文档库 最新最全的文档下载
当前位置:文档库 › 《精品》2017-2019三年高考真题专题05立体几何(选择题、填空题)-数学(文)分项汇编(解析版)

《精品》2017-2019三年高考真题专题05立体几何(选择题、填空题)-数学(文)分项汇编(解析版)

《精品》2017-2019三年高考真题专题05立体几何(选择题、填空题)-数学(文)分项汇编(解析版)
《精品》2017-2019三年高考真题专题05立体几何(选择题、填空题)-数学(文)分项汇编(解析版)

专题05 立体几何(选择题、填空题)

1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 【答案】B

【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .

【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ??∥,则αβ∥”此类的错误.

2.【2019年高考全国Ⅲ卷文数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则

A .BM =EN ,且直线BM ,EN 是相交直线

B .BM ≠EN ,且直线BM ,EN 是相交直线

C .BM =EN ,且直线BM ,EN 是异面直线

D .BM ≠EN ,且直线BM ,EN 是异面直线 【答案】B

【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.

过M 作MF OD ⊥于F ,连接BF ,

平面CDE ⊥平面ABCD ,,EO CD EO ⊥?平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,

MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知12EO ON EN ===,,

5

,22

MF BF BM =

=∴=BM EN ∴≠,故选B .

【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.

3.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3

)是

A .158

B .162

C .182

D .324

【答案】B

【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,

下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为26

4633616222++???+??= ???

. 故选B.

【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.

4.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γ

B .β<α,β<γ

C .β<α,γ<α

D .α<β,γ<β

【答案】B

【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BD

PB PB PB PB

αβ=

==<=,即αβ>;在Rt △PED 中,tan tan PD PD

ED BD

γβ=

>=,即γβ>,综上所述,答案为B.

【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.

5.【2018年高考全国Ⅰ卷文数】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的

路径中,最短路径的长度为

A.17

2

2B.5

C.3 D.2

【答案】B

【解析】根据圆柱的三视图以及其本身的特征,知点M在上底面上,点N在下底面上,且可以确定点M 和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,

=,故选B.

【名师点睛】该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.

6.【2018年高考全国Ⅲ卷文数】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是

【答案】A

【解析】由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A.

【名师点睛】本题主要考查空间几何体的三视图,考查考生的空间想象能力和阅读理解能力,考查的

数学核心素养是直观想象.

7.【2018年高考全国I 卷文数】在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成

的角为30?,则该长方体的体积为

A .8

B .

C .

D .

【答案】C

【解析】在长方体1111ABCD A B C D -中,连接1BC ,

根据线面角的定义可知130AC B ?

∠=,因为2AB =,所以1BC =,从而求得1CC =

所以该长方体的体积为22V =??= 故选C.

【名师点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长、宽、高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,最终求得结果.

8.【2018年高考全国I 卷文数】已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆

柱所得的截面是面积为8的正方形,则该圆柱的表面积为

A .

B .12π

C .

D .10π

【答案】B

【解析】根据题意,可得截面是边长为

的圆,且高为

所以其表面积为

2

2π2π12πS =+=,

故选B.

【名师点睛】该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.

9.【2018年高考浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3

)是

A .2

B .4

C .6

D .8

【答案】C

【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上、下底分别为1,2,梯形的高为2,因此几何体的体积为()1

12226,2

?+??= 故选C.

【名师点睛】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.

10.【2018年高考全国Ⅲ卷文数】设A B C D ,,

,是同一个半径为4的球的球面上四点,ABC △为等边三

角形且其面积为D ABC -体积的最大值为 A

. B

. C

D

【答案】B

【解析】如图所示,设点M 为三角形ABC 的重心,E 为AC 中点,

俯视图

正视图

当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,

24

ABC S AB =

=△,6AB ∴=,点M 为三角形ABC 的重心,23BM BE ∴==

Rt OBM ∴△中,有2OM ==,426DM OD OM ∴=+=+=,

()

max 1

63

D ABC V -∴=?=,故选B.

【名师点睛】本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当点D 在平面ABC 上的射影为三角形ABC 的重心时,三棱锥D ABC -体积最大很关键,

由M 为三角形ABC 的重心,计算得到2

3

BM BE ==OM ,进而得到结果,属于较难题型.

11.【2018年高考全国Ⅱ卷文数】在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与

CD 所成角的正切值为

A .

2 B .

2

C .2

D .

2

【答案】C

【解析】如图,在正方体1111ABCD A B C D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,

设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,

则tan 22

BE EAB AB a ∠=

==.故选C .

【名师点睛】本题主要考查异面直线所成的角,考查考生的空间想象能力、化归与转化能力以及运算求解能力,考查的数学核心素养是直观想象、数学运算.求异面直线所成的角,需要将异面直线所成的角等价转化为相交直线所成的角,然后利用解三角形的知识加以求解.

12.【2018年高考浙江卷】已知平面α,直线m ,n 满足m ?α,n ?α,则“m ∥n ”是“m ∥α”的

A .充分不必要条件

B .必要不充分条件

C .充分必要条件

D .既不充分也不必要条件

【答案】A

【解析】因为,,m n m n ??∥αα,所以根据线面平行的判定定理得m ∥α. 由m ∥α不能得出m 与α内任一直线平行, 所以m n ∥是m ∥α的充分不必要条件,故选A. 【名师点睛】充分、必要条件的三种判断方法:

(1)定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ?q ”为真,则p 是q 的充分条件.

(2)等价法:利用p ?q 与非q ?非p ,q ?p 与非p ?非q ,p ?q 与非q ?非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.

(3)集合法:若A ?B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.

13.【2018年高考浙江卷】已知四棱锥S ?ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不

含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S ?AB ?C 的平面角为θ3,则

A .θ1≤θ2≤θ3

B .θ3≤θ2≤θ1

C .θ1≤θ3≤θ2

D .θ2≤θ3≤θ1

【答案】D

【解析】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO ,SN ,SE ,SM ,OM ,OE ,则SO 垂直于底面ABCD ,OM 垂直于AB , 因此123,,,SEN SEO SMO ∠=∠=∠=θθθ 从而123tan ,tan ,tan ,SN SN SO SO

EN OM EO OM

=

===θθθ 因为SN SO EO OM ≥≥,,所以132tan tan tan ,≥≥θθθ即132≥≥θθθ, 故选D.

【名师点睛】分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.

14.【2018年高考北京卷文数】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为

A .1

B .2

C .3

D .4

【答案】C

【解析】由三视图可得四棱锥P ABCD -如图所示,

在四棱锥P ABCD -中,2,2,2,1PD AD CD AB ====,

由勾股定理可知:3,PA PC PB BC ==== 则在四棱锥中,直角三角形有:,,PAD PCD PAB △△△,共3个, 故选C.

【名师点睛】此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.解答本题时,根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.

15.【2017年高考全国Ⅰ卷文数】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是

A .

B .

C .

D .

【答案】A

【解析】对于B ,易知AB ∥MQ ,则直线AB ∥平面MNQ ; 对于C ,易知AB ∥MQ ,则直线AB ∥平面MNQ ; 对于D ,易知AB ∥NQ ,则直线AB ∥平面MNQ . 故排除B ,C ,D ,选A .

【名师点睛】本题主要考查线面平行的判定定理以及空间想象能力,属容易题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.

16.【2017年高考全国Ⅱ卷文数】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .90π B .63π C .42π

D .36π

【答案】B

【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为

221

π36π3463π2

V =???+??=,故选B.

【名师点睛】(1)解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. (2)三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.

17.【2017年高考全国Ⅲ卷文数】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面

上,则该圆柱的体积为 A .π

B .

4 C .

π2

D .

π4

【答案】B

【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2

AC AB ==

结合勾股定理,底面半径r ==,

由圆柱的体积公式,可得圆柱的体积是2

2

3ππ1π4V r h ==??=??

,故选B.

【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.

18.【2017年高考全国Ⅲ卷文数】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则

A .11A E DC ⊥

B .1A E BD ⊥

C .11A E BC ⊥

D .1A

E AC ⊥

【答案】C

【解析】根据三垂线定理的逆定理,可知平面内的线垂直于平面的斜线,则也垂直于斜线在平面内的射影.

A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;

B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;

C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过来11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立;

D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C.

【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型: (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.

19.【2017年高考北京卷文数】某三棱锥的三视图如图所示,则该三棱锥的体积为

A .60

B .30

C .20

D .10

【答案】D

【解析】该几何体是如下图所示的三棱锥P ABC -.

由图中数据可得该几何体的体积是,故选D. 【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:

如果我们死记硬背,不会具体问题具体分析,就会选错,实际上,这个题的俯视图不是几何体的底面,因为顶点在底面的射影落在了底面三角形的外面,否则中间的那条线就不会是虚线.

20.【2017年高考浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3

11

5341032

V =

????

=

A .12π

+ B .

32π+ C .312

π+

D .332

π+

【答案】A

【解析】根据所给三视图可还原几何体为半个圆锥和半个棱锥拼接而成的组合体,所以,几何体的体积

为21113(21)13222

V π?π=??+??=+,故选A .

【名师点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:(1)首先看俯视图,根据俯视图画出几何体地面的直观图;(2)观察正视图和侧视图找到几何体前、后、左、右的高度;(3)画出整体,然后再根据三视图进行调整.

21.【2017年高考浙江卷】如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为

AB ,BC ,CA 上的点,AP=PB ,

2BQ CR

QC RA

==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为αβγ,,,则

A . γαβ<<

B .αγβ<<

C .αβγ<<

D .βγα<<

【答案】B

【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而三棱锥的高相等,因此αγβ<<,所以选B .

【名师点睛】立体几何是高中数学中的重要内容,也是高考重点考查的考点与热点.这类问题的设置一般有线面位置关系的证明与角度距离的计算等两类问题.解答第一类问题时一般要借助线面平行与垂直的判定定理进行;解答第二类问题时先建立空间直角坐标系,运用空间向量的坐标形式及数量积公式进行求解.

22.【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,

BC ,那么P 到平面ABC 的距离为___________.

【解析】作,PD PE 分别垂直于,AC BC ,PO ⊥平面ABC ,连接CO ,

由题意可知,CD PD CD PO ⊥⊥,=PD PO P ,

CD \^平面PDO ,又OD ?平面PDO ,CD OD ∴⊥,

PD PE ==2PC =,sin sin PCE PCD ∴∠=∠=, 60PCB PCA ?∴∠=∠=,

又易知PO CO ⊥,CO 为ACB ∠的平分线,

451,,OCD OD CD OC ?∴∠=∴===

又2PC =,PO ∴=

=

【名师点睛】本题主要考查学生空间想象能力,合理画图成为关键,准确找到P 在底面上的射影,使用线面垂直定理,得到垂直关系,利用勾股定理解决.注意画图视角选择不当,线面垂直定理使用不够灵活,难以发现垂直关系,问题则很难解决,将几何体摆放成正常视角,是立体几何问题解决的有效手段,几何关系利于观察,解题事半功倍.

23.【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为

长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)

【答案】261

【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.

如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 的延长线交于点G ,延长BC 交正方体的棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,

,21)122

BG GE CH x GH x x x ∴===

∴=?+==,

1

x ∴=

=,

1.

【名师点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形. 24.【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长

方体1111ABCD A B C D -挖去四棱锥O ?EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H

分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3

,不考虑打

印损耗,制作该模型所需原料的质量为___________g.

【答案】118.8

【解析】由题意得,2

14642312cm 2

EFGH S =?-???=四边形, ∵四棱锥O ?EFGH 的高为3cm , ∴31

12312cm 3

O EFGH V -=

??=. 又长方体1111ABCD A B C D -的体积为3

2466144cm V =??=, 所以该模型体积为3

214412132cm O EFGH V V V -=-=-=,

其质量为0.9132118.8g ?=.

【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.

25.【2019年高考北京卷文数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果

网格纸上小正方形的边长为1,那么该几何体的体积为__________.

【答案】40

【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,

则几何体的体积()3

1

42424402

V =-

?+??=. 【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.

(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;

(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 26.【2019年高考北京卷文数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:

①l ⊥m ;②m ∥α;③l ⊥α.

以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 【答案】如果l ⊥α,m ∥α,则l ⊥m .

【解析】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l ⊥α,m ∥α,则l ⊥m ,正确;

(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内; (3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α. 故答案为:如果l ⊥α,m ∥α,则l ⊥m.

【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.

27.【2019若圆柱的一个

底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________. 【答案】

π4

2=.

若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心, 故圆柱的高为1,圆柱的底面半径为

12

, 故圆柱的体积为2

1ππ124????= ???

. 【名师点睛】本题主要考查空间几何体的结构特征以及圆柱的体积计算问题,解答时,根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.

28.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E ?BCD

的体积是 ▲ .

【答案】10

【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ??=, 因为E 为1CC 的中点,所以11

2

CE CC =

, 由长方体的性质知1CC ⊥底面ABCD ,

所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =

???=11111

1201032212

AB BC CC =???=?=. 【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.

29.【2018年高考江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.

【答案】

4

3

【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等

于 ,所以该多面体的体积为2

1

4213

3

???

=

. 【名师点睛】解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.

30.【2018年高考天津卷文数】如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱锥A 1–BB 1D 1D 的体

高考立体几何大题20题汇总情况

高考立体几何大题20 题汇总情况 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

(2012江西省)(本小题满分12分) 如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB=12,AD=5, BC=42,DE=4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合与点G ,得到多面体CDEFG. (1) 求证:平面DEG ⊥平面CFG ; (2)求多面体C DEFG 的体积。 2012,山东(19) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点,求证:DM ∥平面BEC . 2012浙江20.(本题满分15分)如图,在侧棱锥垂直 底面的四棱锥1111ABCD A B C D -中,,AD BC //AD 11,2,2,4,2,AB AB AD BC AA E DD ⊥====是的中 点,F 是平面11B C E 与直线1AA 的交点。 (Ⅰ)证明:(i) 11;EF A D //ii ()111;BA B C EF ⊥平面 (Ⅱ)求1BC 与平面11B C EF 所成的角的正弦值。 (第20题图) F E C 1 B 1 D 1A 1 A D B C

(2010四川)18、(本小题满分12分)已知正方体''''ABCD A B C D -中,点M 是棱'AA 的中点,点O 是对角线'BD 的中点, (Ⅰ)求证:OM 为异面直线'AA 与'BD 的公垂线; (Ⅱ)求二面角''M BC B --的大小; 2010辽宁文(19)(本小题满分12分) 如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ (Ⅰ)证明:平面11A B C ⊥平面11A BC ; (Ⅱ)设D 是11A C 上的点,且1//AB 平面1B CD ,求11:A D DC 的值。

立体几何高考真题大题

立体几何高考真题大题 1.(2016高考新课标1卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD, 90AFD ∠=o ,且二面角D-AF-E 与二面角C-BE-F 都是60o . (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析; (Ⅱ)19 - 【解析】 试题分析:(Ⅰ)先证明F A ⊥平面FDC E ,结合F A ?平面F ABE ,可得平面F ABE ⊥平 面FDC E .(Ⅱ)建立空间坐标系,分别求出平面C B E 的法向量m u r 及平面C B E 的法向量 n r ,再利用cos ,n m n m n m ?=r r r r r r 求二面角. 试题解析:(Ⅰ)由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ?平面F ABE ,故平面F ABE ⊥平面FDC E . (Ⅱ)过D 作DG F ⊥E ,垂足为G ,由(Ⅰ)知DG ⊥平面F ABE . 以G 为坐标原点,GF u u u r 的方向为x 轴正方向,GF u u u r 为单位长度,建立如图所示的空间直角坐标系G xyz -. 由(Ⅰ)知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =o ,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E - ,(D . 由已知,//F AB E ,所以//AB 平面FDC E . 又平面CD AB I 平面FDC DC E =,故//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角, C F 60∠E =o .从而可得(C -. 所以(C E =u u u r ,()0,4,0EB =u u u r ,(C 3,A =--u u u r ,()4,0,0AB =-u u u r . 设(),,n x y z =r 是平面C B E 的法向量,则 C 0 0n n ??E =???EB =??u u u r r u u u r r , 即040x y ?=?? =??, 所以可取(3,0,n =r .

最新高考文科立体几何大题

1.(2013年高考辽宁卷(文))如 图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点 (I)求证:BC PAC ⊥平面; (II)设//.Q PA G AOC QG PBC ?为的中点,为的重心,求证:平面 2.2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中 心, A 1O ⊥平面ABCD , 12AB AA == (Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积. O D 1 B 1 C 1 D A C A 1

3.(2013年高考福建卷(文))如图,在四棱锥P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =, 60PAD ∠=o .(1)当正视图方向与向量AD u u u r 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程); (2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积. 4. 如图,四棱锥P —ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD=90°,面PAD ⊥面ABCD ,且AB=1,AD=2,E 、F 分别为PC 和BD 的中点. (1)证明:EF ∥面PAD ; (2)证明:面PDC ⊥面PAD ; (3)求四棱锥P —ABCD 的体积.

5.(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ?沿AF 折起,得到如图5所示的三棱锥A BCF -,其中2BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23 AD =时,求三棱锥F DEG -的体积F DEG V -. 图 4G E F A B C D 图 5D G B F C A E 6.(2013年高考北京卷(文))如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA ⊥底面ABCD ;(2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD

高考立体几何大题

高考立体几何大题 1如图,在底面 就是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 就是PD 的中点、 (I)证明PA ⊥平面ABCD,PB ∥平面EAC; (II)求以AC 为棱,EAC 与DAC 为面的二面角θ的正切值、 (04湖南18) 2如图,在棱长为1的正方体ABCD —A 1B 1C 1D 1中,AC 与BD 交于点E,CB 与CB 1交于点F 、(I)求证:A 1C ⊥平BDC 1;(II)求二面角B —EF —C 的大小(结果用反三角函数值表示)、 3在三棱锥S —ABC 中,△ABC 就是边长为4的正三角形,平面SAC ⊥平面ABC,SA=SC=22,M 为AB 的中点、 (Ⅰ)证明:AC ⊥SB; (Ⅱ)求二面角N —CM —B 的大小; (Ⅲ)求点B 到平面SCM 的距离、 (04福建1) 4如图,P —ABC 就是底面边长为1的正三棱锥,D 、E 、F 分别为棱长PA 、PB 、PC 上的点, 截面DEF ∥底面ABC, 且棱台DEF —ABC 与棱锥P —ABC 的棱长与相等、(棱长与就是指多面体中所有棱的长度之与)(1)证明:P —ABC 为正四面体;(2)若PD= 2 1 PA, 求二面角D —BC —A 的大小;(结果用反三角函数值表示) 5(本小题满分12分)如图,四棱锥P-ABCD 的底面就是正方形, ,,//,PA ABCD AE PD EF CD AM EF ⊥⊥=底面(1) 证明MF 就是异面直线AB 与PC 的公垂线; (2)若3PA AB =,求二面角E —AB —D 平面角、 6 6如图,在四棱锥ABCD P -中,底面ABCD 就是正方形,侧棱⊥PD 底面ABCD,DC PD =,E 就是PC 的中点。 (1)证明//PA 平面EDB;(2)求EB 与底面ABCD 所成的角的正切值。 D E P B A C

高考立体几何大题及答案理

1.如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面 ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上, ∠ABM=60 。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB =AC (Ⅱ)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小 3.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ; (II )求 AD 与平面ABE 所成角的正弦值. 4.如图,四棱锥P ABCD -的底面是正方形, PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中 点 时,求AE 与平面PDB 所成的角的大小. 5.如图,在四棱锥P ABCD -中,底面ABCD 是矩形, PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . B C D E O A P B M

(1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 6.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠=(I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 7.如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≦1). (Ⅰ)求证:对任意的λ∈(0、1), 都有AC ⊥BE : (Ⅱ)若二面角C -AE -D 的大小为600C ,求λ的值。 8.如图3,在正三棱柱111ABC A B C -中,AB =4, 17AA =,点D 是BC 的中点,点E 在AC 上,且DE ⊥1A E .(Ⅰ)证明:平面1A DE ⊥平面 11ACC A ;(Ⅱ)求直线AD 和平面1A DE 所成角的正弦值。 9.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面;

2017年高考立体几何大题

2017年高考立体几何大题(文科) 1、(2017新课标Ⅰ文数)(12分) 如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o (1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P-ABCD 的体积为 83 ,求该四棱锥的侧面积.

如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,90.2 AB BC AD BAD ABC ==∠=∠=? (1)证明:直线BC ∥平面PAD ; (2)若△PCD 的面积为P ABCD -的体积.

如图,四面体ABCD中,△ABC是正三角形,AD=CD. (1)证明:AC⊥BD; (2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.

如图,在三棱锥P–ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点. (Ⅰ)求证:PA⊥BD; (Ⅱ)求证:平面BDE⊥平面PAC; (Ⅲ)当PA∥平面BD E时,求三棱锥E–BCD的体积.

由四棱柱ABCD-A1B1C1D1截去三棱锥C1- B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD. A O∥平面B1CD1; (Ⅰ)证明: 1 (Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.

如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(1)EF∥平面ABC; (2)AD⊥AC.

高考立体几何大题20题汇总

(2012省)(本小题满分12分) 如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB=12,AD=5,BC=42,DE=4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合与点G ,得到多面体CDEFG. (1) 求证:平面DEG ⊥平面CFG ; (2)求多面体CDEFG 的体积。 2012,(19) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点,求证:DM ∥平面BEC . 201220.(本题满分15分)如图,在侧棱锥垂直底面 的四棱锥1111ABCD A B C D -中,,AD BC //AD 11,2,2,4,2,AB AB AD BC AA E DD ⊥====是的中点,F 是平面11B C E 与直线1AA 的交点。 (Ⅰ)证明:(i) 11;EF A D //ii ()111;BA B C EF ⊥平面 (Ⅱ)求1BC 与平面11B C EF 所成的角的正弦值。 (2010)18、(本小题满分12分)已知正方体''''ABCD A B C D -中,点M 是棱'AA 的中点,点O 是对角线'BD 的中点, (Ⅰ)求证:OM 为异面直线'AA 与'BD 的公垂线; (Ⅱ)求二面角''M BC B --的大小; (第20题图) F E C 1 B 1 D 1A 1 A D B C

2010文(19)(本小题满分12分) 如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ (Ⅰ)证明:平面11A B C ⊥平面11A BC ; (Ⅱ)设D 是11A C 上的点,且1//AB 平面1B CD ,求11:A D DC 的值。 2012(18)(本小题满分12分) 如图,直三棱柱/ / / ABC A B C -,90BAC ∠=, 2,AB AC ==AA ′=1,点M ,N 分别为/A B 和//B C 的 中点。 (Ⅰ)证明:MN ∥平面/ / A ACC ; (Ⅱ)求三棱锥/ A MNC -的体积。 (椎体体积公式V= 1 3 Sh,其中S 为地面面积,h 为高) 2012,(16)(本小题共14分) 如图1,在Rt ABC ?中,90C ∠=?,D ,E 分别为 AC ,AB 的中点,点F 为线段CD 上的一点,将ADE ? 沿DE 折起到1A DE ?的位置,使1A F CD ⊥,如图2. D F D E B C A 1 F E C B A

-2019三年高考 数学(文科)分类汇编 专题06 立体几何(解答题)

专题06 立体几何(解答题) 1.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°, E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离. 【答案】(1)见解析;(2417 . 【解析】(1)连结1,B C ME . 因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且11 2 ME B C =. 又因为N 为1A D 的中点,所以11 2 ND A D = . 由题设知11=A B DC ∥,可得11=BC A D ∥,故= ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ?平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H . 由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以117C E =,故417 CH = .

从而点C 到平面1C DE 的距离为 417 17 . 【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解. 2.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上, BE ⊥EC 1. (1)证明:BE ⊥平面EB 1C 1; (2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18. 【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ?平面ABB 1A 1, 故11B C BE ⊥.

近年高考理科立体几何大题总汇编

近几年高考理科立体几何大题汇编 1.(2018年III卷)如图,边长为2的正方形 ABCD所在的平面与半圆弧CD所在平面垂直,M是 CD上异于C,D的点. (1)证明:平面AMD⊥平面BMC; (2)当三棱锥M ABC 体积最大时,求面MAB与面MCD所成二面角的正弦值. 2、[2014·新课标全国卷Ⅱ] 四棱锥P-ABCD中,底 面ABCD为矩形,PA⊥平面ABCD,E为PD的中 点. (1)证明:PB∥平面AEC; (2)设二面角D-AE-C为60°,AP=1,AD= 3,求三棱锥E-ACD的体积.

3.(2017?新课标Ⅰ卷)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°. (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值. 4.(菱形建系)[2014·新课标全国卷Ⅰ] 如图

三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C. (1)证明:AC=AB1; (2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.

5.(菱形建系)【2015高考新课标1】如图,四边形ABCD为菱形,∠ ABC=120°, E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. (Ⅰ)证明:平面AEC⊥平面 AFC; (Ⅱ)求直线AE与直线CF所成角的余弦值. AD BC的中点,以6.(翻折)(2018年I卷)如图,四边形ABCD为正方形,,E F分别为, DF为折痕把DFC ⊥. △折起,使点C到达点P的位置,且PF BF (1)证明:平面PEF⊥平面ABFD; (2)求DP与平面ABFD所成角的正弦值.

立体几何高考真题大题

立体几何高考真题大题 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

立体几何高考真题大题 1.(2016高考新课标1卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD, 90AFD ∠=,且二面角D-AF-E 与二面角C-BE-F 都是60. (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析;(Ⅱ) 【解析】 试题分析:(Ⅰ)先证明F A ⊥平面FDC E ,结合F A ?平面F ABE ,可得平面F ABE ⊥平面FDC E .(Ⅱ)建立空间坐标系,分别求出平面C B E 的法向量m 及平面C B E 的法向量 n ,再利用cos ,n m n m n m ?= 求二面角. 试题解析:(Ⅰ)由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ?平面F ABE ,故平面F ABE ⊥平面FDC E . (Ⅱ)过D 作DG F ⊥E ,垂足为G ,由(Ⅰ)知DG ⊥平面F ABE . 以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -. 由(Ⅰ)知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则DF 2=,DG 3=,可 得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D . 由已知,//F AB E ,所以//AB 平面FDC E . 又平面CD AB 平面FDC DC E =,故//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角, C F 60∠E =.从而可得(C -.

高考立体几何解答题

绝密★启用前 2013-2014学年度???学校10月月考卷 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释)

第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题(题型注释) 三、解答题(题型注释) 1.(本小题12分)如图:四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,PA=AB=1,F 是PB 的中点,点E 在边BC 上移动. (1)证明:无论点E 在BC 边的何处,都有PE ⊥AF; (2)当BE 等于何值时,PA 与平面PDE 所成角的大小为45°. 2.正方形ADEF 与梯形A B C D 所在平面互相垂直,,//A D C D A B C D ⊥,,点M 在线段EC 上且不与,E C 重合。 (Ⅰ)当点M 是EC 中点时,求证:BM//平面ADEF ; (Ⅱ)当平面BDM 与平面ABF 时,求三棱锥M BDE -的体积. 3.如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 为正方形,

(1)求证:EF CD ⊥; (2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论; (3) 求DB 与平面DEF 所成角的正弦值. 4.如图,四棱柱1111D C B A A B C D -的底面A B C D 是平行四边形,且 1=AB ,2=BC ,060=∠ABC ,E 为BC 的中点,⊥1AA 平面ABCD . (Ⅰ)证明:平面⊥AE A 1平面DE A 1; (Ⅱ)若E A DE 1=,试求异面直线AE 与D A 1所成角的余弦值; (Ⅲ)在(Ⅱ)的条件下,试求二面角1--C A D E 的余弦值. 5.如图,已知正三棱柱111ABC A B C -中,2AB =,,D 为AC 上的动点. (1)求五面体11A BCC B -的体积; (2)当D 在何处时,1//AB 平面1BDC ,请说明理由; (3)当1//AB 平面1BDC 时,求证:平面1BDC ⊥平面11ACC A . 6.如图,在直三棱柱111ABC A B C -中,13AA AB BC ===,2AC =,D 是AC 的中点. A E B P C D F

高考理科立体几何大题

一, [2017·山东济南调研]如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5. (1)求证:AA 1⊥平面ABC ; (2)求二面角A 1-BC 1-B 1的余弦值; (3)在线段BC 1上是否存在点D ,使得AD ⊥A 1B ?若存在,试求出BD BC 1 的值. (1)[证明] 在正方形AA 1C 1C 中,A 1A ⊥AC . 又平面ABC ⊥平面AA 1C 1C , 且平面ABC ∩平面AA 1C 1C =AC ,AA 1?平面AA 1C 1C . ∴AA 1⊥平面ABC . (2)[解] 由(1)知,AA 1⊥AC ,AA 1⊥AB , 由题意知,在△ABC 中,AC =4,AB =3,BC =5, ∴BC 2 =AC 2 +AB 2 ,∴AB ⊥AC . ∴以A 为坐标原点,建立如图所示空间直角坐标系A -xyz . A 1(0,0,4), B (0,3,0), C 1(4,0,4),B 1(0,3,4), 于是A 1C 1→=(4,0,0),A 1B →=(0,3,-4), B 1 C 1→ =(4,-3,0),BB 1→ =(0,0,4). 设平面A 1BC 1的法向量n 1=(x 1,y 1,z 1),

平面B 1BC 1的法向量n 2=(x 2,y 2,z 2). ∴????? A 1C 1 →·n 1 =0,A 1 B →·n 1 =0 ????? ? 4x 1=0,3y 1-4z 1=0, ∴取向量n 1=(0,4,3). 由????? B 1 C 1 → ·n 2 =0,BB 1→·n 2 =0 ?? ?? ?? 4x 2-3y 2=0, 4z 2=0, ∴取向量n 2=(3,4,0). ∴cos θ= n 1·n 2|n 1||n 2|=165×5=16 25 . 由题图可判断二面角A 1-BC 1-B 1为锐角, 故二面角A 1-BC 1-B 1的余弦值为16 25 . (3)[解] 假设存在点D (x ,y ,z )是线段BC 1上一点,使AD ⊥A 1B ,且BD → =λBC 1→ , ∴(x ,y -3,z )=λ(4,-3,4), 解得x =4λ,y =3-3λ,z =4λ, ∴AD → =(4λ,3-3λ,4λ). 又AD ⊥A 1B ,∴0+3(3-3λ)-16λ=0, 解得λ=9 25, ∵9 25 ∈[0,1], ∴在线段BC 1上存在点D ,使得AD ⊥A 1B , 此时 BD BC 1=925 . 二, 如图,在四棱锥P -ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π 2 ,PA =AD =2,AB =BC =1.

历年高考立体几何大题试题

2015年高考立体几何大题试卷 1.【2015高考新课标2,理19】 如图,长方体1111ABCD A B C D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B , 11C D 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方 形. (1题图) (Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值. 2.【2015高考,16】 如图,在直三棱柱111C B A ABC -中,已知BC AC ⊥,1CC BC =,设1AB 的中点为D ,E BC C B =11 .求证:(1)C C AA DE 11//平面; (2)11AB BC ⊥. (2题图) (3题图) 3. 【2015高考,理19】如图所示,在多面体111A B D DCBA ,四边形11AA B B , 11,ADD A ABCD 均为正方形,E 为11B D 的中点,过1,,A D E 的平面交1CD 于F. (Ⅰ)证明:1//EF B C ; (Ⅱ)求二面角11E A D B --余弦值. A B C D E A B C D D C A E F A B C B

4. 【2015高考,22】如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边 形ABCD 为直角梯 形,2 ABC BAD π ∠=∠= ,2,1PA AD AB BC ==== (1)求平面PAB 与平面PCD 所成二面角的余弦值; (2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段BQ 的长 (4题图) G F B A C D E (5题图) 5 .【2015高考,理17】如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB 平面BEC , BE EC ,AB=BE=EC=2,G ,F 分别是线段BE ,DC 的中点. (Ⅰ)求证://GF 平面ADE ; (Ⅱ)求平面AEF 与平面BEC 所成锐二面角的余弦值. 6.【2015高考,理17】如图,在三棱柱111ABC A B C --中,90BAC ∠=,2AB AC ==, 14A A =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点. (1)证明:1A D ⊥平面1A B C ; (2)求二面角1A -BD-1B 的平面角的余弦值. P A B C D Q

立体几何高考真题大题

1.(2016高考新课标1卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD, 90AFD ∠=o ,且二面角D-AF-E 与二面角C-BE-F 都是60o . (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析; (Ⅱ)19 - 【解析】 试题分析:(Ⅰ)先证明F A ⊥平面FDC E ,结合F A ?平面F ABE ,可得平面F ABE ⊥ 平面FDC E .(Ⅱ)建立空间坐标系,分别求出平面C B E 的法向量m u r 及平面C B E 的法 向量n r ,再利用cos ,n m n m n m ?=r r r r r r 求二面角. 试题解析:(Ⅰ)由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ?平面F ABE ,故平面F ABE ⊥平面FDC E . (Ⅱ)过D 作DG F ⊥E ,垂足为G ,由(Ⅰ)知DG ⊥平面F ABE . 以G 为坐标原点,GF u u u r 的方向为x 轴正方向,GF u u u r 为单位长度,建立如图所示的空间直 角坐标系G xyz -. 由(Ⅰ)知 DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =o ,则 DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E - ,(D . 由已知,//F AB E ,所以//AB 平面FDC E . 又平面CD AB I 平面FDC DC E =,故//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角, C F 60∠E =o .从而可得(C -. 所以(C E =u u u r ,()0,4,0EB =u u u r ,(C 3,A =--u u u r ,()4,0,0AB =-u u u r . 设(),,n x y z =r 是平面C B E 的法向量,则 C A B D E F

2020年高考立体几何大题文科(供参考)

2017年高考立体几何大题(文科) 1、(2017新课标Ⅰ文数)(12分) 如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠= (1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P-ABCD 的体积为 83 ,求该四棱锥的侧面积. 2、(2017新课标Ⅱ文)(12分) 如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,90.2 AB BC AD BAD ABC ==∠=∠=? (1)证明:直线BC ∥平面PAD ; (2)若△PCD 的面积为P ABCD -的体积. 3、(2017新课标Ⅲ文数)(12分) 如图,四面体ABCD 中,△ABC 是正三角形,AD =CD . (1)证明:AC ⊥BD ; (2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比. 4、(2017北京文)(本小题14分) 如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点. (Ⅰ)求证:PA ⊥BD ; (Ⅱ)求证:平面BDE ⊥平面PAC ; (Ⅲ)当PA ∥平面BD E 时,求三棱锥E –BCD 的体积.

5、(2017山东文)(本小题满分12分) 由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD . (Ⅰ)证明:1A O ∥平面B 1CD 1; (Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1. 6、(2017江苏)(本小题满分14分) 如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A , D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC . 7、(2017浙江)(本题满分15分)如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的 等腰直角三角形,,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点. (第19题图) (Ⅰ)证明:平面PAB ; (Ⅱ)求直线CE 与平面PBC 所成角的正弦值. 8、(2017天津文)(本小题满分13分) 如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥, PD PB ⊥,1AD =,3BC =,4CD =,2PD =. (I )求异面直线AP 与BC 所成角的余弦值; (II )求证:PD ⊥平面PBC ; (II )求直线AB 与平面PBC 所成角的正弦值. //BC AD //CE

高考数学复习 立体几何解答题

高考数学复习 立体几何 空间向量与立体几何 1.如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点, 以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. P F E D C B A 2.如图,在三棱锥-P ABC 中,==AB BC PA PB PC === 4AC =,O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角--M PA C 为30?,求PC 与平面PAM 所成角的正弦值. O M P C B A 3.如图,边长为2的正方形ABCD 所在的平面与半圆弧?CD 所在平面垂直,M 是?CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ; (2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.

M D C B A 4.如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=o . D C A P (1)证明:平面PAB ⊥平面PAD ; (2)若PA PD AB DC ===,90APD ∠=o ,求二面角A PB C --的余弦值. 5.如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面三角形ABCD , 1 2 AB BC AD == ,90BAD ABC ∠=∠=o ,E 是PD 的中点. E M D C B A P (1)证明:直线CE ∥平面PAB ; (2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45o ,求二面角M AB D --的余弦值 6.如图,四面体ABCD 中,ABC ?是正三角形,ACD ?是直角三角形,ABD CBD ∠=∠, AB BD =.

高三立体几何试题及答案

高三立体几何试题及答 案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

1.如图,正方体A B C D-A1B1C1D1的棱长为a,点P是棱 AD上一点,且AP=a 3,过B1,D1,P的平面交底面ABCD 于PQ,Q在直线CD上,则PQ=________. 2.如图,在直四棱柱ABCD-A1B1C1D1中,∠ADC=90°, 且AA1=AD=DC=2,M∈平面ABCD, 当D1M⊥平面A1C1D时,DM=________. 3.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点. (1)求证:平面PDC⊥平面PAD; (2)求点B到平面PCD的距离; 4.如图,PO⊥平面ABCD,点O在AB上,EA∥PO,四边 形ABCD为直角梯形,BC⊥AB,BC=CD=BO=PO,EA=AO=1 2CD. (1)求证:BC⊥平面ABPE; (2)直线PE上是否存在点M,使DM∥平面PBC,若存在,求出点M; 若不存在,说明理由. 5.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB 的中点. (1)求证:EF∥平面ABC1D1; (2)求证:EF⊥B1C; (3)求三棱锥B1-EFC的体积. 6.如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90° (1)求证:PC⊥BC (2)求点A到平面PBC的距离. 1.22 3a∵B1D1∥平面ABCD,平面B1D1P∩平面ABCD

高考立体几何解答题精选附详细答案

立体几何解答题

立体几何解答题 一.解答题(共30小题) 1.(2009?宁夏)如图,四棱锥S﹣ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点. (1)求证:AC⊥SD; (2)若SD⊥平面PAC,求二面角P﹣AC﹣D的大小; (3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由. 2.(2009?江苏)如图,在直三棱柱ABC﹣A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:(1)EF∥平面ABC; (2)平面A1FD⊥平面BB1C1C. 3.(2009?湖北)如图,四棱锥S﹣ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,点E是SD上的点,且DE=λa(0<λ≤2) (Ⅰ)求证:对任意的λ∈(0,2),都有AC⊥BE (Ⅱ)设二面角C﹣AE﹣D的大小为θ,直线BE与平面ABCD所成的角为ω,若tanθ?tanφ=1,求λ的值.

4.(2008?山东)如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点. (Ⅰ)证明:AE⊥PD; (Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E﹣AF﹣C的余弦值. 5.(2008?福建)如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点. (Ⅰ)求证:PO⊥平面ABCD; (Ⅱ)求异面直线PB与CD所成角的余弦值; (Ⅲ)求点A到平面PCD的距离. 6.(2008?安徽)如图,在四棱锥O﹣ABCD中,底面ABCD是边长为1的菱形,∠ABC=,OA⊥底面ABCD, OA=2,M为OA的中点. (Ⅰ)求异面直线AB与MD所成角的大小; (Ⅱ)求点B到平面OCD的距离.

高考立体几何大题20题汇总情况

(2012江西省)(本小题满分12分) 如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB=12,AD=5,BC=42,DE=4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合与点G ,得到多面体CDEFG . (1) 求证:平面DEG ⊥平面CFG ; (2)求多面体C DEFG 的体积。 2012,山东(19) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点,求证:DM ∥平面 BEC . 2012浙江20.(本题满分15分)如图,在侧棱锥垂直 底面的四棱锥1111ABCD A B C D -中,,AD BC //AD 11,2,2,4,2,AB AB AD BC AA E DD ⊥====是的中点,F 是平面11B C E 与直线1AA 的交点。 (Ⅰ)证明:(i) 11;EF A D //ii ()111;BA B C EF ⊥平面 (Ⅱ)求1BC 与平面11B C EF 所成的角的正弦值。 (2010四川)18、(本小题满分12分)已知正方体''''ABCD A B C D -中,点M 是棱'AA 的中点,点O 是对角线'BD 的中点, (Ⅰ)求证:OM 为异面直线'AA 与'BD 的公垂线; (第20题图) F E C 1 B 1 D 1A 1 A D B C

(Ⅱ)求二面角''M BC B --的大小; 2010辽宁文(19)(本小题满分12分) 如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ (Ⅰ)证明:平面11A B C ⊥平面11A BC ; (Ⅱ)设D 是11A C 上的点,且1//AB 平面1B CD ,求11:A D DC 的值。 2012辽宁(18)(本小题满分12分) 如图,直三棱柱/ / / ABC A B C -,90BAC ∠=, 2,AB AC ==A A ′=1,点M ,N 分别为/A B 和//B C 的 中点。 (Ⅰ)证明:MN ∥平面/ / A ACC ;

相关文档
相关文档 最新文档