文档库 最新最全的文档下载
当前位置:文档库 › 专业英语翻译 (1)

专业英语翻译 (1)

专业英语翻译 (1)
专业英语翻译 (1)

系别:信工082

姓名:周旭

学号:2008020204

The world seems increasingly divided into those who favor genetically modified (GM) foods and those who fear them. Advocates assert that growing genetically altered crops can be kinder to the environment and that eating foods from those plants is perfectly safe. And, they say, genetic engineering-which can induce plants to grow in poor soils or to produce more nutritious foods-will soon become an essential tool for helpi the world's burgeoning population. Skeptics contend that GM crops could pose unique risks to the environment and to health-risks too troubling to accept placidly. Taking that view, many European countries are restricting the planting and importation of GM agricultural products. Much of the debate hinges on perceptions of safety. But what exactly does recent scientific research say about the hazards? The answers, too often lost in reports on the controversy, are served up in the pages that follow.ng to feed

Two years ago in Edinburgh, Scotland, eco-vandals stormed a field, crushing canola plants. Last year in Maine, midnight raiders hacked down more than 3,000 experimental poplar trees. And in San Diego, protesters smashed sorghum and sprayed paint over greenhouse walls.

This far-flung outrage took aim at genetically modified crops. But the protests backfired: all the destroyed plants were conventionally bred. In each case, activists mistook ordinary plants for GM varieties.

It's easy to understand why. In a way, GM crops-now on some 109 million acres of farmland worldwide-are invisible. You can't see, taste or touch a gene inserted into a plant or sense its effects on the environment. You can't tell, just by looking, whether pollen containing a foreign gene can poison butterflies or fertilize plants miles away. That invisibility is precisely what worries people. How, exactly, will GM crops affect the environment-and when will we notice?

Advocates of GM, or transgenic, crops say the plants will benefit the environment by requiring fewer toxic pesticides than conventional crops. But critics fear the potential risks and wonder how big the benefits really are. “We have so many questions about these plants,” remarks Guenther Stotz ky, a soil microbiologist at New York University. “There's a lot we don't know and need to find out.”

As GM crops multiply in the landscape, unprecedented numbers of researchers have started fanning into the fields to get the missing information. Some of their recent findings are reassuring; others suggest a need for vigilance.

Fewer Poisons in the Soil?

Every year u.s. growers shower crops with an estimated 971 million pounds of pesticides, mostly to kill insects, weeds and fungi. But pesticide residues linger on crops and the surrounding soil, leaching into groundwater

running into streams and getting gobbled up by wildlife. The constant chemical trickle is an old worry for environmentalists.

In the mid-1990s agribusinesses began advertising GM seeds that promised to reduce a farmer's use of toxic pesticides. Today most GM crops-mainly soybean, corn, cotton and canola-contain genes enabling them to either resist insect pests or tolerate weed-killing herbicides. The insect-resistant varieties make their own insecticide, a property meant to reduce the need for chemical sprays. The herbicidetolerant types survive when exposed to broad-spectrum weed killers, potentially allowing farmers to forgo more poisonous chemicals that target specific weed species. Farmers like to limit the use of more hazardous pesticides when they can, but GM crops also hold appeal because they simplify operations (reducing the frequency and complexity of pesticide applications) and, in some cases, increase yields.

But confirming environmental benefit is tricky. Virtually no peer-reviewed papers have addressed such advantages, which would be expected to vary from plant to plant and place to place. Some information is available, however. According to the U.S. Department of Agriculture, farmers who plant herbicidetolerant crops do not necessarily use fewer sprays, but they do apply a more benign mix of chemicals. For instance, those who grow herbicide-tolerant soybeans typically avoid the most noxious weed killer, turning instead to glyphosate herbicides, which are less toxic and degrade more quickly.

Insect-resistant crops also bring mixed benefits. To date, insect resistance has been provided by a gene from the soil bacterium Bacillus thuringiensis (Bt). This gene directs cells to manufacture a crystalline protein that is toxic to certain insects-especially caterpillars and beetles that gnaw on crops-but does not harm other organisms. The toxin gene in different strains of B. thuringiensis can affect different mixes of insects, so seed makers can select the version that seems best suited to a particular crop.

Of all the crops carrying Bt genes, cotton has brought the biggest drop in pesticide use. According to the Environmental Protection Agency, in 1999 growers in states using high amounts of Bt cotton sprayed 21 percent less insecticide than usual on the crop. That's a “dramatic and impressive” reduction, says Stephen Johnson, an administrator in the EPA's Office of Pesticide Programs. Typically, Johnson says, a farmer might spray insecticides on a cotton field seven to 14 times during a single growing

season. “If you choose a Bt cotton product, you may have little or no use for these pretty harsh chemicals,” he notes. Growers of Bt corn and potatoes report less of a pesticide reduction, partly because those plants normally require fewer pesticides and face fluctuating numbers of pests.

Defining the environmental risks of GM crops seems even harder than calculating their benefits. At the moment, public attention is most trained on Bt crops, thanks to several negative studies. Regulators, too, are surveying the risks intensely. This spring or summer the EPA is expected to issue major new guidelines for Bt crops, ordering seed producers to show more thoroughly that the crops can be planted safely and monitored in farm fields.

In the face of mounting consumer concern, scientists are stepping up

research into the consequences of Bt and other GM crops. Among their questions: How do Bt crops affect “nontarget” organisms-the innocent bugs, birds, worms and other creatures that happen to pass by the modified plants? Will GM crops pollinate nearby plants, casting their genes into the wild to create superweeds that grow unchecked? What are the odds that the genetically engineered traits will lose their ability to protect against insects and invasive weeds, leaving GM plants suddenly vulnerable?

At What Cost to Wildlife?

In 1998 a swiss study provoked widespread worry that Bt plants can inadvertently harm unlucky creatures. In this laboratory experiment, green lacewing caterpillars proved more likely to die after eating European corn-borer caterpillars that had fed on Bt corn instead of regular corn. The flames of fear erupted again a year later, when Cornell University entomologist John Losey and his colleagues reported that they had fed milkweed leaves dusted with Bt corn pollen to monarch butterfly larvae in the lab and that those larvae, too, had died.

“That was the straw that broke the camel's back,” says David Pimentel, also an entomologist at Cornell. Suddenly, all eyes turned to the organisms munching GM plant leaves, nipping modified pollen or wriggling around in the soil below the plants-organisms that play vital roles in sustaining plant populations. Another alarming study relating to monarch butterflies appeared last August.

But the lab bench is not a farm field, and many scientists question the usefulness of these early experiments. The lab insects, they note, consumed far higher doses of Bt toxin than they would outside, in the real world. So researchers have headed into nature themselves, measuring the toxin in pollen from plots of GM corn, estimating how much of it drifts onto plants such as milkweed and, finally, determining the exposure of butterfly and moth larvae to the protein. Much of that work, done during the 2000 growing season, is slated to be reported to the EPA shortly.

According to the agency, however, preliminary studies evaluating the two most common Bt corn plants (from Novartis and Monsanto) already indicate that monarch larvae encounter Bt corn pollen on milkweed plants-but at levels too low to be toxic. What is toxic? The EPA estimates that the insects face no observable harm when consuming milkweed leaves laden with up to 150 corn pollen grains per square centimeter of leaf surface. Recent studies of milkweed plants in and around the cornfields of Maryland, Nebraska and Ontario report far lower levels of Bt pollen, ranging from just six to 78 grains of Bt corn pollen per square centimeter of milkweed leaf surface. “The weight of the evidence suggests Bt corn pollen in the field does not pose a hazard to monarch la rvae,” concludes EPA scientist Zigfridas Vaituzis, who heads the agency's team studying the ecological effects of Bt crops.

But the jury is still out. “There's not much evidence to weigh,” notes Jane Rissler of the Union of Concerned Scientists. “This i ssue of nontarget effects is

just a black hole, and EPA has very little good data at this point to conclude whether the monarch butterfly problem is real, particularly in the long term.”

In an EPA meeting on GM crops last fall, Vaituzis acknowledged the lack of long-term data on Bt crops and insect populations. Such studies “require more time than has been available since the registration of Bt crops,” Vaituzis remarked. The EPA, he added, continues to collect Bt crop data-but so far without evidence of “unreasonable adverse effects” on insects in the field. Seeding Superweeds?

Worries about the flow of genes from the original plant to others also surround GM crops. Unwitting insects or the right wind might carry GM crop pollen to weedy plant relatives, fertilizing them. And if that happens, the newly endowed plants could break ecological rank, becoming “superweeds” that are unusually resistant to eradication by natural predators or pesticides. Scientists have stopped asking if such gene flow is possible. “In many cases,” says Cornell ecologist Allison Power, “we know gene flow will occu question now is, What will the consequences be?”

So far no scientific studies have found evidence of GM crops causing superweeds, and a 10-year study reported in Nature in February found no weedlike behavior by GM potatoes, beets, corn or canola planted in England. But worrisome anecdotes have appeared. Canadian farmers, in particular, have described GM canola escaping from farm fields and invading wheat crops like a weed. This canola also resisted pesticide sprays.

Power's studies of gene flow from virus-resistant GM plants give further reason for precaution. For now, virus-resistant crops stake a small share of the GM landscape, but they are likely to become more prevalent, particularly in the developing world. Power investigates gene flow in cultivated grain crops-wheat, barley and oats-engineered to contain genes that make the plants resistant to the barley yellow dwarf virus (which damages some 100 grass species). These GM grain crops could be on the market within the next decade.

Power's work, carried out in the laboratory, indicates that wild oats-a weedy relative of cultivated oats-can “catch” the genes conferring resistance to barley yellow dwarf virus. If that happened in the field, she says, wild oats might run amok in the western U.S., outcompeting native grasses with

kudzu-like intensity. Every GM crop, Power cautions, brings its own environmental personality and its own risks.

In the U.S., at least, landscape logistics make it rather unlikely that herbicide-tolerant or Bt crops will spread their biotech genes to weeds. That's because the GM crops sown in this country have no close relatives in the regions where they grow; most plants can pollinate others only if the recipients and the donors have certain features in common, such as the same chromosome number, life cycle or preferred habitat. A known exception to the “no relatives” rule in the U.S. is wild cotton growing in Hawaii and southern Florida, which, by virtue of its unusual similarity to GM cotton, can accept the GM pollen. To separate the wild and biotech plants from each other, the EPA has ordered

companies not to sell GM cotton south of Florida's Interstate 60 or in Hawaii.

But it may prove harder to avoid creating superweeds outside North America, where weedy relatives of cultivated crops are common. Wild cotton, for instance, creeps past the Florida Keys, across the Gulf of Mexico and into Mexico. In South America, a weedy corn relative, teosinte, dresses the edges of domesticated cornfields. Either plant would readily accept the pollen fromr. The a GM relative. Indeed, scientists say, GM crops in many countries could end up growing near their ancestral plants-and sharing more than the sunshine overhead. “Almost every crop has weedy relatives somewhere in the world,” says Stephen Duke, a USDA plant physiologist in Oxford, Miss. “How do you keep GM crops out of places where they're not supposed to be?”

Taking Refuge

Finally, one risk follows GM crops wherever they're planted: evolution. Over time, insect pests and weeds can become resistant to killing by routine chemical sprays. The same is bound to happen in the biotech age: eventually, impervious insects will munch away on GM insect-resistant plants, and the weeds surrounding herbicide-tolerant crops will shrug off the herbicide of choice. “Agriculture is an evolutionary arms race between plant protections and pests,” comments botanist Jonathan Wendel of Iowa State University. “And GM crops are just one more way that we're trying to outsmart pests-temporarily.”

To keep weeds vulnerable to herbicides, Monsanto and other companies urge growers to use the sprays responsibly, only when necessary. To slow insect resistance to the Bt toxin, the EPA requires Bt crop growers to set aside some part of their farmland for crops that have not been genetically modified. These “refuges” may be a corner of a field outside a Bt crop, for instance, or rows of standard plants that break up a Bt plot. Inside the refuges, insects that have acquired some Bt resistance breed with those that have not, diluting the resistance trait.

After five years of commercial Bt crop use, no reports of insect resistance to the crops have emerged, according to Monsanto. The company contends that roughly 90 percent of Bt corn and cotton growers comply with refuge requirements.

But some environmentalists question that rosy scenario and also argue that non-Bt refuges are either too small or too poorly designed to keep insect resistance at bay for long. “At the EPA meeting last fall, scientists seemed to agree that bigger, better refuges were the way to go but that cotton farmers would never agree to big refuges,” says Rebecca Goldburg, a senior scientist at Environmental Defense, a nonprofit organization based in New York City. More broadly, Goldburg questions how much GM crops really do for the environment. “In however many years,” she says, “we'll lose Bt as an effective control against insects, and then we'll be on to another chemical

Finally, one risk follows GM crops wherever they're planted: evolution. Over time, insect pests and weeds can become resistant to killing by routine chemical sprays. The same is bound to happen in the biotech age: eventually, impervious

insects will munch away on GM insect-resistant plants, and the weeds surrounding herbicide-tolerant crops will shrug off the herbicide of choice. “Agriculture is an evolutionary arms race between plant protections and pests,” comments botanist Jonathan Wendel of Iowa State University. “And GM crops are just one more way that we're trying to outsmart pests-temporarily.”

To keep weeds vulnerable to herbicides, Monsanto and other companies urge growers to use the sprays responsibly, only when necessary. To slow insect resistance to the Bt toxin, the EPA requires Bt crop growers to set aside some part of their farmland for crops that have not been genetically modified. These “refuges” may be a corner of a field outside a Bt crop, for instance, or rows of standard plants that break up a Bt plot. Inside the refuges, insects that have acquired some Bt resistance breed with those that have not, diluting the resistance trait.

After five years of commercial Bt crop use, no reports of insect resistance to the crops have emerged, according to Monsanto. The company contends that roughly 90 percent of Bt corn and cotton growers comply with refuge requirements.

But some environmentalists question that rosy scenario and also argue that non-Bt refuges are either too small or too poorly designed to keep insect resistance at bay for long. “At the EPA meeting last fall, scientists seemed to agree that bigger, better refuges were the way to go but that cotton farmers would never agree to big refuges,” says Rebecca Goldburg, a senior scientist at Environmental Defense, a nonprofit organization based in New York City. More broadly, Goldburg questions how much GM crops really do for the environment. “In however many years,” she says, “we'll lose Bt as an effective control against insects, and then we'll be on to another chemical control. Many of us view this current generation of biotech crops as a kind of diversion, rather than a substantive gain for agriculture.” She favors sustainable agriculture alternatives, including careful crop rotation and organic farming methods, over pesticides sprayed on or engineered into plants.

Virus-resistant GM crops have escaped widespread public concern, but they, too, pose some of the same risks as other GM crops. Some scientists worry that viruses will pick up resistance traits from virus-fighting GM crops and evolve into hard-tobeat strains that infect a newly expanded repertoire of plants. Some critics also question the ecological safety of emerging crops designed to resist drought, tolerate salt or deliver an extra nutritional punch. For example, Margaret Mellon of the Union of Concerned Scientists notes that salt-tolerant rice could potentially behave like a disruptive weed if it found its way into vulnerable wetlands.

“I don't think it's fair to say that every single GM crop is going to be a problem,” Rissler remarks. “But we need to devote the rese arch to risks now, rather than deal with repercussions later.” Still, some farmers are confident that GM technology can revolutionize agriculture for the better. For 30 years, Ryland Utlaut of Grand Pass, Mo., has been sowing and reaping 3,500 acres along the

Missouri River. Last year, for the first time, he planted only herbicide-tolerant corn and soybeans across his entire, soil-friendly, no-till farm. As a result, he claims, he sprayed the crops half as often as he did before and got bigger yields. “If e ven the strongest environmentalist could see my farming practices now, I think they'd understand the benefits,” Utlaut says. “I'm a fervent believer in this technology.” Now he has to wait and see whether science confirms that belief.

基因作物的现状与未来

人们对基因改造食物的态度,似乎愈来愈壁垒分明,一边的人支持,另一边的人则是畏惧。支持者宣称,种植基因改造作物对环境伤害较小,而食用这种农作物制成的食品也完全无害。它们还说,基因工程让农作物在贫瘠的土地上也能生长,或可培育出更营养的食物。在不久的未来,全球人口快速膨胀,还得靠这方法解决粮食问题。持怀疑态度者则反驳,基因改造作物对生态环境或人体健康都有极大的风险,令人忧心,不该贸然接受。许多欧洲国家抱持这种态度,因而限制基因改造作物的种植与输入。主要的争议,集中在基因改造食物的安全性。然而,最近的科学研究又是如何看待基因改造食物的危险呢?答案,往往迷失在各种报导的争议中;但是在接下来的篇幅里,它们将呈现在你的眼前。

两年前,一群生态骇客冲进苏格兰爱丁堡的一块农田,捣毁了种植的油菜。去年,美国缅因州一处白杨树实验林遭“夜半突袭队”闯入,砍倒了三千多株树。在加州圣地牙哥,抗议人士破坏了高粱作物,并且在温室的墙上喷漆示威。

这些暴行都是针对基因改造作物而来的,但是抗议人士的行动适得其反,因为他们所破坏的,全都是传统农作物。在每个案例里,那些行动派都把一般作物误认为基因改造过的品种。

原因不难理解。世界上已有4400万公顷土地(相当于台湾面积的12.3倍)种植了基改作物,可是从某个角度来看,那些作物都是隐形的。植入农作物的基因,你一个也看不见、尝不出、摸不着,或察觉它对环境的影响。光凭外观,你无从知道含有外源基因的花粉粒是否会毒害蝶儿,或是传播到几公里外使其他植株受精。最令人担忧的正是它的“隐形”。基改作物究竟如何影响环境?我们何时才会注意到这些影响呢?

鼓吹基因改造(或基因转植)作物的人说,这类作物不像传统作物,需要的有毒农药较少,对环境有利。但令批评者担忧的是潜在的风险,他们想知道所谓的利益究竟有多少。“我们对这类作物有太多的疑问,”纽约大学土壤微生物学者史达兹基说,“我们不知道的多着呢,必须找出答案来。”

由于基因改造作物在大地上占据的面积不断倍增,已经有数量空前的科学研究人员散入田野,搜集资讯,填补我们的知识鸿沟。他们最近的发现,有些令人心安,有些则教人不得不提高警觉。

土壤中的毒药可以少些?

根据估计,美国农夫每一年要喷洒44万公吨的农药,主要是对付昆虫、杂草以及真菌。但是农药残留在农作物上或附近土壤中,然后渗入地下水,流入河川,最后进了野生生物的腹中。这一化学药剂的涓涓之流,早就令环保人士忧虑了。

农产公司自1990年代中开始宣传基改种子,向农友保证可降低有毒农药的用量。如今大部分基改作物都含有抗害虫或耐除草剂的基因,以大豆、玉米、棉花及油菜为主。植入抗虫基因的作物会自行制造杀虫剂,因此可望减少化学药剂的喷洒。耐除草剂的基改作物可耐受广效性除草剂,农人就可以摒弃针对特定杂草且毒性更强的化学药剂。人总是希望尽量少

用比较危险的农药,不过基改作物之所以吸引人,是因为劳作手续简化了(降低施用农药的频率及复杂程度),甚至可使产量增加。

但是所谓的“对环境有好处”却不易证实。事实上,还没有任何一篇经过同行专家审查的报告,讨论过那些好处,因为植物不同、地点不同,结果必定随之而变。不过还是有些资讯可供参考,根据美国农业部统计,耐除草剂的作物不见得会降低农药的喷洒量,不过农人将使用比较温和的混合药剂。例如,农人要是种植了耐除草剂的大豆,就会避免使用最毒的杀草剂,而改用毒性弱、分解快的苷磷除草剂。

作物植入抗虫基因,也产生了优劣参半的后果。目前,抗虫害的特性是取自土壤中杆菌苏力菌(Bacillus thuringiensis,下文简称Bt)的一个基因。这个基因会促使细胞制造一种晶体状蛋白质,对某些昆虫来说是毒药,尤其是啃食作物的毛毛虫和甲虫,却不会伤害其他生物。不同的苏力菌菌株,各有不同的毒基因,影响的昆虫也不同,所以种籽生产商可以针对特定的作物,选用最适合的抗虫基因。

在所有植入Bt基因的农作物中,农药喷洒量降低的幅度以棉花最为可观。根据美国环保署的资料,1999年大量种植Bt棉花的各州,杀虫剂的喷洒量比往常减少了21%。环保署病虫害防治部门的行政人员强森说,那个数字“非常戏剧性,让人印象深刻”。通常在一个生长季中,农人要在棉花田里喷洒7~14次杀虫剂,“如果你种的是Bt棉花,你或许只需施用少量刺鼻的化学药剂,甚至根本就用不着了!”他指出。然而Bt玉米和Bt马铃薯就少有农药减量的情况,一部分的原因是:这两种作物的农药用量本来就比较少,而且它们所遭受的虫害不一定严重。

要界定基改作物对环境的害处,似乎比评估优点更为困难。多亏了几份负面的报告,目前大众注目的焦点集中在Bt作物;管理当局也正积极评估基改作物的风险。美国环保署于2001年已针对Bt作物发布重要的新规定,要求种籽生产商进一步证明这些作物的安全性,并能在农场中监控。

由于消费者的疑虑如排山倒海般而来,科学家正加速研究Bt和其他基改作物对环境的影响。他们想要知道的有:Bt作物如何影响“非目标”生物,例如无害的甲虫、鸟儿、蠕虫以及其他恰巧路过的生物?基因改造作物是否会授粉给周遭的植物,使抗虫基因流入野地,创造出不受控制的超级野草?以基因工程技术植入的抗虫与耐除草剂能力万一失效,使基改作物突然变得异常脆弱,这种机率又有多大?

第九讲高中英语翻译技巧与能力训练(上)[讲义]

高考英语翻译技巧与能力训练 高考英语中的翻译(中译英)题要求考生能应用所学过的语法和词汇来准确地表达思想,是一种要求相当高的考查形式。要求考生把中文的句子译成通顺的、语法结构正确的、符合英语表达习惯的英语句子,并能准确地传达中文句子中的每一个信息。该题型全面地考查学生英语词汇、语法等知识的综合运用能力,它对学生的动词时态、语态、名词的单复数、冠词、形容词、副词、介词等应用能力,还对学生的词组、句型、句子结构等进行了全面考查。翻译不仅在高考英语主观题中占不小的比例,而且翻译能力还直接影响考生在作文中的表现。 高考评分标准: 1.每题中单词拼写、标点符号、大小写错误每两处扣一分;2.语法错误(包括时态错误)每处扣一分;3.译文没用所给的单词扣一分。 如何才能提高中译英水准,在高考中获得理想的分数呢?考生除了必须具备比较扎实的语言基础外,关键还在于学会总结规律,找准中译英的切入点。 一、分析句子结构、寻找合适的句型 中文必须仔细读,一定要看的就是题目给我们的关键字或关键的词组,也就是我们常说的key words。尤其是最后两句翻译句子,它们大都在句子结构上提高了难度。读什么?读出句子结构:对于简单句,辨别出主谓宾,分清定语、同位语和状语;对于并列句,记住两个语法意义上独立的分句,须由连词连接起来;对于复合句,须区分定语从句,名词性从句以及状语从句。一般来说,中译英的句型可分为三大类:1.简单句;2.并列句;3.复合句;同时我们也要注意非谓语动词及其他一些特殊结构。回顾近几年的高考试题时,也不难发现试题中考了一些特殊句式。如:It句型(近几年考得较为频繁)、倒装句、with结构。 例1: 昨天我的电脑坏了。(wrong) 解析:本题考查:1)简单句There be结构;2)wrong的用法;3)中英文表达的差异。 译句:There was something wrong with my computer yesterday. 例2: 遇到困难的时候,我们需要的不是彼此埋怨,而是互相帮助。(not…but) 解析:本题考查:1)复合句:when引导的状语从句;what引导的主语从句;2)not…but结构;3)“彼此埋怨”的英文翻译。 译句:When(we are)in difficulty/When we meet with difficulties/When we have difficulties ,what we need is not to blame each other but to help each other. 例3:我们能做什么来阻止这种疾病蔓延呢?(prevent) 分析:如果有学生没有读全中文原句的话,就很有可能看成是以前所做的“我们要做些什么来阻止这种疾病的蔓延”,而译为We should do something to prevent the spread of this disease.因为这个原因而造成扣分,就太不应该了。 译句:What can we do to prevent the spread of this disease? 例4:他很有可能通过自己的努力得到驾驶执照。(likely) 译句:He is likely to get the driving license with his own efforts. 分析:有些学生一看到有可能,就会想到自己比较熟悉的possible,想当然地翻译成It is possible that…的结构。其实,学生对likely这个key word的使用也是会的,完全能够使用be likely to do或It’s likely th at…的结构。 例5:上海近几年经历了许多变化,如今已成为世界闻名的经济中心。(go through) 分析:乍一看,学生很容易轻易下笔,Shanghai has gone through…,it has become…,这已成为很多学生的一个习惯,句子和句子中随便用逗号隔开,英语不像中文,必须要考虑到句子的结构,逗号也不能随意使用。而此句中,就要想到用并列句中的连接词and来连接两个成分。

各专业的英文翻译

哲学Philosophy 马克思主义哲学Philosophy of Marxism 中国哲学Chinese Philosophy 外国哲学Foreign Philosophies 逻辑学Logic 伦理学Ethics 美学Aesthetics 宗教学Science of Religion 科学技术哲学Philosophy of Science and Technology 经济学Economics 理论经济学Theoretical Economics 政治经济学Political Economy 经济思想史History of Economic Thought 经济史History of Economic 西方经济学Western Economics 世界经济World Economics 人口、资源与环境经济学Population, Resources and Environmental Economics 应用经济学Applied Economics 国民经济学National Economics 区域经济学Regional Economics 财政学(含税收学)Public Finance (including Taxation) 金融学(含保险学)Finance (including Insurance) 产业经济学Industrial Economics 国际贸易学International Trade 劳动经济学Labor Economics 统计学Statistics 数量经济学Quantitative Economics 中文学科、专业名称英文学科、专业名称 国防经济学National Defense Economics 法学Law 法学Science of Law 法学理论Jurisprudence 法律史Legal History 宪法学与行政法学Constitutional Law and Administrative Law 刑法学Criminal Jurisprudence 民商法学(含劳动法学、社会保障法学) Civil Law and Commercial Law (including Science of Labour Law and Science of Social Security Law ) 诉讼法学Science of Procedure Laws

专业英语翻译

1) Electricity can be measured in amount and quality. 电可以用数量和质量来度量。 2) Instrument transformers are installed on the high-voltage equipment. 互感器安装在高压设备上。 3) Electric power is generated in power generating stations or plants. 电能是在发电站或发电厂产生的。 4) The meters are calibrated and the scale is designed to read the value of the desired unit. 这些仪表可以被校准并且设计了不同的量程,以便读出期望的数值。 5)Electrical energy can be stored in two metal plates separated by an insulation medium. Such a device is called a capacitor, and its ability to store electrical energy is termed capacitance. It is measured in Farads. 电能可以储存在被一绝缘介质隔开的两块金属板中,这样的装置被称为电容器,它储存电能的能力就被称为电容。电容的测量单位是法拉。 1)The signal should be filtered before it is amplified. The signal should be filtered before being amplified. 放大信号前,应先对其进行滤波。 2)An object becomes hot. It is placed in the sun. Once being placed in the sun, an object becomes hot. 物体放置在太阳下会变热。 3)We must do various experiments before a new electronic product is designed. Before designing a new electronic product we must do various experiments. 在设计一个新的电子产品之前,我们必须做各种实验。 4)Changing resistance is a method for controlling the flow of the current. 改变电阻是控制电流的一种方法。 5)Conducting electricity means the flow of electrons through an object. 传导电流意味着电子在物体内的流动。 1)The power supply, which is shown in block-diagram in Fig.1, is a single-phase switch-mode inverter. The power supply shown in block-diagram in Fig.1 is a single-phase switch-mode inverter. 图1中用框图表示的电源是一个单相开关逆变器。 2)A three-phase circuit, as it was pointed out above, is merely a combination of three single-phase circuits. A three-phase circuit, as pointed out above, is merely a combination of three single-phase circuits. 正如上面所指出的那样,三相电路只不过是三个单相电路的组合。 3) The transistor, which is working with correctly polarities, can work as an amplifier. The transistor working with correctly polarities can work as an amplifier. 工作于正确电源极性下的晶体管,作用就像放大器。 1)The capacity of individual generators is larger and larger so that the increasing demand of electric power is satisfied. The capacity of individual generators is larger and larger to satisfy the increasing demand of electric power. 单台发电机的容量越来越大,目的就是满足不断增长的用电需求。 2) What does a fuse do? It protects a circuit. The function of a fuse is to protect a circuit. 保险的作用就是保护电路。

化学专业英语翻译1

01.THE ELEMENTS AND THE PERIODIC TABLE 01元素和元素周期 表。 The number of protons in the nucleus of an atom is referred to as the atomic number, or proton number, Z. The number of electrons in an electrically neutral atom is also equal to the atomic number, Z. The total mass of an atom is determined very nearly by the total number of protons and neutrons in its nucleus. This total is called the mass number, A. The number of neutrons in an atom, the neutron number, is given by the quantity A-Z. 原子核中的质子数的原子称为原子序数,或质子数,卓电子数的电中性的原子也等于原子序数Z,总质量的原子是非常接近的总数量的质子和中子在原子核。这被称为质量数,这个数的原子中的中子,中子数,给出了所有的数量 The term element refers to, a pure substance with atoms all of a single kind. To the chemist the "kind" of atom is specified by its atomic number, since this is the property that determines its chemical behavior. At present all the atoms from Z = 1 to Z = 107 are known; there are 107 chemical elements. Each chemical element has been given a name and a distinctive symbol. For most elements the symbol is simply the abbreviated form of

完整word版五年级下册英语翻译1 3单元

五年级下册英语翻译(1-3单元) Unit1da P4Let'stal张鹏:你们何时结束在早上?佩德罗:我们结束在一点钟。然后我们吃午饭在家。张鹏:哇。你们何时返回学校在午饭后?佩德罗:在两点半。开始在三点钟。张鹏:你通常何时吃晚饭在西班牙?佩德罗:通常在九点半或者十点钟。张鹏:哇。那是太迟了。 PLet'slearn做早操,吃早饭,上,做运动,吃晚饭。你何时做早操?在七点钟。 P6Let'sspell打扫,钟,班级,聪明的,盘子,茄子,请,玩 P7Let'stal老板:今天你为什么购物?莎拉:我的妈妈昨晚工作,所以我今天购物。老板:好女孩。所以你在周末干什么?莎拉:我经常看电视并且打乒乓球和我的爸爸。老板:那听起来像很多乐趣。莎拉:是的,但是我也是努力工作的。我通常洗我的衣服。有时我烧饭。老板:你是如此忙的。你需要一个机器人去帮你。 P8Let'slearn打扫我的房间,去散步,去购物,上一节舞

蹈。我经常打扫我的房间在星期六。 罗宾的戏剧P9Readandrite 罗宾在一个戏剧里。他是罗宾森克鲁斯。这是来自他的一封信。我的名字叫罗宾森。我居住在一个岛上。我总是每天早起床。我洗我的脸,然后我吃早饭。有时我也打扫我的山洞。我经常在水中游泳。在下午。我和朋友一起运动。他的名字叫星期五。星期五擅长运动。他经常胜利。 Unit1单词表。吃早饭,上,进行体育运动,活动运动,做早操,吃晚饭,打扫我的房间,散步,去买东西购物,学习上(),跳舞,上舞蹈,需要,戏剧剧本,信,居住,岛,总是一直,山洞洞穴,去游泳,获胜,在(时间)后,开始,通常地惯常地,西班牙,晚迟,午前上午,午后下午,为什么,购物买东西,工作,上一个过去的,听起来像,还(也),忙的 Unit2 favriteseasn P14Let'stal琼斯先生:你喜欢音乐吗,孩子们?迈克:是的。它是美丽的。它是什么?琼斯先生:《四季歌》。今天我们将要画季节。你最喜欢哪个季节?迈克?迈克:冬季。我喜欢雪。琼斯先生:我也喜欢雪。你最喜欢哪个季节,吴一凡?吴一凡:春季,它是美丽的。琼斯先生:是的,它是。 P1Let'slearn春夏秋冬你最喜欢那个季节?夏天。我能每

论文:浅析英语翻译能力提升的障碍和策略

论文:浅析英语翻译能力提升的障碍和策略摘要:翻译能力是英语综合能力的重要组成部分,也是英语专业学生必需具备的基本能力。要全面提升英语翻译能力,需要了解英汉两种文化的差异性,具备深厚的语言功底,掌握熟练的翻译技巧。 关键字:英语翻译能力;提升;障碍;策略 中西文化差异是影响英语翻译能力提升的重要因素,除了文化因素外,英语翻译能力的提升还受到其他因素的影响,本文将进一步的展开叙述影响英语翻译能力提升的障碍及其相应的策略。 一、影响英语翻译能力提升的障碍 1.中西文化的差异性容易造成英语翻译误会 英语翻译就是汉语和英语相互转换的过程,这个过程不仅仅是一种语言现象,也体现了跨文化现象。具体来说,中西方的文化差异体现在文化传统、生活习惯、价值观念和思维方式等方面,而这些层面的差异性往往会造成人们对同一事物有着不同的理解和解释,因此不同文化的差异性容易造成英语翻译的误会。比如,生活中最常见的信封的写法,在中国,习惯的书写顺序是国名,省、市、县、街道,最后才是收信人姓名。而在西方国家信封的书写顺序恰好相反。因此在学习英语知识的同时,需要更加注意对英语文化知识的了解和掌握。

2.语言基础知识掌握不扎实,影响了翻译的准确性 英语翻译就是英汉两种语言之间的相互转换,在转换的过程中主要涉及两个方面,首先翻译者要正确地领悟原文的意思,其次要通过译文将原文确切的表达出来,达到“信达雅”的标准。因此翻译者需要牢固地掌握英汉两种语言。但是由于多方面的因素,翻译者的语言基础知识掌握不扎实,很多翻译者的词汇量太少,经常背了忘,而又不重视巩固复习,或者死记硬背不会灵活运用,此外,语法掌握也不扎实,对一些基本的句型模棱两可,不能正确理解更不会运用。 二、提升英语翻译能力的具体策略 1.通过词汇、语法和阅读,了解中西文化之间的差异性 在英语的学习中,提高英语翻译能力,不仅要加强英语语言知识的学习,还要注重对英语文化知识的了解。具体来说,可以通过词汇、语法以及阅读等的学习获取英语文化知识。 首先,通过词汇的学习了解中西文化知识。词汇是英语语言的基本元素,掌握词汇的过程中,仅仅注重词汇正确的拼写和准确的发音是远远不够的,更主要的是学会如何恰当的运用词汇和组织词汇。因此,在背诵英语词汇意思的基础之上还需要进一步了解词汇产生的文化背景知识,尤其是了解习语、谚语和成语这一类词语的文化内涵、感情色彩以及

英语翻译专业简历范文

英语翻译专业简历范文 导读:本文是关于英语翻译专业简历范文,希望能帮助到您! 英语翻译专业简历范文姓名五年以上工作经验|女|32岁(居住地:上海电话:E-mail:最近工作[3年2个月]公司:XX(上海)咨询有限公司行业:其他行业职位:英文翻译兼外事专管员最高学历学历:本科专业:英语学校:华东师范大学自我评价丰富的外国供应商接待经验。工作中独立思考及操作能力强,“CET-6级”、“全国翻译资格考试英语口译三级”证书。英语听、说、读、写流利,可胜任笔译及一般会议口译,陪同翻译等工作。性格开朗,工作认真负责,人际关系融洽。求职意向工作性质:全职期望月薪:面议/月目标职能:英语翻译工作经验2007/9--至今:XX(上海)咨询有限公司[3年2个月]所属行业:其他行业总经理办公室英文翻译兼外事专管员负责总经理工作报告、董事会纪要、公司财务、管理文件等资料翻译工作。因公司出口项目多,我还负责公司员工出国的护照签证申请事宜,经常外出到上级集团及上海市外办,各国驻上海领事馆等。工作业绩:多次翻译公司董事会纪要,少数合同翻译,多次成功申办各国签证,并成功申办了难度较大的斯洛伐克工作签证,并与领事馆保持了良好关系。所属行业:其他行业自由职业英文翻译英语笔译:《财富时报》、《21世纪商业评论》、《疯狂英语》、《天下博客》、英国《卫报》中文版兼职笔译。擅长生物化学、生物工程、质量管理等专业翻译。英语口译:熟悉生物化学、生物工程及质量管理等专业词汇。丰富的外国供应

商及实验室工作人员接待经验。广外会外商陪同口译工作。国家翻译资格水平考试(CATTI)英语口译三级证书。2002/2--2005/9:上海某翻译公司[3个7个月]翻译事业部专职英语翻译从事专职英语翻译工作,至今合共翻译稿件超过600万字,主要包括商业管理、新闻时事、影视剧本、文学文化和电脑IT等内容,其中不少是关于香港社会情况以及行文用语需要符合香港客户要求的繁体中文稿件,也有涉及医学保健、土木建筑、机械设备等方面的稿件。教育经历语言能力英语(精通)日语(一般)德语(良好)培训经历2005/3-2006/3昂立教育高级口译2002/7--2002/8华东工业大学金叶信息技术学院全国大学英语研修班课程2002年曾随学院教师参加暑期全国大学英语教学组和上海外教社在上海举办的研修班课程,受益匪浅。证书2009/10中级工程师合格2005/12高级口译证书合格2004/9初级工程师2002/5英语专业八级合格2002/5全国计算机等级二级合格

专业英语翻译

1. Civil engineering,the oldest of the engineering specialties,is the planning,design,construction, and management of the built environment.This environment includes all structures built according to scientific principles,from irrigation and drainage systems to rocket-launching facilities. 土木工程,最老的工程专业,是建筑环境的规划、设计、施工和管理。这个环境包括从灌溉和排水系统到火箭发射设施的所有根据科学原理建造的结构物。 2. Civil engineers build roads,bridges,tunnels,dams,harbors,power plants,water and sewage systems,hospitals,schools,mass transit,and other public facilities essential to modern society and large population concentrations. 土木工程师修建道路、桥梁、隧道、大坝、港口、发电站、水系统和污水系统,医院、学校、公共交通系统,以及现代化社会和大量人口集中的地方所必需的其他公共设施。 3. Computers are a necessity for the modern civil engineer because they permit the engineer to efficiently handle the large quantities of data needed in determining the best way to construct a project. 计算机对于现代土木工程师而言是必不可少的,因为它们可使工程师高效地处理大量数据,这些数据是在确定最优施工方案时所需要的。 4. They also determine the combination of appropriate materials:steel,concrete,plastic,stone,asphalt,brick,aluminum,or other construction materials. 他们还确定适当的材料组合:钢材、混凝土、塑料、石料、沥青、砖、铝或其他的建筑材料。 5. In this branch of civil engineering, engineers build pipelines and related facilities which transport liquids, gases, or solids ranging from coal slurries (mixed coal and water) and semiliquid wastes, to water, oil, and various types of highly combustible and noncombustible gases. 在土木工程的这个分支里,工程师修建运输液体、气体或固体的管道和相关的设施,运输的物质范围从煤浆和半液体废料到水、石油和不同类型的高燃性和非燃性气体。 6. They coordinate the activities of virtually everyone engaged in the work:the surveyors;workers who lay out and construct the temporary roads and ramps,excavate for the foundation,build the forms and pour the concrete;and workers who build the steel framework.These engineers also make regular progress reports to the owners of the structure. 事实上,他们协调工程中每个人的活动:勘测员、为临时道路和斜坡定线和施工、挖基础、建模和浇注混凝土的工人、以及绑扎钢筋的工人。这些工程师还为建筑业主定期提供进度报告。 7. This art includes,in addition to buildings,all the civil engineering structures such as dams,canals,tunnels,aqueducts,and bridges.

专业英语翻译1

当一个命题函数的所有变量都赋上了值,所得到的语句就有了真假值。然而,还有另一个重要的方法,称为量词化,为了从一个命题函数中生成一个命题,两种形式的量词化将在本节中被讨论,即全称量词和存在量词。 许多数学家陈述断言,对于所有在特定的定义域内的变量,它的取值是真的,其中特定的定义域称为论域,像这样的量词化例子我们通常用全称量词化。全称量词化是一个命题函数对于在论域内的所有x的取值,P(x)都是真的,论域指的是对于x可能取的值。 定义1:P(x)的全称量词化是这样一个命题:对论域中的所有x,P(x)都是真的。把P(x)的全称量词化记作?xP(x)。这里?是被叫做全称量词。 命题xP(X)也可以表达成“对于所有的xP(x)”或者对于“每一个 xP(x)” 注意:最好不用any这个词,因为它可能意指“每一个”或“某一个”,经常导致意义含糊不清。而在某些情况下,例如用于否定句中,如在句子“there is not any reason not to study hard.”(没有任何不努力学习的理由)中,any的含义却是清楚的。 例题5. 用全称量词化表达一个句子“对于班上的每一个学生都学习了微积分。” 方法:设P(x)为语句“x 学习了微积分。” 然后语句“对于班上每一个学生都学习了微积分”可以被写成?xP(x)的形式,然而学生都包含在班上这个论域里。

这个语句也能被表达成 ?x(s(x)→P(x)), 然而S(x)语句是“x在班上”。 P(x)同前者一样,论域是所有学生的集合。 例题5说明,对于一个定理,可采用不止一种的好办法来证明。 许多数学家陈述断言,对于一个有特定取值的元素,像这样的语句通常用存在量词化,对于存在量词化,我们形成一个命题是正确的,当且仅当P(x)是真的至少对于一个在论域内的x。 定义2.P(x)的存在量词化是这样一个命题:在论域中存在一个元素x 使得P(x)都是真的,把P(x)的存在量词化记作?xP(x)。这里?是存在量词。 存在量词化?xP(x)也可以表达为“对于P(x)存在一个x”,“对于P(x)至少有一个x”,或者对于一些xP(x)”。 例题6.设P(x)为语句“x>3”.对于存在量词化?xP(x)在那些情况下是真的,然而论域是真值的集合。 方法:因为“x>3”是真的,例如,当x=4则对于存在量词化P(x),即?xP(x)是真的。

浅议英语翻译能力的培养-文档资料

浅议英语翻译能力的培养 高等学校很注重培养英语专业学生的翻译能力。要具备一定的翻译能力,学生必须具有深厚的语言功底?p广博的文化知识?p熟练的翻译技巧?p正确的翻译观念和严谨的翻译态度。因此,要培养和提高英语专业学生的翻译能力,教师应该从以下几个方面入手。 一?p掌握好汉语和英语的基础知识 翻译是一个语言转换的过程。从根本上讲,这个过程要解决两个问题:一是如何深刻地理解原文;二是如何用译文确切地表达原文的意思。因此,译者要较好地掌握英语和汉语两种语言,具备较强的语言理解能力和表达能力,这是做好翻译的前提条件。 从语言学角度讲,英语和汉语之间最大的区别莫过于形合和意合的区别。英语是重形合的语言,即英语中词语或句子间的连接主要依靠连接词来完成。汉语是重意合的语言,即汉语中词语或句子间的连接主要依靠语义或句子之间的逻辑关系来完成。例如“他今天没来,母亲住院了”(Hedidnotcometodaybecausehis mother was hospitalized),在这个例子中,汉语原文在表达因果关系时,没有使用任何表示因果关系的词汇,但是读者一看就能理解。然而,在翻译成英语的时候,必须加上连接词because,否则就会出现语法错误。二?p积累广博的文化知识 翻译材料涉及面极广,学生要具备渊博的知识。具体来说,文学性的翻译需要学生具备广博的文化知识,科技翻译需要学生具备相关的专业知识。另外,学生还要掌握大量的习语和俚语,这样在翻译时才不会被句子的字面意义所迷惑。如“I decidedto sit at his feet”这句话的字面意思是“我决定坐在他的脚上”,但实际上,“sit at his feet”是一个习语,表示“拜他为师”。 三?p培养严谨的翻译态度 英语和汉语的句子结构复杂,词汇意义也复杂多变,在翻译中出现错误是难以避免的,但是教师应该让学生尽量避免错误,避免粗枝大叶,望文生义。此外,学生在翻译时还应多关注细节,如单词的拼写?p标点符号?p小词等。例如,“中国政府”应该翻译成Chinese government还是the Chinese government这

各专业的英文翻译

中国教育在线考研频道提供考研全方面信息指导及咨询服务,为您成功考研提供一切帮助。 哲学Philosophy 马克思主义哲学Philosophy of Marxism 中国哲学Chinese Philosophy 外国哲学Foreign Philosophies 逻辑学Logic 伦理学Ethics 美学Aesthetics 宗教学Science of Religion 科学技术哲学Philosophy of Science and Technology 经济学Economics 理论经济学Theoretical Economics 政治经济学Political Economy 经济思想史History of Economic Thought 经济史History of Economic 西方经济学Western Economics 世界经济World Economics 人口、资源与环境经济学Population, Resources and Environmental Economics 应用经济学Applied Economics 国民经济学National Economics 区域经济学Regional Economics 财政学(含税收学)Public Finance (including Taxation) 金融学(含保险学)Finance (including Insurance) 产业经济学Industrial Economics 国际贸易学International Trade 劳动经济学Labor Economics 统计学Statistics 数量经济学Quantitative Economics 中文学科、专业名称英文学科、专业名称 国防经济学National Defense Economics 法学Law 法学Science of Law 法学理论Jurisprudence 法律史Legal History 宪法学与行政法学Constitutional Law and Administrative Law 刑法学Criminal Jurisprudence

专业英语翻译

3 Earthquakes Earthquakes is trembling or shaking movement of the Earth’s surface.Most earthquakes are minor https://www.wendangku.net/doc/c94965971.html,rger earthquakes usually begin with slight tremors but rapidly take the form of one or more violent shocks,and end in vibrations of gradually diminishing force called aftershocks.The subterranean point of origin of an earthquake is called its focus;the point on the surface directly above the focus is the epicenter .The magnitude and intensity of an earthquake is determined by the use of scales,e.g.,the Richter scale and Mercalli scale. Most earthquakes are causally related to compressional stress or tensional stress built up at the margins of the huge moving lithospheric plates that make up the Earth’s surface.The immediate cause of most shallow earthquakes is the sudden release of stress along a fault,or fracture in the Earth’s crust resulting in moving of the opposing blocks of rock past one another.These movements cause vibrations to pass through and around the Earth in wave form,just as ripples are generated when a pebble is dropped into water.V olcanic eruption,rockfalls,landslides,and explosions can also cause a quake,but most of these are of only local extent. 6 Evidence from radiometric dating indicates that the Earth is about 4,570 million years old.Geologists have divided Earth’s history into a series of time intervals.These time intervals are not equal in length like the hours in a day.Instead the time intervals are variable in length.Different spans of time on the time scale are usually delimited by major geological or paleontological events,such as varying rock type or fossils within the strata and mass extinctions.For example,the boundary between the Cretaceous period and the Paleogene period is defined by the first appearance of animals with hard parts. The geologic time scale was formulated during 地震 地震颤动或发抖运动的地球表面。大部分地震是轻微地震。大地震通常开始轻微的颤动而迅速采取一个或更猛烈冲击的形式,并最终在逐渐减少振动的力称为余震。地震起源的地下点称为重心;表面上以上的重点是中心点。地震的震级和强度的尺度,确定使用例如,李希特尺度和麦加利震级。 大部分地震是因果关系的压应力或拉应力建立在巨大岩石圈板块的运动,使地球表面的空间。最浅的地震的直接原因是沿断层应力的突然释放,或断裂在地壳导致岩石过去彼此对立块体运动。这些运动引起的振动通过环绕地球以波的形式,就像涟漪时产生一个石子投进水中。火山喷发,崩塌,滑坡,和爆炸也可以引起地震,但这些只是局部性的范围。 证据来自辐射测年表明,地球的年龄大约是4570000000岁。地质学家划分地球历史划分成一系列的时间。这些时间间隔的长度像一天中的时间是不相等的。相反,时间间隔的长度是可变的。时间在时间尺度不同跨度通常是由主要的地质或古生物事件分隔的,如不同的地层和大规模物种灭绝的岩石或化石类型。例如,白垩纪和古近纪是用坚硬的部分动物的第一次出现定义之间的边界。

专业英语翻译1

专业英语翻译1

Basic Chemistry 1. Atomic Structure Matter has mass and takes up space. Atoms are basic building blocks of matter, and cannot be chemically subdivided by ordinary means. Both the protons and neutrons reside in the nucleus. Protons have a positive (+) charge, neutrons have no charge --they are neutral. Electrons reside in orbitals around the nucleus. They have a negative charge (-). It is the number of protons that determines the atomic number. The number of protons in an element is constant but neutron number may vary, so mass number (protons + neutrons) may vary. 1。原子结构 物质有质量,占空间。原子是物质的基本组成物,不能用普通的方法进行化学细分。 质子和中子都驻留在原子核中。质子有一个正电荷,中子是不带电的,它们是中性的。电子在原子核周围的轨道上。他们有一个负电荷(-)。 它是确定原子序数的质子数。在一个元素中的质子的数量是恒定的,但中子数可能会有所不同,所以质量数(质子+中子)可能会有所不同。 The same element may contain varying numbers of neutrons; these forms of an element are called isotopes. The chemical properties of isotopes are the same, although the physical properties of some isotopes may be different. Some isotopes are radioactive-meaning they "radiate" energy as they decay to a more stable form, perhaps another element half-life: time required for half of the atoms of an element to decay into stable form. Another example is oxygen, with atomic number of 8 can have 8, 9, or 10 neutrons. 相同的元素可能含有不同数量的中子,这些元素

考研英语怎样提高翻译能力

考研英语:怎样提高翻译能力? 在英语翻译备考中,许多人总想一步登天,跨考教育英语教研室的孟老师在此着重强调,须知任何能力(包括英语翻译在内)的提升必定要经过反复练习的过程。当然,练习是有方法可循的,比如系统学习翻译的方法、原理、固定句式和译法、多学习比较优秀的译文等等。 要做好翻译其实并不是机械地在大量的词库句库中搜求配对,片面追求字面的精准,而是对信息的传达。这就要求译者不仅对源语言有准确的理解,并且对于目标语言也要有优秀的表达能力。很多时候你能明白一整段的意思,却觉得不能自如组织成书面汉语,是因为其实你的汉语表达能力也不够。 提高汉语表达能力,建议可以从经典作品的译本和各大电影字幕组的翻译作品中学习。前者的翻译作品比较严谨传神;后者则生动俏皮,富有时代气息。在学习这些资料时,并不是说某句英文只有资料里的一种翻译方法,以后碰到这句话就直接照搬照抄译文,资料只是辅助,要学习的是其中的思路和方法。 另外,不要太拘泥于所谓的翻译理论。语法和理论都是随着时代的更迭不断更新的,比如当下不断涌现出的各种新词汇,必须与时俱进。 翻译最重要的一点,就是对文章的理解,要彻底读懂文章想表达的思想,甚至尝试去体会原作者的想法,才能翻译出更贴切、更符合原文的译文。 所以,总结起来,你需要经历三个阶段: 首先,语法学好,能正确理解句子; 第二,接受系统的翻译训练,学会翻译方法; 第三,就在提高汉语能力形成地道的表达 你可以一边学习方法和原理、多加练习,一边做语言功底上的积累,才谓标本兼治的“有效”;至于“快速”,其实是你有多勤奋的问题——假设可以使你熟能生巧、从量变达到质变的那个量是一定的。 现在的你达到那个阶段了呢??? 综上就是小编给大家提供的高分技巧,技巧就是牢固的知识点和强悍的答题思路,预祝所有

相关文档