文档库 最新最全的文档下载
当前位置:文档库 › 燃气轮机原理》压气机部分OK

燃气轮机原理》压气机部分OK

《燃气轮机原理》

--叶轮机械之压气机

在叶片机上输入机械功工作轮转动

气流组织合适气流经过叶片机,总压↑和总温↑

生活:风扇工业:鼓风机、叶片式水泵发电:水轮机、蒸汽轮机航空、舰船:螺旋桨、风扇、压气机、涡轮

?工作原理的建立:

叶片和工质间的流体动力、能量交换以及工质在叶片机中的能量转换的基础上。?工质:气体、液体、两相流体?

叶轮机概念:以连续旋转叶片为本体,使能量在流体工质与轴动力之间相互转换的动力机械。?压气机(compressor)概念:以机械动力提高工质压力并伴有温升的,向燃气轮机燃烧室输送工质的旋转叶轮机械。

特别重视气流的组织,尽量使流阻损失最小,

使能量交换和能量转换最为有效。

共同的特点:都有叶片只做旋转运动,不做往复运动§1 叶轮机概念、主要形式及发展

1、按工质流动的方向分类:

①轴流式:气流轴向流入和流出,气流通过叶栅通道实现增压

?应用:大型或中型航空燃气轮机

?优点:效率高、径向尺寸小、适合于多级结构

流通能力强

②径流式:气流轴向流入,径向流出,离心增压

?应用:离心式压气机—小型航空发动机

?优点:结构简单、轴向长度小

特性宽广、单级增压比高

③斜流式:气流轴向流入,斜向流出。

静压增加=扩压叶栅作用+离心增压

?应用:工业鼓风机

④混合式:若干级进口轴流级压气机+离心式压气机

?优点:轴流级压气机+离心式压气机

?应用:现代小型航空燃气轮机

2、叶轮机的发展概况

?南宋高宗(1131-1162)走马灯——燃气涡轮

?利用燃烧灯火产生的热气上升,推动带纸叶片的叶轮,使装在叶轮上的纸影回转

?中国古代玩具竹蜻蜓——螺旋桨

?20世纪30年代航空事业迅速发展→促进了热力学、空气动力学、机械学和冶金材料的发展

?20 世纪30年代末涡轮喷气发动机(压气机)

?20世纪40年代初气体动力学理论和实验方面取得重大进展

?大量、系统的平面叶栅实验,并从理论上成功地对这些实验结果进行总结和概括

?20世纪50年代末-70年代中期

?高速、高负荷、高失速裕度和高迎风面积流量的进口级超、跨声速压气机(风扇)

?高负荷、高效率、大尺寸单级跨声速风扇

?高速、高负荷、高效率和高失速裕度核心压气机

?高增压比离心式压气机

2、叶片机的发展概况(续)

?近十几年

?先进蜂窝结构的高效率、宽弦长、无阻尼台风扇叶片

?高亚声速可控扩散压气机叶型

?改进效率和失速裕度的“端弯”叶片和“拱形“叶片

?改善气动稳定性并减小损失的”前掠“和”后掠“叶片

?改进的”带叶片“式的处理机匣

?主动间隙控制技术

?多通道冷却三维单晶叶片

?对转涡轮

小结

1.叶轮机的特点

2.工作原理的建立

3.叶片机的工质

4.压气机的概念

5.叶轮机的分类

6.叶轮机的发展概况

§2 气体在叶片机内运动应遵循的基本方程§2-1 连续方程微元流股单位时间的流量——截面i-i 上的总压和总温——截面i-i 上的气动函数无因次密流

——取决于气体绝热指数k 和气体常数R 的综合常数——绝对速度与圆周方向的夹角

叶片机的任意一个截面单位时间流的流量

or **()sin ,i i i i i i P m K q A T λα?=?112()1

k k k K R k +-=+**

()sin i i i i i i P m K q A T λα?=*i P *i

T ()i q λK α111222a a C A C A ρρ=压气机级的示意图

§2-2 能量守恒方程(热焓形式的能量方程)

绝对坐标系

——外界与流经叶片机单位质量气体交换的热量——外界与流经叶片机单位质量气体交换的机械功(轮缘功)

——对应截面上单位质量气体的静焓和滞止总焓+ ——外界对气体加入热量或机械功,压气机

-——气体对外界输出热量或机械功,涡轮

222121212e u c c q L h h h h **-±±=-+=-e

q u L 1212

,,,h h h h **p h c T =p h c T **

=2221212121()()2

e u p p c c q L c T T c T T h h ****-±±=-+=-=-外界对气体加热(散热)和作功对气流参数静温(静焓)、速度和总温(总焓)变化的影响没有显式的包含

摩擦力所作的功,

因为此功已全部

转换成热,所以对

有黏无黏都适用

§2-2 能量守恒方程(热焓形式的能量方程)续 相对坐标系(站在叶轮上观察气体流动)

——气流的相对速度

——相对滞止焓

——相对滞止温度

沿流线u

1

=u2

相对速度↑静温↓ 相对速度↓静温↑

沿流线u

1≠u

2

引用转焓定义

2222

2121

212121

() 22w w p w w

u u w w

h h h h c T T

**** --

=-+=-=-

w

w

h*

w

T*

22

12

1212

22

w w p p

w w

h h c T c T

**

==+=+

2

2

w

u

I h*

=-

22

21

21

22

w w

u u

h h I

**

-=-=沿流线转焓守恒

§2-3 热力学第一定律方程

——输入气体微团的微小热量——压缩功或膨胀功——运动气体的压缩功或膨胀功q ——截面1-1,2-2之间气体的全部热量p dq c dT vdp dh vdp =-=-dq vdp 2211dp q h h ρ=--?21dp ρ?221

1e

f dp q q h h ρ±+=--?2211e f dp

q L h h ρ

±+=--?摩擦力作功产生的热量外界输入到气体的热量不计相邻

流股间的

能量交换

§2-4 机械能形式的能量方程(广义伯努力方程)

绝对坐标系反映气体流动中压强势能与速度动能之间的转换关系,及流动损失对气流参数的影响222

2112u f c c dp

L L ρ-±=++?2211()1

dp n R T T n ρ=--?1221111(1)()111n n nK T P n n L RT RT n T n P -??=-=-??--??1221111(1)()111k k ad K T P k k L RT RT k T k P -???=-=-??--??22212u nK f c c L L L -=++212111121()111()nT n n dp n n L R T T RT n n P P ρ-??????=-=-=-??--?????''''1'112111()ad T k k k L R T k P P ?-??????=-??-??????22212u nT f c c L L L --=-++22122

nT u f c c L L L -+=+压气机多变压缩功压气机等熵压缩功压气机轮缘功涡轮多变膨胀功涡轮等熵膨胀功压气机加给气体的功用来完成多变压缩、增加

气流动能和克服流阻涡轮中燃气膨胀所做的多变膨胀功以及燃气动能的变化是用来产生涡轮轮缘功和克服流阻的

§2-4 机械能形式的能量方程(广义伯努力方程)续

相对坐标系(站在叶轮上观察气体流动)

动叶对气体不作功离心惯性力对气体微团作功

当u 1=u 2时,离心惯性力作功为0

压气机:空气流经动叶的相对动能减少,用于克服流阻和对气流压缩涡轮:燃气流经动叶发生的膨胀功,燃气压强下降,用于动能增加和克服流阻222222121122

f u u w w dp L ρ--=++?22221102

f w w dp

L ρ-++=?0

u L ≡22

212u u -

§2-5 动量守恒方程(欧拉方程)

'1221P p t p t mw mw ++=-1212P mw mw p t p t =-++1212()()a a a P m w w p p t =-+-12()

u u u P m w w =-P ‘ ——叶片作用在气流上的力

m ——单位时间内通过截面t 的气体质量

w 1,w 2 ——叶栅前后的气流速度

P ——气流作用在叶片上的力

轴向分力

切向分力

§2-6动量矩方程

用来计算定常流动的气流作用在叶片上的力和力矩

M ——作用于截面1-1?和2-2‘之间的气体上的全部外力对叶轮转轴的力矩总和c 1u 、c 2u ——气流在截面1-1?和2-2‘上绝对气流速度的切向分速

r 1、r 2 ——截面半径

非圆柱面上的轮缘功正是用该式推导出的

工作轮的角速度ω

经过dt 时间的角位移△θ= ω dt

通过m 质量的气体所作的轮缘功单位时间单位质量气体所作的轮缘功

当进出口半径相同r1=r2时22112211)()

u u u u M mc r mc r m c r c r =-=-2211

()u u Lu M m dt m c r c r dt θωω=?==-%22112211()u u u u Lu Lu c r c r c u c u mdt ω==-=-%21()u u u

Lu u c c u c =-=?

小结

1.

连续方程2.

能量守恒方程(热焓形式)3.

热力学第一定律方程4.机械能形式的能量方程(广义伯努力方程)5.动量守恒方程(欧拉方程)

6.动量矩方程

**()sin i i i i i i P m K q A T λα?=2221212121()()2e u p p c c q L c T T c T T h h ****-±±=-+=-=-2211()

u u M m c r c r =-1212()()a a a P m w w p p t

=-+-12()

u u u P m w w =-1221111(1)()111k k ad K T P k k L RT RT k T k P -??=-=-??--?? ''''1'112111()ad T k k k L R T k P P -??????=-??-?????? 222

2112u f

c c dp

L L ρ-±=++?2211e f dp q L h h ρ

±+=--

?

§3 轴流压气机的工作原理§3-1 压气机性能参数?增压比:压气机的能力出口压力与进口压力的比值总压比静压比40年代涡喷<3 军用总压比>20 民用总压比>40 涡扇45~55?效率:压气机的经济性

理想压缩过程的等熵压缩功实际消耗的机械功

*1**p p c c =π1p p c c =π压气机中压缩过程的T-S 图==u c i c i L L *,*

,η()??????--=????

??????-???? ??-=--11111**11

*1**1*,k k c k k c c i RT k k P P RT k k L π???? ??--=-=11)(*1**1*1*T T RT k k T T c L c c p u 稳定裕度、非设计点性能、级数、质量

()11*1*1**,--=-T T c k k c c i πη压气机简图?功:压气机加给每千克气体的功L K (Nm/kg)压气机的流量m (kg/s)

压气机消耗的功率N K =mL K /1000 (kW)

§3-2 基元级工作轮/转子:动叶整流器/静子:静叶

动能→压力势能

导引气流方向给下级动叶若干个级动叶叶栅静叶叶栅

若干个基元级

机圆柱面上的基元级展开在平面上的基元级

级的主要几何尺寸:

机匣外径D t

轮毂直径D h

轮毂比=D h /D t

径向间隙δ

轴向间隙△

d 多级轴流压气机

压气机级的示意图

§3-3 基元级的速度三角形

展开在平面上的基元级

u

w

c+

=

动叶叶栅的圆周速度

站在动叶上观察到气流的相对速度

站在静止坐标系上观察到气流的绝对速度

动叶叶栅安装大致对准相对速度w

1

气流不断被压气机抽吸进动叶

气流的绝对速度c

1

+动叶本身圆周速度u

气流以相对速度w

1

的大小和方向流入动叶

动叶出口相对速度w

2

+动叶本身圆周速度u

气流以绝对速度c

2的大小和方向流入静叶静叶叶栅安装大致对准绝对速度c

2

基元级速度三角形

气流如何流入动叶和静叶?

a 轴向下标

u 轴向下标

αc与u的夹角

βw与u的夹角

?确定基元级速度三角形的4个参数

?动叶进口处绝对速度的轴向分速c 1a

?

发动机的迎风面积(歼击机c 1a =202m/s)?压气机的效率(民航发动机c 1a =120m/s)

?动叶进口处绝对速度的周向分速c 1u ?预旋:气流进入动叶之前在圆周方向有绝对流速分速(第一级—进口导流叶片)

?无预旋设计:c 1u =0

?

正预旋设计:与u 方向相同

?

反预旋设计:与u 方向相反?圆周速度(切线速度)u

?

影响叶片对气流的加功量的大小,u 越大,加功量越大?c 1+u→w 1

?扭速△w u (或△c u )?

动叶前后气流相对速度或绝对速度在周向的变化量

?

扭速越大,加功量越大u1=u2时,?w 1 +△w u → w 2 w 2+u→c 2简化基元级的速度三角形轴向分速变化小,特别是级增压比不高的亚声级c 1a ≈c 2a ≈c 3a

u

u u w w w 21-=?u u u u c c c w 12-=?=?

联合循环燃气轮机发电厂简介

联合循环燃气轮机发电厂简介 联合循环发电:燃气轮机及发电机与余热锅炉、蒸汽轮机共同组成的 循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。形式有燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机各自推动各自发电机的多轴联合循环。胜利油田埕岛电厂采用的是美国GE公司的MS9001E然气轮机,其热效率为33.79%,余热锅炉为杭州锅炉厂的立式强制循环余热锅炉。1.燃气轮机 1.1 简介燃气轮机是一种以空气及燃气为工质的旋转式热力发动机,它的结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三部分: 1 、燃气轮机(透平或动力涡轮); 2、压气机(空气压缩机); 3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空气混合,在定压下 进行燃烧。生成的高温高压烟气进入燃气轮机膨胀作工,推动动力叶片高速 旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命 周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。重型燃 气轮机为工业型燃机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。埕岛电厂采用的 MS9001E燃气轮发电机组是50Hz, 3000转 /分,直接传动的发电机。该型燃气轮发电机组最早 于 1987年投入商 业运行,基本负荷燃用天然气时的功率为123.4MW热效率为 33.79%,排气温度539C,排气量1476X103公斤/小时,压比为12.3,燃气初

9E燃气轮机联合循环问题总结

9E燃气轮机联合循环发电厂必须知道 1.有差无差系统 (1) 2.除氧装置 (1) 3.燃机转速代号和对应转速比例 (2) 4.省煤器的再循环管的主要作用有二点: (2) 5.电缆先放电验电再装设接地线 (3) 6.主变接线方式 (3) 7. 电机缺相运行的现象与原因 (3) 8. 9E燃机开停机过程中FSR的变化 (4) 9. 操作过电压 (5) 10. 发电机中性点0PT的作用,出现异常有何现象 (5) 11. 发电机运行过程中机端电压升高和降低有哪些危害 (6) 12. 发电机转子接地 (7) 13. 进相运行: (8) 14. 励磁控制系统的限制器的分类 (9) 15. 无功 (11) 16. 主励磁机为什么是100赫兹 (13) 1.有差无差系统 简单而言就是看是否能求稳态误差,如果能求则是有差系统,否则是无差系统。 2.除氧装置 本锅炉配置的除氧装置由除氧器、给水箱和汽水分离器三大部件组成。其中除氧器和水箱对给水起到了除氧和蓄水的作用,汽水分离器主要是负责对除氧蒸发器来的汽水混合物进行分离供除氧器除氧使用。 除氧器立式布置在除氧水箱之上,除氧器顶部设有配水管和14只喷嘴,凝结水经喷头雾化成水雾后与蒸汽充分接触后加热变成饱和水。此时水中绝大部分氧气及其他不凝气体由于再也无法溶解于饱和水中而被逸出,最后由除氧器顶部排气管排出,以此达到一次除氧效果。经一次除氧的水由布水盘均匀地淋洒到乱堆的鲍尔环填料表面,使其表面积再一次增大,与除氧器下部进来蒸汽充分接触以达到深度除氧的效果。

3.燃机转速代号和对应转速比例 4.省煤器的再循环管的主要作用有二点: 第一点,启动时省煤器内的水是不流动的,而热烟气不断流过省煤器,将热量传给省煤器内的水,这样就有可能使省煤器内水局部汽化。 第二点,某些运行条件下,当省煤器内水温太低,容易引起管外壁结露,特别是烟气中含有氧化硫或氧气都会腐蚀管子。提供温度高的循环水,可以提高省煤器内水温,防止腐蚀。

燃气轮机系统建模与性能分析

燃气轮机系统建模与性能分析 摘要:燃气轮机机组具有超强的北线性,人们掌握它的具体实施工作过程运行 规律是很难得。在我过电力工业中对它的应用又不断加强。为了更加透彻的解决 这个问题,本文将通过建立燃气轮机机组系统建模及模拟比较研究机组设计和运 行中存在的问题,从而分析它的性能。 关键词:燃气轮机;系统建模;性能 1模拟对象燃气轮机的物理模型 在标准IS0工况条件(15℃101.3kpa及相对湿度60%)下,压气机不断从大气中 吸入空气,进行压缩。高压空气离开压气机之后,直接被送入燃烧室,供入燃料 在基本定压条件下完成燃烧。燃烧不会完全均匀,造成在一次燃烧后局部会达到 极高的温度,但因燃烧室内留有足够的后续空间发生混合、燃烧、稀释及冷却等 复杂的物理化学过程,使得燃烧混合物在离开燃烧室进入透平时,高温燃气的温 度己经基本趋于平均。在透平内,燃气的高品位焙值(高温、高压势能)被转化为功。 1.1燃气轮机数值计算模型与方法 本文借助于 GateCycle软件平台,搭建好的燃气轮机部件模块实现燃气轮机以上物理模型的功能转化,进行燃气轮机的热力学性能分析计算的。在开始模拟燃 气轮机之前,首先对燃气轮杋部件模块数学模型及计算原理方法进行简单介绍。1.2压气机数值计算模型 式中,q1 、q2 、ql 分别为压气机进、出口处空气、压气机抽气冷却透平的 空气的质量流量; T1*、 p1* 分别为压气机进出口处空气的温度、压力; T2*、 p2* 分别为压气机出口处空气的温度、压力 ηc、πc分别为压气机绝热压缩效率,压气机压比 γa为空气的绝热指数;ρa为大气温度;?1为压气机进气压力损失系数 ιcs、ιc分别为等只压缩比功和实际压缩比功 i*2s、i*2、i*1分别为等只压缩过程中压气机出口处空气的比焓,实际压缩过程中压气机出日处空气的比烩和压气机进日处空气的比焓; 当压气机在非设计工况下工作时,一般计算方法是将压气机性能简单处理编制成 数表,通过插值公式求得计算压气机的参数,即在压气机性能曲线上引入多条与 喘振边界平行的趋势线,这样可以把压比,流量,效率均视为平行于喘振边界的 等趋势线和转速的函数。本文采用了同样的计算方法,在计算燃气轮机变工况性 能过程中引入无实际物理涵义的无量纲参变量CMV(compressor map variable),仅相当于引入的平行于压气机喘振边界的趋势线,压气机的质量流量、压力和效 率计算是通过上下游回馈的热力计算结果,插值寻找能够使得上下游热力参数 (压力,温度,输出功率,转速,流量)计算收敛的工作点,即压气机的变工况 工作点。 1.3燃烧室数值计算模型 其中 式中: α为过量空气系数: L0为燃料的理论空气量:

燃气轮机原理与结构解析

图说燃气涡轮发动机的原理与结构 曹连芃 摘要:文章介绍燃气涡轮发动机的工作原理;对燃气轮机的主要部件轴流式压气机、环管形燃烧室、轴流式涡轮分别进行了原理与结构介绍;对燃气涡轮发动机的整体结构也进行了介绍。 关键字:燃气涡轮发动机,燃气轮机,轴流式压气机,燃烧室,轴流式涡轮 1. 燃气涡轮发动机的工作原理 燃气涡轮机发动机(燃气轮机)的原理与中国的走马灯相同,据传走马灯在唐宋时期甚是流行。走马灯的上方有一个叶轮,就像风车一样,当灯点燃时,灯内空气被加热,热气流上升推动灯上面的叶轮旋转,带动下面的小马一同旋转。燃气轮机是靠燃烧室产生的高压高速气体推动燃气叶轮旋转,见图1。 图1-走马灯与燃气涡轮 燃气轮机属热机,空气是工作介质,空气中的氧气是助燃剂,燃料燃烧使空气膨胀做功,也就是燃料的化学能转变成机械能。图2是一台燃气轮机原理模型剖面,通过它来了解燃气轮机的工作原理。 从外观看燃气轮机模型:整个外壳是个大气缸,在前端是空气进入口;在中部有燃料入口,在后端是排气口(燃气出口)。 燃气轮机主要由压气机、燃烧室、涡轮三大部分组成,左边部分是压气机,有进气口,左边四排叶片构成压气机的四个叶轮,把进入的空气压缩为高压空气;中间部分是燃烧器段(燃烧室),内有燃烧器,把燃料与空气混合进行燃烧;右边是涡轮(透平),是空气膨胀做功的部件;右侧是燃气排出口。

图2-模型燃气轮机结构 在图3中表示了燃气轮机的简单工作过程:空气从空气入口进入燃气轮机,高速旋转的压气机把空气压缩为高压空气,其流向见浅蓝色箭头线;燃料在燃烧室燃烧,产生高温高压空气;高温高压空气膨胀推动涡轮旋转做功;做功后的气体从排气口排出,其流向见红色箭头线。 图3-燃气轮机工作过程 在燃气轮机中压气机是由涡轮带动旋转,压气机的叶轮与涡轮安装在同一根主轴上组成燃气轮机转子,如图4所示。

燃气轮机及其联合循环课后题答案(姚秀平主编版)上海电力学院

第一章 3和4、从热力学角度看,汽轮机循环利用了蒸汽可在常温下凝结的特性,达到了较低的工质平均放热温度,但工质平均吸热温度不高。燃气轮机循环的工质平均吸热温度高,但工质平均吸热温度不低。 汽轮机发展方向:开发新材料以便把主蒸汽参数从亚临界水平逐步提高到超超临界水平;采用两次再热等手段改进热力系统及设备的设计。其中,主要方向为提高工质平均吸热温度。燃气轮机发展方向:提高燃气平均吸热温度。 5、燃气轮机是工作于高温区的一种热机,易于利用高品位的热量;汽轮机是工作于低温区的一种热机,易于利用低品位的热量;而联合循环按照热量梯级利用的原则将燃气轮机和汽轮机结合起来,可以将高品位和低品位的热量同时利用起来。由于联合循环同时利用了燃气轮机循环平均吸热温度高和汽轮机循环平均放热温度低的优点,又同时克服了两者的缺点,所以可以达到较高的循环效率。 6、ISO基本功率是指在国际标准化委员会所规定的ISO环境条件下燃汽轮机连续运行所能达到的功率。ISO环境条件:温度15℃,压力0.01013MPa,相对湿度60%。 7、燃气轮机与汽轮机同轴,共同驱动一台发电机的联合循环机组称为单轴机组;燃气轮机与汽轮机不同轴,各驱动一台发电机的联合循环机组成为多轴机组。 8、前置循环是工作于高温区,输入大部分热量的循环,它会产生大量的余热;后置循环是工作于低温区以前置循环的余热为主要热源的循环。两者通常用换热设备耦合在一起,最广泛的应用是燃气——蒸汽联合循环。 9、最基本的三种联合循环形式:余热锅炉型、补燃余热锅炉型和增压锅炉型。 10、余热型:优点是技术成熟。系统简单、造价低、启停速度快。缺点是余热锅炉效率低、汽轮机的功率和效率也低,所以不仅机组功率不大,而且效率也不高。 补燃型:优点是在燃气轮机排气温度较低的情况下,可使蒸汽参数及流量大幅度提高,从而使机组的容量增大、效率提高;同时机组的变工况性能也可得到改善。缺点是它并不是纯粹能量梯级利用意义上的联合循环,其中或多或少有一部分热量参与了汽轮机循环。所以,他只是在因蒸汽参数受限而无法采用高参数大功率汽轮机的条件下才可能优越于纯粹能量梯级利用意义上的余热锅炉型联合循环。 增压型:优点是在燃气轮机排气温度较低的情况下,可使蒸汽参数及流量不受限制,从而可达到较大的机组容量和较高的机组效率;同时由于燃烧是在较高的压力下进行的,且烟气的质量流速较高,所以锅炉的传热效率高,所需的传热面积小,锅炉尺寸紧凑。缺点是系统复杂、制造技术要求高、燃气轮机不能单独运行,同时兼有和补燃型类似的缺点。 综上可知,余热锅炉型联合循环将是今后的发展方向。 11、增压流化床联合循环PFBCC和整体煤气化联合循环IGCC是最有发展前途的两种燃煤型联合循环。 12、最基本的优点:高效率、低污染、低水耗。 13、 14、配置旁通烟道的好处: A、启停时,不必对燃气轮机、余热锅炉和汽轮机的工作状态进行严格协调; B、增加运行调节的灵活性,并方便临时性的检修及事故处理; C、必要时,可使燃气轮机维持单循环运行; D、可对整个工程分段建设、分期投运,从而可合理注入资金,更快地获得回报。 但配置旁通烟道需要增加投资,并且即使在正常运行的情况下,旁通挡板处也往往存在烟气泄漏损失,所以不再配置。

燃气轮机与联合循环-姚秀平-课后题答案-第一单元

1. 从高温热源吸收热量:a-2-3-4-5-b-a; 对外做功:1-2-3-4-5-6-1; 向低温热源放出热量:a-2-3-4-5-b-a; 效率:对外做功:1-2-3-4-5-6-1与从高温热源吸收热量:a-2-3-4-5-b-a的间接比。 2. 可用能 不可用能 1 2 3 4 a b T S 从高温热源吸收热量:a-2-3-b-a; 对外做功:1-2-3-4-1; 向低温热源放出热量:a-1-4-b-a; 效率:对外做功:1-2-3-4-1与从高温热源吸收热量:a-2-3-b-a间接比。 3 和 4、从热力学角度看,汽轮机循环利用了蒸汽可在常温下凝结的特性,达到了较低的工质平均放热温度,但工质平均吸热温度不高。燃气轮机循环的工质平均吸热温度高,但工质平均吸热温度不低。 汽轮机发展方向:开发新材料以便把主蒸汽参数从亚临界水平逐步提高到超超临界水平;采用两次再热等手段改进热力系统及设备的设计。其中,主要方向为提高工质平均吸热温度。燃气轮机发展方向:提高燃气平均吸热温度。 5、燃气轮机是工作于高温区的一种热机,易于利用高品位的热量; 汽轮机是工作于低温区的一种热机,易于利用低品位的热量; 而联合循环按照热量梯级利用的原则将燃气轮机和汽轮机结合起来,可以将高品位和低品位的热量同时利用起来。由于联合循环同时利用了燃气轮机循环平均吸热温度高和汽轮机

循环平均放热温度低的优点,又同时克服了两者的缺点,所以可以达到较高的循环效率。 6、ISO 基本功率是指在国际标准化委员会所规定的ISO 环境条件下燃汽轮机连续运行所能达到的功率。ISO 环境条件:温度15℃,压力0.01013MPa 相对湿度60%。 7、燃气轮机与汽轮机同轴,共同驱动一台发电机的联合循环机组称为单轴机组; 燃气轮机与汽轮机不同轴,各驱动一台发电机的联合循环机组成为多轴机组。 8、前置循环是工作于高温区,输入大部分热量的循环,它会产生大量的余热; 后置循环是工作于低温区以前置循环的余热为主要热源的循环。 两者通常用换热设备耦合在一起,最广泛的应用是燃气——蒸汽联合循环。 9、最基本的三种联合循环形式:余热锅炉型、补燃余热锅炉型和增压锅炉型。 余热锅炉型: 2 1C GT B 燃料 3 G 4 G 5 6 HRSG 7811 P CC 10 ST 9 燃气轮机可用能2T s 4 3 1 611 7 5 8 9 10b d c a 汽轮机可用能 燃气轮机子循环:从高温热源吸收热量:a-2-3-c-a ; 对外做功:1-2-3-4-1; 通过余热锅炉传向谁的热量:b-5-4-c-b ; 向外界放出了热量:a-1-5-b-a ; 汽轮机子循环:从余热锅炉吸收的热量:b-6-7-8-9-d-b ,与面积b-5-4-c-b 相等; 对外做功:6-7-8-9-10-11-6;通过凝汽器向外界放出的热量:b-11-10-d-b ; 补燃余热锅炉型: P C G 12 B 燃料 84 HRSG GT 3 6 7 911 ST 5 CC 10G 燃料a 1 2b 11 65 7 T c d s 10 8 4 9 3 12 汽轮机可用能 燃气轮机可用能 增压锅炉型: P C G 12燃料 84 PCB GT 367 9 11ST 5 CC 10G 12 ECO 汽轮机可用能 1 a 211 b 65 7T 燃 机可用能 3 10 c d s 8 412 9 13

燃气轮机起动过程原理

燃气轮机起动过程原理 (2007-12-25 22:02:35) 转载▼ 标签: 杂谈 燃气轮机起动过程原理 2.1 燃气轮机启动运行原理 燃气轮机主机由压气机,燃烧室和透平三大部件组成。压气机需要从外部输入机械功才能把空气压缩到一定的压力供入燃烧室。透平则用高温高压的燃气做工质将其热能转变为机械能从而对外输出机械功。在正常运行的时候,压气机是由燃气透平来驱动的。一般讲,透平功率的2/3要用来拖动压气机,其余的1/3功率作为输出功率。显然存在一个问题,在启动过程中点火之前和点火之后透平发出的功率小于压气机所需的功率这一段时间内,必须由燃气轮机主机外部的动力来拖动机组的转子。换言之,燃气轮机的启动必须借助外部动力设备。在启动 之后,再把外部动力设备脱开。机组启动扭矩变化,如图3-1所示。图中MT曲线为透平自点心后所发出的扭矩;Mc曲线是压气在被带转升速过程中的阻力矩变化;Mn 是机组起动时所需要的扭矩特性,即由起动系统所提供的扭矩;n1为机组点火时的转速,即由起动带转机组转子所达到的转速。在n1转速下,进入燃烧室的空气在其规定参数下,由点火器并藉联焰管快速且可靠地点燃由主喷油嘴喷射出来的燃料,并且在机组起动升速过程中,不会发生熄火、超温和火焰过长等现象。n1转速通常为15%~22%SPD范围内,机组不同,n1数值亦不同。图3-1 机组启动扭矩变化 燃气轮机的起动是指机组从静止零转速状态达到全速空载并网状态,在起动过程中要求机组起动迅速、可靠、平稳和不喘振。为了防止压气机在起动过和中喘振,机组起动前和起动过程中某一阶段内气机进口导叶处于34度,即所谓关闭状态,放气阀处于打开放气位置。压气机进口可转导叶角度关小,能使压气机喘振边界线朝着流减小的方向变动,扩大了压气机的稳定工作范围。同时由于空气流量减小,因而减小了起动力矩,使起动机功率减小;在起动功率不变的情况下,可以缩短起动加速时间。防喘放气阀的放气是在于减小压气机高压级的空气流量而不致阻塞,同时又能增加压气机放气口前的气流流量,从而提出高了流速,也使压气机避免喘振。 机组起动过程中,压气进口导叶(IGV)角度,不能总在34度关闭状态;放气阀也不能总在放气位;因机组起动时工质设计参数的需要,6型机当转速为87%SPD时,IGV由34度打开增至57度,当机组转速达到满转速并且加负荷,直到所带负荷达到在约1.54万KW时,IGV继续打开直到84度。而放气防喘阀,当机组转速达到97.5%SPD(转速继电器具14HS 动作)时,即关闭停止放气。 机组起动运行包括起动、带负荷、遥控起动和带负荷。起动包括正常起动和快速起动。带负荷又分自动和手动进行。在起动运行过程中的控制调节又分转速控制、同期控制和温度控制阶段。 燃气轮机的起动过程可以分段进行,亦可以自动按程序控制进行,要分步调试过程中,可以分段进行。一旦分步调试正常后,便无需再分段进行机组起动,而是采用自动程序控制。机组起动过程分以下几步。

索拉燃气轮机

燃气轮机发电案例介绍-天然气应用 1 案例背景 燃气轮机热电(冷)联产系统可同时提供电能和热(冷)能,相比传统能源解决方式,系统效率高,简单可靠,应用灵活,节能环保,且受国家政策鼓励,可广泛应用于各种场合,为用户降低能耗并改善当地环境,以下是以天然气为燃料,应用于工业用户的典型案例介绍。 1.1 现场条件(以上海为例) 海拔高度5m 设计大气温度14℃ 设计大气压力101.3Kpa 设计大气相对湿度60% 1.2 燃料 以天然气为燃料 燃气热值:8400 KCal/Nm3 燃气压力:0.3Mpa(假设) 1.3 热电负荷及运行时数 最大蒸汽流量:29t/hr 蒸汽压力: 1.0 Mpa 蒸汽温度:185℃ 年供热时间:7000小时 年运行小时数:7000小时 2 方案 燃气轮机热电联产系统一般根据以热定电的原则进行设计和设备选择,该项目选用1台索拉公司大力神130(TITAN 130)燃气轮机,配1台余热锅炉,两台燃气压缩机(1用1备),整个系统可布置在简易厂房内,总占地面积约3200平方米。 2.1 燃气轮机 每台大力神130机组在项目现场主要参数如下: 铭牌功率:15000KW 发电机出力:14556 KW 燃烧空气进口温度:14℃ 燃机工况点:满负荷运行 燃料流量:4339Nm3/hr 涡轮排气温度:500 ℃ 尾气流量:177882 Kg/hr

2.2 余热锅炉 每台余热锅炉在项目现场主要参数如下: 蒸汽温度:185.5℃ 蒸汽压力: 1.03 Mpa 蒸汽流量:29245 kg/hr 2.4 系统总容量及实际出力 总装机铭牌功率:15000 KW 现场实际净输出功率:14556 KW 总蒸汽流量:29245 Kg/hr 总燃气消耗量: 4339 Nm3/hr 3 索拉中国业绩 索拉公司进入中国已经超过30年,在国内已经有超过260台机组,其中金牛60机组超过70台,大力神130超过70台。在项目执行过程中和国内的许多设计院建立了良好的合作关系,他们也对索拉机组有充分的了解,可以非常快速地和可靠地完成设计任务。 此外,上海力顺燃机科技有限公司作为索拉在中国工业发电行业的代理,已在国内完成了多个燃气轮机热电联产项目,可以为项目的规划、建设提供技术服务。 在国内已经建设成功、投入使用的索拉燃气轮机天然气热电联产项目有:浦东国际机场能源中心热电联产项目和成都国际会展中心热电联产项目,其中浦东机场项目运行已经超过十年,目前运行情况良好。 ●浦东国际机场能源中心(1×4000KW)1999年建成并投入使用。 ●成都国际会展中心(1×10690KW,1×5670KW)分别于2005年11月 和2009年4月建成并投入使用。 此外,针对中低热值燃气应用,索拉燃气轮机热电联产项目清单: 1)山东金能煤气化有限公司一期项目(1×5670KW 热电联产),2006 年4 月 投产,目前运行情况良好。 2)内蒙古太西煤集团乌斯太项目(2×5670KW 热电联产),2008 年10 月投产, 目前运行情况良好。 3)山东金能煤气化有限公司二期项目(3×5670KW 联合循环),2008 年4 月 投产,目前运行情况良好。 4)河南顺成集团煤焦有限公司一、二项目(2×15000KW 热电联产),分别于

燃气轮机与联合循环-姚秀平-课后题答案-第三单元

1.压气机在燃气轮机中的作用是什么? 连续不断地从周围环境吸取空气并将其压缩后供给燃气轮机的燃烧室。 2.燃气轮机所使用的压气机有哪两种类型?它们各有什么特点? 轴流式:流量大、效率高但级的增压能力低,多应用于大功率燃机。 离心式:级的增压能力高但流量小、效率低,多应用于中小功率燃机。 3.轴流式压气机由那两个组成部分? 由转子、静子组成。 转子:动(工作)叶片、叶轮(转鼓)、主轴。静子:静(导)叶、气缸 4.何谓扭速?何谓理论功?理论功是否可全部转换为气体的压力能? 扭速:气流经过叶栅内的流动发生了转折,气流转折所引起的相对速度圆周分量的变化 成为扭速。 理论功:基元级的动叶栅加给单位质量气体的机械功成为理论功或加功量。 不能。理论功的一部分用于气流的动能升高,也有一部分用于气流压力升高,还有一部分在气流流动过程中因摩擦等因素而转换成了热量。 5.压气机级的理论功为什么会受到限制? u 的增加要受到材料许用应力的限制,u 过大时,叶片根部截面处的离心拉应力会超过叶片材料的许用应力。 的增大要受到叶栅气动性能的限制 , 过大时,在叶栅中气流的转折角过大,叶栅 表面上的气流边界层容易分离并形成漩涡,导致流动损失大幅度增加。所以压气机级的理论 功会受到限制。 6.压气机的压比特性曲线有哪些主要特点? (1)每一转速下,压比有一最大值 (2)转速不变,流量降至一定值时→不稳定→喘振 (3)转速不变,流量增至一定值后→压比急剧下降→阻塞 (4)转速越高,特性线越陡 (5)效率的流量特性与压比类同 7. 8.试绘图说明压气机级在转速一定、体积流量增大和减小时,速度三 角形的变化情况 转速一定时,级的扭速与体积流量之间有什么关系? 随着体积流量的增大,扭速必然减小,理论功也相应减小 u w ?w u w C u =?u w ?u w ?w u w C u = ?

第二章航空燃气轮机的工作原理

第2章航空燃气轮机的工作原理 Principle of Aero Gasturbine Engine 第2.1节概述 Introduction 涡轮喷气发动机是航空燃气轮机中最简单的一种,它是飞机的动力装置。涡轮喷气发动机在工作时,连续不断地吸入空气,空气在发动机中经过压缩、燃烧和膨胀过程产生高温高压燃气从尾喷管喷出,流过发动机的气体动量增加,使发动机产生反作用推力(图2.1.1) 图2.1.1 单轴涡轮喷气发动机 涡轮喷气发动机(图2.1.2)作为一个热机,它将燃料的热能转变为机械能。涡轮喷气发动机同时又作为一个推进器(,它利用产生的机械能使发动机获得推力。

图2.1.2 表示热机和推进器的单轴涡轮喷气发动机 涡轮喷气发动机,作为热机,它和工程中常见的活塞式发动机一样,都是以空气和燃气作为工作介质。它们的相同之处为: 均以空气和燃气作为工作介质。它们都是先把空气吸进发动机,经过压缩增加空气的压力,经过燃烧增加气体的温度,然后使燃气膨胀作功。燃气在膨胀过程中所作的功要比空气在压缩过程中所消耗的功大得多。这是因为燃气是在高温下膨胀的,于是就有一部分富余的膨胀功可以被利用。 它们的不同之处为: ?进入活塞式发动机的空气不是连续的;而进入燃气轮机的空气是连续的。 ?活塞式发动机中喷油燃烧是在一个密闭的固定空间里,称为等容燃烧,而燃气轮机则在前后畅通的流动过程中喷油燃烧,若不计流动损失,则燃烧前后压力不变,故称为等压燃烧。 下面给出了涡轮喷气发动机的简图,图中标出了发动机各部件名称和各个截面的符号。 对于单轴和双轴涡轮喷气发动机的尾喷管,若为收敛性喷管,其出口截面9在临界或超临界状态下成为临界截面,故也可以标注为8。 0---远前方,1---发动机进气道入口,2---压气机入口,3---燃烧室入口, 4---涡轮入口,5---尾喷管入口,8---尾喷管临界截面,9---尾喷管出口 图 2.1.3涡轮喷气发动机各部分名称 请记住上图涡轮喷气发动机各个截面符号的含义。

燃气轮机原理(精华版)

QD20燃机轮机机组 第 1章概述 1.1 燃气轮机简介 燃气轮机(Gas Turbine)是以连续流动的气体为工质、把热能转换为机械功的旋转式动力机械,包括压气机、加热工质的设备(如燃烧室)、透平、控制系统和辅助设备等。 走马灯是燃气轮机的雏形我国在11 世纪就有走马灯的记载,它靠蜡烛在空气燃烧后产生的上升热气推动顶部风车及其转轴上的纸人马一起旋转。15世纪末,意大利人列奥纳多〃达芬奇设计的烟气转动装臵,其原理与走马灯相同。 现代燃气轮机发动机主要由压气机、燃烧室和透平三大部件组成。当它正常工作时,工质顺序经过吸气压缩、燃烧加热、膨胀做功以及排气放热等四个工作过程而完成一个由热变功的转化的热力循环。图1-2为开式简单循环燃气轮机工作原理图。压气机从外界大气环境吸入空气、并逐级压缩(空气的温度与压力也将逐级升高);压缩空气被送到燃烧室与喷入的燃料混合燃烧产生高温高压的燃气;然后再进入透平膨胀做功;最后是工质放热过程,透平排气可直接排到大气、自然放热给外界环境,也可通过各种换热设备放热以回收利用部分余热。在连续重复完成上述的循环过程的同时,发动机也就把燃料的化学能连续地部分转化为有用功。 燃气轮机动力装臵是指包括燃气轮机发动机及为产生有用的动力(例如:电能、机械能或热能)所必需的基本设备。为了保证整个装臵的正常运行,除了主机三大部件外,还应根据不同情况配臵控制调节系统、启动系统、润滑油系统、燃料系统等。 燃气轮机区别于活塞式内燃机有两大特征:一是发动机部件运动方式,它为高速旋转、且工质气流朝一个方向流动(不必来回吞吐),使它摆脱了往复式动力机械功率受活塞体积与运动速度限制的制约,在同样大小的机器内每单位时间内通过的工质量要大得多,产生的功率也大得多,且结构简单、运动平稳、润滑油耗少;二是主要部件的功能,其工质经历的各热力过程是在不同的部件中进行的,故可方便地把它们加以不同组合处理,来满足各种用途的要求。 燃气轮机区别于汽轮机有三大特征:一是工质,它采用空气而不是水,可不用或少用水;另是多为内燃方式,使它免除庞大的传热与冷凝设备,因而设备简单,启动和加载时间短,电站金属消耗量、厂房占地面积与安装周期都成倍地减少;再是高温加热高温放热,使它有更大的提高系统效率的潜力,但也使它在简单循环时热效率较低,且高温部件需更多的镍、铬、钴等高级合金材料,影响了使用经济性与可靠性。 自 20 世纪60 年代首次引进6000kW 燃气轮机发电机组以来,我国已建成不少烧油气的燃气轮机及其联合循环发电机组。但由于我国一次能源以煤为主的消费结构,并受到规定的“发电设备只准烧煤”的前燃料政策的制约,目前我国燃气轮机在现有发电设备装机容量中,占有量很小,只有700 万kW 左右,且绝大部分为进口的。但发展速度很快,正在建设和计划的就超过800 万kW,正在建设的一批大型35 万kW 级燃用天然气的联合循环电站。随 着天然气和液体燃料在一次能源中比例的上升和燃气轮机燃煤的技术成熟之后,燃气轮机在我国发电设备中的比例将会愈来愈大。研究表明,由于燃气轮机在效率,环保和成本方面的优势,我国在电站基本负荷发电、老电站技术更新改造、洁净煤发电技术、石油与天然气的输运和高效利用以及舰船、机车交通动力等领域对燃气轮机都将有较大的需求。许多专家还强调燃气轮机在西部大开发中的重要性,国家构想实施的新世纪四大工程:西气东输,西电东送,青藏铁路,南水北调,前三个都与燃气轮机有关。总之,以燃气轮机为核心的总能系统也将成为我国跨世纪火电动力的主要发展方向,我国将是世界最大的燃气轮机潜在市场。 第2章燃气轮机热力循环 2.1热力循环的概念 热力循环是指热力系统经过一系列状态变化,重新回复到原来状态的全部过程。热力循环分为正向循环及逆向循环。将热能转换为机械功的循环称为正向循

燃气轮机原理与应用复习题50及答案

燃气轮机原理与应用复习题 2013-05-28 1 同汽轮机相比,燃气轮机的特点有哪些? 优点: (1)重量轻、体积小、投资省。(2)启动快、自动化程度高、操作方便。 (3)水、电、润滑油消耗少,少用或不用水。 (4)燃料适应性强、公害少。(5)维修快、运行可靠。 缺点: A. 热效率较低。 B.使用的经济性和可靠性较差。 2 燃气轮机涡轮叶片有哪几种冷却方式?每种冷却方式的大概降温范围? 1)对流冷却可使温度降低200-250℃ 2)冲击冷却可使温度降低200-300℃ 3)气膜冷却可使温度降低400--600℃ 4)发散冷却可使温度降低500-800℃ 普遍使用前三种的混合 3航空用燃气轮机有哪几种类型? 涡轮喷气发动机、涡轮螺旋桨发动机、涡轮风扇发动机 4什么是燃气轮机循环的压比、温比? 压比π*:压气机出口的气流压力与其进口的气流压力的比值。 温比τ*:涡轮前进口燃气温度与压气机进口气流温度的比值。 5 什么是燃气轮机循环的比功、热效率、有用功系数? 燃气轮机的循环比功:进入压气机内1kg 空气完成一个循环后,对外界输出的有效轴功。 热效率:燃气轮机输出的有用功与其所耗燃料的热量的比值。 有用功系数?:燃气轮机比功w i 与涡轮比功w T 的比值。 6燃气轮机理想简单循环的比功与哪些因素有关? 影响理想简单循环的比功ws 的重要因素:压比π*和温比τ*。 (1) 压比π*一定时,温比τ*增大,循环比功ws 增大。 (2) 温比τ*一定时,有一最佳比πL *使比功最大,且τ*增大时,πL *增大。 7燃气轮机理想简单循环的效率与哪些因素有关? (1) 理想简单循环的热效率ηs 只与压比π*有关,而与温比τ*无关。 *1*2*p p =π*1*3*T T =τT C T i w w w w -1 ==?

燃气轮机及辅助系统

1.1.1 燃气轮机原理 填空题 1.燃气轮机理想简单循环包括、、和。(绝热压缩过程;等压燃烧过程;绝热膨胀过程;等压放热过程)。 2.燃气轮机实际循环中当提高时,比功和效率都提高。(压比) 3、燃气轮机是一种以为工作介质、将热能转变为机械能的高速回转式动力机械。与内燃机、蒸汽轮机一样,为原动力机。(空气和燃气) 4、进气温度的升高会使燃气轮机的功率及热效率下降,其中热效率受进气温度的影响较功率要。(小) 5、评价燃气轮机变工况性能优劣的指标主要是和。(经济性、稳定性) 6、提高燃气温度(初温)的方法有和。(采用高温材料、改进冷却技术) 单选题 1.理想回热循环的比功较简单循环的比功。(C) A 、大B、小C、一样 2.透平中高温燃气的焓降大于在压气机低温空气的焓增,比例大约为。(B) A 、2:3 B、3:2 C、1:1 D、4:3 3.随着大气温度的提高,下面哪个说法是正确的。(C) A、机组出力会上升B、机组热效率会略微上升C、燃机排气温度上升 4.温比一定时,燃气—蒸汽联合循环亦存在最佳压比,其效率最佳压比燃气轮机简单循环的效率最佳压比。(A) A、小于 B、等于 C、大于 D、接近 5.一般情况下,对燃气轮机设计效率的影响程度最大的影响因子是。(B) A、压气机效率 B、透平效率 C、燃烧效率 D、温比 6.一般在描述燃机功率和热效率时所说的ISO条件是指。(D) A、环境温度0℃,50%相对湿度和海平面海拔高度 B、环境温度0℃,60%相对湿度和海平面海拔高度 C、环境温度15℃,50%相对湿度和海平面海拔高度 D、环境温度15℃,60%相对湿度和海平面海拔高度 7.燃气轮机简单理想布雷顿循环在燃烧室完成的是。(B) A、等熵绝热压缩过程 B、可逆定压吸热过程 C、等熵绝热膨胀过程 D、可逆定压放热 8.燃气轮机的净效率用计算。 A、lc/q B、ls/q C、le /q 多选题 1、提高燃气轮机简单循环比功的措施有。(ABCDE) A 、提高温比B、提高压比C、采用间冷循环D、采用再热循环E、采用联合循环 2、提高燃气轮机简单循环效率的措施有。(ABCDE) A 、提高温比B、提高压比C、采用回热循环D、采用再热循环E、采用联合循环 3、燃气轮机采用空气冷却有包括下列典型方式。(ABCDEF) A 、对流冷却B、冲击冷却C、膜式冷却D、发散冷却E、蒸汽冷却F、综合冷却

燃气轮机动力系统.

燃气轮机动力系统微型实验台指示书(初稿) 清华大学热能工程系 2011年10月24日

目录 一、实验台简介 二、实验台主要组成部分 三、实验台安全操作指南 四、实验报告要求

一、实验台简介 由美国Turbine Technologies, LTD 公司研制生产的MiniLab TM(以下简 写为MiniLab)燃气轮机动力系统微型实验台是清华大学热能工程系动力机械与工程研究所最新购置的实验设备。2005年11月14日购置,2006年3月3日到货并进行安装调试。该实验台合同编号:BE25-06445BS2,设备号:06014272,型号:MINILAB#0423,规格:870000RPM0.5Kg/s,单价:¥343333.29元。 MiniLab 动力系统实验台包括SR-30 燃气轮机机组和相应的辅助系统。 除个别的外部接口以外,所有的系统均封装在一个整体的机壳中他的全貌如图1-.1。使得机组小巧、紧凑、便于搬运。 图1-1实验台全貌

二、实验台主要组成部分 SR-30 燃气轮机是MiniLab 的核心部件,包括进气道、一级离心式压气机、环形回流燃烧室、一级轴流式透平以及尾喷管等。图2-1 是SR-30 的一个剖面图,从中我们可以清晰地看到引擎的各个部分。下面将对这些部分进行简要介绍 图2-1 SR-30 燃气轮机剖面图 进气道:进气道是引擎与大气相通的部分,空气通过进气道进入压缩机。 SR-30 的进气道为喇叭型,可看作一个渐缩喷管。 离心式压气机:SR-30 的压气机为单级离心式压气机。空气从轴向进入压气机动叶,由径向流出进入静叶,当系统达到最大转速90000 转/分时,动叶末端的空气速度可达473 米/秒。在静叶中,空气减速增压,且流动方向又由径向变回轴向。空气经过一级动叶和一级静叶可产生的最大压比为3,远高于相同情况下轴流式压气机单级所能产生的压比。 环形回流燃烧室:SR-30 的燃烧室为环形回流燃烧室,燃烧室内气体流动方向为从引擎尾部向头部流动,与整体流动方向相反。在引擎尾部均

燃气轮机工作原理

燃气轮机工作原理 当您来到机场看到从事商业运营的喷气飞机时,一定会注意到为飞机提供动力的巨大发动机。大部分商用喷气飞机都采用涡轮风扇发动机,这种发动机属于一个大类,叫做燃气轮 机。 您可能从未听说过燃气轮机,其实在您意想不到的各种场所都会出现它的身影。例如,您看到的许多直升机,大量的小型发电厂,甚至M-1坦克,它们使用的都是燃气轮机。在 本文中,我们将看一看燃气轮机到底有哪些能力让它们如此受欢迎。 涡轮机的种类很多: 您可能听说过蒸汽涡轮机。大部分发电厂使用煤、天然气、石油,甚至核反应堆来产生蒸汽。通过一台巨大、设计精密的多级涡轮机,蒸汽带动输出轴旋转,输出轴再带动发 电机,从而产生电力。

水电站大坝使用水力涡轮机(水轮机)产生动力,这种涡轮机的工作原理与蒸汽涡轮机相同。由于水的密度要远远大于空气,而且流动速度慢,因此水电站使用的涡轮机与蒸 汽涡轮机完全不同,不过,二者的基本原理是一致的。 风力涡轮机,也被称为“风磨”,是一种以风为动力的涡轮机。由于风的速度较慢,而且重量很轻,因此风力涡轮机看上去一点儿也不像蒸汽涡轮机或水力涡轮机,不过,它 们的基本原理是一致的。 燃气轮机也是相同原理的延伸。它采用压缩气体转动涡轮。所有现代燃气轮机,都是通过燃烧丙烷、天然气、煤油或喷气燃料等,自己产生压缩气体。燃料燃烧产生的热量使 得空气膨胀,热空气高速冲出,带动涡轮旋转。 那么,为什么M-1坦克要使用1,500马力的燃气轮机,而不使用柴油发动机呢,事实 上,与柴油机相比,涡轮机有两大优势: 燃气轮机的功率重量比远优于往复式发动机。也就是说,涡轮发动机的输出功率与自 身重量的比率非常好。 在相同输出功率下,燃气轮机的体积要小于往复式发动机。燃气轮机的主要劣势在于,与同体积的往复式发动机相比,它的造价昂贵。由于涡轮机的转速快,而且工作温度高,因此从工程和材料的角度看,燃气轮机的设计和制造都是一个很棘手的问题。此外,燃气轮机空转时消耗的燃料更多,而且要求负载恒定,不要有波动。这一点使得燃气轮机成为建造横贯大陆的喷气式飞机,以及发电厂的首选,同时也可以解释为什么汽车上不使用燃

燃气轮机自动化性能优化——设计要素和经验

燃气轮机发电技术 第14卷 第3/4期2012年10月燃气轮机自动化性能优化——设计要素和经验 Christopher N. Chandler, 燃机优化技术副总裁,Wood Group 摘要:贫油预混燃烧系统常用于地面固定式的燃气轮机,目的是为了减少NOx和CO等的排放。这类系统使用以来一直很成功。在某些情况下,燃机的排放水平处于测量标准的下限范围,NOx和CO的排放大约为(1 ̄3)×10-6。尽管从减少排放的角度来看,这类系统的使用非常有益,但是某些变量(如系统的运行边界条件、燃料成分的变化)都会影响到机组的效率。 所谓的运行边界条件包括对燃料的状况、分配及注入燃烧区的控制。在贫油预混燃烧系统中,这已成为一个关键的运行参数,当温度、湿度、压强等环境条件改变的时侯,这一运行参数就需要频繁的调整。对燃料状况、分配、注入量的重新调整,称之为“调整(tuning)”。 燃料成分的变化足以引发贫油预混燃烧系统热量释放的变化。这种的变化可能导致排放偏移、燃烧过程不稳定,甚至是燃烧系统爆燃。 人为操控的燃烧系统通常是通过手动设置运行的参数,这些手动设置的参数都是基于平均运行条件。这些设定值在设定时是满足要求的,但是状况可能在大约数小时或数日之内发生变化并引起无法接受的状况。因此必须重新调整这些条件。常规的调整方法是使用一个基于燃机运行参数的公式来预测排放量。这种方法只为燃料分配以及整台机组的燃料与空气比率选取了一个设定值,但没有修改其他参数,如燃气温度。这种方法不允许及时的变动,也没有利用实时的动态和排放数据,没有改善燃料分配、燃料温度或燃机的其他运行参数。 对燃烧系统的操作不当的结果表现为压力脉动扩张或燃烧脉动增加。压力脉动具备足够的力量可以毁坏整个燃烧系统,大幅缩短燃烧硬件的寿命。此外,对燃烧系统不当的调整会导致排放偏差,超出排放标准。燃烧脉动和排放控制导致的另一个后果是电厂对出力降低和热耗提高水平低估的可能性。因此,通过定期或者周期的调整,在适当运行条件之内,维持贫油预混燃烧系统稳定性的方法对这个行业来说是非常有价值且有益处的。有一种系统,通过透平传感器获得近乎实时数据,从而对燃料分配、气体燃料的进气温度和机组整体的燃料与空气的比率进行调整,这是非常有价值的。 影响透平性能的变量 如图1所示,影响燃气轮机性能的主要参数有:气候(环境温度,湿度,压力),燃料成分,仪表偏差(LDVT drift),部件老化。 当这些参数的改变时,燃烧室的运行情况也随之改变。图2显示这些参数通常是如何影响透平的运行情况的。 图2描述的是燃烧室运行可允许的条件,以黑 气候 老化 变量 燃料偏差 图1 影响透平性能的变量

重型燃气轮机控制系统的结构研究_夏心磊

第36卷 第4期热力透平Vol 36No 4 2007年12月THE RM ALTU R BINE Dec.2007 重型燃气轮机控制系统的结构研究 夏心磊,谢剑英 (上海交通大学自动化系,上海,200030) 摘 要: 分析介绍了目前应用于电站的重型燃气轮机控制系统的硬件组成,针对西门子燃机控制系统,详细描述了闭环调节回路的各个组成模块以及特点,为燃机控制系统的选择、控制方案的设计提供了技术借鉴。 关键词: 重型燃气轮机;西门子;控制策略;SIM A DY N-D 中图分类号:T K323 文献标识码:A 文章编号:1672-5549(2007)04-0245-06 Research on Stru ctu re of Control S ystem for Heavy-Duty Gas Turbine X I A X in-lei,X I E J ian-y ing (Au toma tio n D ep artme nt o f Sh a n gh a i Jia oto n g U nive rsity,Sh a ng h ai200030,Ch in a) Abstract: T he hardwar e com ponents ar e intr oduced fo r contro l system of heav y-dut y gas tur bine in po wer plants.T he char act eristics of each co nt ro l block for closed-loo p contro l cir cuit ar e giv en in det ail fo r the r efer-ence o f the co nt rol system cho ice of g as tur bine and the design of co ntr ol scheme. Key words: heav y-duty gas turbine;Siemens;contr ol str ategy;SIM A DY N-D 0 前言 燃气轮机自从1939年成功应用以来,目前以GE、西门子/西屋、三菱和阿尔斯通等主导公司为核心,其他制造公司多数与主导公司结成伙伴关系。燃气轮机的控制系统性能决定着相应的动力装置的变工况性能、经济性和安全性能,正因为控制系统的特殊重要性,各大公司也推出了相应的燃气轮机控制系统,比较著名的硬件有GE公司生产的Speed-tronic TM Mark系列硬件,西门子公司的SIMADYN-D、TELEPERM XP以及SPPA T3000控制系统等等。国内相应的燃气轮机电站也大多直接进口国外的控制系统;但随着国内燃气轮机技术的不断发展,燃气轮机的国产化程度逐步提高,必然对控制系统的可靠性和自动化程度提出更高的要求。本文以西门子燃机为例,对其控制系统进行分析和研究。 1 燃气轮机控制系统的软硬件结构 目前的燃气轮机控制系统普遍采用分布式控制系统,都有界面友好的人机接口,提供监视、调试组态的软件;重要的控制器、网络控制器、网络都采用冗余结构,有些控制系统甚至在I/O级也实现双重冗余。下图为西门子SIM ADYN-D系统在某燃机电站的实际硬件配置图(部分)。 多重网络按照不同的功能划分,Terminal Bus主要用于人机界面、数据的存储、分析;Plant Bus用来实现控制器之间的数据通讯,并提供与Terminal Bus的通讯接口;最底层是I/O级的总线,实时性要求高,负责与执行设备的数据连接。图中的TCS系统负责汽轮机和燃气轮机控制,实际上是整个电站控制系统的一部分。 从燃气轮机控制的软件功能来说,主要是在燃气轮机启动运行过程中实现对燃气轮机的控制与保护,以确保燃气轮机正常工作。 2 西门子燃气轮机控制系统的模块 化设计 由于电力能源目前不能通过一种高效的方式 收稿日期:2007-04-05 作者简介:夏心磊(1975-),男,工程师,大学本科,1997年毕业于江苏理工大学工业电气自动化专业,从事汽轮机控制系统工作,现任上海汽轮机有限公司自动化控制中心调节三组组长,在职就读上海交通大学自动化系工程硕士。

相关文档