文档库 最新最全的文档下载
当前位置:文档库 › 发展超超临界发电机组若干技术问题探讨

发展超超临界发电机组若干技术问题探讨

发展超超临界发电机组若干技术问题探讨
发展超超临界发电机组若干技术问题探讨

发展超超临界发电机组若干技术问题探讨

摘要:总结国外超临界和超超临界机组的发展现状及趋势,探讨超超临界机组技术选型的若干问题,提出了我国发展超超临界机组的发展思路。

关键词:超超临界发电机组技术选型

0 前言

我国在未来相当长的时期内电力生产仍是以煤为主的格局。为保证电力工业可持续发展,加快电力结构调整的步伐,最现实、最可行的途径就是加快建设超临界机组,配备以常规的烟气脱硫系统。目前,CFB,PFBC,IGCC 等技术仍处于试验或示范阶段,在大型化方面还有很长的路要走,而超临界和超超临界机组的发展已日趋成熟,其可用率、可靠性、运行灵活性和机组寿命等方面已接近亚临界机组。

超临界机组是指主蒸汽压力大于水的临界压力(22.12 MPa)的机组。习惯上又将超临界机组分为2 个层次:常规超临界参数机组,其主蒸汽压力一般为24 MPa 左右,主蒸汽和再热蒸汽温度为540~560℃;高效超临界机组,通常也称为超超临界机组或高参数超临界机组,其主蒸汽压力为25~35 MPa 及以上,主蒸汽和再热蒸汽温度为580 ℃及以上。理论和实践证明常规超临界机组的效率可比亚临界机组高2左右,而对于高效超临界机组,其效率可比常规超临界机组再提高4左右。 1 国外超临界机组的发展状况与计划 1.1 发展现状

大型超临界机组自 20 世纪50 年代在美国和德国开始投入商业运行以来,随着冶金工

业技术的发展,提供了发电设备用的碳素体钢、奥氏体钢及超合金钢。到今天超临界机组已

大量投运,并取得了良好的运行业绩。近十几年来,发达国家积极开发应用高效超临界参

数发电机组。美国(169 台)和前苏联(200 多台)是超临界机组最多的国家,而发展超

超临界技术领先的国家主要是日本、德国和丹麦。

德国是发展超超临界技术最早的国家之一,在早期追求高参数,但后来蒸汽参数降低并长期稳定在25 MPa/545 ℃/545 ℃的水平上,其后蒸汽参数逐步提高。2003 年投产的Niederaussen 电厂参数为965MW26 MPa/580 ℃/600 ℃,设计热效率为44.5。日本因能源短缺,燃料主要依赖进口,因此采用超临界发电机组(占总装机容量的60以上)。1989 年和 1990 年,日本的川越(Kawagoe)电厂先后投运两台参数为

700 MW31 MPa/566 ℃/566 ℃/566 ℃。这是日本发展超超临界发电技术的标志性机组

。近年来一批百万千瓦级超超临界发电机组相继投入运行,除达到很高可靠性外,其循环效率可达到 45左右。丹麦亦十分重视高参数超临界机组的发展,在提高机组蒸汽参数的

同时利用低温海水冷却大幅提高机组效率。1998 年投运的 ordjylland 电厂其机组参数为400 MW28.5 MPa/580 ℃/580 ℃/580℃,机组效率高达 47。2001 年投运的 AVV2 电厂一台超超临界机组,其机组效率高达 49,这是目前世界上超超临界机组中运行效率最

高的机组。

从各国的发展来看,自 20 世纪 90 年代初开始发展超超临界机组,到 90 年代末期其

蒸汽温度基本都提高到了 580~600 ℃,并且都有相应的电厂成功地投入了商业运行。值

得注意的是国外超超临界发电机组许多建在海边,利用低温海水冷却,使机组循环效率进

一步提高。 1.2 发展计划

欧盟为了发展超超临界发电技术先后制定了若干研究计划,正在执行的 The rmie

计划(先进的700 ℃燃煤电厂)(1998~2014),计划建设参数为37.5 MPa/700

℃/720 ℃/720 ℃的超超临界机组,主要目标是:使电厂的净效率由47提高到5(对

于低的海水冷却水温度)或52左右(对于内陆地区和冷却塔);降低燃煤电站的造价。日本进行了目标分别为31.4 MPa/593 ℃/593 ℃/593 ℃、31 MPa/630 ℃/630 ℃

和34.3 MPa/649 ℃/593 ℃/593 ℃的超超临界机组研发计划。力争将发电机组设计效率提高到45以上。美国也正在组织和支持一项发展更高参数超超临界发电机组的研究项目—“760 ℃”计划,目标是研制适合蒸汽参数为38.5 MPa/760 ℃的新合金材料,将超超临界机组的主蒸汽温度提高到760 ℃的水平,从而大大提高超超临界机组的效率。俄罗斯也设计了新一代的超超临界机组,蒸汽参数为30~32 MPa/580~600 ℃/580~600 ℃,

预计电站的效率可达44~46。可见上述各国都将高参数超超临界发电机组作为今后的发展方向。 2 国内超临界机组的发展状况

目前我国的发电机组已进入大容量、高参数的发展阶段,近10 多年来已从国外引进

了7800 MW 常规超临界机组(不包括后石电厂已投运4×600 MW),分别是华能石洞口二

厂2×600 MW,华能南京电厂2×300MW,华能营口电厂2×300MW,华能伊敏电厂

2×500MW,盘山电厂2×500MW,绥中电厂2×800MW,外高桥电厂2×900MW,这些机

组具有较高的技术性能,在提高发电煤炭利用率和降低污染方面发挥了一定的作用,也为

我国超临界机组的运行积累了经验。目前,中国华能集团公司正在沁北电厂建设

2×600MW 超临界机组(预计 2004 年投运),为我国自行研制、开发大型超超临界发电

机组奠定了基础。2002 年国家科技部把“超超临界燃煤发电技术”研究课题列入 863 计划,并由国内近20 个科研机构、大学、电力设计单位参与课题的各项研究任务。国家计委也

批准了华能玉环电厂建设两台百万千瓦级超超临界发电机组,2003 年3 月已动工兴建

。超临界和超超临界机组将成为我国“十?五”后的主要发展机型。

3 发展超超临界发电机组的若干技术问题 3.1 材料问题

发展超超临界机组在设计和制造中有许多关键技术问题有待解决,其中开发热强度高

、抗高温烟气氧化腐蚀和高温汽水介质腐蚀、可焊性和工艺性良好、价格低廉的材料是最

关键的问题。

火电机组用钢主要有两大类:奥氏体钢和铁素体钢(包括珠光体、贝氏体和马氏体及其两相钢)。奥氏体钢比铁素体钢具有高的热强性,但膨胀系数大,导热性能差,抗应力腐蚀能力低,工艺性差,热疲劳和低周疲劳(特别是厚壁件)也不及铁素体钢,且成本高得多。

目前,超临界和超超临界机组根据采用的蒸汽温度的不同,主要采用了以下三类合金钢:

(1)低铬耐热钢。包括Mo(SA213 T11)、2.25Cr-1Mo(SA213

T22/P22)、1Cr-Mo-V(12Cr1MoV)以及 9%~12%Cr 系的Cr-Mo 与Cr-Mo-V 钢等,其允许主汽温为 538~566℃。

(2)改良型 9%~12%铁素体-马氏体钢。包括 9Cr-1Mo(SA335,T91/P91)、

NF616、HCM12A、TB9、TB12 等,一般用于 566~593℃的蒸汽温度范围。其允许主汽温为610℃,30MPa 再热汽温625℃;使用壁温:锅炉 625~650℃,汽机 600~620℃。

(3)新型奥氏体耐热钢。包括:18Cr-8Ni 系,如 SA213 TP304H、TP347H、

TP347HFG、Super 304H、Tempaloy A-1 等;20-25Cr 系,如 HR3C、NF709、Tempaloy A-3 等。这些材料的使用壁温达 650~750℃,可用于汽温高达600℃的过热器与再热器管束,具有足够的蠕变断裂强度和很好的抗高温腐蚀性能。

正是由于上述低铬耐热钢和改良型 9%~12%Cr 铁素体型钢的研制及使用成功,促进和保证了超超临界机组的发展,并降低了超超临界机组的造价,在经济上具备竞争力。目前,这些新型钢已在欧洲和日本的电厂推广应用,主蒸汽温度最高达610℃。

国外的成功运行经验为我国设计制造超超临界发电机组打下良好基础,但材料的若干技术问题还须进一步研究:在所选蒸汽参数下,锅炉、汽轮机各部件所选用材料、壁厚、用材量、造价分析,运行性能及技术经济分析;还应验证新材料的持久强度、蠕变强度、断裂韧性、低周疲劳特性、设计应用安全系数,热应力寿命损耗特性、工艺性等。3.2 蒸汽参数

机组的蒸汽参数是决定机组热效率,提高热经济性的重要因素。提高蒸汽参数(蒸汽的初始压力和温度)、采用再热系统、增加再热次数,都是提高机组效率的有效方法。

根据工程热力学原理,工质参数提高必然使得机组的热效率提高,这主要是改善热力循环系统所致。从研究成果可知,主蒸汽温度每提高10 ℃,热效率值可提高约0.28;再热蒸汽温度每提高10 ℃,热效率可提高约0.18。对于一次中间再热的超临界参数以上的发电机组,工质压力每提高1 MPa,热效率大约可提高0.2。

因此,在同比条件下(均为一次再热),主蒸汽压力从 25 MPa 升至 31 MPa,机组热效率相对只提高约 1,只有单纯将温度从566 ℃/566℃提高至600 ℃/600℃时热效率提高的一半。部分专家的分析意见认为,我国目前超超临界机组的主汽压力应取在世界先进水平 28~31 MPa 的下限,这主要是考虑到提高设备的可靠性。根据早期超超临界机组的运行情况看,机组事故的产生多是由于高压段参数所引起。另一个考虑就是降低设备的造价。主汽参数的选择对造价影响非常大,特别是在锅炉受热面和汽轮机高压缸。但对于主汽压力 25 MPa 的情况来说,采用25 MPa/600 ℃/600 ℃与相同容量常规超临界

24.2 MPa/566 ℃/566 ℃机组相比,除部分材料及图纸需要更改外,大部分图纸可以通用,技术继承性较好。

从近年来国际上超超临界发电机组参数发展看,主流是走大幅度提高蒸汽温度(取值相对较高600 ℃左右)、小幅度提高蒸汽压力(取值多为25 MPa 左右)的技术发展之路。此技术路线问题单一,技术继承性好,在材料成熟前提下可靠性较高、投资增加少、热效率增加明显,即综合优点突出,此技术路线以日本为代表。另一种技术发展是蒸汽压力和温度都取值较高(28~30 MPa,600 ℃左右)、从而获得更高的效率,主要以丹麦的

技术发展为代表。近年德国也将蒸汽压力从28 MPa 降至25 MPa 左右。综合上述,我国发展超超临界起步参数选为25 MPa/600 ℃/600 ℃是较为合理的。

超超临界今后发展重点仍偏重在材料研发与温度提高上。将目前已经达到的 600~610 ℃平台,依次跃升到 650~660 ℃、700~710 ℃及 750~760 ℃三个台阶。与此同时,在技术已经成熟及不断降低制造成本、提高自动化水平前提下,也会继续尝试升压之路,把初压最终提高到 35Mpa 以上并采用两次再热,使汽轮机效率达到最高境界。

应该看到,世界上先进的超临界和超超临界电站的发展经验表明,机组效率的提高来源于许多方面的因素,如:较低的锅炉排烟温度,高效率的主、辅机设备,煤的良好燃烧,较高的给水温度,较低的凝汽器压力,较低的系统压损,蒸汽再热级数,等等。据国外研究报告估计,仅由于提高蒸汽参数而提高的效率最多为效率总提高量的一半左右。因此,发展超超临界机组的工作不仅仅是简单地提高蒸汽参数就可以实现,还必须同时注重其他相关技术的开发和研究工作。 3.3 机组容量

影响发电机组容量选择的因素有:电网(单机容量<电网容量的10);汽轮机背压;汽轮机末级排汽面积(叶片高度);汽轮发电机组(单轴)转子长度;

发电机的大容量化,即单轴串联布置或双轴并列布置。

一般而言单机容量增大,单位容量的造价降低,也可提高效率,但根据国外多年分析研究得出,提高单机容量固然可以提高效率,但当容量增加到一定的限度(1000 MW)后,再增加单机容量对提高热效率不明显。国外已投运的超超临界机组单机容量大部分在700 MW~1 000 MW 之间。就锅炉而言,单机容量继续增大,受热面的布置更为复杂,后部烟道必须是双通道,还必须增加主蒸汽管壁厚或增加主蒸汽管道的数目。

单机容量的进一步增大还将受到汽轮机的限制。近30 年来,汽轮机单机容量增长缓慢,世界上现役的单轴汽轮机大部分为900 MW 以下,最大功率单轴汽轮机仍然是前苏联制造的1 200 MW 汽轮机,双轴最大功率汽轮机是美国西屋公司制造的(60 Hz)1

390 MW。目前世界上 900 MW 以上的机组,无论 50 Hz 还是 60 Hz,都是以双轴布置占多数。但是随着近年来参数的不断提高,更长末叶片的开发以及叶片和转子材料的改进,单轴布置越来越成为新的发展趋势。

由于超超临界机组与超临界机组在设计和制造方面实际上没有原则性的界限,温度600 ℃以下的这两种机组所用的材料种类有许多是相同的,因此,从现有国内制造业基础及技术可行性考虑,建议我国起步阶段开发的超超临界机组的容量应在700~1 000 MW 之间。而从效率、单位千瓦投资、占地、建设周期、我国经济和电力工业发展的需要考虑,选择1 000 MW 大型化超超临界机组方案是合理的。 3.4 锅炉炉型 3.4.1 锅炉布置型式

超临界锅炉的整体布置主要采用型布置和塔式布置,也可T 型布置;采用T 型布置的主要是前苏联的超临界机组。如我国引进的伊敏、盘山电厂500 MW 和绥中电厂

800 MW 锅炉。

超超临界锅炉设计通常采用型炉和塔式炉,其中型炉在市场中占多数。所有的褐煤炉都采用塔式炉,如德国和丹麦的燃煤电厂。欧洲的烟煤炉两种型式都有,而日本和美国通常采用型炉。

我国发展超临界机组,选择锅炉的整体布置形式,必须根据具体电厂、燃煤条件、投资费用、运行可靠性等方面,进行全面技术经济分析比较,选定锅炉型或塔式的布置型式。选用时应重视煤质特性,特别是煤的灰分。燃用高灰分煤,从减轻受热面磨损方面考虑,采用塔式布置较为合适。 3.4.2 燃烧方式

直流燃烧器四角切圆燃烧和旋流燃烧器前后墙对冲燃烧是目前国内外应用最为广泛的煤粉燃烧方式。由于切圆燃烧中四角火焰的相互支持,一、二次风的混合便于控制等特点,其煤种适应性更强,目前我国设计制造的300 MW、600 MW 机组锅炉大多数采用这种燃烧方式。对冲燃烧方式则具有锅炉沿炉膛宽度的烟温及速度分布较均匀,过热器与再热器的烟温和汽温偏差相对较小的特点。

国外各主要锅炉制造商在其燃烧器的型式方面都有各自的传统技术,例如:美国 CE 公司以及同属一个技术流派的日本三菱重工是采用直流燃烧器切圆燃烧方式,而美国 B&W 公司、俄罗斯等则采用旋流燃烧器前后墙对冲燃烧方式。在我国虽然直流燃烧器切圆燃烧方式占主导地位,但实际运行情况表明,除一般认为直流燃烧器切圆燃烧方式 NOx 的生成量比旋流燃烧器前后墙对冲燃烧方式稍低外,在大容量煤粉炉的着火及低负荷燃烧稳定性

、燃烧经济性、对炉膛水冷壁结渣的影响等方面,旋流燃烧器前后墙对冲燃烧方式与直流燃烧器四角切圆燃烧方式并没有显著差异。

锅炉布置方式与其采用的燃烧方式之间并无必然的联系。不过,当采用型布置切圆燃烧时,一般认为,四角切圆燃烧锅炉由于炉膛出口的残余旋转导致的烟气侧热力偏差会随着锅炉容量的增大而加剧,因此部分锅炉制造商提出四角切圆燃烧适用的锅炉容量上限应有所限制,锅炉容量进一步增大,应采用八角双切圆燃烧方式。日本三菱重工提出,四角切圆燃烧方式适用的锅炉容量上限大约为800 MW,而八角双切圆燃烧方式自

500 MW 起可一直适用到1 000 MW 以上。

超超临界的锅炉布置型式和燃烧方式两者应合理搭配,根据国内外锅炉制造厂的设计方案,如下四种燃烧方式与锅炉布置型式相适应:四角单切圆塔式布置; 墙式对冲塔式布置; 八角双切圆行筒贾; 墙式旋流行筒贾。3.5 汽机系统

提高汽轮机出力的途径主要有以下几点:提高新蒸汽参数,增大汽轮机总体理想焓降△Hi;采用给水回热系统,减小汽轮机低压缸排汽流量,增加进汽量,从而达到增加出力的目的;增加汽轮机低压缸末级通流面积,一种办法就是增加末级叶片高度,这是国内外大容量汽轮机的一个主要发展方向,另一种办法采用低转速(如半转速);

采用多排汽口,低压缸采用分流技术是增大单轴汽轮机很有效的措施,国外百万千瓦级超超临界单轴机组的低压缸排汽口数量已达 6 个以上(采用 3 个及以上双流低压缸);

提高汽轮机排汽背压,使汽轮机末级叶片出口蒸汽的密度增大,从而增加汽轮机出力。

锅炉的设计必需同时考虑燃烧和汽水循环,而汽机的设计和运行只需考虑蒸汽一种。汽轮机设计过去注重提高出力和可靠性,现在还应注重材料的合理选用以降低投资和提高效率。因此超超临界汽轮机的设计应重点考虑:

(1)材料选择和消耗。蒸汽温度影响材料的选择,蒸汽压力主要影响材料的消耗,因此综合工程设计及材料制造费用,汽机价格将随压力的增加而略有增加。材料的选择还应有利于降低叶片损失。

(2)在价格不变的情况下应提高材料的蠕变强度,使其运行在更高的温度下;同时提高材料的疲劳强度,保证汽机和电厂的热灵活性,易于运行和较少的维护检修。

(3)低压缸采用更长的末级叶片,增加排汽面积。

目前国内超临界或亚临界机组大多负荷率偏低,在低负荷运行工况下难以达到汽轮机的设计效率,同样要发挥超超临界机组的高效率,就必须在较高负荷工况下运行。 4 结语

发展超超临界发电机组应进行技术和经济的综合分析,针对具体的超超临界电厂,参数的选择还要根据厂址所在电网的容量、负荷增长速度、燃料价格和机组的年利用小时以及影响经济性的几个重要因数(如钢煤比价等)作具体的技术经济分析。

通过对亚临界、超临界和超超临界工程的投资估算和分析论证,在年利用小时达到

5 500 h 时,超超临界的电价与亚临界电价达到相同[2]。年利用小时的敏感性分析说明,超超临界电厂建设在缺电的地区较为合适。另有部分专家认为:以电厂运行 25 年计,标准煤价超过 250 元/t,采用超临界机组及超超临界机组比亚临界机组有更好的效益;标准煤价超过 210 元/t,采用超超临界机组比超临界机组有更好的效益。

超超临界机组在国际上已经是较为成熟的技术,因此,在总结我国已引进的超临界机组制造技术和运行经验的基础上,发展我国的超超临界发电机组,技术上是切实可行的。要采用引进技术和消化吸收、相结合的发展之路,充分利用我国现有的设备制造、电站设计和运行能力,加快超超临界机组的发展进程。 5 参考文献

[1]苗迺金、危师让.超临界火电技术及其发展.热力发电,2002(5).

[2]中国电力工程顾问有限公司.火电结构优化和技术升级研究.2002.3.

超临界萃取的技术原理

一、超临界萃取的技术原理 利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。 超临界CO2是指处于临界温度与临界压力(称为临界点)以上状态的一种可压缩的高密度流体,是通常所说的气、液、固三态以外的第四态,其分子间力很小,类似于气体,而密度却很大,接近于液体,因此具有介于气体和液体之间的气液两重性质,同时具有液体较高的溶解性和气体较高的流动性,比普通液体溶剂传质速率高,并且扩散系数介于液体和气体之间,具有较好的渗透性,而且没有相际效应,因此有助于提高萃取效率,并可大幅度节能。 超临界CO2的物理化学性质与在非临界状态的液体和气体有很大的不同。由于密度是溶解能力、粘度是流体阻力、扩散系数是传质速率高低的主要参数,因此超临界CO2的特殊性质决定了超临界CO2萃取技术具有一系列的重要特点。超临界CO2的粘度是液体的百分之一,自扩散系数是液体的100倍,因而具有良好的传质特性,可大大缩短相平衡所需时间,是高效传质的理想介质;具有比液体快得多的溶解溶质的速率,有比气体大得多的对固体物质的溶解和携带能力;具有不同寻常的巨大压缩性,在临界点附件,压力和温度的微小变化会引起CO2的密度发生很大的变化,所以可通过简单的变化体系的温度或压力来调节CO2 的溶解能力,提高萃取的选择性;通过降低体系的压力来分离CO2和所溶解的产品,省去消除溶剂的工序。 在传统的分离方法中,溶剂萃取是利用溶剂和各溶质间的亲和性(表现在溶解度)的差异来实现分离的;蒸馏是利用溶液中各组分的挥发度(蒸汽压)的不同来实现分离的。而超临界CO2萃取则是通过调节CO2的压力和温度来控制溶解度和蒸汽压这2个参数进行分离的,故超临界CO2萃取综合了溶剂萃取和蒸馏的2种功能和特点,进而决定了超临界CO2萃取具有传统普通流体萃取方法所不具有的优势:通过调节压力和温度而方便地改变溶剂的性质,控制其选择性;适当地选择提取条件和溶剂,能在接近常温下操作,对热敏性物质可适用;因粘度小、扩散系数大,提取速度较快;溶质和溶剂的分离彻底而且容易。从它的特性和完整性来看,相当于一个新的单元操作,因此引起了国内外的广泛关注。二、超临界萃取的特点

超超临界燃煤发电技术的发展历程

超超临界燃煤发电技术的发展历程 从上个世纪50年代开始,世界上以美国和德国等为主的工业化国家就已经开始了对超临界和超超临界发电技术的研究。经过近半个世纪的不断进步、完善和发展,目前超临界和超超临界发电技术已经进入了成熟和商业化运行的阶段。 世界上超临界和超超临界发电技术的发展过程大致可以分成三个阶段: 第一个阶段,是从上个世纪50年代开始,以美国和德国等为代表。当时的起步参数就是超超临界参数,但随后由于电厂可靠性的问题,在经历了初期超超临界参数后,从60年代后期开始美国超临界机组大规模发展时期所采用的参数均降低到常规超临界参数。直至80年代,美国超临界机组的参数基本稳定在这个水平。第二个阶段,大约是从上个世纪80年代初期开始。由于材料技术的发展,尤其是锅炉和汽轮机材料性能的大幅度改进,及对电厂水化学方面的认识的深入,克服了早期超临界机组所遇到的可靠性问题。同时,美国对已投运的机组进行了大规模的优化及改造,可靠性和可用率指标已经达到甚至超过了相应的亚临界机组。通过改造实践,形成了新的结构和新的设计方法,大大提高了机组的经济性、可靠性、运行灵活性。其间,美国又将超临界技术转让给日本(GE向东芝、日立,西屋向三菱),联合进行了一系列新超临界电厂的开发设计。这样,超临界机组的市场逐步转移到了欧洲及日本,涌现出了一批新的超临界机组。 第三个阶段,大约是从20世纪九十年代开始进入了新一轮的发展阶段。这也是世界上超超临界机组快速发展的阶段,即在保证机组高可靠性、高可用率的前提下采用更高的蒸汽温度和压力。其主要原因在于国际上环保要求日益严格,同时新材料的开发成功和和常规超临界技术的成熟也为超超临界机组的发展提供了条件。主要以日本(三菱、东芝、日立)、欧洲(西门子、阿尔斯通)的技术为主。这个阶段超超临界机组的发展有以下三方面的趋势:

700℃超超临界燃煤发电机组发展情况概述

700℃超超临界燃煤发电机组发展情况概述(一) 目前,在整个电网中,燃煤火力发电占70%左右,电力工业以燃煤发电为主的格局在很长一段时期内难以改变。但是,燃煤发电在创造优质清洁电力的同时,又产生大量的排放污染。为实现2008年G8(八国首脑高峰会议)确定的2050年CO2排放降低50%的目标,提高效率和降低排放的发电技术成为欧盟、日本和美国重点关注的领域。洁净燃煤发电技有几种方法,如整体煤气化联合循环(IGCC)、增压流化床联合循环(PFBC)及超超临界技术(USC)。目前,超超临界燃煤发电技术比较容易实现大规模产业化。 超超临界燃煤发电技术经过几十年的发展,目前已经是世界上先进、成熟达到商业化规模应用的洁净煤发电技术,在不少国家推广应用并取得了显著的节能和改善环境的效果。据统计,目前全世界已投入运行的超临界及以上参数的发电机组大约有600余台,其中美国约有170台,日本和欧洲各约60台,俄罗斯及原东欧国家280余台。目前发展700℃超超临界发电技术领先的国家主要是欧盟、日本和美国等。700℃超超临界机组作为超超临界机组未来发展方向,本文对其发展情况进行概述,供参考。 一、概念 燃煤发电机组是将煤燃烧产生的热能通过发电动力装置(电厂锅炉、汽轮机和发电机及其辅助装置等)转换成电能。燃煤发电机组主要由燃烧系统(以锅炉为核心)、汽水系统(主要由各类泵、给水加热器、凝汽器、管道、水冷壁等组成)、发电系统(汽轮机、汽轮发电机)和控制系统等组成。燃烧系统和汽水系统产生高温高压蒸汽,发电系统实现由热能、机械能到电能的转变,控制系统保证各系统安全、合理、经济运行。 燃煤发电机组运行过程中,锅炉内工质都是水,水的临界点压力为22.12MPa,温度374.15℃;在这个压力和温度时,水和蒸汽的密度是相同的,就叫水的临界点。超临界机组是指主蒸汽压力大于水的临界压力22.12 MPa的机组,而亚临界机组是指主蒸汽压力低于这个临界压力的机组,通常出口压力在15.7~19.6 MPa。习惯上,又将超临界机组分为两个类型:一是常规超临界燃煤发电机组,其主蒸汽压力一般为24兆帕左右,主蒸汽和再热蒸汽温度为566~593℃;二是超超临界燃煤发电机组,其主蒸汽压力为25~35 MPa及以上,主蒸汽和再热蒸汽温度一般600℃以上,700℃超超临界燃煤发电机组是超超临界发电技术发展前沿。在超临界与超超临界状态,水由液态直接成为汽态,即由湿蒸汽直接成

超临界二氧化碳萃取技术

摘要:介绍了超临界二氧化碳萃取技术的基本原理和特点,简单说明了该技术在香料、医药、食品等工业上的应用。 关键词:超临界二氧化碳萃取分离技术基本原理 前言 超临界流体萃取,又称超临界萃取、压力流体萃取、超临界气体萃取。它是以高压、高密度的超临界状态流体为溶剂,从液体或固体中萃取所需要的组分,然后采用升温、降压或二者兼用和吸收(吸附)等手段将溶剂与所萃取的组分分离。 早在1897年,人们就已经认识到了超临界萃取这一概念。当时发现超临界状态的压缩气体对于固体具有特殊的溶解作用。例如再高于临界点的条件下,金属卤化物可以溶解再在乙醇或四氯化碳中,当压力降低后又可以析出。但直到20世纪60年代,才开始了其工业应用的研究。目前超临界二氧化碳萃取已成为一种新型萃取分离技术,被广泛应用于食品、医药、化工、能源、香精香料的工业的生产部门。 1 超临界萃取的原理 当液体的温度和压力处于它的临界状态。 如图1是纯流体的典型压力—温度图。图中, AT表示气—固平衡的升华曲线,BT表示液— 固平衡的熔融曲线,CT表示气-液平衡的饱 和液体的蒸汽压曲线,点T是气-液-固三相 共存的三相点。按照相率,当纯物的气-液- 固三相共存时,确定系统状态的自由度为零, 即每个纯物质都有自己确定的三相点。将纯物 质沿气-液饱和线升温,当达到图中的C时, 气-液的分界面消失,体系的性质变得均一, 不再分为气体和液体,称点C为临界点。与该点相对应的临界温度和压力分别称 为临界温度T 0和临界压力P 。图中高于临界温度和临界压力的有影阴的区域属 于超临界流体状态。 在这种状态下,它既不完全与一般气相相同,又不是液相,故称为超临界流体。超临界流体有气、液相的特点,它既有与气体相当的高渗透力和低粘度,又兼有液体相近的密度和对物质优良的溶解能力。这种溶解能力能随体系参数的变化而连续的改变,因而可以通过改变体系的温度和压力,方便的调节组分的溶解度和萃取的选择性。利用上述特点,超临界二氧化碳萃取技术主要分为两大类原理流程即恒温降压流程和恒压升温流程。前者萃取相经减压,后者萃取相经升温。

超临界、超超临界燃煤发电技术

1.工程热力学将水的临界状态点的参数定义为:2 2.115MPa,374.15℃。当水蒸气参数值大于上述临界状态点的压力和温度时,则称其为超临界参数。超超临界设定在蒸汽压力大于25MPa、或蒸汽温度高于593℃的范围。 2.提高机组热效率:提高蒸汽参数(压力、温度)、采用再热系统、增加再热次数。 3.常规亚临界机组参数为16.7MPa/538℃/538℃,发电效率约38%;超临界机组主汽压力一般为24MPa左右,主蒸汽和再热蒸汽温度为538—560℃,典型参数为2 4.1MPa/538℃/538℃,发电效率约41%;超超临界追压力25—31MPa及以上,主蒸汽和再热蒸汽温度为580—600℃及以上。超临界机组热效率比亚临界机组的高2%—3%,超超临界机组的热效率比超临界机组高4%以上。 4.在超超临界机组参数条件下,主蒸汽压力提高1MPa,机组的热效率就可下降0.13—0.15%;主蒸汽温度每提高10℃,机组的热效率就可下降0.25%—0.30%。再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%—0.20%。如果增加再热参数,采用二次再热,则其热耗率可下降1.4%—1.6%。当压力低于30MPa时,机组热效率随压力的提高上升很快;当压力高于30MPa时,机组热效率随压力的提高上升幅度较小。 5.锅炉布置主要采用Ⅱ型布置、塔式布置、T型布置。超超临界机组可采用四角单切圆塔式布置、墙式对冲塔式布置、单炉膛双切圆Ⅱ型布置及墙式对冲Ⅱ型布置。Ⅱ型布置适用于切向燃烧方式和旋流对冲燃烧方式;塔式炉适用于切向燃烧方式和旋流对冲燃烧方式;T型布置适用于切向燃烧方式和旋流对冲燃烧方式。 6.水冷壁型式:变压运行超临界直流锅炉水冷壁:炉膛上部用垂直管,下部用螺旋管圈及内螺纹垂直管屏。 7.我国超超临界技术参数:一次再热、蒸汽参数(25—28)MPa/600℃/600℃,相应发电效率预计为44.63%—44.99%,发电煤耗率预计为275—273g/kWh。 8.煤粉燃烧方式:切向燃烧方式(四角、六角、八角、墙式)、墙式燃烧方式(前墙燃烧、对冲燃烧)、W型火焰燃烧方式(拱式燃烧)。切向燃烧指煤粉气流从布置在炉膛四角的直流式燃烧器切向引入炉膛进行燃烧。对冲燃烧是将一定数量的旋流式燃烧器布置在两面相对的炉墙上,形成对冲火焰的燃烧方式。W型火焰燃烧是将直流或弱旋流式燃烧器布置在燃烧室两侧炉墙拱上,使火焰开始向下,再折回向上,在炉内形成W状火焰。 9.空冷机组的水耗率比同等容量的常规湿冷机组约低65%,但其供电煤耗率同比高3%—5%,电厂总投资同比高10%—15%。因此,空冷机组尤其适合在缺水或水价昂贵而燃烧便宜的的地区建设。 10.常规火电湿冷循环冷却系统系统采用自然通风冷却塔形式,循环水损失约占电厂耗水量的80%。而空冷几乎没有循环水损失。 11.直接空冷系统是指汽轮机的排汽直接用空气来冷凝,蒸汽与空气进行热交换,冷却所需的空气由机械通风方式供应。

超临界流体技术原理及其应用

“超临界流体技术原理及其应用” 院选课读书报告 (2012~2013下学期) 题目:SC—CO2流体技术基本原理及其应用前景系专业名称: 学生姓名: 学号: 指导教师:

SC—CO2流体技术基本原理及其应用前景 摘要 超临界流体是指物质处于极其临界的温度和压强下形成的一种新的流体,它的性质介于液体和气体之间,并且兼具二者的有点。现研究较多的流体包括:二氧化碳等。超临界二氧化碳是一种液态的二氧化碳,在一定的条件,如果达到临界点或者以上,会形成一种新的状态,兼顾气态和液态的部分性质,而且拥有新的性质。超临界二氧化碳萃取技术是一种新型分离技术,超临界CO2萃取是采用CO2作为溶剂,在超临界状态下的CO2流体密度和介电常数较大,对物质溶解度很大,并随压力和温度的变化而急剧变化,因此,不仅对某些物质的溶解度有选择性,且溶剂和萃取物非常容易分离。超临界CO2萃取特别适用于脂溶性,高沸点,热敏性物质的提取,同时也适用于不同组分的精细分离,即超临界精镏。超流体流体应用前景目前应用十分的广泛,目前已应用于食品工业、化妆品香料工业、医药工业、化工工业等方面,超临界流体应用将越来越广泛于各个行业的发展。 关键词:“超临界流体,超临界二氧化碳,超临界二氧化碳萃取,超临界流体应用前景” 一、SC—CO2流体技术基本原理 (一)SC—CO2超流体技术的基本原理概述 超临界流体(SCF)是指处于临界温度和压强的情况下,它的物理性质介于液体和气体之间。⑴这种流体同时据有气态和液态的特点,它既具有与液体相近的密度和其优良的溶解性。溶质在某溶剂中的溶解度与溶剂的密度相关,溶质在超临界流体中的溶解度也与其类似。因此,通过改变超临界流体的压强和温度,改变其密度,便可以溶解许多不同类型的物质。 超临界流体萃取分离过程是利用超临界流体的溶解力和其密度的关系,即利用压强和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,其拥有

国外超超临界机组技术的发展状况

国外超超临界机组技术的发展状况 一、超超临界的定义 水的临界状态点:压力 22.115MPa,温度374.15℃;蒸汽参数超过临界点压力和温度称为超临界。锅炉、汽轮机系列(通常以汽轮机进口蒸汽初压力划分等级):次中压2.5 MPa,中压3.5 MPa,次高压6.5 MPa,高压9.0MPa,超高压13.5 MPa ,亚临界16.7 MPa,超临界24.1 MPa。 超超临界(Ultra Super-critical)(也有称高效超临界High Efficiency Supercritical))的定义:丹麦人认为:蒸汽压力27.5MPa是超临界与超超临界的分界线;日本人认为:压力>24.2MPa,或温度达到593℃(或超过 566℃)以上定义为超超临界;德国西门子公司的观点:从材料的等级来区分超临界和超超临界;我国电力百科全书:通常把蒸汽压力高于27MPa称为超超临界。 结论:其实没有统一的定义,本质上超临界与超超临界无区别。 二、国外超超临界技术发展趋势 (一)超超临界机组的发展历史 超超临界机组发展至今有50年的历史,最早的超超临界机组于1957年投产,建在美国俄亥俄州(Philo 电厂6#机组),容量为125MW,蒸汽进汽压力31MPa,进汽温度621 / 566 / 566 C(二次再热)。汽轮机制造商为美国GE公司,锅炉制造商为美国B&W公司。 世界上超超临界发电技术的发展过程一般划分为三个阶段: 第一阶段(上世纪50-70年代)

以美国为核心,追求高压/双再的超超临界参数。1959年Eddystone 电厂1#机组,容量为325MW,蒸汽压力为34.5MPa,蒸汽温度为 649 / 566 / 566 C(二次再热),热耗为8630kJ/kWh,汽轮机制造商美国WH 公司,锅炉制造商美国CE公司。其打破了最大出力、最高压力、最高温度和最高效率的4项记录。1968 年降参数(32.2MPa/610/560/560 C)运行直至今,但至今仍是世界上蒸汽压力和温度较高的机组。 结果,早期的超超临界机组,更注重提高初压(30MPa或以上),迫使采用二次再热。使结构与系统趋于复杂,运行控制难度更难,并忽视了当时技术水平和材料水平,使机组可用率不高。 第二阶段(上世纪80年代) 以材料技术发展为中心,超超临界机组处于调整期。锅炉和汽轮机材料性能大幅度提高,电厂水化学方面的认识更趋深入,美国对已投运的超临界机组进行大规模的优化和改造,形成了新的结构和新的设计方法,使可靠性和可用率指标达到甚至超过了相应的亚临界机组。其后,美国将超临界技术转让给日本,GE公司转让给东芝和日立公司,西屋公司转让给三菱公司。 第三阶段(上世纪90年代开始) 迎来了超超临界机组新一轮的发展阶段。主要原因是国际上环保要求日趋严格,新材料的开发成功,常规超临界技术的成熟。大规模发展超超临界机组的国家以日本、欧洲(德国、丹麦)为主要代表。日本以川越电厂31 MPa /654℃/566℃/566℃超超临界为代表,开拓了一条从引进到自主开发,有步骤有计划的发展之路,成为当今超超临界技术领先国家。其值得我们认真学习。 三、各国超超临界发电技术情况

超临界流体萃取原理及其特点

超临界流体萃取技术 超临界流体概念 任何物质,随着温度、压力的变化,都会相应的呈现为固态、液态和气态这三种状态,称为物质的三态。三态之间互相转化的温度和压力值叫做三相点,每种分子量不太大的稳定的物质都具有一个固有的临界点,严格意义上,临界点由临界温度、临界压力、临界密度构成。在临界温度以上,无论怎样加压,气态物质绝不会被液化。当温度和压力超过了临界点时,该物质就进入了超临界状态,超临界状态下的物质既非气体又非液体的状态,叫做超临界流体[11],SCF是气体和液体状态以外的第三流体。 超临界流体萃取原理及其特点 所谓超临界流体萃取[12],是指利用超临界条件下的流体作为萃取剂,从液体或固体中萃取出特定成分,以达到某种分离目的。SCF的密度对温度和压力的变化很敏感,而其溶解能力在一定压力范围内与其密度成比例,因此可以通过控制温度和压力来改变物质在SCF中的溶解度,特别是在临界点附近,温度和压力的微小变化可导致溶质溶解度发生几个数量级的突变,这就是SFE的依据。 与其它常规分离方法相比,SFE具有以下特点[13]: 1) 通过调节温度和压力可全部或选择性地提取有效成分或脱除有害物质; 可在较低温度和无氧环境下操作,分离、精制热敏 2)选择适宜的溶剂如CO 2 性物质和易氧化物质; 3)临界流体具有良好的渗透性和溶解性,能从固体或粘稠的原料中快速提 取有效成分; 4)降低超临界相的密度,很容易使溶剂从产品中分离,无溶剂污染,且回 收溶剂无相变过程,能耗低; 5)兼有蒸馏和萃取双重功能,可用于有机物的分离、精制。 SFE存在的不足有[14]: 1) 高压下萃取,相平衡较复杂,物性数据缺乏; 2) 高压装置与高压操作,投资费用高,安全要求亦高; 3) 超临界流体中溶质浓度相对还是较低,故需大量溶剂循环; 4) 超临界流体萃取过程固体物料居多,连续化生产较困难。 超临界流体的选择

世界火力发电机组的发展历史及现状

世界火力发电机组的发展历史及现状, 论证采用超临界和超超临界参数将是新世纪初火力发电厂主要发展方向之一,近而说明我厂三期建成一台超临界机组符合时代发展的要求。 关键词:火力发电机组;超临界 1 前言 对我厂三期工程建设一台亚临界机组还是超监界机组的问题进行分析论证。并最终得出结论。 2 超临界化发展模式的成功实践 超临界火电机组是常规蒸汽动力火电机组的自然发展和延伸。提高蒸汽初参数一直是提高这类火电厂效率的主要措施。当蒸汽压力提到高于22.1MPa时就称为超临界机组,如果蒸汽初压力超过27MPa,则称为超超临界火电机组。目前一些发达国家中,超临界和超超临界机组巳是火电结构中的主导机组或是占据一个举足轻重的比例,也就是说火电结构巳经"超临界化"了。以超临界化为特点的对火电结构的更新换代早在20世纪的中叶就已开始。超临界化可以说是火电发展的一种模式,一条道路,是被多国实践证明的成功模式。 美国于1957年投运的第一台125MW超临界机组的参数为31MPa/621℃/566℃/560℃,1958年投运的325MW机组的参数为34.4MPa/649℃/566℃/566℃,实质上它们已是迄今最高参数的超超临界机组。到60年代中期,新增机组中有一半采用超临界参数,但到70年代订货台数急剧下降。根据EPRI的一份调查报告认为,这一下降的原因是多方面的,当时美国缺乏超临界机组调峰运行的经验,最重要的是核电站担负起了基本负荷,因而对带基荷的超临界机组的需求量出现了下降,在采用超临界参数方面出现了反复。在日本和欧洲则情况则有所不同。尽管如此,从宏观上看美国在1967年-1976年的10年期间,共安装118台超临界机组,单机最大容量为1300MW,到80年代初,超临界机组仍增至170余台,占燃煤机组的70%以上,占总装机容量的25.22%,其中单机容量介于500-800MW者占60%-70%,至1994年共安装和投运了9台1300MW的超临界机组。 日本在1967年第一台超临界的600MW机组系从美国引进,在长崎电厂投运。此后日本的超临界压力火力发电得到了迅速的发展。截止1989年3月,日本各大电力公司的48个主要火电厂的总装机容量75870 MW中,超临界压力的为49350MW,占总装机量的65%,比重很大,致使火电机组全国供电煤耗由1963年的366g/kWh 降低到1987年335g/kWh 。1989和1990年在川越电厂投运的两台700MW机组的参数是两次再过热的31MPa /566/566/ 566℃℃℃,在满负荷下的热效率达41.9%,投运以来情况很好。目前在日本,450MW以上的机组全部采用超临界参数。从1993年以后已把蒸汽温度提高到566/593℃℃和593/593℃℃,一次再过热,说明这种等级的超超临界参数已达到成熟阶段。 原苏联也是世界上拥有超临界机级最多的国家,共有224台,总容量达79300MW,凝汽式汽轮机中,超临界机组的容量占48.7%。1963年,苏联投入第一台300MW超临界机组,其热耗率比超高压的200MW机组降低了5.2%。这一成功促使苏联决定,300MW以上的机组全部采用超临界参数。300MW 机组在70年代中期的可用率已达86.4%,1984年雷夫提恩电厂的300MW机组的利用小时达7043小时。德国早在60年代开始发展超临界机组,是研究和制造超临界机组最早的国家之一,但初期容量较小。1972年投运了一台430MW的超临界机组,1979年投入了一台475MW二次再过热的机组。德国VEAG电力公司在1999和2000年于Lippendorf电厂投产的两台900MW褐煤机组,蒸汽参数为26.8MPa/ 554/ 583℃℃,净效率为42%;计划于2002年在Niederaussen 发电厂投产的985MW褐煤机组,使用的蒸汽参数为26MPa/580/600℃℃,由于采用了以超超临界参数为主的多项提高效率的措施,净效率高达45.2%,机组滑压运行,可超负荷5 %。最低负荷为50%,电厂大修期最少为4年。 丹麦是热能动力方面很先进的国家,在火电机组上也处于领先地位。在1998年在Skaebaek发电厂投产的

我国1000MW级超超临界燃煤发电技术的瓶颈浅析

第39卷第6期2011年6 月Vol.39No.6 Jun.2011 我国1000MW级超超临界燃煤发电技术的瓶颈浅析 金利勤1,王家军2,王剑平1 (1.浙江浙能嘉华发电有限公司,浙江嘉兴314201;2.杭州电子科技大学自动化研究所,杭州310018) 摘要:对我国1000MW级超超临界燃煤发电技术的现状进行了综述,并和发达工业国家的超超临界燃煤机组进行了对比分析。针对我国超超临界机组发展的技术瓶颈,提出了亟需研究解决的课题。对高超超临界燃煤发电技术进行了展望。 关键词:1000MW级;超超临界;燃煤火力发电;技术瓶颈 作者简介:金利勤(1960-),男,高级工程师,从事火电厂技术管理工作。 中图分类号:TK325文献标志码:A文章编号:1001-9529(2011)06-0976-04 基金项目:浙江省科技厅重点软科学研究资助项目(2010C25096) Analysis on the Technological bottleneck of1000MW Ultra-supercritical Coal-fired Power Generation in China JIN Li-qin1,WANG Jia-jun2,WANG Jian-ping1 (1.Jiahua Power Generation Co.Ltd of Zhejiang Zhe Energy,Jiaxing Zhejiang,314201; 2.Institute of Automation,Hangzhou Dianzi University,Hangzhou Zhejiang,310018) Abstract:In this paper,a survey is given about the present1000MW ultra supercritical coal-fired power generation technology in China.The development of ultra supercritical coal-fired power generation technology in China is ana-lyzed and compared with that of industrialized countries.After summarizing the technological bottlenecks existed in this field,the problems needing to be solved are pointed out and the future developments of ultra supercritical coal-fired power generation technology are proposed. Key words:1000MW;ultra-supercritical;coal-fired power generation;technology bottleneck Foundation items:The Important Soft Science Research Foundation of Science Technology Department of Zhejiang Province(2010C25096 櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚) 参考文献: [1]陈春元,李永兴.大型煤粉锅炉燃烧设备的优化设计问题[J].锅炉制造,1992(2). [2]范从振.锅炉原理[M].北京:水利电力出版社,1986.[3]VAPNIK V N.The nature of statistical learning theory[M].NY:Springer-Verlag,1995:8-50.[4]VAPNIK V N,LEVIN E,LE Cun Y.Measuring the VC-dimension of a learning machine[J].Neural Computation, 1994(6):851-876. [5]连慧莉.电站锅炉燃煤特性预测建模研究[D].南京:东南大学,2005. 收稿日期:2010-03-28 本文编辑:王延婷 1000MW级超超临界燃煤发电是一种先进、高效的发电技术,代表了当前火力发电的最高水平,1000MW级超超临界燃煤发电技术的研发和应用对实现我国火电结构调整、节能降耗,建设资源节约型、环境友好型社会,促进电力工业可持续发展具有重要意义。国家能源局表示在“十二五”期间将进一步降低200MW以下小型火电机组在整个发电装机容量中的比例,提高600MW 以上超超临界发电机组的比例,特别是1000MW 级超超临界燃煤发电机组将成为当前我国火电发展的主流机组。 虽然我国已投运和在建、拟建的1000MW 级超超临界燃煤发电机组居世界首位,但是在超超临界燃煤发电的核心技术方面与发达工业国家

超临界流体技术

如对您有帮助,请购买打赏,谢谢您! 超临界流体技术提取天然药物 张莲莲 目录 超临界流体 超临界流体技术 生物碱类化合物提取 黄酮类化合物的提取 正文 超临界流体 超临界流体,就是高于临界温度和临界压力以上的流体,简称SCF。超临界流体具有液体和气体的双重特性,有与液体接近的密度,同时有与气体接近的黏度极高的扩散系数,故具有很强的溶解能力和良好的流动、传递性能。例如,水的密度、离子、介电常数等以临界温度374℃为分界,发生急剧的变化。特别是在常温状态下极性溶剂-水的介电常数到了临界点以上会急剧减小,超临界水的介电常数减小到与有机溶剂相同的水平。由于这种特性,水在超临界状态,便具有与有机溶剂相同的特性,变成了可以与有机物完全混合的状态。超临界流体具有较高的扩散性,从而减小了传质阻力,这对多孔疏松的固态物质和细胞材料中的化合物的萃取特别有利;超临界流体对改变操作条件(如压力、温度)特别敏感,这就提供了操作上的灵活性和可调性;超临界流体可在低温下进行,对分离热敏性物料尤为有利;超临界流体具有低的化学活泼性和毒性。 超临界流体技术 由于超临界流体以上良好的性能,超临界流体被广泛应用于有效成分的提取。在高压条件下,使超临界流体与物料接触,使物料中的有效成分溶于超临界流体中,与物料分离,然后通过降低溶有溶质的超临界流体的压力或升温的方法,使溶质析出,这样的技术称为超临界流体技术,简称SFE技术。能够作为超临界流体萃取的物质应具有临界压力和临界温度、惰性、低毒性及低价格、来源广等特点。超临界流体技术具有萃取效率高、分离工艺简单、不需要溶剂回收设备、工作条件温和、无毒、无残留、绿色生产等特点,在我国中医药工业上,尤其是在天然药有效成分提取分离上,已开始广泛应用,而且有着越来越广阔的应用前景。

火力发电机组超临界化的发展趋势

中国?海南中国科协2004年学术年会电力分会场暨中国电机工程学会2004年学术年会论文集 11 火力发电机组超临界化的发展趋势 李波 (通辽发电总厂) 摘要:从世界火力发电机组的发展历史及现状, 论证采用超临界和超超临界参数将是新世纪初火力发电厂主要发展方向之一,近而说明我厂三期建成一台超临界机组符合时代发展的要求。 关键词:火力发电机组;超临界 1 前言 对我厂三期工程建设一台亚临界机组还是超监界机组的问题进行分析论证。并最终得出结论。 2 超临界化发展模式的成功实践 超临界火电机组是常规蒸汽动力火电机组的自然发展和延伸。提高蒸汽初参数一直是提高这类火电厂效率的主要措施。当蒸汽压力提到高于22.1MPa时就称为超临界机组,如果蒸汽初压力超过27MPa,则称为超超临界火电机组。目前一些发达国家中,超临界和超超临界机组巳是火电结构中的主导机组或是占据一个举足轻重的比例,也就是说火电结构巳经"超临界化"了。以超临界化为特点的对火电结构的更新换代早在20世纪的中叶就已开始。超临界化可以说是火电发展的一种模式,一条道路,是被多国实践证明的成功模式。 美国于1957年投运的第一台125MW超临界机组的参数为31MPa/621℃/566℃/560℃,1958年投运的325MW机组的参数为34.4MPa/649℃/566℃/566℃,实质上它们已是迄今最高参数的超超临界机组。到60年代中期,新增机组中有一半采用超临界参数,但到70年代订货台数急剧下降。根据EPRI的一份调查报告认为,这一下降的原因是多方面的,当时美国缺乏超临界机组调峰运行的经验,最重要的是核电站担负起了基本负荷,因而对带基荷的超临界机组的需求量出现了下降,在采用超临界参数方面出现了反复。在日本和欧洲则情况则有所不同。尽管如此,从宏观上看美国在1967年-1976年的10年期间,共安装118台超临界机组,单机最大容量为1300MW,到80年代初,超临界机组仍增至170余台,占燃煤机组的70%以上,占总装机容量的25.22%,其中单机容量介于500-800MW者占60%-70%,至1994年共安装和投运了9台1300MW的超临界机组。 日本在1967年第一台超临界的600MW机组系从美国引进,在长崎电厂投运。此后日本的超临界压力火力发电得到了迅速的发展。截止1989年3月,日本各大电力公司的48个主要火电厂的总装机容量75870 MW中,超临界压力的为49350MW,占总装机量的65%,比重很大,致使火电机组全国供电煤耗由1963年的366g/kWh降低到1987年335g/kWh 。1989和1990年在川越电厂投运的两台700MW机组的参数是两次再过热的31MPa /566/566/ 566 ℃℃℃,在满负荷下的热效率达41.9%,投运以来情况很好。目前在日本,450MW以上的机组全部采用超临界参数。从1993年以后已把蒸汽温度提高到566/593 ℃℃和593/593 ℃℃,一次再过热,说明这种等级的超超临界参数已达到成熟阶段。 原苏联也是世界上拥有超临界机级最多的国家,共有224台,总容量达79300MW,凝汽式汽轮机中,超临界机组的容量占48.7%。1963年,苏联投入第一台300MW超临界机组,其热耗率比超高压的200MW机组降低了5.2%。这一成功促使苏联决定,300MW以上的机组全部采用超临界参数。300MW 机组在70年代中期的可用率已达86.4%,1984年雷夫提恩电厂的300MW机组的利用小时达7043小时。 德国早在60年代开始发展超临界机组,是研究和制造超临界机组最早的国家之一,但初期容量较小。 1972年投运了一台430MW的超临界机组,1979年投入了一台475MW二次再过热的机组。德国VEAG电力公司在1999和2000年于Lippendorf电厂投产的两台900MW褐煤机组,蒸汽参数为26.8MPa/ 554/ 583 ℃℃,净效率为42%;计划于2002年在Niederaussen 发电厂投产

二氧化碳超临界萃取技术

超临界CO2萃取装置 该装置主要由萃取釜、分离釜、精镏柱、CO2高压泵、副泵、制冷系统、CO2贮罐、换热系统、净化系统、流量计、温度、压力控制(保护)系统等组成。 超临界CO2萃取装置的主要技术指标 萃取釜:0.5L、1L、2L、5L/50Mpa;10L、24L/40Mpa;50-200L/32Mpa,固态两用。配水夹套循环加热,温度可调。 分离釜:0.3-10L/30Mpa;50-100L/16-22Mpa。配水夹套循环加热,温度可调。 精镏柱:内径ф25×2-3m/30Mpa;ф35×2-3m/30Mpa;ф48×4-6m/30Mpa;ф78×4-6m/30Mpa,根据工艺要求可分4节、6节、8节梯度控温;柱内根据工艺要求由用户选相关填料。 CO2高压泵:20L/40Mpa·h双柱塞,50L/50Mpa·h双柱塞调频,400L/40Mpa·h三柱塞调频,800L/40Mpa·h三柱塞调频,泵头带冷却系统。 携带剂泵:用于萃取过程中,夹带溶剂来改变CO2极性,扩大应用范围。 制冷系统:配半封式、全封式压缩机,制冷量满足工艺要求。 换热及温度的控制系统:根据工艺要求,萃取釜、分离釜、精镏柱分别配置换热和温控系统,温度控制-85℃水循环、室温-150℃油循环,温度控制数显双屏控制水浴温度,测试CO2流体温度,控温±1℃ 压力控制(保护):高压泵出口配电接点压力表,设定工作压力,超压自动保护停泵。高压泵、萃取釜、分离釜、精镏柱,根据最高工作压力,分别配安全阀,超压自动泄压保护。萃取釜出口配背压阀系统,压力稳定,易于调整,压控制精度(动态)±0.1Mpa 流量显示:金属转子流量计,数显远传,分别显示瞬时流量和累积流量 管路:接触流体的容器、阀门、管件、管线均采用不锈钢制作。 其他:电源三相四线制380V/50Hz,CO2食品级≥99.5,用户自备 超临界CO2萃取装置的基本流程 1、CO2→萃取釜→分离Ⅰ→分离Ⅱ→回路; 2、CO2→萃取釜→分离Ⅰ→分离Ⅱ→精镏柱→回路; 3、CO2→萃取釜→精镏柱→分离Ⅰ→分离Ⅱ→回路; 4、CO2→萃取釜→分离Ⅰ→精镏柱→分离Ⅱ→回路。 超临界CO2萃取装置的特点

大型超超临界火电机组现状和发展趋势

大型超超临界火电机组现状和发展趋势 摘要:本文简述了上海发展超超临界火电机组的战略意义、国内 外现状、关键技术和经济效益。 1. 超超临界的概念 火力发电厂的工质是水,在常规条件下水经加热温度达到给定压力下的饱和温度时,将产生相变,水开始从液态变成汽态,出现一个饱和水和饱和蒸汽两相共存的区域。当蒸汽压力达到22.129MPa时,汽化潜热等于零,汽水比重差也等于零,该压力称为临界压力。水在该压力下加热至374.15℃时即被全部汽化,该温度称为临界温度。水在临界压力及超过临界压力时没有蒸发现象,即变成蒸汽,并且由水变成蒸汽是连续的,以单相形式进行。蒸汽压力大于临界压力的范围称超临界区,小于临界压力的范围称亚临界区。从水的物性来讲,只有超临界和亚临界之分,超超临界是人为的一种区分,也称为优化的或高效的超临界参数。目前超超临界与超临界的划分界限尚无国际统一的标准,一般认为蒸汽压力大于25MPa、且蒸汽温度高于580℃称为超超临界。 2. 发展超超临界火电机组的战略意义 2003年7月中国机械联合会根据对我国能源结构、国家能源政策和未来发电用能源供应状况的分析,在充分考虑水电、天然气、核电和新能源资源的开发基础上,再考虑煤电的开发,经过分析、测算,推荐的全国发电能源需求预测方案见表1。 表1 全国电能源构成 项目单位2000实际2020预测 全国总装机容量万千瓦31932.09 90000 比重% 100 100 1、水电万千瓦7935.22 22000 比重% 24.9 24.4 2、火电万千瓦23746.96 63500 比重% 74.4 70.6 其中:煤电万千瓦23223.96 58000 比重% 72.7 64.4 气电万千瓦511.8 5500

超超临界发电技术

超超临界发电技术 使用超超临界机组的上海外高桥第三发电厂,他们每向外提供1度电只需燃烧274克煤。而作为对比,日本排名第一的矶子电厂新1号机组,2009年时,他们每向外供1度电需要燃煤304克。如果不是使用超超临界技术,煤耗就更高了,向外供1度电需要燃煤330克至340克。 也正因此,2015年10月,美国《电力杂志》将上海外高桥第三发电厂评选为2015年度世界顶级火力发电厂,因为它是全球第一个将供电煤耗降到280克以下的发电厂。 以上咱们只是对“超超临界”有一个总的认识,下面咱们来好好了解一下它。 临界乳光 要理解超超临界,我们首先得了解一下什么是“临界”。 著名物理学家皮埃尔·居里发现,一块磁铁加热后,其磁性会消失。问题来了,加热到多少温度时磁性才会消失?这个温度就是磁铁的临界温度,为了纪念居里,又叫做居里温度。 同理,水也有自己的临界点。我们知道,水加热后会变成蒸气,但这是在空旷环境下,如果是在一个密闭的容器中加热呢?此时,加热密闭容器,容器中的水会蒸发,这会增加容器内的压力,而压力越大,水的沸点就越高。比如高压锅,我们要加热到120℃左右,高压锅中的水才会沸腾。 问题来了。我们还是以高压锅来举例子,假设这个高压锅异常坚固,并且是完全密封的。 此时,我们加热高压锅内的水,让其内部的气压不断增加,继而里面水的沸点也会不断升高,这是我们可以预见的。 但是,如果我们一直这么加热下去,让高压锅内的水温不断升高, 最后会出现什么情况? 对于这个问题,150多年前的人们一直很困惑。直到1869年,英国物理学家安德鲁斯在皇家学会作了一个研究报告,这才解决了问题。

安德鲁斯没有选择水,这是他聪明的地方,他选择二氧化碳做实验,因为二氧化碳沸点很低,零下56.55℃时就沸腾了。 他加热密闭容器中的液态二氧化碳,结果他发现,在31℃附近时,容器内的液态二氧化碳和气态二氧化碳,两者之间的差别完全消失了。也就是说,加热前,容器内有一个液态面,液态面上方是二氧化碳气体。 但温度到达31℃时,你就分不清容器内到底是气体还是液体了,它变成了我们现在说的“超临界流体”。 于是我们说,31.04℃就是二氧化碳的临界温度,在这个温度下,容器内对应的气压就是二氧化碳的临界气压。 超临界流体有很多奇妙的性质 比如它具有气体的可压缩性,又同时具有类似于液体的较大密度和较大的溶解度,这让其具有很多重要的作用,我们可以用它从咖啡豆里面提取咖啡因,这就是超临界流体萃取。 最后,液体在到达自身临界温度时的那一刻会呈现出乳白色,这种现象就叫做“临界乳光”。 现在,咱们再来看看水的临界温度和临界气压。 在约374℃和22.1兆帕(约等于218个大气压)下,水变成了超临界流体。 我们都知道,火电站发电是通过将水加热,变成高温高压水蒸气冲击汽轮机从而发电的。 如果某个火电厂,它的水蒸气压力低于218个大气压,那么它的发电机组就是亚临界机组。如果蒸气压超过218个大气压,那么就是超临界机组。 那什么又是超超临界呢? 其实,超超临界并不是一种物理学上的划分,而只是一种工业上的称谓,仅仅是表示更高的压力和更高的温度。国际上,不同国家对超超临界的起始温度和压力的定义不同。

亚临界、超临界、超超临界火电机组技术区别、发展现状与发展趋势的研究报告终稿

亚临界、超临界、超超临界火电机组技 术区别、发展现状与发展趋势的研究报告 一、问题的提出 通过书本上的学习我们初步了解了火电厂的工作流程和原理,在整个流程中机组选择的不同使得火电厂对发电用的蒸汽的各项参数、工件的选择、材料的要求等提出不同的标准。本小组通过对亚临界、超临界、超超临界火电机组技术区别、发展现状与发展趋势进行研究,找出了他们的一些不同与相同之处,陈列如下不对之处还望指正。 二、调查方法 1.从书籍中查找有关资料 2.在英特网中查阅有关资料 三、正文 我国自1882年在上海建立第一座火力发电厂开始, 火力发电已走过100多年发展历程。新中国成立以后, 特别是改革开放以来, 我国的火力发电事业取得了煌的成就。全国电力装机到1987年跨上100GW的台阶后, 经过7年的努力, 在1995年3月份突破200GW至1995年底我国电力装机容达到217.224GW,其中水电52.184GW,火电162.94GW,核电2.1GW.1995年全国发电装机容量跃居世界第三位、发电量居世界第二位。 火力发电在电力结构中一直占有重要地位。从全球范围看, 火电在电力工业中起着主导作用。对中国而言, 火电在电力工业中所占比重更大, 其中煤电所占比例要比全世界平均水平更高。国内外一些机构曾对我国能源结构进行过预测分析, 虽然数字有些差异, 但结论大致相同,火力发电特别是燃煤发电在未来几年及21世纪上半叶, 甚至更长时间内在我国电力工业中将起主导作用。 我国火电机组的研制从50年代中期6MW中压机组起步, 到70年代已具备设计制造200MW超高压机组和300MW亚临界压力机组的能力, 但我国最大单机容量同国外先进水平的差距一般为30-40年, 我国机组的技术性能和可靠性水平与国外先进水平相比有相当大的差距( 以当时的亚临界300MW汽轮机为例, 其热耗值比国外同类机组高出约209KJ/(KW·h), 按每台机组每年运行7000h 计算, 仅此一项每台机组每年就需多消耗近2000t标准煤。为尽快缩小与国外先进水平的差距, 从80年代初开始,我国采取引进→消化吸收→攻关创新→推广应用的技术路线, 自主研制开发火电机组, 促进了电力工业在装备、设计施工、运行和管理方面跃上新水平。现已发展到设计制造600MW亚临界压力机组。电站锅炉、汽轮机的燕汽参数从中压、高压发展到超高压, 亚临界压力。汽轮发电机电压从6.3kV发展到20kV冷却方式已掌握了空冷、氢冷、双水内冷、水氢氢冷等技术, 近10年来, 我国新建火电机组容量也从以100-200MW为主发展到以300-600MW为主。之后我国引进并消化吸收国外先进技术, 提高我国火电机组研制水平,优化引进型机组, 推广应用新技术, 改进提高国产机组水平,推广优化技术, 提高国产火电机组水平。在“九五”期间及以后又致力于积极开发大容量超临界压力机组,开发大型空冷和热电联供机组,研制能燃用劣质煤的大

相关文档
相关文档 最新文档