献 (12)

半导体光催化

摘要

1972年Fujishima和Honda 在Nature杂志上发表的关于TiO2电极上光分解水的论文可以看作一个多相光催化新时代开始的标志。从那时起。来自化学、物理、材料等领域的学者围绕太阳能的转化和储存、光化学合成,探索多相光催化过程的原理,致力于提高光催化的效率。目前,光催化消除和降解污染物成为其中最为活跃的一个研究方向,并取得很多成果。目前在多相光催化研究中所使用的光催化剂大都是半导体。几乎在半导体的光催化特性被发现的同时,就开始试验各种半导体的光催化活性,并对其进行改性研究。本文将对半导体光催化剂的作用原理,改性研究,应用范围和研究进展及发展方向加以综述。

关键词:半导体光催化,原理,光催化效率,二氧化钛

绪论

半导体光催化是近30年发展起来的新兴研究领域。半导体光催化材料在光照射下,能够被光子所激活,实现电子或空穴流动,并在其表面上发生很强的氧化(或)还原作用,即反应体系在光催化下将吸收的光能直接转化为化学能,使许多通常情况下难以实现的反应在比较温和的条件下能够顺利进行。自80年代末,人们开始将光催化应用于环境污染控制领域,由于该技术能有效地破坏许多结构稳定的生物难降解污染物,与传统水处理技术相比,具有明显的节能、高效、污染物降解彻底等优点,且光催化技术易操作,无二次污染,它已成为一种有重要应用前景的环境治理方法,引起了国内外学者的普遍重视。至今人们已对各种类型的半导体光催化反应进行了广的研究,取得了一定的成就。目前,光催化广泛应用于太阳能电池,杀菌消毒、环境净化,医疗卫生等诸多方面,已显示出巨大的潜力和长久的生命力,根据月球上紫外光辐射强的特点,Tennakone甚至在1993年提出了以稳定的宽带隙半导体为光催化剂,利用光催化技术净化月球基地生活用水的可能性。

半导体光催化原理

1972年,FUJISHIMA等人在TiO2,电极上发现了光催化分解水的现象,从而开辟了半导体光催化这一新领域,这也是多相光催化新时代开始的标志。他们借鉴植物的光合作用原理设计了一个太阳光伏打电池,即在水中插入一个n型半导体二氧化钛电极和一个铂(铂黑)电极,当用波长低于415 nm的光照射二氧化钛电极时,可以发现在二氧化钛电极上有氧气释放,在铂电极上有氢气释放。这一现象的产生,是由于光照使半导体阳极产生了具有极高氧化还原的电子空穴对造成的。而半导体在上述过程中仅仅作为一种媒介,反应前后是不发生变化的。

随后的大量研究发现,即使直接将有金属铂沉积的二氧化钛悬浮于水中,在光照下也能使水分解,光催化正是在这个概念和方法的基础上发展起来的。

根据固体能带理论,半导体的基本能带结构是:存在一系列的满带,最上面的满带称为价带(VB);存在一系列的空带,最下面的空带称为导带(CB);价带和导带之间称为禁带,因而半导体的能带是不连续的。

当用能量等于或大于禁带宽度(Eg)的光照射时,半导体价带上的电子受光激发跃迁到导带,形成带负电的高活性电子;同时,在价带产生相应带正电的空穴,这样就在半导体内部生成电子(e-)一空穴(h+)对。光生空穴能够与吸附在催化剂表面的OH-或H2O发生反应生成·OH,它的氧化活性比空穴更高,能够氧化多种有机物并使其矿化。光激发产生的电子和空穴也可能在半导体内部或表面复合,如果没有适当的电子和空穴俘获剂,储备的能量在几毫秒内就会由于复合而消耗掉,而如果选用适当的俘获剂或表面空位来俘获电子或空穴,复合就会受到抑制。由上述光催化作用原理分析可知,光催化过程实际上包含氧化反应和还原反应两个过程,分别反映了光生空穴和光生电子的反应性能,同时二者又相互影响、相互制约。

以TiO2为例,经方程(1)产生的e-和h+除了可以直接与反应物作用,还可与吸附在催化剂上的其它电子受体或给体反应。溶氧条件下在液相中可能引发方程(2)—(11)所示的过程,产生多种高反应活性的自由基,发生有意义的氧化还原反应:e-能还原氧化性较强的金属离子生成金属单质,h+和H2O2及.OH、HO2.等自由基以其本身的强氧化性则可引发某些有机反应或氧化破坏许多化合物。

半导体光催化反应影响因素

催化剂结构

晶相结构

(1)晶型用作光催化的Ti02主要有锐钛型Ti02和金红石型两种晶型。由于晶胞八面体的畸变程度和八面体间相互连接的方式不同,使得金红石型Ti02表面吸附有机物和氧气的能力不如锐钛矿型,因而锐钛矿型的催化活性明显高于金红石型。

(2)晶面利用单晶表面的规则结构,对其表面吸附程度和活性中心的研究发现,由于Ti02不同晶面上粒子的排布不同,则不同晶面上对物质降解的光催化活性和选择性将有很大差别,因此锐钛矿型和金红石型Ti02所构成的混合晶型的光催化活性一般要比单一晶型Ti02的光催化活性强心,这种混合催化剂活性高的原因是由于不同晶相颗粒间形成了表面结,提高了单一催化剂活性。

(3)晶格缺陷研究表明,晶格缺陷是光催化反应中的活性位。但过多的缺陷也可能成为电子空穴的复合中心,从而降低反应活性。

晶粒大小

粒径是影响光催化活性的重要因素。纳米尺寸(1—10 nm)的晶粒能产生量子尺寸效应,导致禁带变宽,从而具有更强的氧化一还原能力,且催化活性也随着尺寸量子化程度的提高而增加。同时,量子化的粒子更容易让分离的电子一空穴对扩散到表面。从而减少体相内的复合几率,并增加催化剂的表面积,使得比表面积对反应速率的约束减小,且表面缺陷和活性中心增加。这些都有利于光催化

活性的提高。

表面积

光催化反应是由光生电子与空穴引起的氧化还原反应,表面积是决定反应基质吸附量的重要因素。因此,当晶格缺陷等其他因素相同时,表面积越大,则吸附量就越大,而光催化反应的活性也就越高。

光学表面态

纳米粒子的表面原子与总原子数之比随纳米粒子尺寸的减小而急剧变化,从而引起性质变化,这种具有决定表面光学特性的表面态称为光学表面态,它在光催化过程中起着重要作用。

pH值

pH值对光催化的影响主要是通过改变催化剂表面特性、表面吸附和化合物的存在形态来实现的,不同有机物的光催化降解反应具有不同的最佳pH值。

外加氧化剂

光生电子-空穴对被催化剂表面晶格缺陷俘获后,如果没有适当的电子或空穴俘获剂,电子一空穴对很快就会复合。因此,必须选用适当的俘获剂或表面空位来俘获电子或空穴,复合才会受到抑制,比较有效的方法是向反应液中加入氧化剂。这些氧化剂本身是一种良好的电子接受体,不但可以与光生电子结合,其

本身也可以氧化有机物。光降解反应中,通常加入02,H2O2,03,S2O82-

,Fe203,

等氧化剂作为光生电子的受体,以阻止电子一空穴对的复合。

此外光源,半导体催化剂的用量也会影响催化反应。

提高半导体光催化效率的方法

半导体的光催化特性已经被许多研究所证实,但从利用太阳光的效率来看,还存在以下主要缺陷:一是半导体的光吸收波长范围狭窄,主要在紫外区,利用太阳光的比例低;另一一是半导体载流子的复合率很高,因此量子效率较低。实际上,从半导体的光催化特性被发现起,就开始对半导体光催化剂进行改性研究。改性的目的和作用包括提高激发电荷分离,抑制载流子复合以提高量子效率;扩大起作用光的波长范围;改变产物的选择性或产率;提高光催化材料的稳定性等,这些其实也是量度半导体光催化剂好坏的指标。

半导体光催化剂的改性

光催化剂是光催化氧化过程得以进行的关键,因此光催化剂活性的高低是光催化氧化反应是否实用的一个决定性因素。光催化剂在适当光能的作用下产生光生电子一空穴对,它们分别与吸附在催化剂表面的02及H2O作用,形成高活性的羟基自由基·OH。但光生电子和空穴产生后,除上述作用外,还存在着很高的复合率,从而导致光催化的量子效率很低。因此,为了提高量子效率或催化剂的催化活性,必须对半导体光催化剂进行改性。

改性的主要目的是:促使光生电子与空穴的分离,抑制其复合,从而提高量子效率;扩大激发光的波长范围,以便充分利用太阳能;提高光催化剂的稳定性。目前,有数种常用的半导体光催化剂的改性技术。

催化剂表面贵金属沉积。贵金属半导体光催化剂表面的沉积可以采用浸渍还原法。即将催化剂颗粒浸渍在含有贵金属盐的溶液中,然后将浸渍颗粒在惰性气体保护下用氢气高温还原;也可采用光还原法,即催化剂颗粒浸渍在含有贵金属盐和有机物(如醋酸、甲醇等)溶液中,然后在紫外光照射下,贵金属被还原而沉积在催化剂表面。最常用的沉积贵金属是Pt,Au,Ru,Ag等。贵金属的沉积普遍提高了催化剂的光催化活性,包括水的分解、有机物的氧化以及贵金属的氧化等。催化活性的提高以及可利用的激发光波长的扩展是由于半导体催化剂表面与贵金属接触时,光生载流子重新进行分布、电子从费米能级较高的半导体转移到费米能级较低的金属,直到它们的费米能级相等,从而形成肖特基势垒。所形成的肖特基势垒就成为俘获光生电子的有效陷阱,因而抑制了光生电子与空穴的

复合。而Beydoun等则认为半导体表面所沉积的金属与半导体形成了一个短路微电池,电子流向金属电极,而空穴则将液相中的有机物氧化,从而降低了电子与空穴的复合率。

金属离子掺杂。采用浸渍后高温焙烧、光辅助沉积等方法,可将金属离子掺杂于半导体催化剂中。掺杂的金属离子不同,所引起的变化也不一样,有些金属离子有利于提高光量子效率,而有些则效果不佳,甚至是有害的。这是由于某些金属离子能有效地俘获催化剂表面半导体导带中的电子,从而降低了电子与空穴的复合速率,并有可能使掺杂后催化剂的吸收波长范围扩展至可见光区。

复合半导体。近年来的研究表明,复合半导体(主要是二元半导体)几乎表现出高于单个半导体的光催化性质,有些还能使激发光的波长范围扩展到可见光

如:TiO2一SnO2、Ti02一WO Ti02一SiO2、Ti02一MnOx等。二元复合半导体光活性的提高可归因于不同能级半导体之间光生载流子的迁移和分离。如Ti02一CdS 复合半导体,当激发光能足够时,TiO2和CdS同时发生带间跃迁。由于两者之间导带和价带能级的差异,光生电子聚集在Ti02的导带,而空穴则聚集在CdS的价带,这样光生载流子得到了分离,从而提高了量子效率。

半导体光催化剂的光敏化。半导体光催化剂的光敏化即将光活性(敏化)物质以物理或化学方法吸附于半导体光催化剂的表面。常用的光敏化剂大多为染料,如曙红、劳氏紫、酞菁、玫瑰红、卟啉等。这些光敏化剂的使用,不仅扩展了半导体的激发光波长范围,而且它们的量子效率也很高(在30%~80%之间)。光敏化物质受光照激发后,处于激发态的活性物质的氧化电势比半导体导带的电势更负,两者之间存在的电势差就使得光生电子注入到半导体的导带中,从而使量子效率大大提高。

光催化剂的固定化

半导体光催化剂的使用方式主要有两种:悬浮态和固定态。

悬浮态是将催化剂以粉末形式均匀悬浮在反应液中。由于几乎没有传质阻力,且催化剂有较大比表面积,故反应物与催化剂颗粒表面能充分接触或易于转移,这样就有较高的催化效率。但由于催化剂活性成分损失较大,后期催化剂的分离和回收过程较繁,同时悬浊液中溶剂对光的穿透性(或光强)以及其它化学组分对光吸收的影响,使得出现催化效率随溶液浓度的增加而减弱等问题,使其很难在实际水处理中广泛应用。

固定态就是用适当的方法将催化剂固定在合适的载体上。用以固定催化剂的载体一般有透光玻璃(片、管、环、珠),石英纤维,石英颗粒,沸石,粘土,聚四氟乙烯,不锈钢,合金等。将催化剂固定在载体上的方法也较多,如:溶胶一凝胶法、电泳、电化学沉积法、PECVD(等离子体增强化学气相沉积法)等。其中溶胶一凝胶法使用较多,也是较为理想的固定的催化剂方法之一。因为用此法可以由多种粒径和类型的载体来制备催化剂薄膜,且膜的厚度、均匀性、结晶性等都较易控制,制备技术也较简单。但是催化剂的固定化在解决了悬浮态存在问题的同时,也产生了新的问题。如有机污染物与催化剂接触的有效表面积有限,且存在传质阻力,故催化效率较悬浮态的低。但这些问题可通过设计和选择适当载体和

反应器来解决。

目前,载体的选择及催化剂固定化技术的研究已成为半导体光催化研究的一个重要方面。

此外还有加入加电子接受剂或空穴接受剂等提高效率的方法。

代表性光催化剂

从理论上讲,只要半导体吸收的光能(hν)不小于其带隙能(B.G.),能足以激发产生电子和空穴,该半导体就有可能用作光催化剂。由于涉及到材料成本、化学稳定性、抗光腐蚀能力及光匹配性能等多种因素,真正实用的尚须优化研究。常见的单一化合物光催化剂多为金属氧化物或硫化物,如TiO2、ZnO、ZnS、CdS 及PbS等。这些催化剂各自对特定反应有突出优点,具体研究中可根据需要选用。CdS半导体带隙能较小,跟太阳光谱中的近紫外光段有较好的匹配性能,可以很好地利用自然光能,但它容易发生光腐蚀,使用寿命有限。相对而言,TiO2的综合性能较好,是研究中采用最广泛的单一化合物光催化剂。

当两种或两种以上半导体材料复合时,催化活性可能会显著改观。SnO2与TiO2两者的能级不同,光激发TiO2产生的电子从其较高的导带迁移至SnO2的较低的导带;空穴的运动方向跟电子的运动方向相反,光生空穴则从SnO2的价带迁移至TiO2的价带,实现了电子和空穴的良好分离;某些材料的复合还增大催化剂总的比表面,也有利于提高反应速率。研究采用的此类催化剂还有

WO3/TiO2MoO3/TiO2SiO2/TiO2与ZrO2/TiO2等。Choi等人广泛研究了各种金属离子掺入量子尺寸的TiO2后对催化活性的影响,发现掺入少量Fe(Ⅲ)、Mo(Ⅴ)、Re (Ⅴ)或Os(Ⅲ)时对氯代烷烃的光催化降解能力明显增强。

应用

光催化制氢

氢是一种清洁、高效率,并具有高燃烧值的能源。但目前的氢能还主要是依靠煤和天然气的重整来获得,这必然会加剧非可再生能源的消耗,而且还会带来环境污染问题。以水和生物质等可再生物资为原料,利用太阳能光催化分解水制氢的方法可以从根本上解决能源及环境污染问题,光催化分解水制氢已成为新能源探索的研究热点之一。CHEN等人采用时间分辨红外光谱,直接观测了甲醇在Pt

/TiO2上光催化反应制氢过程中光生电子还原氢离子生成氢气的反应过程。邹志刚等首次成功地合成了In1-x Ni x TaO4。,它能够在可见光照射下将水分解产生氢气和氧气,是一种全新的、具有可见光活性的新型氧化物半导体光催化材料。中科院大连化物所李灿院士等人利用双共催化剂制备了Pt-PdS/CdS三元光催化剂,在可见光照射下利用Na2S作为牺牲试剂,使可见光产氢光量子效率达到93%,成为迄今为止世界范围内可见光光催化分解水制氢的最高光量子效率,并且在光催化反应过程中光催化剂非常稳定。

废水处理

有机化合物废水处理的常规方法有吸附法、混凝沉降法、生化法等,但这些常规的处理法很难去除难降解的有机物,即使降解了也容易造成二次污染。而TiO:光催化氧化技术是一种深度处理技术,可以对水中的染料、卤代脂肪烃、卤代芳烃、有机酸、杂环化合物、烃类、酚类、表面活性剂、农药等有机物进行有效的光催化反应,将其氧化成CO2和H20等无机小分子,以消除对环境的污染。

如4-氯酚完全降解为无机物质;甲醇完全降解为CO2;二氯酚完全降解为无机物质;甲苯完全降解;五氯酚完全降解为无机物质;偶氮染料酸性橙7 降解至完全褪色;氟代酚完全降解为无机物质;敌敌畏完全降解为无机物质;氯仿完全降解为无机物质,等等。

空气净化

目前,我们面临越来越严重的空气污染,来自工业生产、汽车尾气、室内建筑材料缓慢释放的有机气体造成了室内外的空气质量显著下降。研究表明,利用TiO2光催化所产生的活性氧可有效地降解这些有机污染物,而且不产生二次染。例如,在居室墙壁、办公室玻璃,以及陶瓷等建材表面,涂敷TiO2光催化薄膜或在房间内安放TiO2光催化设备,不仅能减少空气中的微生物和病菌污染颗粒,而且还能有效降解空气中的各种有害有机物质和臭味物质,净化室内空气,改善空气质量。

饮用水处理

饮用水的水源污染,特别是微量有机物的污染,给自来水行业带来了严重的问题。TiO2光催化作为一项新兴的水处理技术,在饮用水处理上受到极大的重视。

它能够有效地避免Cl2,O3,CIO2等消毒剂所产生的副产物(如三氯甲烷,NOM等),并具有较强的灭菌能力,同时能够去除细菌死亡过程中释放出来的毒素,且在这一过程中不产生对人体有害的中间产物。这使得TiO2在饮用水的处理问题上具有不可估量的发展前景.

自清洁涂层

将TiO2在基片上制备成薄膜,由于TiO2表面有超亲水性,污物不易在其表面附着,而且太阳光中的紫外线足以维持TiO2薄膜表面的亲水特性,可以使TiO2表面长期具有防污的自清洁效应.将超细化TiO2烧结在玻璃或陶瓷上,形成透明的薄膜,也可以将超微细化TiO2制成涂料,涂在瓷砖、塑料、纸的表面,利用TiO2的光催化氧化反应在其表面灭菌、除臭、防污,达到白洁净的效果。在高层建筑或汽车的玻璃上烧结一层TiO2薄膜,附在其表面上的油污能自行分解,且在潮湿或下雨天气,玻璃表面不会形成“水气”,从而起到自洁作用,并具有防雾功能. 抗菌作用

人们生活的环境中存在着各种各样的有害微生物,不仅影响人们的健康,甚至危及生命。纳米TiO2:光催化剂能够迅速抗菌与杀菌,且具有较强的杀菌力,在杀死细菌的同时,还能降解由细菌释放出的有毒物质,从而彻底杀灭细菌。研究表明,在制冷设备中,利用Ti02涂层可杀灭绿藻、乳杆嗜酸细胞、大肠杆菌、酵母菌、链球菌,以及噬菌体和脊髓灰质炎病毒等. 日本已经开发出用Ti02覆盖的抗菌陶瓷用品,在光照射下就能完全杀死其表面的细菌.

存在的问题和发展趋势

半导体光催化氧化法作为一种新兴的水处理技术,经过几十年的发展虽然取得很大的成就,但目前还不成熟,仍存在一些问题,归纳起来有如下几点:

(1)基础理论研究问题。在基础理沧研究方面,目前对光催化反应机理的研究仍停留在设想与推测阶段,今后对半导体掺杂作用机理。光生电子的移动和再结合规律。有机物的结构与反应活性的关系等还不是太清楚,有待于继续着事探讨。

(2)虽然已开发的光催化剂有很多种,但是大部分光量子效率不高,对光的响应范围狭窄,在可见光区的催化能力很低、不稳定,因此对已有体系的掺杂改

性及研制新型高效催化剂以实现在见光区具有很高的光催化性能,充分利用太阳能源将是光催化研究的一个重要方向。

(3)催化剂的固载化问题。光催化剂的固定和再生是光催化氧化技术的一个关键。寻找合适的载体和固定化方法,制备负载型催化剂,利用载体和催化剂复合功能,例如使用具有吸附功能的载体,将吸附、降解、分离有机地结合起来,克服悬浮相催化氧化中催化剂易凝聚且难以回收,活性成分损失大等缺点。

结论

针对半导体光催化的特点和存在的问题,人们对它进行了广泛的研究,但多数仍停留在实验室阶段,要投入实际应用还有待进一步深入的研究,如何提高光催化剂的光催化效率仍是研究的重点,目前提高光催化剂的光催化效率比较复杂,如何进一步简化处理手段,有效地利用太阳光和生活中的各种照明光源,将对大规模应用半导体光催化降解污染物具有深远的意义。

参考文献

[1]半导体光催化剂及其在环境保护中的应用。盛梅,许淮,朱毅青

[2]半导体多相光催化应用研究进展。韩兆慧赵化侨

[3]半导体光催化的特点及提高催化效率的途径。刘祥英,邬腊梅,柏连阳

[4]半导体光催化的应用研究。宋秀兰,姚伟峰,吴一平

[5]半导体光催化技术及其应用。王室赴张海燕

[6]半导体光催化氧化反应降解废水中有机污染物的研究进展。朱振中,陈坚[7]光催化技术研究进展。张文保

[8]半导体光催化剂的研究现状及展望谢立进,马峻峰,赵忠强,田华,周军。

TiO_2光催化剂的负载技术

TiO 2光催化剂的负载技术 杨学灵, 徐悦华3, 陈明洁, 贾金亮 (华南农业大学理学院,广东广州510642) 摘 要:从负载TiO 2光催化剂的载体、制备方法以及催化剂的负载机理等三个方面综述了近几年 来TiO 2光催化剂的负载技术。 关键词:TiO 2;载体;制备方法;负载机理中图分类号:X 703.1;O 643.3 文献标志码:A 文章编号:036726358(2009)0720443203 Immobilization Technology of Titanium Dioxide Photocatalyst YAN G Xue 2ling , XU Yue 2hua , CH EN Ming 2jie , J IA Jin 2liang (College of Science ,S out h China A gricult ural Universit y ,Guang dong Guangz hou 510642,China ) Abstract :The immo bilization technology of titanium dio xide p hotocatalyst is reviewed ,according to t he carriers for immobilized titanium dioxide p hotocatalyst ,preparation met hods and immobilization mechanism. K ey w ords :titanium dioxide ;carriers ;preparation met hods ;immobilization mechanism 收稿日期:2008210217;修回日期:2009203220 基金项目:广东省科技计划项目(编号:2007B030103019,2008B030303027)。 作者简介:杨学灵(1985~),男,硕士生,研究方向为光催化,E 2mail :yangxue2006gogo @https://www.wendangku.net/doc/c110218997.html, 。3通讯作者:E 2mail :xuyuehua @ https://www.wendangku.net/doc/c110218997.html, 。 TiO 2由于化学性质和光化学性质均十分稳定, 且无毒、价廉、催化活性高,可以无选择地光催化矿化各种有机污染物等的优点,成为最受重视和具有广阔应用前景的光催化剂[1]。最早研究的TiO 2颗粒悬浮体系,因其难于分离、回收、低的光量子效率而限制了其实际应用。因而人们研究的重点越来越转向将催化剂固定在载体上以及催化剂的改性方面。本文对TiO 2光催化剂的负载技术进行综述。1 负载TiO 2光催化剂的载体 光催化剂载体除了要求具有一般载体所具有的稳定性、高强度和大的比表面积外,还要求附着在载体上的催化剂能尽可能被光激发,发挥催化作用,以及考虑诸如光效率、光催化活性、催化剂负载的牢固性、使用寿命以及材料易得、便于设计成形等因素[2]。以下按载体的形态,将其分为一维管状、二维片状和三维颗粒状进行综述。 1.1 一维管状 碳纳米管(简称碳管)是1991年发现的一种碳 结构,理想碳管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可以从一层到上百层[3]。由于碳管具有独特的中空结构、比表面大、吸附能力强,因此是理想的催化剂载体。开小明[4]等人采用溶胶2凝胶法制备载钛碳管,并将其用于腈纶废水光催化降解研究,结果表明,有效地提高了TiO 2的光催化活性,且便于回收利用。1.2 二维片状 平板类载体常用的有镍片(泡沫镍)、铝片、钛片、不锈钢片[5]和铜合金[6]等一些耐腐蚀的金属材料和普通玻璃片[7]、二氧化硅片[8]等硅质材料。 丁震[9]用微波加热制备泡沫镍负载La 3+掺杂纳米TiO 2降解甲醛,反应90min 后甲醛降解率可达93%;活性下降的光催化剂通过蒸馏水冲洗和干

第六章半导体催化剂的催化作用及光催化原理.

第六章半导体催化剂的催化作用及光催化 原理 ?本章主要内容: ?半导体的能带结构及其催化活性 ?从能带结构出发,讨论催化剂的导电性能、逸出功与催化活性的关 系 ?半导体多相光催化原理 金属氧化物与金属硫化物催化剂概述 过渡金属氧化物与过渡金属硫化物有许多相似之处,多为半导体型化合物。 作为氧化用的过渡金属氧化物催化剂主要催化反应类型是烃类的选择性氧化和NOx的还原等; 作为催化剂的多为过渡金属硫化物,如Mo、W、Ni、Co、Fe等的金属硫化物具有加氢、异构、氢解等催化活性,用于油品的加氢精制;加氢脱硫(HDS)、加氢脱氮(HDN)、加氢脱金属(HDM)等过程。 半导体的能带结构及其催化活性 过渡金属氧化物、硫化物(半导体)催化剂 过渡金属氧化物、硫化物催化剂多属半导体类型,本章用半导体能带理论来说明这类催化剂的催化特性。将半导体的导电性能、电子逸出功与催化活性相关联,解释解释这类催化剂的催化作用。 固体的能带结构 原子核周围的电子是按能级排列的。例如1S,2S,2P,3S,3P……内层电子处于较低能级,外层电子处于较高能级。 固体是由许多原子组成的,固体中许多原子的电子轨道发生重叠,其中外层电子轨道重叠最多。由于这种重叠作用,电子不再局限于在一个原子内运动,而是在整个固体中运动,这种特性称为电子的共有化。 但重叠的外层电子也只能在相应的轨道间转移运动。例如3S引起3S共有化,形成3S 能带;2P轨道引起2P共有化,形成2P能带。 禁带、满带或价带、空带或导带 3S能带与2P能带之间有一个间隙,其中没有任何能级,故电子也不能进入此区,称之为禁带; 下面一部分的能级组成一个带,一般充满或部分充满价电子,称为满带或价带; 上面一部分的能带也组成一个带,在基态时往往不存在电子,只有处于激发态时才有电子进入此带,所以称为空带,又叫导带; 激发到空带中去的自由电子提供了半导体的导电能力。 金属的能带结构 导体、半导体、绝缘体的能带结构比较

光催化剂的发展前景与突破

光催化剂的发展前景与突破 一、解决人类生存的重大问题 光催化学科是催化化学、光电化学、半导体物理、材料科学和环境科学等多学科交叉的新兴研究领域。光催化剂的研究应用一旦获得突破,将可以使环境和能源这两个二十一世纪人类面临的重大生存问题得以解决。 利用太阳能光催化分解水制氢H2O →H2 + ?O2 彻底解决能源问题利用环境光催化C6H6 + 7 ? O2 → 6 CO2 + 3H2O 彻底解决污染问题光催化以其室温深度反应和可直接利用太阳光作为光源来驱动反应等独特性能而成为一种理想的环境污染治理技术和洁净能源生产技术。 二、光催化研究领域急需解决的重大科技问题 目前以二氧化钛为基础的半导体光催化存在一些关键科学技术难题,使其广泛的工业应用受到极大制约,而这些问题的解决有赖于深入系统的基础研究。 最突出的问题在于: (1)量子效率低(~4%) 难以处理量大且浓度高的废气和废水,难以实现光催化分解水制氢的产业化。 (2)太阳能利用率低 由于TiO2半导体的能带结构(Eg=3.2eV)决定了其只能吸收利用紫外光或太阳光中的紫外线部分(太阳光中紫外辐射仅占~5 %)。 (3)多相光催化反应机理尚不十分明确

以半导体能带理论为基础的光催化理论难以解释许多实验现象,使得改进和开发新型高效光催化剂的研究工作盲目性大。 (4)光催化应用中的技术难题 如在液相反应体系中光催化剂的负载技术和分离回收技术,在气相反应体系中光催化剂的成膜技术及光催化剂活性稳定性问题。 上述关键问题也是目前国内外光催化领域的研究焦点,围绕这些问题开展进一步的研究不仅可望在光催化基础理论方面获得较大的突破,而且有利于促进光催化技术真正能在上述众多领域得到大规模广泛工业应用。 三、光催化领域的最新研究进展 近年来,光催化的基础与应用研究发展非常迅速,特别是在可见光诱导的新型光催化剂的研究、提高光催化过程效率的研究和光催化功能材料的研究等方面都取得了重要进展。 1、可见光诱导的光催化剂研究方面取得重大突破 采用固相合成、过渡金属离子和非金属离子掺杂、金属-有机络合物、表面敏化、半导体复合等多种方法,制备出了一系列新型非二氧化钛系或二氧化钛基可见光光催化材料,这些材料在可见光的照射下,能将H2O分解为H2和O2,或能有效降解空气、水中的有机和无机污染物。 2、为解决多相光催化过程效率偏低的问题,近年从提高催化剂自身的量子效率和改进反应过来程条件两个方面开展了大量的研究工作,取得了重要进展。 采用离子掺杂、半导体复合、纳米晶粒制备、超强酸化等方法,提高光生载流子的分离效率和抑制电子-空穴的重新复合,在一定程度上改善了光催化剂的量子效率。 3、光催化材料超亲水性的发现,开辟了光催化研究和应用的新领域 利用光催化膜的超亲水性和强氧化性等特性,研制开发出一系列光催化功能材料,如光催化自清洁抗雾玻璃、光催化自清洁抗菌陶瓷和光催化环保涂料等。这些功能材料已开始在建筑材料领域应用。与之相应的光催化膜功能材料的基础研究也有大量的文献报道。 4、超分散性及可见光活性实现突破 河南工业大学李道荣教授开发出了超分散性及可见光活性纳米二氧化钛光

纳米光催化剂研究现状与展望

年月纳米光催化剂研究现状与展望 马成乡 太原学院山西太原030032 摘要:随着水污染环境问题的日益严重,纳米光催化剂的研究也逐渐的开展起来。本文在分析影响纳米光催化剂性能因素的基础上,探讨了纳米光催化剂的研究现状,并对该材料的发展进行了相关探讨。 关键词:纳米光催化剂;影响因素;研究现状 随着我们国家经济的不断发展,生态环境的污染呈现出不断恶化的趋势,各种环境污染事件开始被社会媒体广泛的暴露出来。在种类比较多的环境污染物中,有机物的比例占到了50%以上。其中天然有机物对环境水体的污染比较小,大多数人工有机物对水体环境的污染程度较大。光催化技术与其他治理环境污染的技术相比,并不需要进行二次净化处理,而且这种纳米光催化剂可以循环使用。 一、影响纳米光催化剂的因素研究 影响纳米光催化剂的性能的因素主要体现在以下几个方面:1.催化剂的晶体结构:通常用作光催化剂的TiO 2具有两种晶体结构,分别为锐钦矿型和金红石型。有的研究结构表明,如果在锐钦矿型的晶体上进行金红石型晶体的生产,能够有效的促进锐钦矿型晶体多污染物的吸收。2.纳米催化剂粒径的影响:催化剂粒径的大小对其催化性能具有着比较重要的影响。很多研究结果表明,随着催化剂粒径的降低,光谱能够响应的范围也就越来越广。尤其当光催化剂离子达到纳米级别时,将会具有更高的氧化还原能力。但是随着纳米粒径的进一步减小,光的载流子在表面符合的概率会进一步增加,也就意味着光催化剂性能的下降。3.比表面积的影响:在反应物质比较充足的情况下,表面积越大,催化剂的活性也就越高;另外催化剂表面的活性中心是并不稳定的。 在反应体系与催化剂的反应条件方面主要影响因素表现在以下几个方面:1.反应的温度:一般来说温度对于光子的表面迁移和吸附以及解吸并不会产生比较明显的影响,所以在某种程度上问对对光催化反应的影响比较小。光催化剂在光的作用下进行各类有机物的催化反应过程时,反应速率与温度比较符合阿伦尼乌斯方程的描述。2.溶液PH 值得影响:溶液的PH 值对半导体的能带分布和表面的性质具有较高的影响。徐成杰等人在研究TiO2在降解有机物的过程中发现,当溶液的PH 值为7时,其降解的效率达到最低。3.光强度的影响:当环境中光的强度较低时,降解速率与光照强度程线性关系;中等光照强度,两者呈现平方根线性关系;当进一步增加光照强度时,催化速率的增加并不明显。 二、纳米光催化的掺杂改性以及复合半导体纳米催化剂的研究 当前纳米的光催化性能研究主要集中在TiO 2的光催化剂掺杂改性研究。在很多学者的研究之中,为了进一步减少自由电子与空穴相互复合的概率,可以在二氧化钛中掺杂少量的稀土离子。非金属离子的掺杂可以使得辐射光谱的范围进一步增强,进而可以提高可见光的利用效率。最近十年以来,双组份甚至是多组分掺杂已经成为纳米光催化剂TiO 2改性研究的热点。美国华盛顿大学的S AKATania 等学者采用溶胶凝胶法制备了La-N-TiO 2光催化剂,ES R 实验研究表明,这种经过掺杂改性的催化剂在500-678nm 光源的照耀下,对于乙醛的降解具有优异的效果。 最近几年以来半导体复合光催化剂的研究引起了学者的广泛注意。从本质上来说,半导体复合就是指一种物质粒子对另外一种物质粒子的修饰。目前的研究结果表明复合半导体比单一半导体具有更好的光催化效果。Tang 等人制备了CaIn 2O 4复合半导体,在亚甲基蓝120min 的脱色实验内,其脱色率可以达到96%。T ony 等人研制除了Fe 2O 3-S nO 2、CuO-SnO 2等类型的复合纳米半导体光催化剂。 三、展望 纳米光催化剂对当前环境问题的解决提供了比较合理的方案,但是目前环境中的光催化剂研究还停留在实验室阶段,并没有得到广泛的应用。目前影响纳米光催化性能的因素主要包括了催化剂的晶体结构、比表面积、反应温度、PH 值等因素;其次对纳米光催化的掺杂改性以及复合半导体纳米催化剂的研究现状进行了一定的分析,指出在以后的污水处理方面,应该设计比较简单的工艺组合反应来处理废水中的污染物,使得纳米光催化剂能够真正的从实验室走向社会。 参考文献: [1]GuoX.,Yang J.,Deng Y.et.al Hydrothermal synthesis and photoluminescence of hierarchic al lead tungstate superstructures re f f ects of reaction temperature and surf actanats[J].European Journalof Inorganic Chemistry,2013,2010(11):1736-1742. [2]SeguraPA,Frane oisM,Ga gnonC,etal.Reviewof theoeeurreneeo f anti-inf eetivesin contaminatedwastew atersandnatUr alanddrinkingw a ters[J].EnvironHealthpersP,2012,117(5):675-684. 管理创新 2014129

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

介孔材料负载光催化剂的功能及应用

介孔材料负载光催化剂的功能及应用 2016-11-12 12:26来源:内江洛伯尔材料科技有限公司作者:研发部 介孔材料负载光催化剂在净化中的应用随着经济的高速发展,印染、制革、医药、电影、电镀等企业生产规模迅速扩大,废水排放量增加,给人类的生存环境造成污染,对人类健康构成严重威胁,废水处理已成为企业面临的重大问题,清除污染物已成为环保领域中的一项重要工作。 目前,对污染物的净化方法主要有光催化降解法、吸附法、离子交换法、电解法和化学沉淀法等。光催化处理是一种处理污染物的有效方法,具有较大的潜在工业化应用价值。光催化降解方法简单、费用低,其直接利用太阳光和能够产生紫外光的荧光灯作为激发光源,清洁环保,能够将大部分无机(如氰化物、重金属离子、 NO 、 NO 2 、 H 2 S 等)及有机污染物(如染料、表面活性剂、有机卤化物、油类、农药等)〔 21-23 〕进行有效的光催化反应,脱色、去毒、矿化降解为 CO 2 、 H 2 O 、 PO 4 3- 、 SO 4 2- 等无机小分子物质,达到完全无机化,而且可使重金属离子还原沉积,达到变废为宝的目的。有些光催化剂在激发条件下,反应前后光能转化性质没有变化,可以循环使用。介孔材料负载光催化剂是将光催化剂与介孔材料的优点结合,使污染物的降解速率加快,光催化效率提高。 介孔材料是光催化剂比较理想的载体,在其制备过程中,由于模板剂及合成方法不同,制备的孔径尺寸及结构也均不相同,使得载体表面的性质也不相同,光催化活性也有差别。王峰等采用模版剂导向自组装法,以三乙醇胺为模板剂,分别采用萃取法和煅烧脱除模板制备出蚯蚓状孔道结构的二氧化钛介孔材料;萃取法制得的介孔材料保留了较好的蚯蚓状特殊孔道结构和高比表面积,具有良好的光催化活性,使 TiO 2 的光吸性能向可见光大为拓展;而煅烧法脱除模板制备的介孔材料孔道结构被破坏,比表面积大大下降,比萃取法制备的介孔材料光催化效果差。 介孔材料负载光催化剂是环境友好的无机材料,其应用是具有广阔前景的新型净化技术,它还具有无毒、操作简便、低能耗、能够循环使用,不会产生二次污染等优点。特别是对一些难降解的有机污染物去除效果明显尤于其他方法,光催化降解后的产物为对环境无污染的小分子无机物或者可以回收利用的重金属。介孔材料本身具有较好的物理化学性能和结构特点,具备载体、催化剂、吸附剂等多重作用,而且可以对负载的光催化剂进行修饰。然而介孔材料负载光催化剂的技术主要停留在实验室研究阶段,制备技术与大规模工业化生产还存在一定的差距。限制原因如下: ( 1 )介孔材料负载光催化剂的光催化活性受多种因素影响,需要将各因素进行优化,才能发挥其高的光催化活性。

新型半导体光催化剂——纳米氧化亚铜的性质以及应用研究

新型半导体光催化剂——纳米氧化亚铜的性质以及应用研究 作者:黄祖斌 摘要:综述了纳米氧化亚铜作为半导体光催化材料的性质和在污染降解方面的应用。全文分三部分,首先对半导体光催化材料的应用现状进行了阐述;然后简要对纳米氧化亚铜作为半导体光催化材料的结构和电磁性能进行分析,详细描述了半导体光催化的光催化机理;最后,指出了该材料目前研究的前沿状况同时也指出了其目前的研究困境和需要进一步改善的方面。 关键词:纳米氧化亚铜;光催化,电子—空穴对;光量子产率及光能利用率 1.引言 近几十年来,随着现代化工工业的飞速发展,工业废气、废水、农业农药和生活垃圾等污染物的骤增,使人类赖以生存的环境——空气和水源受到日益严重的污染。这些污染物可归为3类:(1)有机污染物(R);(2)元机污染物;(3)有害金属离子(M )和有害氮氧化合物(NO x )。不容置疑,空气和水的净化、解毒已成为人们必须十分重视的环境保护研究课题。传统的污染处理措施.如空气分离(air-stripping)、碳吸附(carbon—absorption)等,只是对有机、元机污染物的一种转移、转化、稀释处理,没从根本上把它们分解成无毒物质,有时还造成二次污染;而采用氧化和臭氧处理的方法,因为可能会对环境带来其它副作用,具有风险性而被弃用在环境保护应用方面。近20多年来.光催化技术作为一种行之有效的方法对环境污染物具有很好的处理效果,因而成为研究的热点问题。其中半导体异相光催化因其能够完全催化降解污染空气和废水中的各种有机物和无机物而成为最引人注目的新技术,该技术能将许多有机污染物可以完全降 解成为C02、H 20、C1-、P0 4 3-等无机物,从而使体系的总有机物含量(TOC)大大降 低;许多无机污染物如CN-、NO x 、NH 3 、H 2 S等也同样能通过光催化反应而被降解。 半导体光催化是指半导体催化剂在可见光或紫外光作用下产生电子——空穴对,吸附在半导体表面的02、H 2 0及污染物分子接受光生电子或空穴,从而发生一系列的氧化还原反应,使有毒的污染物得以降解为无毒或毒性较小的物质的一种光化学方法:此法可在常温下进行,可利用太阳光,具有催化剂来源广、价廉、无毒、稳定、可回收利用、无二次污染等优点。目前降解有机污染物的光催 化剂多为N 型半导体材料.如TiO 2、ZnO 、CdS、WO、SnO 2 、Fe 2 3 等。但在众多 半导体光催化剂中,二氧化钛、纳米氧化亚铜因其氧化能力强、催化活性高、稳定性好等优势一直处于光催化研究的核心地位。本文就纳米氧化亚铜作为优质半导体催化材料进行阐述。 2纳米氧化亚铜结构 Cu 2 O的晶格结构是带有共价性低配位的所谓红铜矿(氧化亚铜)型结构,如图1

光催化材料的研究与进展

光催化材料的研究与进展 洛阳理工学院吴华光B08010319 摘要: 光催化降解污染物是近年来发展起来的一种节能、高效的绿色环保新技术.它在去除空气中有害物质,废水中有机污染物的光催化降解,废水中重金属污染物的降解,饮用水的深度的处理,除臭,杀菌防霉等方面都有重要作用,但是作为新功能材料,它也面临着很多局限性:催化效率不高,催化剂产量不高,有些催化剂中含有有害重金属离子可能存在污染现象。但是我们也应当看到他巨大的发展潜力和市场利用价值,作为处理环境污染的一种方式,它以零二次污染,能源消耗为零,自发进行无需监控等优势必将居于污染控制的鳌头。本文介绍了一些关于光催化研究的制备与发展方向的思考,光催化正在以TiO 2 ,ZnO为主导多种非重金属离子掺杂,趋于多样化的制备方法方向发展。 关键字:光催化催化效率 正文: 光催化(Photocatalysis)是一种在催化剂存在下的光化学反应,是光化学与催化剂的有机结合,因此光和催化剂是光催化的必要条件。“光催化”定义为:通过催化剂对光的吸收而进行的催化反应(a catalytic reaction involving light absorption by a catalyst or a substrate)。氧化钛(TiO 2 )具有稳定的结构、优良的光催化性能及无毒等特点,是近年研究最多的光催化剂, 但是,TiO 2 具有大的禁带宽度,其值为3.2 eV,只能吸收波长A≤387 11111的紫外光,不能有效地利用太阳能,光催化或能量转换效率偏低,使它的应用受到限制。因此,研制新型光催化剂、提高光催化剂的催化活性仍是重要的研究课题]1[。复合掺杂不同半导体,利用不同半导体导带和价带能级的差异分离光生载流子,降低复合几率,提高量子效率,成为提高光催化材料性能的有效方法5]-[2。 与一元氧化物如TiO 2 和ZnO等光催化剂相比,复合氧化物光催化剂,如 ZnO- SnO 2TiO 2 -SnO 2 和WO3- TiO 2 等体系具有吸收波长更长和光催化效率更 高等特点因而成为研究热点. 一、常用的光催化剂的制备方法 (一)水热合成法。 热合成反应是在特制的密封容器中(能够产生一定的压力),以水溶液作为反应介质,通过对反应体系加热或接近其临界温度而产生高压,从而进行材料的合成与制备的一种有效方法。 (二)溶剂热合成法 溶剂热合成技术是在水热法的基础上,以有机溶剂代替水作为介质,采用类似水热合成的原理制备纳米材料,极大的扩展水热法的应用范围。 (三)溶胶-凝胶法

光催化原理

光催化原理 光催化的原理: (1)它是一种利用新型的复合纳米高科技功能材料的技术。 (2)它一种是低温深度反应技术,光催化剂纳米粒子在一定波长的光线照射下受激生成电子—空穴对,空穴分解催化剂表面吸附的水产生氢氧自由基,电子使其周围的氧还原成活性离子氧,从而具备极强的氧化—还原作用,将光催化剂表面的各种污染物摧毁。 (1)低温深度反应: 光催化氧化可在室温下将水、空气和土壤中有机污染物完全氧化成无毒无害的物质。而传统的高温焚烧技术则需要在极高的温度下才可将污染物摧毁,即使用常

规的催化氧化方法亦需要几百度的高温。 (2)净化彻底: 它直接将空气中的有机污染物,完全氧化成无毒无害的物质,不留任何二次污染,目前广泛采用的活性炭吸附法不分解污染物,只是将污染源转移。 (3)绿色能源: 光催化可利用太阳光作为能源来活化光催化剂,驱动氧化—还原反应,而且光催化剂在反应过程中并不消耗。从能源角度而言,这一特征使光催化技术更具魅力。(4)氧化性强: 大量研究表明,半导体光催化具有氧化性强的特点,对臭氧难以氧化的某些有机物如三氯甲烷、四氯化炭、六氯苯、都能有效地加以分解,所以对难以降解的有机物具有特别意义,光催化的有效氧化剂是羟基自由基(HO),HO的氧化性高于常见的臭氧、双氧水、高锰酸钾、次氯酸等。 (5)广谱性: 光催化对从烃到羧酸的种类众多有机物都有效,美国环保署公布的九大类114 种污染物均被证实可通过光催化得到治理,即使对原子有机物如卤代烃、染料、含氮有机物、有机磷杀虫剂也有很好的去除效果,一般经过持续反应可达到完全净化。 (6)寿命长: 理论上,催化剂的寿命是无限长的。

负载型纳米二氧化钛光催化剂的研究进展

负载型纳米二氧化钛光催化剂的研究进展 占长林,雷绍民 武汉理工大学资源与环境工程学院,湖北武汉(430070) E-mail: chl_zhan@https://www.wendangku.net/doc/c110218997.html, 摘要:TiO2光催化氧化技术是当前最有应用潜力的一种环保新技术,在废水处理、空气净化、抗菌除臭、自清洁等领域具有广阔的应用前景。负载型TiO2光催化剂的制备是实现光催化氧化技术工业化应用的关键技术之一。本文对负载型TiO2光催化剂的制备方法及负载所选用的载体类型进行了综述。 关键词:TiO2;光催化;制备;载体 1. 引言 半导体光催化氧化技术是近年来研究发展起来的一种新的污染治理技术。研究发现,利用半导体光催化法能够有效地降解甚至矿化水和空气中的各种有机污染物,例如卤代烃、硝基芳烃、酚类、有机颜料、杀虫剂、表面活性剂等;能够有效地将无机污染物转化成无毒的物质,例如可以去除废水中的有毒重金属离子,如C r6+、Ag+、Hg2+、Pb2+等[1],也可以将氰化物[2]、亚硝酸盐、硫氰酸盐[3]等转化成无毒的形式;还可以应用于抗菌、除臭、空气净化、自洁净材料以及杀死癌细胞等[4, 5]。目前,已经研究开发的半导体光催化剂有TiO2、ZnO、WO3、CdS、ZnS、SnO2、Fe3O4等。其中,TiO2具有化学稳定性好、耐腐蚀、高活性、廉价、无毒等优点,因此被广泛地用作光催化剂。 目前,TiO2光催化剂在水处理的应用中,大多是采用悬浮体系。粉末状悬浮态的TiO2颗粒在液相中与污染物接触面积大,传质效果好,因此催化效率高。但是目前的商品TiO2颗粒细小而且比重较小,在流体中不仅分离困难,难以回收,而且易发生凝聚降低活性,极大地限制了其实际应用。将TiO2固定在某种载体上,可以克服悬浮相TiO2光催化剂的缺点,解决催化剂分离回收难的问题,而且可以根据光催化反应器结构的不同来选择不同载体和固定化工艺。 2. TiO2光催化剂的固定化工艺 TiO2的负载大体上包括两种方式:一种方式是将TiO2负载到光滑平整的载体上,形成均一连续的薄膜;另一种方式是将TiO2紧紧固定到某种载体上。实际上,这两种方式在制备方法上是大同小异,只是所选择的载体有所不同。一般而言制膜技术可用于固定化的负载,但固定化的负载技术不一定适合于制膜,光催化剂的制备方法主要有以下几种。 2.1 溶胶-凝胶法(Sol-gel) 溶胶-凝胶法是以钛的无机盐类(如TiC14、Ti(SO4)2等)或钛酸酯类(如钛酸丁酯、、钛酸四异丙酯等)为原料,将其溶于低碳醇中(如乙醇、异丙醇等),然后在室温下加入到强度酸性的水溶液中(如HNO3、HCl),强烈搅拌下水解制得TiO2溶胶。然后再根据不同的载体采用不同的工艺进行涂膜,如载体为片状,用浸渍提拉法、旋涂法、喷涂等方法将TiO2溶胶涂布其上,使其在100℃或自然状态下凝固,再在一定温度下(300~700℃)烧结一定时间即得到负载型TiO2光催化剂。 张新荣等[6]以四异丙醇钛、硅酸乙酯为原料,空心玻璃微球为载体,采用溶胶—凝胶法制备可漂浮附载型复合光催化剂TiO2·SiO2/beads,该负载型复合光催化剂活性显著增强,而

半导体光催化综述

硫及金属硫化物-类石墨相氮化碳纳米复合材料的制备,表征及其光催化性能的研究

第一章绪论 自18世纪60年代的第一次工业革命到现在以来,科学技术迅猛发展、日新月异。工业革命(第一次科技革命)以瓦特的蒸汽机的发明为标志,宣告了人类社会由原来的火器时代,进入到了蒸汽时代。第二次科技革命发生在19世纪70年代,在这个时期,自然科学取得了飞速的进展,由于资本主义制度的逐渐形成和完善,资本主义国家为了生存和发展,开始了大量的对世界资源进行掠夺。两次工业革命对然建立了世界的初步两极格局,但是两次科技革命的功劳还是不容忽视的,它们推动了传统的农业,手工业向现代化工业以及机器化工业的飞速发展,并且带给了人类社会巨大的物质财富,在资本主义国家逐利的对外扩张过程中,不可否认的是它们的争斗促进了人类文明的进步和繁荣。但是,当资本家们在大力发展社会生产力,提高生活水平的同时,对环境也造成了严重的破坏,至今,已严重威胁着我们所处在的的生存环境。 特别是在进入20世纪50年代之后的第三次科技革命;随着工业现代化进程的加快,人类向所生存的环境排放了大量的生产废水、废气,它们其中含有大量的有毒污染物如医用药品、农药、工业染料、表面活性剂和含有重金属离子的溶液等,含有上述物质的这些废水给人类的健康和生存环境带来巨大的威胁。而且在上述这些污染物中,用传统的处理方法很难将其完全消灭和降解。废水中的很多有机化合物能使水中的厌氧微生物发生异变,从而产生明显的毒害作用;所以必须创造出一些其它的非生物的降解技术来除去这些有机化合物[1-3]。因此,开发一种简便、有效、快捷、无害的方法来治理水体污染和大气污染是当前社会一个亟待解决的问题。并且,社会现代化的发展需要消耗大量的能源,据专家分析,传统的化石能源已经不能继续维持人类社会的长期发展,而且传统的化石能源的使用是当前引发严重环境问题的万恶之源。所以,环境问题和能源问题是21世纪可持续发展战略的两大亟待解决的严重问题。

光催化材料的基本原理

二,光催化材料的基本原理 半导体在光激发下,电子从价带跃迁到导带位置,以此,在导带形成光生电子,在价带形成光生空穴。利用光生电子-空穴对的还原氧化性能,可以降解周围环境中的有机污染物以及光解水制备H2和O2。 高效光催化剂必须满足如下几个条件:(1)半导体适当的导带和价带位置,在净化污染物应用中价带电位必须有足够的氧化性能,在光解水应用中,电位必须满足产H2和产O2的要求。(2)高效的电子-空穴分离能力,降低它们的复合几率。(3)可见光响应特性:低于420nm左右的紫外光能量大概只占太阳光能的4%,如何利用可见光乃至红外光能量,是决定光催化材料能否在得以大规模实际应用的先决条件。常规anatase-type TiO2 只能在紫外光响应,虽然通过搀杂改性,其吸收边得以红移,但效果还不够理想。因此,开发可见光响应的高效光催化材料是该领域的研究热点。只是,现在的研究状况还不尽人意。 三,光催化材料体系的研究概况 从目前的资料来看,光催化材料体系主要可以分为氧化物,硫化物,氮化物以及磷化物 氧化物:最典型的主要是TiO2及其改性材料。目前,绝大部分氧化物主要集中在元素周期表中的d区,研究的比较多的是含Ti,Nb,

Ta的氧化物或复合氧化物。其他的含W,Cr,Fe,Co,Ni,Zr等金属氧化物也见报道。个人感觉,d区过渡族金属元素氧化物经过炒菜式的狂轰乱炸后,开发所谓的新体系光催化已经没有多大潜力。目前,以日本学者J. Sato为代表的研究人员,已经把目光锁定在p区元素氧化物上,如含有Ga,Ge,Sb,In,Sn,Bi元素的氧化物。 硫化物:硫化物虽然有较小的禁带宽度,但容易发生光腐蚀现象,较氧化物而言,稳定性较差。主要有ZnS,CdS等 氮化物:也有较低的带系宽度,研究得不多。有Ta/N,Nb/N等体系 磷化物:研究很少,如GaP 按照晶体/颗粒形貌分类: (1)层状结构 **半导体微粒柱撑于石墨及天然/人工合成的层状硅酸盐 **层状单元金属氧化物半导体如:V2O5,MoO3,WO3等 **钛酸,铌酸,钛铌酸及其合成的碱(土)金属离子可交换层状结构和半导体微粒柱撑于层间的结构 **含Bi层状结构材料,(Bi2O2)2+(An-1BnO3n+1)2- (A=Ba,Bi,Pb;B=Ti,Nb,W),钙钛矿层(An-1BnO3n+1)2-夹在(Bi2O2)2+层之间。典型的有:Bi2WO6,Bi2W2O9,Bi3TiNbO9

光催化原理及应用

光催化原理及应用 起源 光触媒,是一个外来词,起源于日本,由于日本文字写成“光触媒”,所以中国人就直接把她命名为“光触媒”。其实日文“光触媒”翻译成中文应该叫“光催化剂”翻译成英文叫“photo catalyst”。光触媒于1967年被当时还是东京大学研究生的藤岛昭教授发现。在一次试验中对放入水中的氧化钛单结晶进行了光线照射,结果发现水被分解成了氧和氢。这一效果作为“ 本多· 藤岛效果” (Honda-Fujishima Effect)而闻名于世,该名称组合了藤岛教授和当时他的指导教师----东京工艺大学校长本多健一的名字。 这种现象相当于将光能转变为化学能,以当时正值石油危机的背景,世人对寻找新能源的期待甚为殷切,因此这一技术作为从水中提取氢的划时代方法受到了瞩目,但由于很难在短时间内提取大量的氢气,所以利用于新能源的开发终究无法实现,因此在轰动一时后迅速降温。 1992年第一次二氧化钛光触媒国际研讨会在加拿大举行,日本的研究机构发表许多关于光触媒的新观念,并提出应用于氮氧化物净化的研究成果。因此二氧化钛相关的专利数目亦最多,其它触媒关连技术则涵盖触媒调配的制程、触媒构造、触媒担体、触媒固定法、触媒性能测试等。以此为契机,光触媒应用于抗菌、防污、空气净化等领域的相关研究急剧增加,从1971年至2000年6月总共有10,717件光触媒的相关专利提出申请。二氧化钛 TiO 2 光触媒的广泛应用,将为人们带来清洁的环境、健康的身体。 催化剂是加速化学反应的化学物质,其本身并不参加反应。典型的天然光催化剂就是我们常见的叶绿素,在植物的光合作用中促进空气中的二氧化碳和水合成为氧气和碳水化合物。 光触媒是一种纳米级的金属氧化物材料,它涂布于基材表面,在光线的作用下,产生强烈催化降解功能:能有效地降解空气中有毒有害气体;能有效杀灭多种细菌,并能将细菌或真菌释放出的毒素分解及无害化处理;同时还具备除臭、抗污等功能。光催化是在光的辐照下使催化剂周围的氧气和水转化成极具活性的氧自由基,氧化力极强,几乎可以分解所有对人体或环境有害的有机物质总的来说纳米光触媒技术是一种纳米仿生技术,用于环境净化,自清洁材料,先进新能源,癌症医疗,高效率抗菌等多个前沿领域。 早在1839 年, Becquere 就发现了光电现象, 然而未能对其进行理论解释。直到1955 年, Brattain 和Gareet才对光电现象进行了合理的解释, 标志着光电化学的诞生。1972 年, 日本东京大学Fu jishmi a和H onda研究发现[ 3] , 利用二氧化钛单晶进行光催化反应可使水分解成氢和氧。这一开创性的工作标志着光电现象应用于光催化分解水制氢研究的全面启动。在过去30 年里, 人们在光催化材料开发与应用方面的研究取得了丰硕的成果。 以二氧化钛为例, 揭示了其晶体结构、表面羟基自由基以及氧缺陷对量子效率的影响机制; 采用元素掺杂、复合半导体以及光敏化等手段拓展其光催化活性至可见光响应范围; 通过在其表面沉积贵金属纳米颗粒可以提高电子- 空穴对的分离效率, 提高其光催化活性。尽管人们对光催化现象的认知与应用取得了长足的进步, 然而受认知手段与认知水平的限制, 目前对光催化作用机理的研究成果仍不足以指导光催化技术的大规模工业化应用, 亟待大力开展光催化基本原理研究工作以促进这一领域的发展。另一方面, 现有光催化材料的光响应范围窄, 量子转换效率低, 太阳能利用率低, 依然是制约光催化材料应用的瓶颈。寻找和制备高量子效率光催化材料是实现光能转换的先决条件, 也是光催化材料研究者所需要解决的首要任务之一。 光催化机理: 半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解,这一过程称为光催化。当光能等于或超过半导体材料的带隙能量时,电子从价带(VB)激发到导带(CB)形成光生载流子(电子-空穴对)。在缺乏合适的电子或空穴捕获剂时,吸收的光能因为载流子复合而以热的形式耗散。价带空穴是强氧化剂,而导带电子是强还原剂。大多数有机光降解是直接或间接利用了空穴的强氧化能力。 例如TiO2是一种半导体氧化物,化学稳定性好(耐酸碱和光化学腐蚀),无毒,廉价,原料来源丰富。 TiO2在紫外光激发会产生电子-空穴对,锐钛型TiO2激发需要3.2 eV的能量,对应于380 nm左右的波长。光催化活性高(吸收紫外光性能强;能隙大,光生电子的还原性和和空穴的氧化性强)。因此其广泛应用于水纯化,废水

半导体光催化综述

硫及金属硫化物-类石墨相氮化碳纳米复合材料的制备, 表征及其光催化性能的研究

第一章绪论 自18世纪60年代的第一次工业革命到现在以来,科学技术迅猛发展、日新月异。工业革命(第一次科技革命)以瓦特的蒸汽机的发明为标志,宣告了人类社会由原来的火器时代,进入到了蒸汽时代。第二次科技革命发生在19世纪70年代,在这个时期,自然科学取得了飞速的进展,由于资本主义制度的逐渐形成和完善,资本主义国家为了生存和发展,开始了大量的对世界资源进行掠夺。两次工业革命对然建立了世界的初步两极格局,但是两次科技革命的功劳还是不容忽视的,它们推动了传统的农业,手工业向现代化工业以及机器化工业的飞速发展,并且带给了人类社会巨大的物质财富,在资本主义国家逐利的对外扩张过程中,不可否认的是它们的争斗促进了人类文明的进步和繁荣。但是,当资本家们在大力发展社会生产力,提高生活水平的同时,对环境也造成了严重的破坏,至今,已严重威胁着我们所处在的的生存环境。 特别是在进入20世纪50年代之后的第三次科技革命;随着工业现代化进程的加快,人类向所生存的环境排放了大量的生产废水、废气,它们其中含有大量的有毒污染物如医用药品、农药、工业染料、表面活性剂和含有重金属离子的溶液等,含有上述物质的这些废水给人类的健康和生存环境带来巨大的威胁。而且在上述这些污染物中,用传统的处理方法很难将其完全消灭和降解。废水中的很多有机化合物能使水中的厌氧微生物发生异变,从而产生明显的毒害作用;所以必须创造出一些其它的非生物的降解技术来除去这些有机化合物[1-3]。因此,开发一种简便、有效、快捷、无害的方法来治理水体污染和大气污染是当前社会一个亟待解决的问题。并且,社会现代化的发展需要消耗大量的能源,据专家分析,传统的化石能源已经不能继续维持人类社会的长期发展,而且传统的化石能源的使用是当前引发严重环境问题的万恶之源。所以,环境问题和能源问题是21世纪可持续发展战略的两大亟待解决的严重问题。 1.1研究背景与意义

光解水制氢半导体光催化材料的研究进展

光解水制氢半导体光催化材料的研究进展 田蒙奎1 ,2 ,上官文峰2 ,欧阳自远1 ,王世杰1 (1. 中国科学院地球化学研究所,贵州贵阳550002 ; 2. 上海交通大学机械与动力学院燃烧与环境技术研究中心,上海200030) 摘要: 自从Fujishima2Honda 效应发现以来,科学研究者一直努力试图利用半导体光催化剂光分解水来获得既可储存而又清洁的学能———氢能。近一二十年来,光催化材料的研究经历了从简单氧化物、复合氧化物、层状化合物到能响应可见光的光催化材料。本文重点描述了这些光催化材料的结构和光催化特性,阐述了该课题的意和今后的研究方向。关键词: 光解水;氢能;半导体光催化剂中图分号: X13 文献标识码:A文章编号:100129731 (2005) 1021489204 1 引言 在能源危机和环境问题的双重压力下,氢能因其燃烧值高、储量丰富、无污染而成为最有希望替代现有化石能源的清洁能源,因而氢能的开发成了能源领域的研究热点。自从Fujishima 和Honda 于1972 年发现了TiO2 光电化学能分解水产生H2 和O2 以来[1 ] ,科学研究者实现太阳能光解水制氢一直在作不懈的努力。普遍接受的光解水制氢原理是:半导体光催化剂在能量等于或大于其禁带宽度的光辐射时,电子从最高电子占据分子轨道( HOMO ,即价带) 受激跃迁至最低电子占据分子轨道(LUMO ,即导带) ,从而在价带留下了光生空穴( h + ) , 导带中引入了光生电子(e - ) 。光生空穴和光生电子分别具有氧化和还

原能力。要实现太阳能光解水制氢和氧,光生电子的还原能力必须能还原H2O 产生H2 ,而光生空穴的氧化能力必须能氧化H2O 产生O2 ,即半导体光催化剂的导带底要在H2O/ H2 电位( E0 = 0V ,p H = 0) 的上面(导带位置越高,电位越负,还原能力越强) ;而价带顶在O2 / H2O 电位( ENHE = + 1. 23V ,p H = 0) 的下面(价带位置越低,电位越正,氧化能力越强) 。近一二十年来, TiO2 以外的光催化剂的相继发现,特别是能响应可见光的光催化材料的出现,使得光解水制氢研究进入了非常活跃时期。本文就近期太阳能光解水制氢研究进展中的半导体光催化材料作一综述。 2 简单半导体氧化物,硫化物系光催化剂目前广泛研究的简单化合物半导体材料的能带结构如图1 所示: 图1 部分半导体材料的能带结构示意图 Fig 1 Schematic diagram of band st ructure for some semiconductor s TiO2 光催化剂由于光照不发生光腐蚀、耐酸碱性好、化学性质稳定、对生物无毒性、来源丰富等优点而被广为利用。具有代表性的

相关文档
相关文档 最新文档