文档库 最新最全的文档下载
当前位置:文档库 › 2007年度诺贝尔化学奖获得者简介

2007年度诺贝尔化学奖获得者简介

2007年度诺贝尔化学奖获得者简介
2007年度诺贝尔化学奖获得者简介

2007年度诺贝尔化学奖获得者简介

张卓勇 朱若华

(首都师范大学化学系,北京 100037)

摘要

最近诺贝尔奖委员会公布了2007年诺贝尔化学奖获奖人,德国科学家格哈德#埃特尔(Gerhard Ertl)因在固体表面的化学过程研究中的杰出贡献获此殊荣.格哈德#埃特尔是一位在国际上享有盛誉的科学家,他在描述氢在金属表面的吸附作用、氨合成的分子机理和固体表面的催化过程等很多方面做了出色的研究工作.他不仅奠定了现代表面化学的基础理论和方法学,而且他的研究成果已经对人类生产和生活产生了巨大的作用,包括化肥生产、汽车尾气的催化净化等许多方面,为经济发展和社会进步做出了巨大的贡献.本文对格哈德#埃特尔教授的学术生涯及在固体表面的化学过程研究方面的主要科学贡献做了介绍.

关键词:诺贝尔化学奖,格哈德#埃特尔,生平介绍.中图分类号:O 647.11

收稿日期:2007-10-23

2007年度诺贝尔化学奖近日已经揭晓,德国科学家格哈德#埃特尔(Gerhard Ertl)因在固体表面的化学过程研究中的杰出贡献获该奖.这是诺贝尔化学奖第一次颁发给表面化学研究领域,因此对于表面化学具有重要的意义

.

图1 Gerhard Ertl 照片

Gerhard Ertl 于1936年10月出生在德国的Bad Cannstdat.他出生后不久,全家就搬到了德国的Fellbach.他于1955年开始在University of Stuttgart 学

习物理学.后来他的学业曾两度中断,最后在Heinz Gerischer 的指导下完成学业.那时Heinz Gerischer 是在麦克斯)普兰克金属研究所工作,后来Heinz Gerischer 受聘到Technical University of Munich 担任物理化学教授.Gerhard Ertl 又跟着Heinz Gerischer 作为助手继续在Heinz Gerischer 的指导下工作.Gerhard Ertl 于1965年通过答辩取得博士学位.他的论文题目是/论锗单晶表面上的催化氢氧化的动力学0.两年后,Gerhard Ertl 又完成了一个题目为/用低能量电子衍射研究表面结构与反应活性0的研究项目.随后他获得了一个商业项目的资助,从而进入到该国家/表面科学0的领域.由于他在该领域的出色工作,年仅31岁的Gerhard Ertl 于1967年被聘为汉诺威大学(University of Hannover)物理化学系主任.同年,他又担任汉诺威技术大学(Technical University of Hannover)的物理化学与电化学研究所(Institute of Physical Chemistry and Electrochemistry )的教授和主

任.

Gerhard Ertl 又于1973年接替Georg -Maria Schwab 担任慕尼黑Ludwig -Maximilians 大学物理化学系主任.Gerhard Ertl 的整个研究组都跟随着他从汉诺威搬到了慕尼黑.此后,他还担任了德国和美国的多所大学的客座教授.

1985年,他离开慕尼黑去接替他的老师Heinz

4

第28卷 第6期2007年12月

首都师范大学学报(自然科学版)Journal of Capital Normal University

(Natural Science Edition)

No.6Dec.2007

Gerischer担任Fritz-Haber研究所的所长.同时,他还担任柏林技术大学(Technical University in Berlin)和柏林自由大学(Free University of Berlin)的荣誉教授. 1989年柏林墙倒塌之后,他又成为Humbold-t University of Berlin的荣誉教授.他可能是第一位在三所柏林大学担任荣誉教授的人.

Gerhard Ertl指导过100多名博士研究生和世界各地的很多博士后,其中许多人是现在知名的科学家.Gerhard Ertl的科学成就包括的范围非常广.他从其科学生涯一开始就从事化学反应表面过程的研究.他开始时研究小分子,如O2、CO、H2、N2、NO等与金属和合金表面的相互作用.后来他的研究组采用分子束技术、激光光谱等技术研究反应动力学.

氢气在金属表面如钯、铂和镍的吸附行为对于研究催化和有机物的氢化有着重要意义.Gerhard Ertl采用低能电子衍射(LEED,Low Energy Electron Diffraction)定量地描述了氢在金属表面的吸附作用.他的研究不仅解决了在这方面长期困扰人们的有关催化机理问题,而且建立了LEED与其它实验方法相结合研究分子表面科学中的重要问题方法.他的研究影响深远,由于有坚实的研究基础,在Gerhard Ertl近期工作中,用振动光谱揭示了H单分子层在铂(111)表面的吸附模式.

Gerhard Ertl在氨的合成机理研究方面做出了重要的贡献.他及其合作者采用表面化学的方法对氨合成过程的分子行为和机理进行了深入系统的研究.

德国科学家Fritz Haber于1905~1908年发现了氨合成方法,因而获得了1918年的诺贝尔奖.

在合成氨反应中,氮气和氢气在高压和催化剂的存在下反应生成氨:

N2+3H y2NH3

在这个反应中铁和氢氧化钾作为催化剂.由于巨大的经济效益,许多研究者致力于揭开氨合成反应机理的奥秘.Ertl在上世纪70年代中期开始了反应机理的研究.合成氨的反应动力学受到氮气的化学吸附过程速度控制,这个过程的机理甚至反应成分的性质都不是很清楚.Ertl在进行氢在金属表面吸附研究过程中,掌握了表面研究的方法,对他后来的研究工作非常有利.

合成氨反应的第一步涉及到氮气和氢气分子在表面的吸附.氮气在表面是否能解离一直是受争议的问题.众所周知,氮气分子中的三键是最强的化学键之一,很难想象分子和表面的相互作用可以强到足以使氮分子分解,即使在能量上允许,键断裂时会有很高的势垒.Ertl采用光电子光谱技术,观察到了洁净的铁表面原子氮的存在,并推导出了详细铁-氮结构模型.原子氮的形成可由低活化能引发,但是由于有一个非常小的因素存在使得过程很慢.在不同的晶面上,生成氮原子所需的活化能不同,在3个主要晶面(111),(110)和(100)上反应都能够进行.随着表面覆盖程度提高,势垒提高了,而在不同晶面上的动力学差异就不那么显著了.这个研究还不能够解释工业过程.1979年,Ertl采用原子发射光谱法研究了工业用的催化剂的表面组成,发现在通常条件下,催化剂表面呈配位结构,在还原的情况下,表面主要由铁和钾所占据.通过吸收能量的特征可以发现,在高压下,一个催化循环完成后空反应器中,只有吸附的原子氮保留在催化剂表面.根据上述定量的研究,合成氨的反应机理可以推导如下:

N2W2H ad

N2W H2,ad W2N s

N s+H ad W NH ad

NH ad+H ad W NH2,ad

NH2,ad+H ad W NH3,ad

NH3,ad W NH3

这个反应机理在Ertl前已有报道,但是Ertl不仅证明了机理的存在,而且提供了每步反应所需能量

:

图2合成氨反应过程的能级图能量单位:kJ P mol

尽管图2详细地阐述了反应过程,但是还有一个基本的问题没有解决.实验表明,钾离子的存在可以加快催化循环,Ertl还观察到在反应过程中钾保持在催化剂表面.钾的存在可以使氮分子更稳定地吸附在催化剂表面,吸附能提高了10-15kJ P mol.这个事实说明钾可以提供电子给相邻的铁原子.

1982年,Gerhard Ertl研究组利用当时刚提出的扫描隧道显微镜(STM)研究了表面结构和反应机

5

第6期张卓勇等:2007年度诺贝尔化学奖获得者简介

理,后来又采用UV )光电子光谱仪测量了表面上发射电子的动能变化,对于分子在表面的键合有了新的理解.

Gerhard Ertl 研究组的研究重点之一是C O 氧化.1982年,Gerhard Ertl 及其研究组报道了在单晶表面上CO 2形成过程中的动能振荡,这是一个化学反应中的非线性现象.在这个过程中,一个化学吸附在金属铂表面上的C O 分子与另一个被化学吸附的氧原子发生反应生成CO 2,然后离开表面.这个过程中,表面重构是最引入注目的效应.裸露、的金属面

(100)和(110)上存在着表面重构的趋势以降低表面

张力,如果CO 吸附在金属表面达到一定程度时,吸附能的作用会发生金属表面的重构的逆过程.而O 2在逆转的表面上有更强的化学吸附作用.随着催化反应进行,气体分子覆盖率降低,又会引起金属表面重构.这样的振荡动力学过程使得金属表面空间构成形成富CO 区和富O 2区.Ertl 用光发射电子显微镜观察到了这一现象(见图3).从图3可以明确观察到这种振荡过程

.

图3 铂表面光发射电子显微镜图像

暗区是富CO 区,亮区是富O 2区.时间范围:~10s.长度间隔:~011mm

这些基础研究表明,Ertl 的方法学不仅适用于单反应速率控制的动力学研究中如合成氨的反应过

程,而且适用于非线性动能研究.他的方法学体系已经成为表面化学过程研究的标准方法.

Gerhard Ertl 是一位在国际上享有盛誉的科学家,曾在德国科学基金会、国家科技部、同步辐射研究委员会等学术机构任职,还担任包括美国科学院等十个国家科学院的院士.Gerhard Ertl 获得过许多荣誉,除了上面提到的三个荣誉教授外,他还获得了五个荣誉博士称号.他还获得过许多重要的科学奖项.Gerhard Ertl 与中国的学者和研究机构交往密切,有多名中国学者在Gerhard Ertl 研究组做博士后、访问学者或从事联合研究工作.自1997年起,埃特尔教授就应聘为中国科学院大连化学物理研究所催化基础国家重点实验室国际顾问委员会委员,并担任5催化学报6的顾问;2000年,Gerhard Ertl 所在的德国马普学会和中科院大连化学物理研究所建立了/纳米催化技术0伙伴关系研究小组,利用表面科学的表征、制备手段,研究催化反应的纳米作用基础;2006年6月,双方又共同组建了/基于第一性原理的高压氧化催化理论0伙伴关系研究小组,致力于发展基于量子力学的、准确的并具有预言能力的、在真实的氧化环境条件下的催化理论.

表面化学对于化学工业非常重要,Gerhard Ertl 是最早认识到这些新技术的潜在性的人之一.Gerhard Ertl 不仅奠定了现代表面化学的基础理论和方法学,而且他的研究成果已经对人类生产和生活产生了巨大的作用,包括化肥生产、燃料电池的作用机制、汽车尾气的催化净化等许多方面,为经济发展和社会进步做出了巨大的贡献.

(下转第10页)

6

The Nobel Prize in Physiology or Medicine in2007Goes to

Mouse Gene Targeting

Zhu Lin Li Jing Xu Xingzhi

(Laboratory of Cancer Bi ology,College of Li fe Science,Capi tal Normal Universi ty,Beijing100037)

Abstract

The Nobel Prize is named after the fa mous Swedish chemist Alfred Nobel,the inventor of the nitroglycerine dyna mite.In2007,the Nobel Prize in Physiology or Medicine has been a warded to Mario R.Capecchi,Martin J.Evans and Oliver Smithies for their disc overies of the/gene knockout0technology.They studied this subjec t from different perspectives,and made their unique and groundbreaking c ontributions.Capecchi spent his career studying homologous recombination,which is the foundation for the gene knockout technology.Evans studies embryonal carcinoma cells. Smithies discovered that endogenous genes could be targeted.Gene knockout,also known as gene targeting,includes the following steps:modifying genes by homologous recombination,obtaining chimera mouse by e mbryonic stem cells, homologous recombination in embryonic stem cells,and finally obtaining gene knockout mouse.The combination of their discoveries made0gene therapy0possible and established technological bases for studying human diseases using animal models.

Key words:the Nobel Prize in physiology or medicine,/gene knockout0technology,homologous recombination.

(上接第6页)

An Introduction of the Winner of Nobel Prize in Chemistry2007

Zhang Zhuoyong Zhu Ruohua

(Department of Chemistry,Capi tal Normal Universi ty,Beijing100037)

Abstract

A German scientist,Prof.Gerhard Ertl was announced to be the winner of Nobel Prize in Chemistry2007for his remarkable studies on chemical processes on solid surfaces by the Nobel Prize Committee.Prof.Gerhard Ertl is a notable scientist worldwide.He and his colleagues did excellent research work on adsorption behavior of hydrogen on metal surfaces,the molecular mechanism of ammonia synthesis,and catalytic processes on solid surfaces,and many other aspects.His remarkable researches not only build the foundation of theory and me thodology for modern surface chemistry, but also have significant impact on our life and society,including fertilizer production,catalytic cleaning of the automobile exhaustion and etc.His research has made significant contributions to the mankind and social development. The scientific career of Prof.Gerhard Ertl and his research achieve ments in chemical processes on solid surfaces and related works were introduced in the present paper.

Key words:Nobel Prize in Chemistry,Gerhard Ertl,introduction.

10

第二章 诺贝尔化学奖简介

诺贝尔化学奖总表 从化学诺贝尔奖看化学学科的发展 2004年诺贝尔化学奖 诺贝尔化学奖总表1901-1910 1901年 ?荷兰雅克布斯·范特霍夫 o发现了化学动力学法则和溶液渗透压 ?德国赫尔曼·费歇尔 o合成了糖类和嘌呤衍生物 ?瑞典阿累尼乌斯 o提出了电离理论,促进了化学的发展。

?英国威廉·拉姆齐爵士 o发现了空气中的稀有气体元素并确定他们在周期表里的位置。 ?德国阿道夫·拜耳 o对有机染料以及氢化芳香族化合物的研究促进了有机化学与化学工业的发展。 ?法国穆瓦桑 o研究并分离了氟元素,并且使用了后来以他名字命名的电炉。 ?德国爱德华·毕希纳 o对酶及无细胞发酵等生化反应的研究。 ?新西兰欧内斯特·卢瑟福爵士 o对元素的蜕变以及放射化学的研究。

?德国威廉·奥斯特瓦尔德 o对催化作用、化学平衡以及化学反应速率的研究。 ?德国奥托·瓦拉赫: o在脂环类化合物领域的开创性工作促进了有机化学和化学工业的发展的研究。 1911-1920 1911年 ?法国玛丽亚·居里 o发现了镭和钋,提纯镭并研究镭的性质。 ?法国格利雅 o发明了格氏试剂,促进了有机化学的发展。 ?法国保罗·萨巴蒂埃 o发明了有机化合物的催化加氢的方法,促进了有机化学的发展。 ?瑞士阿尔弗雷德·沃纳

o对分子内原子成键的研究,开创了无机化学研究的新领域。 ?美国西奥多·理查兹 o精确测量了大量元素的原子量。 ?德国理查德·威尔施泰特 o对植物色素的研究,特别是对叶绿素的研究。 ?德国弗里茨·哈伯 o对单质合成氨的研究。 ?德国沃尔特·能斯特 o对热力学的研究。 1921-1930 1921年 ?英国弗雷德里克·索迪

历年诺贝尔化学奖获奖者介绍【1951】 GlennT.Seaborg

历年诺贝尔化学奖获奖者介绍【1951】GlennT.Seaborg Facts name: GlennT.Seaborg Ishpeming, MI, USA Affiliation at the time of the award: University of California, Berkeley, CA, USA Prize motivation: "for their discoveries in the chemistry of the transuranium elements." Prize share: 1/2 Life Work The heaviest element existing in nature is uranium, which has an atomic number of 92. All of the heavier elements are radioactive and quickly decay. It has become apparent, however, that they can be created by bombarding atoms with particles and atomic nuclei. After initial contributions by Edwin McMillan, Glenn Seaborg succeeded in 1940 in creating an element with an atomic number of 94, which was named plutonium. This new substance became significant for both nuclear weapons and nuclear energy. Glenn Seaborg subsequently identified additional heavy elements and their isotopes. The heaviest element existing in nature is uranium, which has an atomic number of 92. All of the heavier elements are radioactive and quickly decay. It has become apparent, however, that they can be created by bombarding atoms with particles and atomic nuclei. After initial contributions by Edwin McMillan, Glenn Seaborg succeeded in 1940 in creating an element with an atomic number of 94, which was named plutonium. This new substance became significant for both nuclear weapons and nuclear energy. Glenn Seaborg subsequently identified additional heavy elements and their isotopes.

近十年诺贝尔化学奖得主及其贡献

2010年,美国科学家理查德赫克、日本科学家根岸荣一和铃木章因在有机合成领域中钯催化交叉偶联反应方面的卓越研究而获奖。这一成果广泛应用于制药、电子工业和先进材料等领域,可以使人类造出复杂的有机分子。 2009年,英国科学家文卡特拉曼拉马克里希南、美国科学家托马斯施泰茨和以色列科学家阿达约纳特因对“核糖体的结构和功能”研究的贡献而获奖。

2008年,日本科学家下村修、美国科学家马丁沙尔菲和美籍华裔科学家钱永健因在发现和研究绿色荧光蛋白方面作出贡献而获奖。 2007年,德国科学家格哈德埃特尔因在表面化学研究领域作出开拓性贡献而获奖。

2006年,美国科学家罗杰科恩伯格因在“真核转录的分子基础”研究领域作出贡献而获奖。 2005年,法国科学家伊夫肖万、美国科学家罗伯特格拉布和理查德施罗克因在烯烃复分解反应研究领域作出贡献而获奖。 2004年,以色列科学家阿龙切哈诺沃、阿夫拉姆赫什科和美国科学家欧文罗斯因发现泛素调节的蛋白质降解而获奖。

10月8日,瑞典皇家科学院在瑞典首都斯德哥尔摩宣布,将2003年诺贝尔化学奖授予美国科学家彼得阿格雷和罗德里克麦金农,分别表彰他们发现细胞膜水通道,以及对离子通道结构和机理研究作出的开创性贡献。这是47岁的化学奖得主罗德里克麦金农。

10月8日,瑞典皇家科学院在瑞典首都斯德哥尔摩宣布,将2003年诺贝尔化学奖授予美国科学家彼得阿格雷和罗德里克麦金农,分别表彰他们发现细胞膜水通道,以及对离子通道结构和机理研究作出的开创性贡献。这是54岁的化学奖得主彼得阿格雷。 2003年,美国科学家彼得阿格雷和罗德里克麦金农因在细胞膜通道领域作出了“开创性贡献”而获奖。 2002年,美国科学家约翰芬恩、日本科学家田中耕一和瑞士科学家库尔特维特里希发明了对生物大分子进行识别和结构分析的方法。 2001年,诺贝尔化学奖奖金一半授予美国科学家威廉诺尔斯与日本科学家野依良治,以表彰他们在“手性催化氢化反应”领域所作出的贡献;另一半授予美国科学家巴里夏普莱斯,以表彰他在“手性催化氧化反应”领域所取得的成就。

历届诺贝尔化学奖获得者名单及贡献

历届诺贝尔化学奖获得者名单及贡献 1901-荷兰科学家范托霍夫因化学动力学和渗透压定律获诺贝尔化学奖。 1902-德国科学家费雪因合成嘌呤及其衍生物多肽获诺贝尔化学奖。 1903-瑞典科学家阿伦纽斯因电解质溶液电离解理论获诺贝尔化学奖。 1904-英国科学家拉姆赛因发现六种惰性所体,并确定它们在元素周期表中的位置获得诺贝尔化学奖。 1905-德国科学家拜耳因研究有机染料及芳香剂等有机化合物获得诺贝尔化学奖。 1906-法国科学家穆瓦桑因分离元素氟、发明穆瓦桑熔炉获得诺贝尔化学奖。 1907-德国科学家毕希纳因发现无细胞发酵获诺贝尔化学奖。 1908-英国科学家卢瑟福因研究元素的蜕变和放射化学获诺贝尔化学奖。 1909-德国科学家奥斯特瓦尔德因催化、化学平衡和反应速度方面的开创性工作获诺贝尔化学奖。 1910-德国科学家瓦拉赫因脂环族化合作用方面的开创性工作获诺贝尔化学奖。 1911-法国科学家玛丽·居里(居里夫人)因发现镭和钋,并分离出镭获诺贝尔化学奖。 1912-德国科学家格利雅因发现有机氢化物的格利雅试剂法、法国科学家萨巴蒂埃因研究金属催化加氢在有机化合成中的应用而共同获得诺贝尔化学奖。 1913-瑞士科学家韦尔纳因分子中原子键合方面的作用获诺贝尔化学奖。 1914-美国科学家理查兹因精确测定若干种元素的原子量获诺贝尔化学奖。 1915-德国科学家威尔泰特因对叶绿素化学结构的研究获诺贝尔化学奖。

1916-1917-1918-德国科学家哈伯因氨的合成获诺贝尔化学奖。 1919-1920-德国科学家能斯脱因发现热力学第三定律获诺贝尔化学奖。 (1921年补发)1921-英国科学家索迪因研究放射化学、同位素的存在和性质获诺贝尔化学奖。 1922-英国科学家阿斯顿因用质谱仪发现多种同位素并发现原子获诺贝尔化学奖。 1923-奥地利科学家普雷格尔因有机物的微量分析法获诺贝尔化学奖。 1924-1925-奥地利科学家席格蒙迪因阐明胶体溶液的复相性质获诺贝尔化学奖。 1926-瑞典科学家斯韦德堡因发明高速离心机并用于高分散胶体物质的研究获诺贝尔化学奖。 1927-德国科学家维兰德因发现胆酸及其化学结构获诺贝尔化学奖。 1928-德国科学家温道斯因研究丙醇及其维生素的关系获诺贝尔化学奖。 1929-英国科学家哈登因有关糖的发酵和酶在发酵中作用研究、瑞典科学家奥伊勒歇尔平因有关糖的发酵和酶在发酵中作用而共同获得诺贝尔化学奖。 1930-德国科学家费歇尔因研究血红素和叶绿素,合成血红素获诺贝尔化学奖。 1931-德国科学家博施、伯吉龙斯因发明高压上应用的高压方法而共同获得诺贝尔化学奖。 1932-美国科学家朗缪尔因提出并研究表面化学获诺贝尔化学奖。 1933-1934-美国科学家尤里因发现重氢获诺贝尔化学奖。 1935-法国科学家约里奥·居里因合成人工放射性元素获诺贝尔化学奖。 1936-荷兰科学家德拜因 X射线的偶极矩和衍射及气体中的电子方面的研究获诺贝尔化学奖。

诺贝尔化学奖

1990年伊莱亚斯?詹姆斯?科里(Elias James Corey)(美国),由于提出有机合成理论及方法而获奖。他创立了“逆合成分析原理”,并率先用计算机辅助有机合成的方法,使有机合成化学进入到一个新的领域——“分子模拟”,得以模拟生产许多复杂的天然产品。 1991年理查德?恩斯特(Richard R Ernst)(瑞士),1933年生于瑞士联邦的温吐尔,苏黎士瑞士联邦理工学院教授,因对开发制造高分辨率核磁共振谱仪技术的贡献而获奖。 1992年鲁道夫?马库斯(Rudolph?Arthur?Marcus)(美国)1923 年生于加拿大魁北克蒙特利尔城,加利福尼亚理工学院教授,因为确立化学系统中电子转移反应理论的贡献而获奖。该理论对于生命或生理机制具有重要意义。 1993年发现聚合酶链式反应法的卡里?穆利斯(kary Mullis)(美国)1944年生于美国加州的拉霍亚。与创立寡聚核苷酸导向定位突变法的迈克尔?史密斯(Michaei Smith,1932年出生的加拿大籍英国人)分享当年的化学奖。 1994年乔治?奥拉(George A.Olah)(美国),1927年生于匈牙利,美国南加州大学教授,因对有机化学的贡献而获奖。他发现了用超强酸使阳离子保持稳定的方法,对发现新的有机化学反应和推动有机化学工业发展起到了重要作用。 1995年保罗?克鲁森(Paul Crutzn,生于1933年,荷兰)、马里奥?莫利纳(Mario Molina,生于1943年,墨西哥)和弗兰克?舍伍德?罗兰(Frank Sherwood Rowland,生于1927年,美国)三人由于在大气化学领域,尤其是在有关臭氧层形成和损耗方面的研究工作而共同获奖。 1996年小罗伯特?柯尔(Robert F.Curl,Jr,美国,生于1933年)、哈罗德?克罗托(Sir Harlod W.Kroto,生于1939年,英国)和理查德?斯莫斯(Richard E.Smalley,生于1943年,美国)等三人由于发现球状碳分子即富勒烯C60而共同获奖。 1997年一半奖金由保罗?博伊尔(Paul D.Boyer,生于1918年,美国)和约翰?约克(John E.Walker,生于1914年,英国)分享,是因其阐明了三磷酸腺苷在体内形成的生物催化原理;另一半由丹麦的延斯?斯科(Jens C.Skou,生于1918年)获得,他发现了钠、钾离子三三磷酸腺苷酶。 1998年本年度诺贝尔化学奖给予量子化学领域的科学家瓦尔特?柯恩(Walter Kohn)和约翰?波普尔(John A Pople Kohn,美国),1923年生于匈牙利维也纳,在美国加州大学工作;PoPle(英国),1925年生于英国,在美国西北大学工作。这俩位科学家各自率先创新了量子化学计算方法,咳对分子的性质及其参与的化学过程进行有效的理论分析。 1999年本年度诺贝尔化学奖给予埃及裔美国人艾哈德?泽维尔(Ahmed H.Zewail),以表彰他为飞秒光谱学(femtosecond spectroscopy,1飞秒=10-15秒)研究所作的贡献。泽维尔的研究成果使得人们便于研究和预测一些重要的化学反应,给化学以及相关科学领域带来了一场革命。 2000年美国科学家艾伦?黑格、艾伦?马克迪尔米德以及日本科学家白川英树由于在导电聚合物领域的开创性贡献,荣获今年的诺贝尔化学奖。

【历届诺贝尔奖得主(十)】2003年化学奖

化学奖 美国科学家彼得·阿格雷、罗德里克·麦金农因在细胞膜通道方面做出的开创性贡献,而共同获得诺贝尔化学奖。 彼得·阿格雷 彼得·阿格雷,科学家。1949年生于美国明尼苏达州小城诺斯菲尔德,1974年在巴尔的摩约翰斯·霍普金斯大学医学院获医学博士,现为该学院生物化学教授和医学教授。2004年来到杜克大学,担任医学院副院长。由于发现了细胞膜水通道,在2003年获得诺贝尔化学奖。 人物简介 彼得·阿格雷1949年生于美国明尼苏达州小城诺斯菲尔德,1974年在巴尔的摩约翰斯·霍普金斯大学医学院获医学博士,现为该学院生物化学教授和医学教授。2004年到杜克大学,担任医学院副院长。他与麦金农分享总额为1000万克朗(约合130万美元)的奖金。 瑞典皇家科学院2003年10月8日宣布,将2003年诺贝尔化学奖授予美国科学家彼得·阿格雷和罗德里克·麦金 彼得·阿格雷 农,以表彰他们在细胞膜通道方面做出的开创性贡献。 彼得·阿格雷诺贝尔化学奖评选委 员会主席本特·努丁在新闻发布会上说,阿格雷得奖是由于发现了细胞膜水通道,而麦金农的贡献主要是在细胞膜离子通道的结构和机理研究方面。他们的发现阐明了盐分和水如何进出组成活体的细胞。比如,肾脏怎么从原尿中重新吸收水分,以及电信号怎么在细胞中产生并传递等等,这对人类探索肾脏、心脏、肌肉和神经系统等方面的诸多疾病具有极其重要的意义。诺贝尔科学奖通常颁发给年龄较大的科学家,获奖成果都经过几十年的检验。但阿格雷只有54岁,而麦金农才47岁。他们的成果也比较新:麦金农的发现产生于5年前;阿格雷的工作于1988年完成。瑞典媒体评论说,这在诺贝尔科学奖历史上是比较罕见的。今年诺贝尔化学奖及生理学或医学奖的结果都显示出了当代科学跨领域研究的趋势。 离子通道是另一种类型的细胞膜通道,神经系统和肌肉等方面的疾病与之有关,它还能产生电信号,在神经系统中传递信息。但由于科学家一直不能弄清楚它的结构,进一步的研究无法展开。而麦金农在1998年测出了钾通道的立体结构,“震惊了所有的研究团体”。评选委员会说,由于他的发现,人们可以“看见”离子如何通过由不同细胞信号控制开关的通道。 获奖情况 2003年诺贝尔化学奖授予美国科学家彼得·阿格雷和罗德里克·麦金农,分别表彰他们发现细胞膜水通道,以及对离子通道结构和机理研究作出的开创性贡献。 奖项:2003年诺贝尔化学奖 获得者:彼得·阿格雷罗德里克·麦金农 成就:表彰他们在细胞膜通道方面做出的开创性贡献 获奖理由 人类在内的各种生物都是由细胞组成的。细胞如同一个由城墙围起来的微小城镇,有用的物质不断被运进来,废物被不断运出去。早在100多年前,人们就猜测细胞这一微小城镇的城墙中存在着很多“城门”,它们只允 罗德里克·麦金农 许特定的分子或离子出入。2003年诺贝尔化学奖表

历届诺贝尔化学奖得主及其成就

历届诺贝尔化学奖得主及其成就 历届诺贝尔化学奖得主及其成就(1960——2008)(2009-04-03 11:30:05) 1960年W.F.利比(美国人)发明了“放射性碳素年代测定法” 1961年M.卡尔文(美国人)揭示了植物光合作用机理 1962年M.F.佩鲁茨,J.C.肯德鲁(英国人)测定出蛋白质的精细结构 1963年K.齐格勒(德国人),G.纳塔(意大利人)发现了利用新型催化剂进行聚合的方法,并从事这方面的基础研究 1964年D.M.C.霍金奇(英国人)使用X射线衍射技术测定复杂晶体和大分子的空间结构1965年R.B.伍德沃德(美国人)对有机合成法的贡献 1966年R.S.马利肯(美国人)用量子力学创立了化学结构分子轨道理论,阐明了分子的共价键本质和电子结构 1967年R.G.W.诺里什,G.波特(英国人),M.艾根(德国人)发明测定快速化学反应技术 1968年L.翁萨格(美国人)从事不可逆过程热力学的基础研究 1969年O.哈塞尔(挪威人),D.H.R.巴顿(英国人)为发展立体化学理论作出贡献 1970年L.F.莱洛伊尔(阿根廷人)发现糖核苷酸及其在糖合成过程中的作用 1971年G.赫兹伯格(加拿大人)从事自由基的电子结构和几何学结构的研究 1972年C.B.安芬森(美国人)确定了核糖核苷酸酶的分子氨基酸排列 S.莫尔,W.H.斯坦(美国人)从事核糖核苷酸酶的活性区位研究 1973年E.O.菲舍尔(德国人),G.威尔金森(英国人)从事具有多层结构的有机金属化合物的研究 1974年P.J.弗洛里(美国人)从事高分子化学的理论、实验两方面的基础研究 1975年J.W.康福思(澳大利亚人)研究酶催化反应的立体化学 V.普雷洛格(瑞士人)从事有机分子以及有机反应的立体化学研究 1976年W.N.利普斯科姆(美国人)从事甲硼烷的结构研究 1977年I.普里戈金(比利时人)主要研究非平衡热力学,提出了“耗散结构”理论 1978年P.D.米切尔(英国人)从事生物膜上的能量转换研究 1979年H.C.布郎(美国人),G.维蒂希(德国人)研制了新的有机合成法 1980年P.伯格(美国人)从事核酸的生物化学研究 W.吉尔伯特(美国人),F.桑格(英国人)确定了核酸的碱基排列顺序 1981年福井谦一(日本人),R.霍夫曼(美国人)从事化学反应过程的研究 1982年A.克卢格(英国人)开发了结晶学的电子衍射法,并从事核酸蛋白质复合体的立体结构的研究 1983年H.陶布(美国人)阐明了金属配位化合物电子反应机理 1984年R.B.梅里菲尔德(美国人)开发了极简便的肽合成法 1985年J.卡尔,H.A.豪普特曼(美国人)开发了应用X射线衍射确定物质晶体结构的直接计算法 1986年D.R.赫希巴奇,李远哲(美籍华人),J.C 波利亚尼(加拿大人)研究化学反应体系在位能面运动过程的动力学 1987年C.J.佩德森,D.J.克拉姆(美国人),J.M.莱恩(法国人)合成冠醚化合物 1988年J.戴森霍弗,R.胡伯尔,H.米歇尔(德国人)分析了光合作用反应中心的三维结构1989年S.奥尔特曼,T.R.切赫(美国人)发现RNA自身具有酶的催化功能 1990年E.J.科里(美国人)创建了一种独特的有机合成理论——逆合成分析理论

历年诺贝尔化学奖获奖者介绍【1970】 LuisLeloir

历年诺贝尔化学奖获奖者介绍【1970】LuisLeloir Facts name: LuisLeloir Paris, France Affiliation at the time of the award: Institute for Biochemical Research, Buenos Aires, Argentina Prize motivation: "for his discovery of sugar nucleotides and their role in the biosynthesis of carbohydrates." Prize share: 1/1 Life Work Carbohydrates, including sugars and starches, are of paramount importance to the life processes of organisms. Luis Leloir demonstrated that nucleotides - molecules that also constitute the building blocks of DNA molecules - are crucial when carbohydrates are generated and converted. In 1949 Luis Leloir discovered that one type of sugar's conversion to another depends on a molecule that consists of a nucleotide and a type of sugar. He later showed that the generation of carbohydrates is not an inversion of metabolism, as had been assumed previously, but processes with other steps. Carbohydrates, including sugars and starches, are of paramount importance to the life processes of organisms. Luis Leloir demonstrated that nucleotides - molecules that also constitute the building blocks of DNA molecules - are crucial when carbohydrates are generated and converted. In 1949 Luis Leloir discovered that one type of sugar's conversion to another depends on a molecule that consists of a nucleotide and a type of sugar. He later showed that the generation of carbohydrates is not an inversion of metabolism, as had been assumed previously, but processes with other steps.

2002年诺贝尔化学奖

库尔特·维特里希(1938-) 所有生物都含有包括DNA和蛋白质在内的生物大分子,“看清”它们的真面目曾经是科学家的梦想。如今这一梦想已成为现实。2002年诺贝尔化学奖表彰的就是这一领域的两项成果。 这两项成果一项是美国科学家约翰·芬恩与日本科学家田中耕一“发明了对生物大分子的质谱分析法”,他们两人将共享2002年诺贝尔化学奖一半的奖金;另一项是瑞士科学家库尔特·维特里希“发明了利用核磁共振技术测定溶液中生物大分子三维结构的方法”,他将获得2002年诺贝尔化学奖一半的奖金。 质谱分析法是化学领域中非常重要的一种分析方法。它通过测定分子质量和相应的离子电荷实现对样品中分子的分析。19世纪末科学家已经奠定了这种方法的基础,1912年科学家第一次利用它获得对分子的分析结果。在质谱分析领域,已经出现了几项诺贝尔奖成果,其中包括氢同位素氘的发现(1934年诺贝尔化学奖成果)和碳60的发现(1996年诺贝尔化学奖成果)。不过,最初科学家只能将它用于分析小分子和中型分子,由于生物大分子比水这样的小分子大成千上万倍,因而将这种方法应用于生物大分子难度很大。 尽管相对而言生物大分子很大,但它们在我们看来是非常小的,比如人体内运送氧气的血红蛋白仅有千亿亿分之一克,怎么测定单个生物大分子的质量呢?科学家在传统的质谱分析法基础上发明了一种新方法:首先将成团的生物大分子拆成单个的生物大分子,并将其电离,使之悬浮在真空中,然后让它们在电场的作用下运动。不同质量的分子通过指定距离的时间不同,质量小的分子速度快些,质量大的分子速度慢些,通过测量不同分子通过指定距离的时间,就可计算出分子的质量。 这种方法的难点在于生物大分子比较脆弱,在拆分和电离成团的生物大分子过程中它们的结构和成分很容易被破坏。为了打掉这只“拦路虎”,美国科学家约翰·芬恩与日本科学家田中耕一发明了殊途同归的两种方法。约翰·芬恩对成团的生物大分子施加强电场,田中耕一则用激光轰击成团的生物大分子。这两种方法都成功地使生物大分子相互完整地分离,同时也被电离。它们的发明奠定了科学家对生物大分子进行进一步分析的基础。 如果说第一项成果解决了“看清”生物大分子“是谁”的问题,那么第二项成果则解决了“看清”生物大分子“是什么样子”的问题。 第二项成果涉及核磁共振技术。科学家在1945年发现磁场中的原子核会吸收一定频率的电磁波,这就是核磁共振现象。由于不同的原子核吸收不同的电磁波,因而通过测定和分析受测物质对电磁波的吸收情况就可以判定它含有哪种原子,原子之间的距离多大,并据此分析出它的三维结构。这种技术已经广泛地应用到医学诊断领域。 不过,最初科学家只能将这种方法用于分析小分子的结构,因为生物大分子非常复杂,分析起来难度很大。瑞士科学家库尔特·维特里希发明了一种新方法,这种方法的原理可以用测绘房屋的结构来比喻:我们首先选定一座房屋的所有拐角作为测量对象,然后测量所有相邻拐角间的距离和方位,据此就可以推知房屋的结构。维特里希选择生物大分子中的质子(氢原子核)作为测量对象,连续测定所有相邻的两个质子之间的距离和方位,这些数据经计算机处理后就可形成生物大分子的三维结构图。 这种方法的优点是可对溶液中的蛋白质进行分析,进而可对活细胞中的蛋白质进行分析,能获得“活”蛋白质的结构,其意义非常重大。1985年,科学家利用这种方法第一次绘制出蛋白质的结构。目前,科学家已经利用这一方法绘制出15-20%的已知蛋白质的结构。 最近两年来,人类基因组图谱、水稻基因组草图以及其他一些生物基因组图谱破译成功后,生命科学和生物技术进入后基因组时代。这一时代的重点课题是破译基因的功能,破译蛋白质的结构和功能,破译基因怎样控制合成蛋白质,蛋白质又是怎样发挥生理作用等。在这些课题中,判定生物大分子的身份,“看清”

历年诺贝尔化学奖获奖者介绍【1995】 MarioJ.Molina

历年诺贝尔化学奖获奖者介绍【1995】MarioJ.Molina Facts name: MarioJ.Molina Mexico City, Mexico Affiliation at the time of the award: Massachusetts Institute of Technology (MIT), Cambridge, MA, USA Prize motivation: "for their work in atmospheric chemistry, particularly concerning the formation and decomposition of ozone." Prize share: 1/3 Life Mario Molina was born in Mexico City and wanted to be a chemist from childhood. He attended a boarding school in Switzerland from age 11, since it was considered important for a chemist to understand German. He later studied to become a chemical engineer in Mexico before continuing his work in Europe and in Berkeley, California in the United States. His time at Berkeley was stimulating, and it was there he discovered how freons damage the ozone layer. Mario Molina currently works in San Diego, California in the United States and in Mexico. He is married to Guadalupe Alvarez and has a son, Felipe, with former wife Luisa Molina.]]>

历届诺贝尔化学奖得主(1901-2014)

历届诺贝尔化学奖得主 (1901-2014) 年份 获奖者 国籍 获奖原因 1901年 雅各布斯·亨里克斯·范托夫 荷兰 “发现了化学动力学法则和溶液渗透压” 1902年 赫尔曼·费歇尔 德国 “在糖类和嘌呤合成中的工作” 1903年 斯凡特·奥古斯特·阿伦尼乌斯 瑞典 “提出了电离理论” 1904年 威廉·拉姆齐爵士 英国 “发现了空气中的惰性气体元素并确定了它们在元素周期表里的位置” 1905年 阿道夫·冯·拜尔 德国 “对有机染料以及氢化芳香族化合物的研究促进了有机化学与化学工业的发展” 1906年 亨利·莫瓦桑 法国 “研究并分离了氟元素,并且使用了后来以他名字命名的电炉” 1907年 爱德华·比希纳 德国 “生物化学研究中的工作和发现无细胞发酵” 1908年 欧内斯特·卢瑟福 英国 “对元素的蜕变以及放射化学的研究” 1909年 威廉·奥斯特瓦尔德 德国 “对催化作用的研究工作和对化学平衡以及化学反应速率的基本原理的研究” 1910年 奥托·瓦拉赫 德国 “在脂环族化合物领域的开创性工作促进了有机化学和化学工业的发展的研究” 1911年 玛丽·居里 波兰 “发现了镭和钋元素,提纯镭并研究了这种引人注目的元素的性质及其化合物” 1912年 维克多·格林尼亚 法国 “发明了格氏试剂” 保罗·萨巴捷 法国 “发明了在细金属粉存在下的有机化合物的加氢法” 1913年 阿尔弗雷德·维尔纳 瑞士 “对分子内原子连接的研究,特别是在无机化学研究领域” 1914年 西奥多·威廉·理查兹 美国 “精确测定了大量化学元素的原子量” 1915年 里夏德·维尔施泰特 德国 “对植物色素的研究,特别是对叶绿素的研究” 1916年 未颁奖 1917年 未颁奖 1918年 弗里茨·哈伯 德国 “对从单质合成氨的研究” 1919年 未颁奖 1920年 瓦尔特·能斯特 德国 “对热化学的研究” 1921年 弗雷德里克·索迪 英国 “对人们了解放射性物质的化学性质上的贡献,以及对同位素的起源和性质的研究” 1922年 弗朗西斯·阿斯顿 英国 “使用质谱仪发现了大量非放射性元素的同位素,并且阐明了整数法则” 1923年 弗里茨·普雷格尔 奥地利 “创立了有机化合物的微量分析法” 1924年 未颁奖 1925年 里夏德·阿道夫·席格蒙迪 德国 “阐明了胶体溶液的异相性质,并创立了相关的分析法” 1926年 特奥多尔·斯韦德贝里 瑞典 “对分散系统的研究”

历年诺贝尔化学奖获奖者介绍【1991】 RichardR.Ernst

历年诺贝尔化学奖获奖者介绍【1991】RichardR.Ernst Facts name: RichardR.Ernst Winterthur, Switzerland Affiliation at the time of the award: Eidgen?ssische Technische Hochschule (Swiss Federal Institute of Technology), Zurich, Switzerland Prize motivation: "for his contributions to the development of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy." Prize share: 1/1 Life Work Protons and neutrons in the atomic nucleus behave like small spinning magnets. Accordingly, atoms and molecules assume a certain orientation in a magnetic field. This can be dislodged, however, by radio waves of certain frequencies that are characteristic for different atoms. Known as resonance frequencies, these are also affected by the atoms' chemical surroundings. As a result, the phenomenon can be utilized to determine the composition and structure of various molecules. To accomplish this, Richard Ernst developed highly sensitive and high resolution methods in the 1960s and 1970s. Protons and neutrons in the atomic nucleus behave like small spinning magnets. Accordingly, atoms and molecules assume a certain orientation in a magnetic field. This can be dislodged, however, by radio waves of certain frequencies that are characteristic for different atoms. Known as resonance frequencies, these are also affected by the atoms' chemical surroundings. As a result, the phenomenon can be utilized to determine the composition and structure of various molecules. To accomplish this, Richard Ernst developed highly sensitive and high resolution methods in the 1960s and 1970s.

【2019年整理】历年诺贝尔化学奖获得者及其获奖原因

历年诺贝尔化学奖获得者及其获奖原因 1901年范霍夫(Jacobus Henricus van't Hoff,1852—1911) 荷兰人,第一个诺贝尔化学奖获得主-范霍夫 研究化学动力学和溶液渗透压的有关定律。 1902年E.费歇尔(Emil Fischer,1852—1919) 德国人,研究糖和嘌呤衍生物的合成。 1903年阿累尼乌斯(Svante August Arrhenius,1859—1927) 瑞典人,提出电离学说。 1904年威廉·拉姆赛(William Ramsay,1852—1916) 英国化学家,发现了稀有气体。 1905年拜耳(Adolf von Baeyer,1835—1917) 德国人,研究有机染料和芳香族化合物 1906年莫瓦桑(Henri Moissan,1852—1907) 法国人,制备单质氟 1907年爱德华·布赫纳(Edward Buchner,1860--1917) 德国人,发现无细胞发酵现象 1908年欧内斯特·卢瑟福(Ernest Rutherford,1871—1937) 英国物理学家,研究元素蜕变和放射性物质化学 1909年弗里德里希·奥斯瓦尔德(Friedrich Wilhein Ostwald,1853—1932) 德国物理学家、化学家,研究催化、化学平衡、反应速率。 1910年奥托·瓦拉赫(Otto Wallach,1847—1931) 德国人,研究脂环族化合物 1911年玛丽·居里(Marie Curie,1867—1934)(女) 法国人,发现镭和钋,并分离镭。第一位诺贝尔化学奖女科学家-玛丽·居里 1912年维克多·梅林尼亚(Victor Grignard,1871—1935) 法国人,发现用镁做有机反应的试剂。萨巴蒂埃(Paul Sabatier,1854—1941) 法国人,研究有机脱氧催化反应。 1913年维尔纳(Alfred Werner,1866—1919) 瑞士人,研究分子中原子的配位,提出配位理论。

历届诺贝尔化学奖得主简介

历届诺贝尔化学奖得主简介(1901-2009) 自1901年诺贝尔奖首次颁奖起,至2006年为止,全世界有476人获得诺贝尔奖,其中诺贝尔物理奖得主有162人。在这476位诺贝尔奖得主中,有四位曾两次获奖。 其中,波兰裔法国女物理学家、化学家Marie Sklodowska Curie(玛丽?居礼)(即居礼夫人)获得1903年的诺贝尔物理奖与1911年诺贝尔化学奖 美国物理学家John Bardeen(约翰?巴丁)获得1956年与1972年的诺贝尔物理奖。 在所有得奖科学家中,有三对夫妻共同得奖。 法国物理学家Pierre Curie(皮耶?居礼)和Marie Sklodowska Curie (玛丽?居礼)夫妇获得1903年物理奖。 在所有得奖科学家中,包含有5对父子。共同得到1915年物理奖的是William Henry Bragg & William Lawrence Bragg(布拉格父子);分别得到1906年物理奖和1937年物理奖的是Joseph John Thomoson & George Paget Thomson(汤姆逊父子);分别得到1922年物理奖和1975年物理奖的是Niels Bohr & Aage Niles Bohr(波尔父子);分别得到1924年物理奖和1981年物理奖的是Karl Manne Georg Siegbahn & Kai Manne Borje Siegbahn(赛格巴恩父子)。 在所有得奖科学家中,有10位女性科学家。其中得到物理奖的是1903年得奖的Marie Sklodowska Curie(玛丽?居礼)与1963年得奖的

2000-2010年诺贝尔化学奖详解

2000年 艾伦-J-黑格 (1936-) 艾伦-J-黑格,美国公民,64岁,1936年生于依阿华州苏城。现为加利福尼亚大学的固体聚合物和有机物研究所所长,是一名物理学教授。 获奖理由:他是半导体聚合物和金属聚合物研究领域的先锋,目前主攻能够用作发光材料的半导体聚合物,包括光致发光、发光二极管、发光电气化学电池以及激光等等。这些产品一旦研制成功,将可以广泛应用在高亮度彩色液晶显示器等许多领域。 艾伦-G-马克迪尔米德 (1929-) 艾伦-G-马克迪尔米德,来自美国宾夕法尼亚大学,今年71岁,他出生于新西兰,曾就读于新西兰大学和美国威斯康星大学以及英国的剑桥大学。1955年,他开始在宾夕法尼亚大学任教。他是最早从事研究和开发导体塑料的科学家之一。 获奖理由:他从1973年就开始研究能够使聚合材料能够象金属一样导电的技术,并最终研究出了有机聚合导体技术。这种技术的发明对于使物理学研究和化学研究具有重大意义,其应用前景非常广泛。 他曾发表过六百多篇学术论文,并拥有二十项专利技术。 白川英树 (1936-) 白川英树今年64岁,已经退休,现在是日本筑波大学名誉教授。白川1961年毕业于东京工业大学理工学部化学专业,曾在该校资源化学研究所任助教,1976年到美国宾夕法尼亚大学留学,1979年回国后到筑波大学任副教授,1982年升为教授。1983年他的研究论文《关于聚乙炔的研究》获得日本高分子学会奖,他还著有《功能性材料入门》、《物质工学的前沿领域》等书。 获奖理由:白川英树在发现并开发导电聚合物方面作出了引人注目的贡献。这种聚合物目前已被广泛应用到工业生产上去。他因此与其他两位美国同行分享了2000年诺贝尔化学奖。 2001年 威廉·诺尔斯(W.S.Knowles) (1917-) 2001年诺贝尔化学奖授予美国科学家威廉·诺尔斯、日本科学家野依良治和美国科学家巴里·夏普雷斯,以表彰他们在不对称合成方面所取得的成绩,三位化学奖获得者的发现则为合成具有新特性的分子和物质开创了一个全新的研究领域。现在,像抗生素、消炎药和心脏病药物等,都是根据他们的研究成果制造出来的。 瑞典皇家科学院的新闻公报说,许多化合物的结构都是对映性的,好像人的左右手一样,这被称作手性。而药物中也存在这种特性,在有些药物成份里只有一部分有治疗作用,而另一部分没有药效甚至有毒副作用。这些药是消旋体,它的左旋与右旋共生在同一分子结构中。在欧洲发生过妊娠妇女服用没有经过拆分的消旋体药物作为镇痛药或止咳药,而导致大量胚胎畸形的"反应停"惨剧,使人们认识到将消旋体药物拆分的重要性。2001年的化学奖得主就是在这方面做出了重要贡献。他们使用一种对映体试剂或催化剂,把分子中没有作用的一部分剔除,只利用有效用的一部分,就像分开人的左右手一样,分开左旋和右旋体,再把有效的对映体作为新的药物,这称作不对称合成。 诺尔斯的贡献是在1968年发现可以使用过渡金属来对手性分子进行氢化反应,以获得具有所需特定镜像形态的手性分子。他的研究成果很快便转化成工业产品,如治疗帕金森氏症的药L-DOPA就是根据诺尔斯的研究成果制造出来的。 1968年,诺尔斯发现了用过渡金属进行对映性催化氢化的新方法,并最终获得了有效的

相关文档
相关文档 最新文档