文档库 最新最全的文档下载
当前位置:文档库 › 二重积分换元法

二重积分换元法

二重积分换元法
二重积分换元法

感悟二重积分的魅力

定理 设),(y x f 在xOy 平面上的闭区域D 上连续,变换

),(),,(:v u y y v u x x T ==

将uOv 平面上的闭区域'D 变为xOy 平面上的D ,且满足 (1)),(),,(v u y v u x 在'D 上具有一阶连续偏导数; (2)在'D 上雅可比(Jacobi )式

;0)

,()

,(),(≠??=

v u y x v u J (3)变换D D T →':是一对一的, 则有

.|),(|)],(),,([),('

dudv v u J v u y v u x f dxdy y x f D D

????=

例(高等数学第六版152P 例8):求由直线)0,0(,,,b a d c bx y ax y d y x c y x <<<<===+=+所围成的闭区域D (图10-26左)的面积.

解 所求面积为

??D

dxdy

令,,x y v y x u =

+=则.1,1v

uv y v u x +=+= },,|),{('b v a d u c v u D ≤≤≤≤=

如图10-26右所示,又雅可比式

'),(,0)1(),(),(2

D v u v u

v u y x J ∈≠+=??=

从而所求面积为

.)1)(1(2)

)(()1()1(222'

2b a c d a b udu v dv dudv v u dxdy d c b a D D ++--=+=+=??????

现对该题做一个拓展延伸。

求由曲线)0,(,,1,122d c b a dy x cy x e y e y bx ax <<<==-=-=所围成的闭区域D 的面积. 解 所求面积为

??D

dxdy

令2,)1ln(y x v x y u =+=,先求雅可比式v

y u y

v x u

x

v u y x v u J ????????=??=),(),(),(, 由?

??=-=+-00)1ln(2

x vy y ux 知,这是一个隐函数方程组,其解可写为 ?

?

?==),()

,(v u y y v u x x (*) 又2,)1ln(y

x

v x y u =+=

,将(*)分别对y x ,求偏导数,即: ???

?????????

?=???

? ??-??+???? ??+??=???

? ??-??+???? ??+??=????

????+??? ??+-??=????

????+??? ?

?+-??12)1(10

2)1(101)1ln(11)1ln(332222y x v y y x u y y x v x y x u x y v y x y u y y v x x y u x 令

,2,)1(1,1,)1ln(322y x q y x p y n x y m -=+==+-=方程可化为???????????=??+??=??+??=??+??=??+??10

1v y q u

y

p v x q u

x p v y n u y m v x n u x

m 解为:????????????

?

???????????

?

=

??=??=??=??q

p n m p m v y q p n m q n

u y q p n

m p m

v x q p n m q n u x 1

100

1

1,从而)

1(1

)1ln(21

)

1(11

2)1ln(1

1)(1),(),(2323

222+-+=

+-+=

-=

--=--=????????=??=y xy xy y y x y

y x x y np m q np m q np m q m n p q q p n m v y u y

v x

u x

v u y x J 所以问题就变为: 求dudv y xy xy y D ??

+-+=Ω'

23)

1(1

)1ln(21

,}),|),{('(d v c b u a v u D ≤≤≤≤=,其中y x ,由隐函数方程组

???

????

=+=2)1ln(y x v x y u 确定.

显然,该二重积分是有解的,且是唯一的,二重积分可转为二次积分:

dv y xy xy y du b

a d

c

??

+-+=Ω)

1(1

)1ln(21

23

Ω就是曲线所围成阴影部分的面积,但以现在的能力,我还无法求出Ω具体的解析解,但这种探讨

的过程是有必要的,如果谁能解出来,加我QQ :1596058469,我们就是好友。

换元积分法第一类换元法

§4.2 换元积分法 Ⅰ 授课题目 §4.2 换元积分法(第一类换元法) Ⅱ 教学目的与要求: 1. 理解第一类换元法的基本思想,它实际上是复合函数求导法则的逆过程,其关键是“凑微 分”,dx x x d )()(?'=? . 2. 掌握几种典型的凑微分的方法,熟练应用第一类换元积分法求有关不定积分. Ⅲ 教学重点与难点: 重点:第一换元法的思想, 难点:熟练应用第一换元法计算有关函数的不定积分. Ⅳ 讲授内容: 一、第一类换元积分法 设)(u f 具有原函数)(u F ,()()f u du F u C =+? .若u 是中间变量,()u x ?=,()x ?可微,则根据复合函数求导法则,有 (())()[()]()dF x dF du du f u f x x dx du dx dx ???'===。 所以根据不定积分的定义可得: ()[()]()[()][][()]u x f x x dx F x C F u C f u du ????='=++=?? 以上是一个连等式可以改变顺序从新写一遍,就有 [][]()[()]()][()]()u x f x x dx f u du F u C F x C ????='=+=+? ?. 以上就是第一换元积分法。 从以上可以看出,虽然 [()]()f x x dx ??'?是一个整体记号,但是被积表达式中的dx 可当作变量 x 的微分来对待,从而上式中的()x dx ?'可以看成是()x ?的微分,通过换元()u x ?=,应用到被积表达式中就得到()x dx du ?'=. 定理1 设)(u f 具有原函数)(u F ,)(x u ?=可导,dx x du )(?'=,则 [()()()()[()]f x x dx f u du F u C F x C ???'==+=+?? (1) 如何应用公式(1),在求不定积分积分()g x dx ? 时, 如果被积函数g (x )可以化为一个复合函数与它内函数的导函数的积的形式[()]()f x x ??'的形式, 那么 ()()[()]()[()]x u g x dx f x x dx f u du ???='=??? ()()[()]u x F u C F x C ??==++. 所以第一换元积分法体现了“凑”的思想.把被积函数凑出一个复合函数与其内函数的积

换元积分法(第一类换元法)

§4.2 换元积分法 Ⅰ 授课题目 §4.2 换元积分法(第一类换元法) Ⅱ 教学目的与要求: 1. 理解第一类换元法的基本思想,它实际上是复合函数求导法则的逆过程,其关键是“凑微 分”,dx x x d )()(?'=? . 2. 掌握几种典型的凑微分的方法,熟练应用第一类换元积分法求有关不定积分. Ⅲ 教学重点与难点: 重点:第一换元法的思想, 难点:熟练应用第一换元法计算有关函数的不定积分. Ⅳ 讲授内容: 一、第一类换元积分法 设)(u f 具有原函数)(u F ,()()f u du F u C =+?.若u 是中间变量,()u x ?=,()x ?可微,则 根据复合函数求导法则,有 (())()[()]()dF x dF du du f u f x x dx du dx dx ???'===。 所以根据不定积分的定义可得: ()[()]()[()][][()]u x f x x dx F x C F u C f u du ????='=++=?? 以上是一个连等式可以改变顺序从新写一遍,就有 [][]()[()]()][()]()u x f x x dx f u du F u C F x C ????='=+=+? ?. 以上就是第一换元积分法。 从以上可以看出,虽然 [()]()f x x dx ??'?是一个整体记号,但是被积表达式中的dx 可当作变量 x 的微分来对待从而上式中的()x dx ?'可以看成是()x ?的微分,通过换元()u x ?=,应用到被积 表达式中就得到()x dx du ?'=. 定理1 设)(u f 具有原函数)(u F ,)(x u ?=可导,dx x du )(?'=,则 [()()()()[()]f x x dx f u du F u C F x C ???'==+=+?? (1) 如何应用公式(1),在求不定积分积分()g x dx ? 时 如果被积函数g (x )可以化为一个复合函数与 它内函数的导函数的积的形式[()]()f x x ??'的形式 那么 ()()[()]()[()]x u g x dx f x x dx f u du ???='=??? ()()[()]u x F u C F x C ??==++. 所以第一换元积分法体现了“凑”的思想.把被积函数凑出一个复合函数与其内函数的积

§4.2换元积分法(第二类换元法)

§ 4.2 换元积分法(第二类) I 授课题目(章节): § 4.2 换元积分法(第二类换元积分法) n 教学目的与要求: 1.了解第二类换元法的基本思想 2.掌握几种典型题的第二类换元积分法解法 川教学重点与难点: 重点:第二换元法中的三角代换及根式代换 难点:积分后的结果进行反代换 IV 讲授内容: 第一类换元积分法的思想是:在求积分g(x)dx时.如果函数g(x)可以化为f[::(x)]:「(x)的形式.那么 g(x)dx = f[ (x)] (x)dx 二f[ (x)]d ;:(x)^(x\ f (u)du = F(u) C =F[ (x)] C 所以第一换元积分法体现了“凑”的思想?把被积函数凑出形如 f [- (x)F (x)函数来.对于某些 函数第一换元积分法无能为力,例如..a^x2dx.对于这样的无理函数的积分我们就得用今天要 学习的第二类换元积分法。 第二类换元的基本思想是选择适当的变量代换x二(t)将无理函数f (x)的积分.f (x)dx化为有理式(t)卜(t)的积分.(t)F (t)dt。即卩 f (x)dx= . f「(t)「(t)dt 若上面的等式右端的被积函数f「(t)「(t)有原函数G(t),则.(t)]:(t)dt = G (t) ? C, 然后再把「(t)中的t还原成4(x),所以需要一开始的变量代换x = ' (t)有反函数。 定理2设x =?(t)是单调、可导的函数,且;(t) = 0,又设f「:(t)];(t)有原函数叮」(t),则.f (x)dx「(t)],(t)dt =「(t) C_1(x)] C 分析要证明.f(x)dx =叫'4(x)] C ,只要证明叮4(x)]的导数为f (x),

换元积分法(第二类换元法)

§4.2 换元积分法(第二类) Ⅰ 授课题目(章节): §4.2 换元积分法 (第二类换元积分法) Ⅱ 教学目的与要求: 1.了解第二类换元法的基本思想 2.掌握几种典型题的第二类换元积分法解法 Ⅲ 教学重点与难点: 重点:第二换元法中的三角代换及根式代换 难点:积分后的结果进行反代换 Ⅳ 讲授内容: 第一类换元积分法的思想是:在求积分()g x dx ? 时, 如果函数g (x )可以化为[()]()f x x ??'的形式, 那么 () ()[()]()[()]() ()u x g x dx f x x dx f x d x f u du ?????='==???? ()F u C =+[()]F x C ?=+ 所以第一换元积分法体现了“凑”的思想.把被积函数凑出形如[()]()f x x ??'函数来.对于某些函数第一换元积分法无能为力,例如? -dx x a 22.对于这样的无理函数的积分我们就得用今天要 学习的第二类换元积分法。 第二类换元的基本思想是选择适当的变量代换)(t x ψ=将无理函数()f x 的积分()f x dx ?化为 有理式[()]()f t t ψψ'的积分 [()]()f t t dt ψψ'?。即 ()[()]()f x dx f t t dt ψψ'=?? 若上面的等式右端的被积函数[()] ()f t t ψψ'有原函数()t Φ,则[()]()()f t t dt t C ψψ'=Φ+?, 然后再把()t Φ中的t 还原成1 ()x ψ-,所以需要一开始的变量代换)(t x ψ=有反函数。 定理2 设)(t x ψ=是单调、可导的函数,且0)(≠ψ't ,又设)()]([t t f ψ'ψ有原函数()t Φ,则 ??+ψΦ=+Φ=ψ'ψ=-C x C t dt t t f dx x f )]([)()()]([)(1 分析 要证明 1()[()]f x dx x C ψ-=Φ+? ,只要证明1[()]x ψ-Φ的导数为()f x , 1[()]d d dt x dx dt dx ψ-ΦΦ=? , ?dt dx =

不定积分第一类换元法

不定积分第一类换元法(凑微分法) 一、 方法简介 设)(x f 具有原函数)(u F ,即)()('u f u F =,C u F du u f +=?)()(,如果U 是中间变量,)(x u ?=,且设)(x ?可微,那么根据复合函数微分法,有 dx x x f x dF )(')]([)]([???= 从而根据不定积分的定义得 ) (] )([)]([)(')]([x u du u f C x F dx x x f ????=??=+=. 则有定理: 设)(u f 具有原函数,)(x u ?=可导,则有换元公式 ) (] )([)(')]([x u du u f dx x x f ???=??= 由此定理可见,虽然?dx x x f )(')]([??是一个整体的记号,但如用导数记号 dx dy 中的dx 及dy 可看作微分,被积表达式中的dx 也可当做变量x 的微分来对待,从而微分等式du dx x =)('?可以方便地应用到被积表达式中。 几大类常见的凑微分形式: ○1??++=+)()(1 )(b ax d b ax f a dx b ax f )0(≠a ; ○ 2??=x d x f xdx x f sin )(sin cos )(sin ,??-=x d x f xdx x f cos )(cos sin )(cos ,?? =x d x f x dx x f tan )(tan cos ) (tan 2,x d x f x dx x f cot )(cot sin )(cot 2??-=; ○3??=x d x f dx x x f ln )(ln 1 )(ln ,??=x x x x de e f dx e e f )()(; ○ 4n n n n x d x f n dx x x f ??=-)(1)(1)0(≠n ,??-=)1()1()1(2x d x f x dx x f ,? ?=)()(2) (x d x f x dx x f ; ○ 5??=-x d x f x dx x f arcsin )(arcsin 1)(arcsin 2 ;

§4.2换元积分法(第一类换元法)

4.2 换元积分法 Ⅰ 授课题目 §4.2 换元积分法(第一类换元法) Ⅱ 教学目的与要求: 1. 理解第一类换元法的基本思想,它实际上是复合函数求导法则的逆过程,其关键是“凑微 分”, d (x) (x)dx . 2. 掌握几种典型的凑微分的方法,熟练应用第一类换元积分法求有关不定积分 . Ⅲ 教学重点与难点: 重点:第一换元法的思想, 难点:熟练应用第一换元法计算有关函数的不定积分 . Ⅳ 讲授内容: 一、第一类换元积分法 设 f(u)具有原函数 F(u), f(u)du F(u) C .若u 是中间变量, u (x), (x)可微,则 根据复合函数求导法则,有 所以根据不定积分的定义可得: f [ (x)] (x)dx F[ (x)] C u (x) F[u] C [ f (u)du] 以上是一个连等式可以改变顺序从新写一遍,就有 f [ (x)] (x)]dx u (x) [ f(u)du] F u C F (x) C . 以上就是第一换元积分法。 从以上可以看出, 虽然 f[ (x)] (x)dx 是一个整体记号, 但是被积表达式中的 dx 可当作变量 x 的微分来对待 从而上式中的 (x) dx 可以看成是 (x)的微分, 通过换元 u ( x) ,应用到被积表 达式中就得到 (x)dx du . 定理 1 设 f (u)具有原函数 F(u) ,u (x)可导, du (x)dx ,则 f [ (x) (x)dx f (u)du F(u) C F[ (x)] C (1) 如何应用公式 (1) ,在求不定积分积分 g(x)dx 时 如果被积函数 g(x)可以化为一个复合函数与 它内函数的导函数的积的形式 f[ (x)] (x) 的形式 那么 (x) u u (x) g(x)dx f[ (x)] (x)dx (x) u [ f (u) du] F(u) C u (x)F[ (x)] C . 所以第一换元积分法体现了“凑”的思想 . 把被积函数凑出一个复合函数与其内函数的积 精彩文档 dF( (x)) dF du (x)] (x) 。 dx du dx f (u)

最新33第一类换元积分法汇总

33第一类换元积分法

§3.3 第一类换元积分法 教学目的:使学生理解第一类换元积分法,掌握第一类换元积分法的一般步骤及其应用。 重点:第一类类换元积分法及其应用 难点:第一类类换元积分法及其应用 教学过程: 一、问题的提出 不定积分的概念较为简单,但从计算上讲是较为繁杂的,如同数学中一般逆运算比正运算困难一样,不定积分作为微分运算的逆运算,其难易程度却相差甚远,若把求导数比喻为将一根绳子打结,求不定积分则是解结,解结显然比打结难,有时甚至解不开。而且利用直接积分法所能计算的不定积分是非常有限的,因此,有必要进一步研究不定积分的其它计算方法,由复合函数的求导法则可推得一种十分重要的积分方法——换元积分法(通常简称换元法)。该法可分为两类,即第一类和第二类换元法。本节将介绍第一类换元法。 二、第一类换元积分法(凑微分法) 我们将把复合函数的求导法反过来用于求不定积分,即利用变量代换的方法将所要求的不定积分变为基本积分表中所已有的形式或原函数为已知的其他形式来求函数的不定积分,这种方法称为换元积分法。下面先介绍第一类换元积分法。 定理 设)(u f 具有原函数,)(x u ?=可导,则有换元公式 ??=='?)(] )([)()]([x u du u f dx x x f ??? 证明 设)(u f 具有原函数)(u F ,即)(u F '=)(u f ,?du u f )(=C u F +)(. 又因为u 是关于x 的可导函数)(x u ?=,所以有 ???+==='?C x F x dF x d x f dx x x f )]([)]([)]([)]([)()]([?????? 又)(])([x u du u f ?=?)(])([x u C u F ?=+=C x F +=)]([? 从而推得??=='?) (])([)()]([x u du u f dx x x f ??? 证毕 推论 若 ?dx x f )(=C x F +)(成立,则?du u f )(=C u F +)(.也成立,其中u 为x 的任一可导函数 该推论表明:在基本的积分公式中,把自变量x 换为u 的任一可导函数 后,公式仍成立,这就大大的扩大了公式的使用范围。 该方法的关键在于从被积函数?Skip Record If...?中成功地分出一个因子 ?Skip Record If...?与?Skip Record If...?凑成微分?Skip Record If...?,而剩下部分正好表成?Skip Record If...?的函数,然后令?Skip Record If...?,就将所要求的不定积分变为基本积分表中已有的形式。 通过第一类换元积分公式来计算积分的方法叫第一类换元积分法。

换元积分法(第一类换元法)

§4.2 换元积分法 Ⅰ 授课题目 §4.2 换元积分法(第一类换元法) Ⅱ 教学目的与要求: 理解第一类换元法的基本思想,它实际上是复合函数求导法则的逆过程,其关键是“凑微分”, dx x x d )()(?'=? . 掌握几种典型的凑微分的方法,熟练应用第一类换元积分法求有关不定积分. Ⅲ 教学重点与难点: 重点:第一换元法的思想, 难点:熟练应用第一换元法计算有关函数的不定积分. Ⅳ 讲授内容: 一、第一类换元积分法 设)(u f 具有原函数)(u F ,()()f u du F u C =+?.若u 是中间变量,()u x ?=,()x ?可微,则根据 复合函数求导法则,有 (())()[()]()dF x dF du du f u f x x dx du dx dx ???'===。 所以根据不定积分的定义可得: ()[()]()[()][][()]u x f x x dx F x C F u C f u du ????='=++=?? 以上是一个连等式可以改变顺序从新写一遍,就有 [][]()[()]()][()]()u x f x x dx f u du F u C F x C ????='=+=+? ?. 以上就是第一换元积分法。 从以上可以看出,虽然 [()]()f x x dx ??'?是一个整体记号,但是被积表达式中的dx 可当作变量x 的 微分来对待从而上式中的()x dx ?'可以看成是()x ?的微分,通过换元()u x ?=,应用到被积表达式中就得到()x dx du ?'=. 定理1 设)(u f 具有原函数)(u F ,)(x u ?=可导,dx x du )(?'=,则 [()()()()[()]f x x dx f u du F u C F x C ???'==+=+?? (1) 如何应用公式(1),在求不定积分积分()g x dx ? 时 如果被积函数g(x)可以化为一个复合函数与它 内函数的导函数的积的形式[()]()f x x ??'的形式 那么 ()()[()]()[()]x u g x dx f x x dx f u du ???='=??? ()()[()]u x F u C F x C ??==++.

换元法在不定积分和定积分中的联系与区别

换元法在不定积分和定积分中的联系与区别 1.第一换元法在不定积分和定积分中的联系与区别 1.1不定积分中第一换元法的定理形式 定理1若,且的原函数容易求出,记 , 则 . 证明若,令,于是有 因而 得证。 1.2定积分中第一换元法的定理形式 定理2若连续,在上一阶连续可导,且,在构成的区间上连续,其中,则 . 证明令,由于在构成的区间上连续,记,则 得证。 1.3 第一换元法在不定积分和定积分中的联系与区别 区别:第一换元法在定积分中对未知量给出了定义范围,要求换元函数在该定义域内一阶连续可导即可,对积分要求变弱。

联系:不定积分的实质是求一个函数的原函数组成的集合,部分定积分的计算可以利用不定积分的第一换元法求出简单函数的任意一个原函数,再用原函数在定义域的上下限的函数值取差值。 例1求. 解因为 即有一个原函数,所以 例2 计算积分. 解由于 于是 2.第二换元法在不定积分和定积分中的联系与区别 2.1不定积分中第二换元法的定理形式 定理3设连续,及都连续,的反函数存在且连续,并且 ,(1)则 (2)

证明将(2)式右端求导同时注意到(1)式,得 , 这便证明了(2)式。 2.2定积分中第二换元法的定理形式 定理 4 设在连续,作代换,其中在构成的区间上有连续导数,且,则 证明设是的一个原函数,则是的一个原函数。于是 , 定理得证。 2.3 第二换元法在不定积分和定积分中的联系与区别 区别:由不定积分中第二换元法的证明过程可知,不定积分中第二换元法要求变换的反函数存在且连续,并且。而在定积分的第二换元法则不这样要求,它通过换元法写出关于新变量的被积函数与新变量的积分上下限后可以直接求职,不像不定积分的计算最终需要对变量进行还原。 例3用第二换元法求解 解令,则

§4.2换元积分法(第一类换元法)

§ 换元积分法 Ⅰ 授课题目 § 换元积分法(第一类换元法) Ⅱ 教学目的与要求: 1. 理解第一类换元法的基本思想,它实际上是复合函数求导法则的逆过程,其关键是“凑微 分”,dx x x d )()(?'=? . 2. 掌握几种典型的凑微分的方法,熟练应用第一类换元积分法求有关不定积分. Ⅲ 教学重点与难点: 重点:第一换元法的思想, 难点:熟练应用第一换元法计算有关函数的不定积分. Ⅳ 讲授内容: 一、第一类换元积分法 设)(u f 具有原函数)(u F ,()()f u du F u C =+? .若u 是中间变量,()u x ?=,()x ?可微,则根据复合函数求导法则,有 (())()[()]()dF x dF du du f u f x x dx du dx dx ???'===。 所以根据不定积分的定义可得: ()[()]()[()][][()]u x f x x dx F x C F u C f u du ????='=++=?? 以上是一个连等式可以改变顺序从新写一遍,就有 [][]()[()]()][()]()u x f x x dx f u du F u C F x C ????='=+=+? ?. 以上就是第一换元积分法。 从以上可以看出,虽然 [()]()f x x dx ??'?是一个整体记号,但是被积表达式中的dx 可当作变量 x 的微分来对待从而上式中的()x dx ?'可以看成是()x ?的微分,通过换元()u x ?=,应用到被积 表达式中就得到()x dx du ?'=. 定理1 设)(u f 具有原函数)(u F ,)(x u ?=可导,dx x du )(?'=,则

不定积分换元法例题

【不定积分的第一类换元法】 已知 ()()f u du F u C =+? 求()(())'()(())()g x dx f x x dx f x d x ????= =? ?? 【凑微分】 ()()f u du F u C = =+? 【做变换,令()u x ?=,再积分】 (())F x C ?=+ 【变量还原,()u x ?=】 【求不定积分()g x dx ? 的第一换元法的具体步骤如下:】 (1)变换被积函数的积分形式:()(())'()dx g x f x x dx ??=?? (2)凑微分:()(())((')))(()x g x dx d x dx f x f x ????= =??? (3)作变量代换()u x ?=得:()(())'()()()()g x dx f x x x x dx f d ????==? ??()u f u d =? (4)利用基本积分公式()()f u du F u C =+?求出原函数: ()(())'()(())()g x dx f x x dx f x d x ????==???()()d u u C f u F ==+? (5)将()u x ?=代入上面的结果,回到原来的积分变量x 得: ()(())'()(())()g x dx f x x dx f x d x ????==???()()f u du F u C ==+?(())F x C ?=+ 【注】熟悉上述步骤后,也可以不引入中间变量()u x ?=,省略(3)(4)步骤,这与复合函数的求导法则类似。 __________________________________________________________________________________________ 【第一换元法例题】 1、9 9 9 9 (57)(57)(5711(57)(57)55 )(57)dx d x d x dx x x x x +=+?=+?= +?++? ? ? ? 110091(57)(57)(57)10111 (57)5550 d C x x x x C =?=?+=+++++? 【注】1 (57)'5,(57)5,(57)5 x d x dx dx d x +=+==+?? 2、1ln ln ln ln dx d x x x dx x x x =?=???? 221 (l 1ln ln (ln )2n )2x x x d C x C =?=+=+? 【注】111 (ln )',(ln ),(ln )x d x dx dx d x x x x ===?? 3(1)sin tan cos co si s cos cos n cos cos xdx d x xdx dx x d x x x x x --= ===? ???? cos ln |cos |c ln |co s |o s x x d C x C x =-=-+=-+?

§4.2换元积分法(第二类换元法)

§ 换元积分法(第二类) Ⅰ 授课题目(章节): § 换元积分法 (第二类换元积分法) Ⅱ 教学目的与要求: 1.了解第二类换元法的基本思想 2.掌握几种典型题的第二类换元积分法解法 Ⅲ 教学重点与难点: 重点:第二换元法中的三角代换及根式代换 难点:积分后的结果进行反代换 Ⅳ 讲授内容: 第一类换元积分法的思想是:在求积分()g x dx ? 时 如果函数g (x )可以化为[()]()f x x ??'的 形式 那么 () ()[()]()[()]() ()u x g x dx f x x dx f x d x f u du ?????='==???? ()F u C =+[()]F x C ?=+ 所以第一换元积分法体现了“凑”的思想.把被积函数凑出形如[()]()f x x ??'函数来.对于某些函数第一换元积分法无能为力,例如? -dx x a 22.对于这样的无理函数的积分我们就得用今天要 学习的第二类换元积分法。 第二类换元的基本思想是选择适当的变量代换)(t x ψ=将无理函数()f x 的积分 ()f x dx ?化为 有理式[()] ()f t t ψψ'的积分[()]()f t t dt ψψ'?。即 ()[()]()f x dx f t t dt ψψ'=?? 若上面的等式右端的被积函数[()] ()f t t ψψ'有原函数()t Φ,则[()]()()f t t dt t C ψψ'=Φ+?, 然后再把()t Φ中的t 还原成1 ()x ψ-,所以需要一开始的变量代换)(t x ψ=有反函数。 定理2 设)(t x ψ=是单调、可导的函数,且0)(≠ψ't ,又设)()]([t t f ψ'ψ有原函数()t Φ,则 ??+ψΦ=+Φ=ψ'ψ=-C x C t dt t t f dx x f )]([)()()]([)(1

不定积分第一类换元法

不定积分第一类换元法(凑微分法)
一、 方法简介
设 f (x) 具有原函数 F(u) ,即 F'(u) f (u) , f (u)du F(u) C ,如果U 是
中间变量, u (x) ,且设(x) 可微,那么根据复合函数微分法,有
dF[(x)] f [(x)]'(x)dx 从而根据不定积分的定义得
则有定理:
f [(x)]'(x)dx F[(x)] C [ f (u)du]u(x) .
设 f (u) 具有原函数, u (x) 可导,则有换元公式
f [(x)]'(x)dx [ f (u)du]u(x)
由此定理可见,虽然
f
[ ( x)] ' ( x)dx
是一个整体的记号,但如用导数记号
dy dx
中的 dx 及 dy 可看作微分,被积表达式中的 dx 也可当做变量 x 的微分来对待,从
而微分等式'(x)dx du 可以方便地应用到被积表达式中。 几大类常见的凑微分形式:
○1
f
(ax
b)dx
1 a
f
(ax
b)d (ax
b)
(a 0) ;
○2 f (sin x) cosxdx f (sin x)d sin x , f (cosx)sin xdx f (cosx)d cosx ,
f
(tan x)
dx cos2
x
f
(tan x)d
tan
x,
f
(c ot x)
dx sin 2
x
f
(c ot x)d
cot x ;
○3
f
(ln
x)
1 x
dx
f
(ln
x)d
ln
x,
f
(ex )exdx
f
(ex )dex

○ 4
f (xn )xn1dx 1 f (xn )dxn (n 0) , n
f
(1) x
dx x2
f (1)d(1) xx

f(
x)
dx x
2
f
(
x )d (
x);
○5 f (arcsin x)
dx 1 x2
f (arcsin x)d arcsin x ;

二重积分换元法

感悟二重积分的魅力 定理 设),(y x f 在xOy 平面上的闭区域D 上连续,变换 ),(),,(:v u y y v u x x T == 将uOv 平面上的闭区域'D 变为xOy 平面上的D ,且满足 (1)),(),,(v u y v u x 在'D 上具有一阶连续偏导数; (2)在'D 上雅可比(Jacobi )式 ;0) ,() ,(),(≠??= v u y x v u J (3)变换D D T →':是一对一的, 则有 .|),(|)],(),,([),(' dudv v u J v u y v u x f dxdy y x f D D ????= 例(高等数学第六版152P 例8):求由直线)0,0(,,,b a d c bx y ax y d y x c y x <<<<===+=+所围成的闭区域D (图10-26左)的面积. 解 所求面积为 ??D dxdy 令,,x y v y x u = +=则.1,1v uv y v u x +=+= },,|),{('b v a d u c v u D ≤≤≤≤= 如图10-26右所示,又雅可比式

'),(,0)1(),(),(2 D v u v u v u y x J ∈≠+=??= 从而所求面积为 .)1)(1(2) )(()1()1(222' 2b a c d a b udu v dv dudv v u dxdy d c b a D D ++--=+=+=?????? 现对该题做一个拓展延伸。 求由曲线)0,(,,1,122d c b a dy x cy x e y e y bx ax <<<==-=-=所围成的闭区域D 的面积. 解 所求面积为 ??D dxdy 令2,)1ln(y x v x y u =+=,先求雅可比式v y u y v x u x v u y x v u J ????????=??=),(),(),(, 由? ??=-=+-00)1ln(2 x vy y ux 知,这是一个隐函数方程组,其解可写为 ? ? ?==),() ,(v u y y v u x x (*) 又2,)1ln(y x v x y u =+= ,将(*)分别对y x ,求偏导数,即: ??? ????????? ?=??? ? ??-??+???? ??+??=??? ? ??-??+???? ??+??=???? ????+??? ??+-??=???? ????+??? ? ?+-??12)1(10 2)1(101)1ln(11)1ln(332222y x v y y x u y y x v x y x u x y v y x y u y y v x x y u x 令

§42 换元积分法第二类换元法

§4.2 换元积分法(第二类) Ⅰ?授课题目(章节): ?§4.2 换元积分法 (第二类换元积分法) Ⅱ?教学目的与要求: 1.了解第二类换元法的基本思想 2.掌握几种典型题的第二类换元积分法解法 Ⅲ?教学重点与难点: 重点:第二换元法中的三角代换及根式代换 难点:积分后的结果进行反代换 Ⅳ 讲授内容: 第一类换元积分法的思想是:在求积分()g x dx ? 时, 如果函数g (x )可以化为[()]()f x x ??'的形式, 那么 () ()[()]()[()]() ()u x g x dx f x x dx f x d x f u du ?????='==???? ()F u C =+[()]F x C ?=+ 所以第一换元积分法体现了“凑”的思想.把被积函数凑出形如[()]()f x x ??'函数来.对于某些函数第一换元积分法无能为力,例如? -dx x a 22.对于这样的无理函数的积分我们就得用今天要 学习的第二类换元积分法。 第二类换元的基本思想是选择适当的变量代换)(t x ψ=将无理函数()f x 的积分 ()f x dx ?化为 有理式[()] ()f t t ψψ'的积分[()]()f t t dt ψψ'?。即 ()[()]()f x dx f t t dt ψψ'=?? 若上面的等式右端的被积函数[()] ()f t t ψψ'有原函数()t Φ,则[()]()()f t t dt t C ψψ'=Φ+?, 然后再把()t Φ中的t 还原成1 ()x ψ-,所以需要一开始的变量代换)(t x ψ=有反函数。 定理2 设)(t x ψ=是单调、可导的函数,且0)(≠ψ't ,又设)()]([t t f ψ'ψ有原函数()t Φ,则 ??+ψΦ=+Φ=ψ'ψ=-C x C t dt t t f dx x f )]([)()()]([)(1 分析 要证明 1()[()]f x dx x C ψ-=Φ+? ,只要证明1[()]x ψ-Φ的导数为()f x , 1[()]d d dt x dx dt dx ψ-ΦΦ=? , ?dt dx =

二第二换元法(变量代换法)

二.第二换元法(变量代换法) 第一换元法是用凑微分的办法,把一个比较复杂的 积分dx x x f )()]([??'??化成)()]([x d x f ???再积分,第二换元法则 是将积分dx x f ?)((看似简单,但是很难积分)用一个适当的变量代换)(t x ?=使dt t t f dx x f )()]([)(??'?=??却容易积分。再将 结果中的t 变回))((1x t -=?x . 例3.20求dx x x ?sin .解令t x =,2t x =,tdt dx 2=,则 dx x x ?sin c x c t dt t tdt t t +-=+-==? =??cos 2cos 2sin 22sin .例3.21计算dx a x ?-221,(0>a ). 解令t a x sec =,2 0π<a ).令t a x tan =,tdt a dx 2sec =原式 ??++==?=12|tan sec |ln cos 1sec cos c t t dt t tdt a a t c a x x c a x a a x +++=+++=22122ln ||ln () c a x x +++=22ln .

(为何不要绝对值?) 例3.22求.)(12 3 22dx x a ?+解令a x t tdt a dx t a x =?=?=tan ,sec ,tan 2.)(1csc ..sin 1cos 1sec sec 1)]tan 1([sec )(12222 32222223222 32222322c x a a x dx x a x x a t x a ctgt c t a tdt a dt t t a dx t a t a dx x a ++=+?+=∴=+===+=+????? 例2.23求?-x x dx 2.解?-x x dx 2?---=4 1)21()21(2x x d (利用例3.20的结果)c x x +--+-=41)21()21(ln 2c x x x +-+-=2)2 1(ln .例3.24计算. 922dx x x ?-.99ln 9393ln sin tan sec ln cos cos 1cos cos 1cos sin ) (cos sin 3sec 9tan 39221222222sec 322c x x x x c x x x x c t t t dt t dt t dt t t dt t t dt t t t t dx x x t x +---+=+---+=+-+=-=-==??-?????=?=画三角形例3.25求 ?-dx x a 22,()0>a .解∵2 22)(1a x a x a -=-∴可令

计算二重积分的几种方法

计算二重积分的几种方法 摘要 二重积分的计算是数学分析中一个重要的内容,其计算方法多样、灵活,本文总结了二重积分的一般计算方法和特殊计算方法.其中,一般计算方法包括化二重积分为累次积分和换元法,特殊计算方法包括应用函数的对称性、奇偶性求二重积分以及分部积分法. 关键词 二重积分 累次积分法 对称性 分部积分法 1 引言 本人在家里的职业教育高中实习,发现这里有些专业的的学生要计算很多面积或者体积问题,已经略微涉及到大学的积分问题,如曲顶柱体的体积,他们用最普遍的求面积/体积的方法求解,而用二重积分进行计算求解就会更容易理解,方法和步骤也带给学生一个新的认知领域。职业教育的学生在大学知识中解决实际问题应用积分的方法更频繁。在解决一些几何、物理等的实际问题时,我们常常需要各种不同的多元实值函数的积分,而二重积分又是基本的、常见的多元函数积分,我针对自己在《数学分析》这门课程中的学习,总结了累次积分、根据函数对称性积分、元素法、分部积分法、极坐标下的积分等内容,以下是我对二重积分方法的总结。 2 积分的计算方法 2.1化二重积分为两次定积分或累次积分法 定理 1 若函数(),f x y 在闭矩形域(),R a x b c y d ≤≤≤≤可积,且[],x a b ?∈,定积分 ()(),d c I x f x y dy =?存在,则累次积分 (),b d a c f x y dy dx ?????? ??也存在,且(,)(,)b d a c R f x y dxdy f x y dy dx ??=???? ?? ?? 证明 设区间[],a b 与[],c d 的分点分别是 011011i i n k k m a x x x x x b c y y y y y d --=<

不定积分换元法例题

【不定积分的第一类换元法】 已知()()f u du F u C =+? 求()(())'()(())()g x dx f x x dx f x d x ????==??? 【凑微分】 ()()f u du F u C ==+? 【做变换,令()u x ?=,再积分】 (())F x C ?=+ 【变量还原,()u x ?=】 【求不定积分()g x dx ?的第一换元法的具体步骤如下:】 (1)变换被积函数的积分形式:()(())'()dx g x f x x dx ??=?? (2)凑微分:()(())((')))(()x g x dx d x dx f x f x ????==??? (3)作变量代换()u x ?=得:()(())'()()()()g x dx f x x x x dx f d ????==???()u f u d =? (4)利用基本积分公式()()f u du F u C =+?求出原函数: ()(())'()(())()g x dx f x x dx f x d x ????==???()()d u u C f u F ==+? (5)将()u x ?=代入上面的结果,回到原来的积分变量x 得: ()(())'()(())()g x dx f x x dx f x d x ????==???()()f u du F u C ==+?(())F x C ?=+ 【注】熟悉上述步骤后,也可以不引入中间变量()u x ?=,省略(3)(4)步骤,这与复合函数的求导法则类似。

__________________________________________________________________________________________ 【第一换元法例题】 1、9999(57)(57)(5711 (57)(57)5 5 )(57)dx d x d x dx x x x x +=+?=+?= +?++???? 110091(57)(57)(57)10111 (57)5550 d C x x x x C =?=?+=+++++? 【注】1 (57)'5,(57)5,(57)5 x d x dx dx d x +=+==+?? 2、1 ln ln ln ln dx d x x x dx x x x =?=?? ?? 221 (l 1ln ln (ln )2n )2 x x x d C x C =?=+=+? 【注】111(ln )',(ln ),(ln )x d x dx dx d x x x x ===?? 3(1)sin tan cos co si s cos cos n cos cos xdx d x xdx dx x d x x x x x --====?? ??? cos ln |cos |c ln |co s |o s x x d C x C x =-=-+=-+? 【注】(cos )'sin ,(cos )sin ,sin (cos )x x d x xdx xdx d x =-=-=-?? 3(2)cos cos cot sin sin sin sin xdx x xdx dx d x x x x ===?? ?? sin ln |si ln |sin |n |sin x x d C x C x ==+=+? 【注】(sin )'cos ,(sin )cos ,cos (sin )x x d x xdx xdx d x ==?=?

相关文档