文档库 最新最全的文档下载
当前位置:文档库 › 电力电子——三相电压型全桥可逆变换器的设计

电力电子——三相电压型全桥可逆变换器的设计

电力电子——三相电压型全桥可逆变换器的设计
电力电子——三相电压型全桥可逆变换器的设计

三相电压型全桥可逆变换器的设计

1设计目的

运用所给的初始条件,设计一三相电压型全桥可逆变换器。从这涉及构成中学习和进一步掌握课本上所学到的理论知识,并熟练运用到实际的设计过程中。

(1)熟悉三相桥式可逆变换电路的接线;

(2)熟悉TC787集成触发电路的原理及应用;

(3)掌握调试晶闸管逆变与整流装置的步骤和方法;

(4)三相可逆变换器过电压、过电流的产生及保护;

(5)通过观察各种不同负载情况时,输出电压电流波形,来进一步了解三相可逆变换器的工作原理。

2设计原理

可逆变换电路的一般结构,通常有交流电源、直流主电路、电抗器、负载及控制电路构成。其基本的工作原理是,对于可控整流电路而言,只要满足一定的条件,就可以工作于有源逆变状态,此时,电路形式并未发生变化,只是电路工作条件转变,整流和逆变的区别仅仅是控制角α的不同,0<α<π/2时,电路工作在整流状态,π/2<α<π时,电路工作在逆变状态。而发生逆变的条件是:首先要有直流电动势,其极性须和晶闸管的导通方向一致,其值应大于变流电路直流侧的平均电压;其次要求晶闸管的控制角α>π/2,使Ud为负值。整流电路从交流电源吸收电能,并把它转化成直流电能输送到负载端。

在实际应用时,对一个可逆变换器的基本技术要求是:

(1)直流输出电压可调范围大、电流脉动小、带载能力强;

(2)整流元件导电时间尽可能长,合理利用元件的电压、电流定额;

(3)变压器利用率高,尽量防止直流磁化;

(4)交流侧功率因数高,谐波电流要小。

2.1变流器主电路

目前在各种变流电路中,应用最为广泛的是三相电压型全桥可逆变换电路,三相电压型全桥可逆变换原理图如图1所示,电路由三个半桥电路组成,开关管可以采用全控型电力电子器件(图中以IGBT为例),二极管D1-D6为续流二极管,习惯上希望IGBT按从1至6的顺序导通,为此将IGBT按图示的顺序编号,即上面的三个IGBT分别为T1、T3、T5,下面的三个IGBT分别为T4、T6、T2。从后面的分析可知,按此编号,IGBT的导通顺序为T1-T2-T3-T4-T5-T6。在第三部分中,我会整流和逆变分别来分析。

图1三相电压型全桥可逆变换原理图

2.2触发电路

本实验采用TC787触发电路,它可单电源工作,也可双电源工作。与TC785及KJ004相比,具有功耗小、功能强、输入阻抗高、抗干扰能力好、外接圆减少等优点。只需一只TC787继承触发电路就可完成3只KJ004与一只KJ041和一只KJ042功能,多用于晶闸管三相桥式全控触发电路中。在它内部集成有三个过零和极性检测单元、三个锯齿波形成单元、三个比较器、一个脉冲发生器、一个抗干扰锁定电路、一个脉冲分配及驱动电路。向晶闸管整流电路供电的交流侧电源一般来自电网,电网电压的频率不是固定不变的,而是会在允许范围内有一定的波动。触发电路除了应当保证工作频率与主电路交流电源的频率一致外,还应保证每个晶闸管的触发脉冲与施加于晶闸管的交流电压保持固定、正确的相位关系,这就是触发电路的定相。

经滤波后的三相同步电压通过过零和极性检测单元检测出零点和极性后,作为内部三个恒流源的控制信号。三个恒流源输出的恒流值电流给三个等值电容C1、C2、C3恒流充

电,形成线性度良好的锯齿波。锯齿波形成单元输出的锯齿波于控制电压Uco比较后取得

交相点,该交相点经抗干扰电路锁定,保证交相点唯一而稳定,使交相点以后的锯齿波或移相电压的波动不影响输出。该交相信号与脉冲发生器输出地脉冲信号经脉冲形成电路处理后,变为与三相输入同步信号相位对应且与移相电压大小适应的脉冲信号送到脉冲分配及驱动电路。在电路正常时,引脚5为低电平,此时脉冲分配电路根据6脚设定的状态完成双脉冲列或单脉冲列的分配功能,并经输出驱动电路功率放大后输出。一旦发生过电流、过电压或其它非正常情况,则引脚5变为高电平,脉冲分配和驱动电路的内部逻辑电路动作,封锁脉冲输出,确保输出脚全为低电平。

由于输出为脉冲列,故也适应于触发电感性负载晶闸管电路。脉冲宽度可通过改变

C

x

值来确定,

C越大,输出脉冲越宽。输出太宽会增大驱动级的功耗损耗,故x C值一般取x

3300pF~0.01μF。触发电路设计图如图2所示。

图2 触发电路设计图

2.3过电压过电流保护

在电路中,除了选择合适的元件参数,良好的触发电路之外,对元件采用适当的保护也是必要的。元器件一旦过流,温度将迅速上升而烧坏;反向电压一旦超过限度,反向击

穿后,反向漏电流也会急剧增大,导致烧坏。

2.3.1过电压保护

对于IGBT开关速度较高,IGBT关断时及FWD逆向恢复时,产生很高的di/dt,由于模块周围的接线的电感,就产生了L di/dt电压,关断浪涌电压,因IGBT关断时,主电路电流急剧变化,在主电路分布电感上,就会产生较高的电压,抑制方法主要有:

1)在IGBT中装有保护电路可吸浪涌电压,保护电路的电容,采用薄膜电容,并靠近 IGBT 配置,可使高频浪涌电压旁路;

2)调整IGBT的驱动电路的V CE或R C,使di/dt最小;

3)尽量将电件电容靠近IGBT安装,以减小分布电感,采用低阻抗型的电容效果更佳;4)为降低主电路及缓冲电路的分布电感,接线越短越粗越好,用铜片作接线效果更佳。

阻容保护电路是变流装置中用的最多的过压保护措施,它利用电容两端电压不能突变的特性,把电容C和电阻R串联组成RC电压抑制器,过电压保护电路如图3所示。这种电路能降低截流过电压及过电压上升陡度,还能在高频复燃时用电阻R吸收能量使高频振荡过程强烈衰减,因而有限制重复性高频过电压的作用。电容C的数据值一般为0.1~0.2 F,电阻R为100~200Ω。R-C阻容保护电路可以设置在变流器装置的交流侧、直流侧,也可将R-C保护电路直接并在主电路的元件上,有效的抑制元件关断时的关断过电压。

图3 过电压保护电路

2.3.2过电流保护

一旦发生短路,IGBT的集电极增加到既定的直,则C—E间的电压急剧增加。根据这种特性,可以将短路时的集电极电流降到一定数值以下,但是在IGBT上还有外加的高电压,大电流的大负载,必须在尽量短的时间内解除。从发生短路起到电源切断的时间也受限制,其产生的原因主要有:

1)晶体管或二极管的破坏

2)控制电路,驱动电路的故障或由于杂波产生的误动作

3)配线工作等人为失误以及负荷绝缘的破坏

过流保护的方法比较多,比较简单的方法是一般采用添加FU熔断器来限制电流的过大,防止IGBT的破坏和对电路中其他元件的保护。快速熔断器是IGBT变流装置中应用最普遍的过电流保护措施,可用于交流侧、直流侧和装置主电路中,过电流保护电路如图4所示。其中交流侧接快速熔断器能对晶闸管元件短路及直流侧短路起保护作用,但要求正常工作时,快速熔断器电流定额要大于晶闸管的电流定额,这样对元件的短路故障所起的保护作用较差。直流侧快速熔断器只对负载短路或过载起保护作用,对元件无保护作用。只有晶闸管直接串接快速熔断器才对元件的保护作用最好,因为它们流过同一电流,因而被广泛应用。

图4 过电流保护电路

3参数设定和计算

3.1整流时的情况分析

在三相电压型全桥整流电路中,当 α =0°时,可以采用与分析三相半波相控整流电

路类似的方法,假设将电路中的IGBT 均换作二极管,也就相当于晶闸管触发角α =0°时的情况。此时对于共阴极组的三个晶闸管,阳极所接交流电压值最高的一个晶闸管导通,而对于共阳极组的三个晶闸管,则是阴极所接交流电压值最低的一个晶闸管导通。这样,任意时刻共阳极组和共阴极组各有一个晶闸管处于导通状态,α =0°就是在自然换相点处换相,三相电压型全桥整流电路α =0°时工作波形图如图5所示。

图5 三相电压型全桥整流电路α =0°时工作波形图

第 I 阶段,a 相电位最高,T1管触发导通,b 相电位最低,T6触发导通,电流流通路径为a →T1→ R →T6→ b ,负载上电压d a c ac U U U U =-=。变压器 a 、b 两相工作,a 相电流为正,b 相电流为负。

第 II 阶段,a 相电位仍然为最高,Tl 继续导通,但 c 相电位最低,在自然换相点处触发 c 相的 T2 管,则 T2 导通,电流从 b 相换至 c 相,T6因承受反向电压关断。这时电流流通的路径为a →T1 → R →T2 → c ,负载上电压d a c ac U U U U =-= 。

第 III 阶段,b 相电位最高,自然换相点处触发 T3管,则换相至 T3,电流从 a 相换至 b 相,T1因承受反向电压关断,T2 因 c 相电位仍为最高而继续导通,负载上电压

d b c bc U U U U =-= 。

以下 IV 、V 、VI 阶段以此类推。在第 IV 阶段,T3、T4导通,d b a ba U U U U =-= ;第 V 阶段,T4、T5 导通,d c a ca U U U U =-=;第 VI 阶段,T5、T6 导通,d c b cb U U U U =-=。以后重复上述过程。

由以上分析可知,三相电压型全桥整流电路中,对于上面的三个IGBT ,所接交流电压值最大的一个导通;对于下面的三个IGBT ,所接交流电压值最低(或者说负得最多)的导通;任意时刻上面的三个IGBT 和下面的三个IGBT 中各有1个IGBT 处于导通状态。其余的IGBT 均处于关断状态。触发角α的起点,仍然是从自然换相点开始计算,注意正负方向均有自然换相点。

当触发角α >0°时,每个晶闸管都不在自然换相点换相,而是从自然换相点向后移α角开始换相。

三相电压型全桥整流电路α=30°时工作波形图如图6所示,其分析方法与α =0°时相同。可从α角开始把一个周期 6 等分,IGBT 导通顺序仍为T1、T6→ T1、T2 →T2、T3 →T3、T4→T4 、T5→T5、T6所以输出电压波形还是ab U 、ac U 、bc U 、ba U 、ca U 和cb U 线

电压一部分,只是相位后移30°。IGBT 中的T1承受的电压波形由三段组成:

1~3t t ωω 段,T1导通,10T u = ;3~5t t ωω段,T3导通,1T a b ab U U U U =-= ;5~7t t ωω段,T5导通,

1T a c ac U U U U =-=。

三相电压型全桥整流电路α=60°时工作波形图如图7所示,三相电压型全桥整流电路α=90°时工作波形图如图8所示。其中分别显示出了α =60°、α =90°时输出电压的波形,α =60°为电流连续和断续的临界条件,当 α >60°时电流波形断续。

图6 三相电压型全桥整流电路α=30°时工作波形图

图7 三相电压型全桥整流电路α=60°时工作波形图

图8 三相电压型全桥整流电路α=90°时工作波形图从上面可以看出:

电流连续时(α<60°),整流输出电压平均值为:

2

3

222

3

6

sin()cos 2.34cos

2

d

U td t U

π

α

π

α

ωωαα

ππ

+

+

===

?

电流断续时(α>60°),整流输出电压平均值为:

22

3

6

sin() 2.34[1cos()]

23

d

U td t U

π

π

α

π

ωωα

π+

==++

?

负载电流平均值为:

d

d

U

I

R

=

当α =0°时,

2

I=0.816 d I,20/2.34

d

U U

=,所以整流变压器二次侧绕组视在功率:

222

330.816 1.05

2.34

d

d d

U

S U I I P

==??=

整流变压器一次侧容量为:

111

3

S U I

=

设一、二次侧绕组匝数相同,即

12

ωω

=,于是12

U U

=,在二次侧绕组中,正、负半

周都有电流

2

I,平均值为零,所以12

I I

=,则一次侧容量为:

11122

33 1.05

d

S U I U I P

===

所以整流变压器容量为:

12 1.05d

S S P ==

由于三相电压型全桥整流电路是基于Boost 变换器的工作原理,因此输出电压平均值

U

=TE/(T-o n t )=100*40/(100-40)=66.7V ,输出电流平均值0I =0U /R=66.7/R ,输出有

功功率值P=0U 0I 。

3.2逆变时的情况分析

电压型三相桥式逆变电路的基本工作方式为?180导电型,即每个桥臂的导电角为

?

180

,同一相上、下桥臂交替导电,各相开始导电的时间依次相差?120。因为每次换流都

在同一相上、下桥臂之间进行,因此称为纵向换流。在一个周期内,6个开关管触发导通的次序为T1-T2-T3-T4-T5-T6,依次相隔?60,任一时刻均有三个管子同时导通,导通的组合顺序为T1-T2-T3、T2-T3-T4、T3-T4-T5、T4-T5-T6、T5-T6-T1、T6-T1-T2。保持控制角α在2/π到π的范围之内。

具体地说:1.wt 在0-π/3时,道通开关管为T1-T2-T3,输出相电压AN u =d U /3,

BN

u =d U /3,CN u =-2d U /3,输出线电压AB u =0,BC u =d U ,CA u =-d U ,其负载等效电路图如

图9所示。

图9 负载等效电路

2.wt 在π/3-2π/3时,道通开关管为T2-T3-T4,输出相电压AN u =-d U /3,

BN

u =2d U /3,CN u =-d U /3,输出线电压AB u =-d U ,BC u =d U ,CA u =0,其负载等效电路图如

图10所示。

图10 负载等效电路

3.wt 在2π/3-π时,道通开关管为T3-T4-T5,输出相电压AN u =-2d U /3,

BN

u =d U /3,CN u =d U /3,输出线电压AB u =-d U ,BC u =0,CA u =d U ,其负载等效电路图如图

11所示。

图11 负载等效电路

4.wt 在π-4π/3时,道通开关管为T4-T5-T6,输出相电压AN u =-d U /3,

BN

u =-d U /3,CN u =2d U /3,输出线电压AB u =0,BC u =-d U ,CA u =d U ,其负载等效电路图如

图12所示。

图12 负载等效电路

5.wt 在4π/3-5π/3时,道通开关管为T5-T6-T1,输出相电压AN u =d U /3,

BN

u =-2d U /3,CN u =d U /3,输出线电压AB u =d U ,BC u =-d U ,CA u =0,其负载等效电路图如

图13所示。

图13 负载等效电路

6.wt 在5π/3-2π时,道通开关管为T6-T1-T2,输出相电压AN u =2d U /3,

BN

u =-d U /3,CN u =-d U /3,输出线电压AB u =d U ,BC u =0,CA u =-d U ,其负载等效电路图如

图14所示。

图13 负载等效电路

由于三相电压型全桥逆变电路是基于Buck变换器的工作原理,因此输出电压平均值

U=o n t E/T=40*40/100=16V,输出电流平均值0I=0U/R=16/R,输出有功功率值P=0U0I。

4应用举例

在以三相电压型全桥可逆变换器的设计为基础的两种基本类型的整流器和逆变器中,电网的高压交流功率通过变压器变换为直流功率。提到未来的其它类型整流器: 以不可控二极管前沿产品为基础的斩波器、斩波直流/直流变换器或电流源逆变型有源整流器。显然,这种最新型的整流器在技术上包含较多要开发的内容,但是它能显示出优点,例如它以非常小的谐波干扰和很小的功率因数加载于电网。所有整流器类别中最简单的是二极管整流器。在最简单的型式中,二极管整流器不提供任何一种控制输出电流和电压数值的手段。为了适用于工业过程,输出值必须在一定范围内可以控制。通过应用机械的所谓有载抽头变换器可以完成这种控制。作为典型情况,有载抽头变换器在整流变压器的原边控制输入的交流电压,因此也就能够在一定范围内控制输出的直流值。通常有载抽头变换器与串联在整流器输出电路中的饱和电抗器结合使用。通过在电抗器中引入直流电流,使线路中产生一个可变的阻抗。因此,通过控制电抗器两端的电压降,输出值可以在比较窄的范围内控制。晶闸管整流器在设计上非常接近二极管整流器的是晶闸管整流器。因为晶闸管整流器的电参数是可控的,所以不需要有载抽头变换器和饱和电抗器。因为晶闸管整流器不包含运动部件,所以晶闸管整流器系统的维修减少了。注意到的一个优点是晶闸管整流器的调节速度较二极管整流器快。在过程特性的阶跃期间,晶闸管整流器常常调节很快,以致能够避免过电流。而用IGBT的话就能实现全控,在方式上更加灵活,整流和逆变的区别仅仅是控制角α的不同,0<α<π/2时,电路工作在整流状态,π/2<α<π时,电路工作在逆变状态,因此我们调节控制角α的大小,即可实现整流与逆变的变换了。

5心得体会

为期一个礼拜的《电力电子技术》课程设计即将告一段落,在这短短的一个星期里体会颇多,刚拿到设计的题目时候感觉无从下手,因为书本上大部分例子都要么是整流的,要么是逆变的,而关于可逆变换器,即既要实现整流又要实现逆变的基本没有,经过几天在图书馆和网络上资料的查阅,综合各个方面的资料,才最终确定了方案,三相电压型全桥可逆变换器的设计在书本上原理的讲述虽然不难,但是真正要自己动手进行设计,结合实际进行参数整定,又牵涉了不少以前所学习的知识。我觉得完成这次课程设计本身并不是最重要的,最重要的是在做课程设计时培养和锻炼自己主动查找相关资料和利用自己已经掌握的理论知识解决实际问题的能力。

转眼之间我马上就到大四了,理论上的东西学的也不少了,但像这样的机会并不会很多,做一次就要有一次的收获。在设计的过程中,我不仅对三相电压型全桥可逆变换器有了更加深入的了解,同时对三相半波全控整流电路也有比在课本上学习更好的认识。理论果然要结合实际才能更好的发挥作用,课程设计不仅提供给我一次设计电路的机会,同时也在锻炼我独立思考,独立解决问题的能力,这在今后的学习生活中都非常重要。这次的课程设计我获得了很多书本上学习不到的知识。

这一周的课程设计,有辛苦有欢乐,是大学学习生活的珍贵回忆。

参考文献

[1] 王兆安.电力电子技术.北京:机械工业出版社,2007

[2] 王芳主.电子线路Protel 99 SE实用教程.长沙:中南大学出版社,2005

[3] 龙志文.电力电子技术.北京:机械工业出版社,2005

[4] 陈坚编.电力电子学.北京:高等教育出版社,2001

[5] 赵炳良.现代电力电子技术基础.北京:清华大学出版社,1995

本科生课程设计成绩评定表

指导教师签字:

2009 年7 月10 日

电力电子课程设计Boost变换器

电力电子技术课程设计 班级 学号

目录 一.课程设计题目 (2) 二.课程设计容 (2) 三.所设计电路的工作原理(包括电路原理图、理论波形) 2四.电路的设计过程 (3) 五.各参数的计算 (3) 六.仿真模型的建立,仿真参数的设置 (3) 七.进行仿真实验,列举仿真结果 (4) 八.对仿真结果的分析 (6) 九.结论 (7) 十.课程设计参考书 (7)

一.课程设计题目 Boost 变换器研究 二.课程设计容 1. 主电路方案确定 2. 绘制电路原理图、分析理论波形 3. 器件额定参数的计算 4. 建立仿真模型并进行仿真实验 6. 电路性能分析 输出波形、器件上波形、参数的变化、谐波分析、故障分析等 三.所设计电路的工作原理(包括电路原理图、理论波形) 分析升压斩波电路的工作原理时,首先假设电路中电感L 值很大,电容C 值也很大。当可控开关V 处于通态时,电源E 向电感L 充电,充电电流基本恒定为I1,同时电容C 上的电压向负载R 供电。因C 值很大,基本保持输出电压u ?为恒值,记为U O 。设V 处于通态的时间为on t ,此阶段电感L 上积累的能量为on t EI 1。当V 处于断态时E 和L 共同向电容C 充电并向负载R 提供能量。设V 处于断态的时间为off t , 则在此期间电感L 释放的能量为 ()off t I E U 10-。当电路工作于稳态时, 一个周期T 中电感L 积蓄的能量与释放的能量相等,即 ()off on t I E U t EI 101-= 化简得 E t T t t t U off off off on = +=

基于Matlab的电力电子技术课程设计报告

《电力电子技术》 课程设计报告 题目:基于Matlab的电力电子技术 仿真分析 专业:电气工程及其自动化 班级:电气2班 学号:Z01114007 姓名:吴奇 指导教师:过希文 安徽大学电气工程与自动化学院 2015年 1 月7 日

中文题目 基于Matlab 的电力电子技术仿真分析 一、设计目的 (1)加深理解《电力电子技术》课程的基本理论; (2)掌握电力电子电路的一般设计方法,具备初步的独立设计能力; (3)学习Matlab 仿真软件及各模块参数的确定。 二、设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: (1)根据设计题目要求的指标,通过查阅有关资料分析其工作原理,设计电路原理图; (2)利用MATLAB 仿真软件绘制主电路结构模型图,设置相应的参数。 (3)用示波器模块观察和记录电源电压、控制信号、负载电压、电流的波形图。 三、设计内容 (1)设计一个降压变换器(Buck Chopper ),其输入电压为200V ,负载为阻感性带反电动势负载,电阻为2欧,电感为5mH ,反电动势为80V 。开关管采用IGBT ,驱动信号频率为1000Hz ,仿真时间设置为0.02s ,观察不同占空比下(25%、50%、75%)的驱动信号、负载电流、负载电压波形,并计算相应的电压、电流平均值。 然后,将负载反电动势改变为160V ,观察电流断续时的工作波形。(最大步长为5e-6,相对容忍率为1e-3,仿真解法器采用ode23tb ) (2)设计一个采用双极性调制的三相桥式逆变电路,主电路直流电源200V ,经由6只MOSFET 组成的桥式逆变电路与三相阻感性负载相连接,负载电阻为1欧,电感为5mH ,三角波频率为1000Hz ,调制度为0.7,试观察输入信号(载波、调制波)、与直流侧假想中点N ‘的三相电压Uun ’、Uvn ’、Uwn ’,输出线电压UV 以及负载侧相电压Uun 的波形。 四、设计方案 实验1:降压变换器 dc-dc 变流电路可以将直流电变成另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。其中,直接直流变流电路又称为斩波电路,功能是将直流电变为另一直流电。本次实验主要是在Matlab 中设计一个降压斩波电路并仿真在所给条件下的波形和数值与理论计算相对比。降压斩波电路原理图如下所示,该电路使用一个全控型器件V ,这里用IGBT ,也可采用其他器件,例如晶闸管,若采用晶闸管,还需设置使晶闸管关断的辅助电路。为在V 关断时给负载中电感电流提供通道,设置了续流二极管VD 。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等,后两种情况下负载中均会出现反电动势,图中用m E 表示。若无反电动势,只需令0m E ,以下的分析和表达式中均适用。

基于LM331频率电压转换器电路设计

基于LM331频率电压转换器电路设计LM331基本上是从国家半导体精密电压频率转换器。该集成电路具有手像应用模拟到数字的转换,长期一体化,电压频率转换,频率电压转换。宽动态范围和出色的线性度,使适合上述应用的IC,这里的LM331作为电压转换器转换成一个成比例的电压,这是非常线性的输入频率与输入频率的频率有线。电压转换的频率达到差分输入频率使用电容C3和电阻R7,和由此产生的脉冲序列喂养的PIN6的 IC(阈值)。在PIN6负由此产生的脉冲序列的边缘,使得内建 说明 LM331基本上是从国家半导体精密电压频率转换器。该集成电路具有手像应用模拟到数字的转换,长期一体化,电压频率转换,频率电压转换。宽动态范围和出色的线性度,使适合上述应用的IC,这里的LM331作为电压转换器转换成一个成比例的电压,这是非常线性的输入频率与输入频率的频率有线。电压转换的频率达到差分输入频率使用电容C3和电阻R7,和由此产生的脉冲序列喂养的PIN6的 IC(阈值)。在PIN6负由此产生的脉冲序列的边缘,使得内建的比较器电路,触发定时器电路。在任何时刻,电流流过的电流输出引脚(引脚6)将输入频)的值成正比。因此,输入频率(FIN)成正比的电压(VOUT)率和定时元件(R1和C1 将可在负载电阻R4 。电路图

注意事项 该电路可组装在一个VERO板上。 我用15V直流电源电压(+ VS),同时测试电路。 LM331可从5至30V DC之间的任何操作。 R3的值取决于电源电压和方程是R3 =(VS - 2V)/(2毫安)。 根据公式,VS = 15V,R3 = 68K。 输出电压取决于方程,VOUT =((R4)/(R5 + R6))* R1C1 * 2.09V *翅。壶R6可用于校准电路。

电力电子课设(参考版)

一总体方案设计级总体框图 1、1总体方案设计 根据任务湖中的,本次设计的是dcdc降压变换器。DC-DC变换 器有两类:一类由两级电路组成DC-AC-DC变换,第一级为逆变,实现DC-AC变换,第二级为整流,实现AC-DC变换。另一类变 换器由晶体管和二极管开关组合成PWM开关,将输入直流电 压斩波后,再经滤波后输出。由于第一类比较复杂,方针起来 比较麻烦。第二类简单方便,比较贴合课本中的知识。第二类 dcdc降压电路有以下几种: BUCK PWM变换器在CCM下的工作原理(如图2-2):一个开 关周期内,开关晶体管的开,关过程将直流输入电压斩波,形 成脉宽为onT的方波脉冲(onT为开关管导通时间)。当开关晶 体管导通时,二极管关断,输入端直流电流电源Vi将功率传送 到负载,并使用电感储能(电感电流上升):当开关晶体管关断 时,二极管导通,续流,电感储能向负载释放(电感电流下降)。 一个开关周期内,电感电流的平均值等于负载电流OI(忽略滤 波电容C的ESR)。根据原理和电路拓扑可以推导出工作在CCM 下的DC-DC PWM变换器的输出-输入电压变换比: DVi Vo (2-1)

占空比D总是小于1的,所以BUCK变换器是一种降压变换器。 升降压型BUCK-BOOST技术 图2-4 升降压反极性(BUCK-BOOST)变换器电路拓扑 如图2-4所示,极性反转型(BUCK-BOOST)变换器主电路如用 元器件与BUCK,BOOST变换器相同,由开关管,储能电感,整 流二极管及滤波电容等元器件组成。这种电路具有BUCK变换 器降压和BOOST变换器升压的双重作用。升压还是降压取决与 PWM驱动脉冲的占空比D。虽然输入与输出共用一个连接端,但输出电压的极性与输入电压是相反的,故称为降压反极性变 换器。,根据我们的设计要求,是要求把12-18V的直流电压转 换到5V的直流电压,那么分析后可得降压型BUCK转换技术最 适合这次设计。 1、2总体框图设计

电力电子技术课程设计报告

课程设计说明书 设计题目:单相交流调压技术 专业班级: 2009级电气工程及其自动化 姓名:王昊 学号: 0915140068 指导教师:褚晓锐 2011年12月23日 (提交报告时间)

一.课程设计题目:单项交流调压技术的工程应用 二.课程设计日期: 2011年12月19日 三.课程设计目的: “电力电子技术”课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。因此,要求学生能综合应用所学知识,设计出具有电压可调功能的直流电源系统,能够较全面地巩固和应用本课程中所学的基本理论和基本方法,并初步掌整流电路设计的基本方法。培养学生独立思考、独立收集资料、独立设计的能力;培养分析、总结及撰写技术报告的能力。 四.课程设计要求: :按课程设计指导书提供的课题,根据第下表给出的基本要求及参数独立完成设计,课程设计说明书应包括以下内容: 1、方案的经济技术论证。 2、主电路设计。 3、通过计算选择整流器件的具体型号。 4、确定变压器变比及容量。 5、确定平波电抗器。 7、触发电路设计或选择。 8、课程设计总结。 9、完成4000字左右说明书,有系统电气原理图,内容完整、字迹工整、图表整齐规范、数据详实。 设计技术参数工作量工作计划 1、单相交流220V电源。 2、交流输出电压U d 在0~220V连续可调。 3、交输出电2000W。1、方案的经济技术论证。 2、主电路设计。 3、通过计算选择整流器件的 具体型号。 第一周: 周一:收集资料。 周二~三:方案论证。 周四:主电路设计。

4、触发电路设计。 5、绘制主电路图。 周五:理论计算。 第二周: 周一:选择器件的具体型号 周二~三:触发电路设计。。 周四~五:总结并撰写说明书。 五.课程设计内容: 设计方案图及论证 将一种交流电能转换为另一种交流电能的过程称为交流-交流变换过程,凡能实现这种变换的电路为交流变换电路。对单相交流电的电压进行调节的电路。用在电热控制、交流电动机速度控制、灯光控制和交流稳压器等场合。与自耦变压器调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。结构原理简单。该方案是由变压器、触发电路、整流器、以及一些电路构成的,为一台电阻炉提供电源。输入的电压为单相交流220V ,经电路变换后,为连续可调的交流电。 各部分电路作用 220V 交流输入部分作用:为电路提供电源,主要是市电输入。 调压环节的作用:将交流220V 电源经过变压器、整流器等电路转换为连续可调的交 220V 交流输入 调压环节 输出连续可调的交流电 触发电路

电压频率转换器设计(含电路图)

《模拟电子技术基础》课程设计报告题目电压/频率变换器 班级电科1124 姓名冯刚毅 学号201211911406 成绩 日期

课程设计任务书

一电压/频率变换器的设计方案简介 1.1 实验目的及应用意义 1.学习简单积分电路的设计与由555定时器组成的单稳态触发器。 2.用multisim设计出实验原题图,使V I变化范围:0∽10V,f o变化范围:0∽10kHz;并分析其功能原理。 1.3 设计思路 电压/频率变换器的输入信号频率f。与输入电压V i 的大小成正比,输入控制电压V i常为直流电压,也可根据要求选用脉冲信号做为控制电压,其输出信号可为正弦波或者脉冲波形电压。 本设计利用输入电压的大小改变电容的充电速度,从而改变振荡电路的振荡频率,故采用积分器作为输入电路。积分器的输出信号去控制电压比较器或者单稳态触发器,可得到矩形脉冲输出,由输出信号电平通过一定反馈方式控制积分电容恒流放电,当电容放电到某一域值时,电容C再次充电。由此实现V i 控制电容充放电速度,即控制输出脉冲频率。 1.4 原理框图设计

电压频率转换器原理框图1.5 电路图

二电压频率变换器各单元电路设计 2.1 积分器设计 积分器采用集成运算放大器和R C 元件构成的反向输入积分器。具体电路如下: 2.2 单稳态触发器设计 单稳态触发器采用555 定时器构成的单稳电路。具体电路如下:

2.3 电子开关设计 电子开关采用开关三极管接成反向器形式,当触发器的输出为高电平时,三极管饱和导通,输出近似为0,当触发器输出为低电平时,三极管截止,输出近似等于+Vcc。 2.4 恒流源电路设计 恒流源电路可采用开关三极管T,稳压二极管D z 等元件构成。具体电路如下所示。当V1’为0时,D2,D3 截止,D4 导通,所以积分电容通过二极管放电。当V1’为1 时,D2,D3 导通,D4 截止,输入信号对积分电容充电。在单稳态触发器的输出端得到矩形脉冲。

电力电子技术课程设计范例

电力电子技术课程设计 题目:直流降压斩波电路的设计 专业:电气自动化 班级:14电气 姓名:周方舟 学号: 指导教师:喻丽丽

目录 一设计要求与方案 (4) 二设计原理分析 (4) 2.1总体结构分分析 (4) 2.2直流电源设计 (5) 2.3主电路工作原理 (6) 2.4触发电路设计 (10) 2.5过压过流保护原理与设计 (15) 三仿真分析与调试 (17) 3.1M a t l a b仿真图 (17) 3.2仿真结果 (18) 3.3仿真实验结论 (24) 元器件列表 (24) 设计心得 (25) 参考文献 (25) 致 (26) 一.设计要求与方案 供电方案有两种选择。一,线性直流电源。线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电源进行稳压。线性电源体积重量大,很难实现小型化、损耗大、效率低、输出与输入之间有公共端,不易实现隔离,只能降压,不能升压。二,升压斩波电路。由脉宽调制芯片TL494为控制器构成BOOST原理的,实现升压型DC-DC变换器,输出电压的可调整与稳压控制的开关源是借助晶体管的开/关实现的。因此选择方案二。 设计要求:设计要求是输出电压Uo=220V可调的DC/DC变换器,这里为升压斩波电路。由于这些电路中都需要直流电源,所以这部分由以前所学模拟电路知识可以由整流器解决。MOSFET的通断用PWM控制,用PWM方式来控制MOSFET的通断需要使用脉宽调制器TL494来产生

电力电子课设报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:电力电子技术 设计题目:可逆直流PWM驱动电源的设计 院系:电气工程系 班级:0706111 设计者:王勃 学号:1070610602 指导教师:李久胜 设计时间:2010年11月 哈尔滨工业大学教务处

哈尔滨工业大学课程设计任务书

H型单极性同频可逆直流PWM驱动电源的设计 技术指标:被控直流永磁电动机参数:额定电压20V,额定电流1A,额定转 速2000rpm。驱动系统的调速范围:大于1:100。驱动系统应具有软启动功能,软启动时间约为2s。详细设计要求见附录2. 1.整体方案设计 本文设计的H型单极性同频可逆直流PWM驱动电源由四部分组成:主电路,H 型单极模式同频可逆PWM控制电路,IPM接口电路及稳压电源。同时具有软启动功能,软启动时间为2s左右。控制原理如图1所示: 功率转换电路 图1 直流PWM驱动电源的控制原理框图 脉宽调制电路以SG3525为核心,产生频率为5KHz的方波控制信号,占空比可调。经用门电路实现的脉冲分配电路,转换成两列对称互补的驱动信号,同时具有5us的死区时间,该信号驱动H型功率转换电路中的开关器件,控制直流永磁电动机。稳压电源采用LM2575-ADJ系列开关稳压集成电路,通过调整电位器,使其稳定输出15V直流电源。 2.主电路设计 2.1主电路设计要求 直流PWM驱动电源的主电路图如图2所示。此部分电路的设计包括整流电路和H桥可逆斩波电路。二极管整流桥把输入的交流电变为直流电。四只功率器件构成H 桥,根据脉冲占空比的不同,在直流电机上可得到不同的直流电压。 主电路部分的设计要求如下: 1)整流部分采用4 个二极管集成在一起的整流桥模块。 2)斩波部分H 桥不采用分立元件,而是选用IPM(智能功率模块)PS21564来实现。该模块的主电路为三相逆变桥,在本设计中只采用其中U、V 两相即可。

电压频率变换器的设计讲解

机械与电子工程学院 课程设计报告 课程名称模拟电子技术课程设计设计题目电压频率变换器 所学专业名称电气信息类 班级电类114班 学号********** 学生姓名王*金 指导教师汪* 2012年12月23日

机电学院模拟电子技术课程设计 任务书 设计名称:电压频率转换器 学生姓名:王*金指导教师:汪* 起止时间:自2012 年12 月10 日起至2012 年12 月25 日止 一、课程设计目的 1).熟悉集成电路及有关电子元器件的使用; 2).了解电压平频率转换器主体电路的组成及工作原理; 3).学习电路中基本电路的应用以及单稳态触发器等综合应用。 二、课程设计任务和基本要求 设计任务: 1).熟悉和应用比较器的构成及设计方法,尤其是迟滞比较器的应用。 2).熟悉和应用积分器的构成和设计方法,了解电容在其中的工作原理。 3).熟悉和简单应用二极管作电子开关的构成和设计方法。 4).熟悉迟滞比较器与积分器之间的波形转换。 5).熟悉掌握运用multisim画图、调试和仿真。 基本要求: 1).有明确的设计方案使操作简便易行。 2).设计一个将直流电压转换成给定频率的矩形波,包括:积分器;电压

比较器。 3).输入为直流电压0-10V。 4).输出为f=0-500Hz的矩形波。 5).按规定格式写出课程设计报告书。

机电学院模拟电子技术课程设计指导老师评价表

目录 摘要和关键词 (1) 第一章设计指标 (2) 1.1 设计指标 (2) ◆ 1.1.1设计内容 (2) ◆ 1.1.2设计要求 (2) 第二章系统设计原理及内容 (2) 2.1 设计思想 (2) 电压/频率转换器原理框 (2) 第三章电路各模块方案设计 (3) 3.1 积分器的设计方案 (3) 3.2比较器的设计方案 (4) ◆ 3.2.1电压比较器 (4) ◆ 3.2.2过零比较器 (5) 3.3单稳态触发器 (6) 3.4低通滤波器 (6) 3.5模块的整合 (7) ◆ 3.5.1 电压/频率 (7) ◆ 3.5.2 频率/电压 (7) 第四章结束语 (8) 4.1心得体会 (8) 元件清单 (9) 参考文献 (9)

江苏大学电力电子课程设计

电力电子课程设计 学院:电气信息工程学院 专业: 学号: 姓名:

一. 设计要求 (1)根据给定的参数范围,设计BOOST 电路的参数; (2)根据给定的参数范围,设计CUK 电路的参数; (3)利用MATLAB 对上述电路图仿真实验得出波形; (4)在实验室平台上试验,观测数据与波形,并与仿真图形进行比对; (5)撰写实验报告; 二. 电路设计 1.电路工作原理 (1)Boost 电路 Boost 电路原理图 基本原理 假设L ,C 值很大。当可控开关V 处于通态的时候,电源E 向电感L 充电,充电的电流基本恒定不变I 1,同时电容C 向负载R 放电。因为C 很大,基本保持输出电压U 0不变。当可控开关处于断态的时候,E 和电感L 上积蓄的能量共同向电容C 充电并向负载R 提供能量。当电路工作处于稳态时,一个周期T 中电感L 积蓄的 能量与释放的能量相等,即: 化简得: ()off o on t I E U t EI 11-=E t T E t t t U off off off on o =+=

基本数值计算: 输出电压U 0与输入电压E 关系: 01 1 1U E E βα==- 输出电流I0与输入电流I1的关系: 01021U I I E E β== 输出电流I0与输出电压U0的关系: 001U E I R R β== (2)Cuk 电路 Cuk 电路原理图 基本原理 当可控开关V 处于通态的时候,E-L1-V 回路和R-L2-C-V 回路分别流过电流。当V 处于断态的时候,E-L1-C-VD 回路和R-L1-VD 回路分别流过电流。输出电压的极性与电源电压极性相反。

电力电子技术课程设计报告

电力电子课程设计报告题目三相桥式全控整流电路设计 学院:电子与电气工程学院 年级专业:2015级电气工程及其自动化 姓名: 学号: 指导教师:高婷婷,林建华 成绩:

摘要 整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要同时也是应用得最为广泛的电路,不仅用于一般工业,也广泛应用于交通运输、电力系统、通信系统,能源系统及其他领域,因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用,因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。 关键词:电力电子,三相,整流

目录 1 设计的目的和意义………………………………………1 2 设计任务与要求 (1) 3 设计方案 (1) ?3.1三相全控整流电路设计 (1) 3.1.1三相全控整流电路图原理分析 (2) ?3.1.2整流变压器的设计 (2) ?3.1.3晶闸管的选择 (3) 3.2 保护电路的设计 (4) 3.2.1变压器二次侧过压保护 (4) ?3.2.2 晶闸管的过压保护………………………………………………4 3.2.3 晶闸管的过流保护………………………………………………5 3.3 触发电路的选择设计 (5) 4 实验调试与分析 (6) 4.1三相桥式全控整流电路的仿真模型 (6)

4.2仿真结果及其分析……………………………………………7 5 设计总结 (8) 6 参考文献 (9)

1 设计的目的和意义 本课程设计属于《电力电子技术》课程的延续,通过设计实践,进一步学习掌握《电力电子技术》,更进一步的掌握和了解他三相桥式全控整流电路。通过设计基本技能的训练,培养学生具备一定的工程实践能力。通过反复调试、训练、便于学生掌握规范系统的电子电力方面的知识,同时也提高了学生的动手能力。 2 设计任务与要求 三相桥式全控整流电路要求输入交流电压2150,10,0.5U V R L H ==Ω=为阻 感性负载。 1.写出三相桥式全控整流电路阻感性负载的移相范围,并计算出直流电压的变化范围 2.计算α=60°时,负载两端电压和电流,晶闸管平均电流和有效电流。 3.画出α=60°时,负载两端 d U 和晶闸管两端 1 VT U 波形。 4.分析纯电阻负载和大电感负载以及加续流二极管电路的区别。 5.晶闸管的型号选择。 3 设计方案 3.1三相全控整流电路设计

频率电压变换器

低频电子线路课程设计频率/电压变换器 电子信息工程三班 江海东 学号:2220083421

一、概述 本课题要求设计一个频率/电压变换电路,电路的输入信号为正弦波,电路的输出信号是直流电压,当输入信号的频率变化时,输出的直流电压随输入信号的频率发生线性变化。为电路的设计提供集成频率——电压变换器LM331和集成运放LM324这两种集成芯片,芯片的技术资料和使用方法查阅相关资料。 熟悉集成频率——电压变换器LM331的主要性能和一种应用; 熟练掌握运算放大器基本电路的原理,并掌握它们的设计、测量和调整方法。 二、技术要求: 1、输入信号:波形:正弦波; 峰—峰值:200mV; 频率变化范围:200Hz~2.0kHz。 2、输出信号:直流电压; 电压变化范围:1.0~5.0V;随频率线性变化。 3、电源电压:-12V~+12V范围内选择。 三、设计过程: 1、实验仪器:电源两个,函数信号发生器一台,万用表一块,电压表一块,示波器一个,面包板一个,LM331及LM324芯片各一个,电阻、电容、电位器、导线若干。 2、LM331的简要工作原理: LM331 可用作频率――电压转换(FVC); LM331用作FVC时的原理框如图5-1-1所示:

R +V CC 此时,○1脚是输出端(恒流源输出),○6脚为输入端(输入脉冲链),○7脚接比较电平. 工作过程(结合看图5-1-2所示的波形)如下:

2/3V CC v ct V 0 v CL p-p V CC 1 s t 图5-1-2 当输入负脉冲到达时,由于○6脚电平低于○7脚电平,所以S=1(高电平),Q =0(低电平)。

电力电子课程设计模板

电气工程学院 电力电子课程设计 设计题目:MOSFET降压斩波电路设计专业班级:电气0907 学号:09291210 姓名:李岳 同组人:刘遥(09291212 ) 指导教师: 设计时间:2012年6月25日-29日 设计地点:电气学院实验中心

电力电子课程设计成绩评定表 指导教师签字: 年月日

电力电子课程设计任务书 学生姓名:李岳,刘遥专业班级电气0907 指导教师: 一、课程设计题目: MOSFET降压斩波电路设计(纯电阻负载) 设计条件:1、输入直流电压:U d=100V 2、输出功率:300W 3、开关频率5KHz 4、占空比10%~90% 5、输出电压脉率:小于10% 二、课程设计要求 1. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 查阅有关参考资料和手册,并能正确选择有关元器件和参数,对设计方案进行仿真; 3. 完成预习报告,报告中要有设计方案,还要有仿真结果; 4. 进实验室进行电路调试,边调试边修正方案; 5. 撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理、选择元器件参数,说明控制电路的工作原理、绘出主电路典型波形(比较实际波形与理论波形),绘出触发信号(驱动信号)波形,说明调试过程中遇到的问题和解决问题的方法。 三、进度安排

2.执行要求 电力电子课程设计共6个选题,每组不得超过2人,要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告雷同,甚至完全一样。 四、课程设计参考资料 [1]王兆安,黄俊.电力电子技术(第四版).北京:机械工业出版社,2001 [2]王文郁.电力电子技术应用电路.北京:机械工业出版社,2001 [3]李宏.电力电子设备用器件与集成电路应用指南.北京:机械工业出版社,2001 [4] 石玉、栗书贤、王文郁.电力电子技术题例与电路设计指导. 北京:机械工业出版社,1999 [5] 赵同贺等.新型开关电源典型电路设计与应用.北京:机械工业出版社,2010 摘要 关键词:整流、无源逆变、晶闸管

电力电子变换器模型方法综述

电力电子变换器模型方法综述 1前言 直流—直流变换器(DC-DC变换器)是构建许多其他类型电能变换器的基本组成部分。然而为了有效实现各种电能变换功能,并使系统安全、平稳的运行,直流—直流变换器必须与其他模块相互配合,组成一个控制系统,这种系统也称为开关调压系统。 为了更好的控制这个系统,使变换器工作在最优状态,变换器的建模分析就显的尤为重要。直流—直流变换器的模型按其传输信号的种类可以分为稳态模型、小信号模型和大信号模型等,其中稳态模型主要用于求解变换器在稳态工作时的工作点;小信号模型用于分析低频交流小信号分量在变换器中的传递过程,是分析与设计变换器的有力工具,具有重要意义;大信号模型目前主要用于对变换器进行仿真,有时也用于研究不满足小信号条件时的系统特性。 由于变换器中的有源开关元件和二极管都是在其特性曲线的大范围内工作,从而使得变换器成为一个强非线性电路。针对这一特性,通常的建模思路如下:首先将变换器电路中各个变量在一个开关周期内求平均,以消除开关纹波的影响;其次将各个平均变量表达为对应的直流分量与交流小信号分量之和,消去直流分量后即可得到只含小信号分量的表达式,达到分离小信号的目的;最后对只含小信号分量的表达式作线性处理,从而将非线性系统在直流工作点附近近似为线性系统,为将线性系统的各种分析与设计方法应用于直流—直流变换器做好准备[2]。 2电路平均法 GW Wester 提出的电路平均法是从变换器的电路出发,对电路中的非线性开关元件进行平均和线性化处理。该方法的最大优点是等效电路与原电路拓扑一致,但当电路元件增多,要得出平均后的拓扑结构需要很大的运算量[3]。 电路平均法主要有:三端开关器件模型法、时间平均等效电路法、能量守恒法。 2.1三端开关器件模型法 1987 年提出了三端开关器件模型法,将变换器的功率开关管和二极管作为整体看成一个三端开关器件。用其端口的平均电压、平均电流的关系来表征该模型,然后将它们适当地嵌入到要讨论的变换器中,变成平均值等效电路。既可以进行稳态分析,又可以进行动态分析,建模方法灵活、简单[4],但需预知开关变换器的直流稳态特性。当采用不同的端口定义,其平均开关模型也不同。若考虑开关器件的导通损耗与开关损耗,亦可得到更精确的平均开关模型。 2.2时间平均等效电路法 1988 年提出的(TAEC)建模方法,其关键点是在建模之初,就利用电路理论中的替代定理将开关变换器中的开关元件用受控电压源和/或受控电流源进行替代变换,得到开关变换器的等效平均电路,受控电压源或受控电流源的值是周期内的时间平均值,从而用常规方法就可进行开关变换器的DC 稳态和AC 小信号分析[5]。该方法只需对开关变换器进行简单的等效变换处理即可获得等效平均电路,所得结果以等效电路形式出现,具有直观、物理意义明确的优点。

电力电子技术课程设计报告

电力电子技术课程设计 报告书 专业班级:16电气2班 姓名:王浩淞 学号:2016330301054 指导教师:雷美珍

目录 1、webench电路设计 1.1设计任务要求 输入电压为(8V-10V),输出电压为5V,负载电流为1A 1.2设计方案分析 图1.3.1主电路原理图 图1.3.2元器件参数 图1.3.3额定负载时工作值

图1.3.4输出电流和系统效率间的关系 如图1.3.4所示,在输出电流相同的情况下,输入电压越小,系统的稳态效率越高,因此提高效率的最直接方式就是降低系统的输入电压,其次在输入电压相同的情况下,我们可以调节输出电压的大小,使系统效率达到最大,例如当输入电压为9.0V时,根据图像输出电流为0.40A的时候效率最高。第二种方法是改变元器件的参数,通过使用DCR(直流电阻)小的电感元件来实现输出纹波电压降低。 1.3主芯片介绍 TPS561201和TPS561208采用SOT-23封装,是一款简单易用的1A同步降压转换器。这些器件经过优化,可以在最少的外部元件数量下工作,并且还经过优化以实现低待机电流。这些开关模式电源(SMPS)器件采用D-CAP2模式控制,可提供快速瞬态响应,并支持低等效串联电阻(ESR)输出电容,如特种聚合物和超低ESR陶瓷电容,无需外部补偿元件。TPS561201以脉冲跳跃模式工作,在轻负载操作期间保持高效率。TPS561201和TPS561208采用6引脚1.6×2.9(mm)SOT(DDC)封装,工作在-40°C至125°C的结温范围内。 1.4电气仿真结果分析

图1.4.1启动仿真图1.4.2稳态仿真 图1.4.3暂态仿真图1.4.4 负载暂态仿真 二、基于电力系统工具箱的电力电子电路仿真 2.1 设计要求和方案分析 本课程设计主要应用了MATLAB软件及其组件之一Simulink,进行系统的设计与仿真系统主要包括:Boost升压斩波主电路部分、PWM控制部分和负载。Boost升压斩波主电路部分拖动带反电动势的电阻,模拟显示中的一般负载,若实际负载中没有反电动势,只需令其为零即可。负载为主电路部分提供脉冲信号,控制全控器件IGBT的导通和关断,实现整个系统的运行。在Simulink中完成各个功能模块的绘制后,即可进行仿真和调试,用Simulink 提供的示波器观察波形,进行相应的电压和电流等的计算,最后进行总结,完成整个Boost 变换器的研究与设计。 2.2 simulink仿真模型分析 电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。占空比越大,Boost Chopper的输出电压值

固定频率PWM微功率DCDC变换器设计.

固定频率PWM微功率DC/DC变换器设计 在电池供电的计算机,消费类产品和工业设备中,DC/DC变换器是重要的部件。变换器有两种类型:线性变换器和开关变换器。开关变换器主要有三种拓扑结构:降压变换器(开关稳压器将一输入电压变换成一较低的稳定输出电压);升压变换器(开关稳压器将一输入电压变换成一较高的稳定输出电压);反激变换器(开关稳压器将一输入电压变换成一较低的稳定反相输出电压)。在此用Motorola的MC33466微功率开关稳压器来设计降压变换器、升压变换器 在电池供电的计算机,消费类产品和工业设备中,DC/DC变换器是重要的部件。变换器有两种类型:线性变换器和开关变换器。开关变换器主要有三种拓扑结构:降压变换器(开关稳压器将一输入电压变换成一较低的稳定输出电压);升压变换器(开关稳压器将一输入电压变换成一较高的稳定输出电压);反激变换器(开关稳压器将一输入电压变换成一较低的稳定反相输出电压)。 在此用Motorola的MC33466微功率开关稳压器来设计降压变换器、升压变换器和反激变换器。MC33466器件具有非常低的静态偏置电流(典型值15μA),含有高精度电压基准、振荡器、脉宽调制(PWM)控制器、驱动晶体管、误差放大器、反馈电阻分压器等。 MC33466变换器工作如同一个固定频率电压模式稳压器。变换器工作在非连续模式,在晶体管开关导通期间,电感电流跃变到峰值大于或等于dc输入电流的两倍值。在晶体管开关的关闭期间,电感电流跃变到零,直到另一个转换周期开始为止。 因为输出电压端也同样作为电源电压来为内部电路供电,所以在降压变换器和反激变换器设计中,需要一个外部启动电路为集成电距开始转换提供起始功率。 图1、图2和图3分别为用MC33466设计的升压变换器、降压变换器和反激变换器。在图3和图3中的启动电路用三个分立元件组成。 在变换器设计中必须选择下列参数: Vin--额定工作的dc输入电压 Vo--所希望的dc输出电压 Io--所希望的dc输出电流 Vripple(pp)--所希望的峰-峰输出波纹电压。为使性能最佳,波纹电压应该保持一低数值一,因为它将直接影响电源电压调整率和负载调整率。

电力电子技术课程设计报告

成都理工大学工程技术学院T h e E n g i n e e r i n g&T e c h n i c a l C o l l e g e o f C h e n g d u U n i v e r s i t y o f T e c h n o l o g y 电力电子技术课程设计报告 姓名 学号 年级 专业 系(院) 指导教师

三相半波整流电路的设计 1设计意义及要求 1.1设计意义 整流电路是出现最早的电力电子电路,将交流电变为直流电,电路形式多种多样。当整流负载容量较大,或要求直流电压脉动较小时,应采用三相整流电路。其交流侧由三相电源供电。三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、以及双反星形可控整流电路、十二脉波可控整流电路等,均可在三相半波的基础上进行分析。 1.2初始条件 设计一三相半波整流电路,直流电动机负载,电机技术数据如下:220nom U V =, I =308A nom ,=1000r/min nom n ,C =0.196V min/r e ,0.18a R =。 1.3要求完成的主要任务 1)方案设计 2)完成主电路的原理分析 3)触发电路、保护电路的设计 4)利用MATLAB 仿真软件建模并仿真,获取电压电流波形,对结果进行分析 5)撰写设计说明书

2方案设计分析 本文主要完成三相半波整流电路的设计,通过MATLAB软件的SIMULINK模块建模并仿真,进而得到仿真电压电流波形。 分析采用三相半波整流电路反电动势负载电路,如图1所示。为了得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波流入电网。三个晶闸管分别接入b c a、、三相电源,它们的阴极连接在一起,称为共阴极接法,这种接法触发电路有公共端,连线方便。 图1 三相半波整流电路共阴极接法反电动势负载原理图 直流电动机负载除本身有电阻、电感外,还有一个反电动势E。如果暂不考虑电动机的电枢电感时,则只有当晶闸管导通相的变压器二次电压瞬时值大于反电动势时才有电流输出。此时负载电流时断续的,这对整流电路和电动机负载的工作都是不利的,实际应用中要尽量避免出现负载电流断续的工作情况。 3主电路原理分析及主要元器件选择 3.1主电路原理分析 主电路理论图如图1所示。假设将电路中的晶闸管换作二极管,并用VD表示,该电路就成为三相半波不可控整流电路。此时,三个二极管对应的相电压中哪一个的值最大,则该相对应的二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压。在相电压的交点处,均出现了二极管换相,即电流由一个二极管向另一个二极管转移,称这些交点为自然换相点。自然换相点是各相晶闸管能触发导通的最早时刻,将其作 α=。,要改变触发角只能是在此基础上增大它,即为计算各晶闸管触发角α的起点,即0 沿时间坐标轴向右移。

模电课程设计 电压频率变换器(DOC)

模拟电子技术基础 题目名称:电压/频率变换器 班级: 姓名: 学号: 完成日期: 2011-6-10

摘要 本实验是对信号的产生、处理及变换功能电路的设计,在实际生产和操作中有这应用广泛。本设计是主要针对的是模拟电子技术课程的设计,具有可操作性和应用性,学生能够独立完成。电路信号的转换已经在电子领域中广泛应用,如:采样/保持(S/H)电路、电压比较电路、V/f(电压/频率)变换器、f/V(频率/电压)转换器、V/I(电压/电流)转换器、I/V(电流/电压)转换器、A/D(模/数)转换器、D/A(数/模)转换器等。可以从本实验中学习到更多的电路设计的方法,激发学生的设计兴趣和激情,为以后的学习和工作打下良好大的基础。而V/f(电压/频率)转换器便是本实验的主要内容。

目录 一. 设计任务 二. 简略设计方案 三. 电路构成和部分参数计算 1.积分电路 2.单稳态触发器电路 3. 电子开关电路图 4.恒流源电路的设计 四.总原理图和元器件清单 1.总原理图 2.元件清单 五.基本计算与仿真调试分析 1.基本计算 2.仿真结果 六.PCB仿真图 七. 设计总结 八.参考文献 一、设计任务

1.设计一种电压/频率变换电路,输入υI为直流电压(控制信 号),输出频率为?O的矩形脉冲,且 fυI。 O 2.υI变化范围:0~10V。 3.?O变化范围:0~10kHz 4.转换精度<1% 。 二、设计方案 可知电路主要是由积分器、单稳态触发器、电子开关和恒流源电 三、电路构成和部分参数计算 1.、积分电路: 积分电路采用集成运算放大器和RC元件构成反向输入积分器。电路图如下:

电力电子专业技术课程设计任务大全

电力电子技术课程设计任务大全

————————————————————————————————作者:————————————————————————————————日期:

《电力电子技术》课程设计任务书(一) 小功率晶闸管整流电路设计 一、设计的技术数据及要求 1、电路输出的直流电压和电流应满足负载要求; 2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力; 3、触发电路满足要求; 4、电网供电电压:三相380V,电动机负载,工作于电动状态。 直流电机参数: 型号额定功率 (KW) 额定电压 (V) 额定电流 (A) 额定转速 (r/min) 电枢回路电感 (mH) Z3-52 7.5 220 40.8 1500 4.42 二、设计内容及要求 1、方案论证及选择; 2、主电路设计(包括整流变压器电压及容量计算,晶闸管元件选择,电 抗器容量等计算); 3、控制电路设计(触发电路的选择与设计); 4、保护电路设计(包括过流和过压保护等); 5、总结及心得体会; 6、参考文献设计; 7、完成电路原理图1份。 《电力电子技术》课程设计任务书(二) 小功率晶闸管整流电路设计 一、设计的技术数据及要求 1、电路输出的直流电压和电流应满足负载要求; 2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力; 3、触发电路满足要求。 4、电网供电电压:单相220V,电动机负载,工作于电动状态。 直流电机参数: 型号额定功率 (KW) 额定电压 (V) 额定电流 (A) 额定转速 (r/min) 电枢回路电感 (mH) Z3-52 3 220 17.4 750 17.69

电力电子技术课程设计-240w半桥型开关稳压电源设计讲解

辽宁工业大学 电力电子技术课程设计(论文)题目:240W半桥型开关稳压电源设计 院(系):电气工程学院 专业班级:电气102 学号:100303044 学生姓名:邹伟龙 指导教师:(签字) 起止时间:2012-12-31至2012-1-11

课程设计(论文)任务及评语 院(系):电气工程学院教研室:电气教研室Array 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 开关电源在效率、体积和重量等方面都远远优于线性电源,因此已经基本取代了线性电源,成为电子热备供电的主要形式, 受到人们的青睐.随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用,人们对其需求量日益增长。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。开关电源技术的主要用途之一是为信息产业服务,信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。本次设计采用反激式开关电源,以UC3842作为控制核心器件,运用脉宽调制的基本原理。同时,电路中辅以过压过流保护电路,为系统的安全工作提供保障。 关键词:整流电路;逆变电路;驱动电路

目录 第1章绪论 (1) 1.1电力电子技术概况 (1) 1.2本文设计内容 (2) 第2章开关稳压电源电路设计 (3) 2.1半桥型开关稳压电源总体设计方案 (3) 2.2具体电路设计 (5) 2.2.1主电路设计 (5) 2.2.2整流电路设计 (6) 2.2.3逆变电路设计 (7) 2.2.4驱动电路设计 (8) 2.2.5 整体电路设计 (10) 2.3元器件型号选择 (12) 第3章课程设计总结 (15) 参考文献 (16)

相关文档
相关文档 最新文档