文档库 最新最全的文档下载
当前位置:文档库 › 位移法解题步骤(精)

位移法解题步骤(精)

位移法解题步骤(精)
位移法解题步骤(精)

位移法解题步骤

1.位移法解题步骤

⑴ 确定位移法基本未知量数目,作出位移法基本体系图。 ⑵ 列位移法基本方程。

⑶ 求系数和自由项。作位移法基本结构单独在各个单位位移作用下的弯矩图(1M 、

2M …n M 图),作位移法基本结构单独在荷载作用下的弯矩图(P M 图)。依据结点的平衡条件,应用式∑=ij e M M 、式∑∑-+-=Qik Qij e F F F 求系数和自由项。

⑷ 解算方程组,求出各基本未知量。 ⑸ 根据叠加法作弯矩图。

⑹ 取各个杆为对象,根据各杆的杆端弯矩和杆上的作用荷载,依据杆件的平衡条件,求各杆端剪力。取各个结点为对象,根据各杆对结点作用的剪力,应用平衡条件求各杆的轴力。作结构体系的剪力图和轴力图。

2.例题

用位移法计算图(a )所示结构,并作弯矩图。结构中各杆EI 为常数。

解:(1)作位移法基本体系图。此结构只有一个刚结点B ,即只有一个角位移1Z 。作位移法基本体系图如图(b )所示。各杆的线刚度都为4

EI i =。

(2)列位移法方程。将基本体系可看待成固定状态和位移状态之叠加。根据附加刚臂上约束力偶矩为零的条件建立方程。

01111=+P R Z r

(3) 作固定状态下的弯矩图,求自由项。作位移法基本结构单独在荷载作用下的弯矩图,如图(d )所示。根据载常数得固定状态下各杆端弯矩,

0====F

D B F BD F CB F AB M M M M

).(10)8

1(2m kN ql M F

BA

=--= ).(40m kN l F M F

BC -=?-=

考虑结点B 的平衡条件,得

F BC

F BD F BA e P M M M M R ++=+1

)

.(4212400101m kN M M M M R e

F

BC F BD F BA P -=--+=-++=

作单位位移状态下的弯矩图,求系数。作位移法基本结构单独在单位正向位移状态下的弯矩图,如图(d )所示。根据形常数得基本结构单独在单位正向位移状态下各杆端弯矩,

0===CB BC AB M M M

i M BA 3= i M BD 4= i M DB 2= 考虑结点B 的平衡条件,得

i M M M r BC BD BA 711=++=

(4) 解方程。将系数11r 和自由项P R 1代入位移法方程式中,得 04271=-iZ 解方程,得

i

Z 6

1=

(5) 计算刚架的杆端弯矩并作弯矩图。根据叠加公式P M Z M M +?=11计算各个

杆端弯矩,即得

0=AB M )(28106

3m kN i

i M BA ?=+?=

)(2464m kN i i M BD ?=?

= ).(126

2m kN i

i M DB =?= )(40m kN M BC ?-= 0=CB M

绘弯矩图如图(e )所示。

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

和积法计算最大特征向量实例

已知66?判断矩阵11141 1/2112411/211/21531/21/41/41/5 11/31/3111/3311222311????????=??????????B ,利用和积法计算其最大特征向量。 1将判断矩阵的每一列元素作归一化处理得'B : []61 6.25 5.75 6.53207.33 3.83ij i b ==∑1,2,,6j = 则: '0.160.170.150.200.140.130.160.170.300.200.140.130.160.090.150.250.420.130.04 0.040.030.050.050.090.160.170.050.150.140.260.320.340.300.150.140.26????????=?????????? B 2将每一列经归一化处理后的判断矩阵按列相加得'w : []T 'T 0.95 1.10 1.200.300.93 1.51=w 61 5.99j j w ==∑ 3对向量'w 作归一化处理得最大特征向量w : []T T 0.160.180.200.050.160.25=w 4计算判断矩阵最大特征根max λ: []T T ()=1.025 1.225 1.3050.309 1.066 1.64Bw max 111 1.025 1.225 1.3050.309 1.066 1.64==() 6.3560.160.180.20.050.160.25n i i BW n w λ=?+++++=∑ 5判断矩阵一致性指标C.I.(Consistency Index ):

max 6.356C.I.=0.07161 n n λ--==-- 6随机一致性比率C.R.(Consistency Ratio ): C.I.0.07C.R.=0.0560.10R.I. 1.24 ==< 满足要求。

数列解题技巧归纳总结---好(5份)

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-? ?-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ??????????????????? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和 求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握 了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =?

权重确定方法归纳解读

权重确定方法归纳 多指标综合评价是指人们根据不同的评价目的,选择相应的评价形式据此选择多个因素或指标,并通过一定的评价方法将多个评价因素或指标转化为能反映评价对象总体特征的信息,其中评价指标与权重系数确定将直接影响综合评价的结果。 按照权数产生方法的不同多指标综合评价方法可分为主观赋权评价法和客观赋权评价法两大类,其中主观赋权评价法采取定性的方法由专家根据经验进行主观判断而得到权数,然后再对指标进行综合评价,如层次分析法、综合评分法、模糊评价法、指数加权法和功效系数法等。客观赋权评价法则根据指标之间的相关关系或各项指标的变异系数来确定权数进行综合评价,如熵值法、神经网络分析法、TOPSIS法、灰色关联分析法、主成分分析法、变异系数法等。两种赋权方法特点不同,其中主观赋权评价法依据专家经验衡量各指标的相对重要性,有一定的主观随意性,受人为因素的干扰较大,在评价指标较多时难以得到准确的评价。客观赋权评价法综合考虑各指标间的相互关系,根据各指标所提供的初始信息量来确定权数,能够达到评价结果的精确但是当指标较多时,计算量非常大。下面就对当前应用较多的评价方法进行阐述。 一、变异系数法 (一)变异系数法简介 变异系数法是直接利用各项指标所包含的信息,通过计算得到指标的权重。是一种客观赋权的方法。此方法的基本做法是:在评价指标体系中,指标取值差异越大的指标,也就是越难以实现的指标,这样的指标更能反映被评价单位的差距。例如,在评价各个国家的经济发展状况时,选择人均国民生产总值(人均GNP)作为评价的标准指标之一,是因为人均GNP不仅能反映各个国家的经济发展水平,还能反映一个国家的现代化程度。如果各个国家的人均GNP没有多大的差别,则这个指标用来衡量现代化程度、经济发展水平就失去了意义。 由于评价指标体系中的各项指标的量纲不同,不宜直接比较其差别程度。为了消除各项评价指标的量纲不同的影响,需要用各项指标的变异系数来衡量各项指标取值的差异程度。各项指标的变异系数公式如下:

(完整word版)单纯形法的解题步骤

三、单纯形法的解题步骤 第一步:作单纯形表. )(1)把原线性规划问题化为标准形式; )(2)找出初始可行基,通常取约束方程组系数矩阵中的单位矩阵; )(3)目标函数非基化; )(4)作初始单纯形表. 第二步:最优解的判定. (1) 若所有检验数都是非正数,即,则此时线性规划问题已取 得最优解. (2) 若存在某个检验数是正数,即,而所对应的列向量无正分量,则线性规划 问题无最优解. 如果以上两条都不满足,则进行下一步. 第三步:换基迭代. ,并确定所在列的非基变量为进基变量. (1)找到最大正检验数,设为 (2)对最大正检验数所在列实施最小比值法,确定出主元,并把主元加上小括号. 主元是最大正检验数 所在列,用常数项与进基变量所对应的列向 量中正分量的比值最小者; 替换出基变量,从而得到新的基变量.也就是主元所在 (3)换基:用进基变量 (4)利用矩阵的行初等变换,将主元变为1,其所在列其他元素都变为零,从此得到新的单纯形表; (5)回到第二步,继续判定最优解是否存在,然后进行新一轮换基迭代,直到问题得到解决为止. 例3 求.

解(1)化标准型:令 ,引进松弛变量 ,其标准型为 求 (2)作单纯形表:在约束方程组系数矩阵中 的系数构成单位矩阵,故取 为基变量,目标函数已非基化了,作初始单纯形表并“换基迭代”(见表6.8).表 6.8

(3)最终结果:此时检验数均为非正数,线性规划问题取得最优解,最优解为 目标函数取得最优值. 原线性规划问题的最优解为:.目标函数的最优值为14,即. 例4 用单纯形方法解线性规划问题. 求. 解此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵(1、2行,3、4列构成),取为基变量,而目标函数没有非基化.从约束方程找出 ,, 代入目标函数 , 经整理后,目标函数非基化了. 作单纯形表,并进行换基迭代(见表6.9). 最大检验数,由最小比值法知:为主元,对主元所在列施以行初等变出基,非基变量进基. 换,基变量

数学解题技巧与解题思路

解题技巧 一、三角函数题 注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。 二、数列题 1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后, 如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。 三、立体几何题 1、证明线面位置关系,一般不需要去建系,更简单;

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。 四、概率问题 1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数; 2、搞清是什么概率模型,套用哪个公式; 3、记准均值、方差、标准差公式; 4、求概率时,正难则反(根据p1+p2+...+pn=1); 5、注意计数时利用列举、树图等基本方法; 6、注意放回抽样,不放回抽样; 7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透; 8、注意条件概率公式; 9、注意平均分组、不完全平均分组问题。 五、圆锥曲线问题 1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

单纯形法的计算方法

第4章 单纯形法的计算方法单纯形法求解线性规划的思路: 一般线性规划问题具有线性方程组的变量数大于方程个数, 这时有不定的解。但可以从线性方程组中找出一个个的单纯形, 每一个单纯形可以求得一组解, 然后再判断该解使目标函数值是增大还是变小, 决定下一步选择的单纯形。这就是迭代,直到目标函数实现最大值或最小值为止。 4.1 初始基可行解的确定 为了确定初始基可行解, 要首先找出初始可行基, 其方法如下。 (1)第一种情况:若线性规划问题 max z = 从Pj ( j = 1 , 2 , ? , n)中一般能直接观察到存在一个初始可行基 (2)第二种情况:对所有约束条件是“ ≤”形式的不等式, 可以利用化为标准型的方法, 在每个约束条件的左端加上一个松弛变量。经过整理, 重新对 及 ( i = 1 , 2 , ? , m; j = 1 , 2 , ? , n)进行编号, 则可得下列方程组 显然得到一个m×m单位矩阵 以B 作为可行基。将上面方程组的每个等式移项得 令由上式得 又因 ≥0, 所以得到一个初始基可行解 (3)第三种情况:对所有约束条件是“ ≥”形式的不等式及等式约

束情况, 若不存在单位矩阵时, 就采用人造基方法。即对不等式约束减去一个非负的剩余变量后, 再加上一个非负的人工变量; 对于等式约束再加上一个非负的人工变量, 总能得到一个单位矩阵。 4.2 最优性检验和解的判别 对线性规划问题的求解结果可能出现唯一最优解、无穷多最优解、无界解和无可行解四种情况, 为此需要建立对解的判别准则。一般情况下, 经过迭代后可以得到: 将上代入目标函数,整理后得 令 于是 再令 则 (1) 最优解的判别定理 若为对应于基B的一个基可行解,且对于一切 且有则 为最优解。称为检验数。 (2) 无穷多最优解的判别定理 若为一个基可行解, 且对于一切 且有 又存在某个非基变量的检验数,则线性规划问题有无穷多最优解。 (3) 无界解判别定理 若为一个基可行解,有一个> 0 ,并且对i = 1 , 2 , ?, m,有≤0 , 那么该线性规划问题具有无界解(或称无最优解)。 4.3 基变换

和积法具体计算步骤

和积法具体计算步骤 1将判断矩阵的每一列元素作归一化处理: '1 ij ij n ij i b b b == ∑ ,1,2,,i j n =K 2将每一列经归一化处理后的判断矩阵按列相加: ' '1n i ij j w b ==∑ 1,2,,i n =K 3对向量''''T 12(,,,)n W w w w =K 作归一化处理: ' '1 i i n i i w w w == ∑ 1,2,,i n =K 得到T 12(,,,)n W w w w =K 即为所求特征向量的近似解。 4计算判断矩阵最大特征根max λ: max 11=n i i BW n w λ=∑ 5判断矩阵一致性指标C.I.(Consistency Index ): max C.I.= 1 n n λ-- 6随机一致性比率C.R.(Consistency Ratio ): C.I. C.R.= R.I. 对于多阶判断矩阵,引入平均随机一致性指标R.I.(Random Index ),下表给出了1-15阶正互反矩阵计算1000次得到的平均随机一致性指标,当C.R.0.10时,便认为判断矩阵具有可以接受的一 致性。

方根法具体计算步骤 1将判断矩阵的每一行元素相乘: 1n i ij j m b ==∏ 1,2,,i n =K 2计算i m 的n 次方根'i w : 'i w = 1,2,,i n =K 3对向量''''T 12(,,,)n W w w w =K 作归一化处理: ' '1 i i n i i w w w == ∑ 1,2,,i n =K 得到T 12(,,,)n W w w w =K 即为所求特征向量的近似解。

【专题整理】【解答题】【数学归纳法、放缩法】【数列】

数学归纳法和放缩法 放缩法证明不等式 1、添加或舍弃一些正项(或负项) 【例1】已知:* 21().n n a n N =-∈,求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈. 【解析】 111211111111 .,1,2,...,,2122(21)2 3.222232 k k k k k k k k a k n a +++-==-=-≥-=--+-,1222311111111 ...(...)(1),2322223223 n n n n a a a n n n a a a +∴ +++≥-+++=-->-,*122311...().232 n n a a a n n n N a a a +∴-<+++<∈. 【点评】若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小.由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的.本题在放缩时就舍去了22k -,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 【例2】函数x x x f 4 14)(+=,求证:2121)()2()1(1-+>++++n n n f f f (*∈N n ). 【解析】 由n n n n n f 2 21 14111414)(?->+-=+=得:n n f f f 221122112211)()2()1(21?-++?-+?- >+++ 2 1 21)21211(4111-+=+++-=+-n n n n (*∈N n ). 【点评】此题不等式左边不易求和,此时根据不等式右边特征,先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和.若分子,分母如果同时存在变量时,要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式.如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可. 3、先放缩,后裂项(或先裂项再放缩) 【例3】已知:n a n =,求证: 31 2 <∑=n k k a k .

数学归纳法证明及其使用技巧

步骤 第一数学归纳法 一般地,证明一个与自然数n有关的命题P(n),有如下步骤: (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但 也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 第二数学归纳法 对于某个与自然数有关的命题P(n), (1)验证n=n0,n=n1时P(n)成立; (2)假设n≤k时命题成立,并在此基础上,推出n=k+1命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 倒推归纳法 又名反向归纳法 (1)验证对于无穷多个自然数n命题P(n)成立(无穷多个自然数可以就是一 个无穷数列中的数,如对于算术几何不等式的证明,可以就是2^k,k≥1); (2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立, 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立; 螺旋式归纳法 对两个与自然数有关的命题P(n),Q(n), (1)验证n=n0时P(n)成立; (2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1) 成立; 综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。 应用 1确定一个表达式在所有自然数范围内就是成立的或者用于确定一个其她的形式在一个无穷序列就是成立的。 2数理逻辑与计算机科学广义的形式的观点指出能被求出值的表达式就是等价表达式。

3证明数列前n项与与通项公式的成立。 4证明与自然数有关的不等式。 变体 在应用,数学归纳法常常需要采取一些变化来适应实际的需求。下面介绍一些常见的数学归纳法变体。 从0以外的数字开始 如果我们想证明的命题并不就是针对全部自然数,而只就是针对所有大于等于某个数字b的自然数,那么证明的步骤需要做如下修改: 第一步,证明当n=b时命题成立。第二步,证明如果n=m(m≥b)成立,那么可以推导出n=m+1也成立。 用这个方法可以证明诸如“当n≥3时,n^2>2n”这一类命题。 针对偶数或奇数 如果我们想证明的命题并不就是针对全部自然数,而只就是针对所有奇数或偶数,那么证明的步骤需要做如下修改: 奇数方面: 第一步,证明当n=1时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 偶数方面: 第一步,证明当n=0或2时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 递降归纳法 数学归纳法并不就是只能应用于形如“对任意的n”这样的命题。对于形如“对任意的n=0,1,2,、、、,m”这样的命题,如果对一般的n比较复杂,而n=m 比较容易验证,并且我们可以实现从k到k-1的递推,k=1,、、、,m的话,我们就能应用归纳法得到对于任意的n=0,1,2,、、、,m,原命题均成立。如果命题P(n)在n=1,2,3,、、、、、、,t时成立,并且对于任意自然数k,由 P(k),P(k+1),P(k+2),、、、、、、,P(k+t-1)成立,其中t就是一个常量,那么P(n)对于一切自然数都成立、 跳跃归纳法

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤 1>初始化 将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都就是非负的(否则无解),接下来的m 列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示 2>最优化测试 如果目标行的所有单元格都就是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为0 3>确定输入变量 从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列 4>确定分离变量 对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题就是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量与主元行 5>建立下一张表格 将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格与新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0)、把主元列的变量名进行代换,得到新的单纯形表,返回第一步 为求简单 在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式: 1:指定行与列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0); 2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化与处理(本程序所用的实例用的就是这种方法) 程序中主要的函数以及说明 ~SimpleMatrix(); 销毁动态分配的数组、用于很难预先估计矩阵的行与列,所以在程序中才了动态的内存分配、需要重载析构函数bool Is_objectLine_All_Positive(); //判断目标行就是否全部为非负数,最后一列不作考虑 这个函数用来判断就是否已经存在最优解 bool Is_MainCol_All_Negative(int col);//判断主元列就是否全部为负数或零 这个函数用来判断线性规划就是否就是无解的 bool Is_column_all_Positive(int col); //判断col列中就是否全部为正(不包括目标行)

利用数学归纳法解题举例

利用数学归纳法解题举例 归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。 数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n )时成立,这是递推的基础;第二步是假设在n=k时命题成立, 再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或 n≥n 且n∈N)结论都正确”。由这两步可以看出,数学归纳法是由递推实现归纳0 的,属于完全归纳。 运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。 运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。 一、运用数学归纳法证明整除性问题 例1.当n∈N,求证:11n+1+122n-1能被133整除。 证明:(1)当n=1时,111+1+1212×1-1=133能被133整除。命题成立。 (2)假设n=k时,命题成立,即11k+1+122k-1能被133整除,当n=k+1时,

高中数学各种题型的解题技巧

高中数学各种题型的解题技巧 高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。也就是在转化过程中,没有注意转化的等价性,会经常出现错误。数学大题表面上是很难,但是通过多年的教学积累和经验总结,我们发现数学整个学科的解题思维基本上趋于一致,能够形成通解,使我们在数学教学上大幅的简化,甚至不需要刻意的思考。掌握数学解题思想是解答数学题时不可缺少的一步,建议同学们在做题型训练之前先了解数学解题思想,掌握解题技巧,并将做过的题目加以划分,以便在高考前一个月集中复习。 六种题型解题技巧 一、三角函数题 注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。 二、数列题 1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。 三、立体几何题 1、证明线面位置关系,一般不需要去建系,更简单; 2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

单纯形法表的解题步骤

单纯形法表的解题步骤 单纯形法表结构如下: j c → 对应变量的价值系数 i θ B C b X b 1x 2x 3x " j x 基变量的价值系数 基变量 资源列 θ规则 求的值 j σ 检验数 ①一般形式 若线性规划问题标准形式如下: 123451231425max 23000284164120,1,2,5 j z x x x x x x x x x x x x x j =++++++=??+=?? +=??≥=?" 取松弛变量345,,x x x 为基变量,它对应的单位矩阵为基。这样就得到初始可 行基解:()()0 0,0,8,16,12T X =。将有关数字填入表中,得到初始单纯形表,如表 1-1所示: 表 1-1 ()()00,0,8,16,12T X = j c → 2 3 0 0 0 i θ B C b X b 1x 2x 3x 4x 5x 0 3x 8 1 2 1 0 0 4 0 4x 16 4 0 0 1 0 -

5x 12 0 [4] 0 0 1 3 j σ 2 3 0 0 0 若检验数均未达到小于等于0,则对上表进行调整。选择上表中检验数最大的列,该列对应的非变量为入基变量;再应用θ规则该列对应的各基变量对应的 θ值,选出其中最小的一行,该行对应的基变量为出基变量。修改单纯形表,对各行进行初等变换,确保基变量组成的矩阵为单为矩阵。修改后的单纯形表如表 1-2所示: 表 1-2 ()()10,3,2,16,0T X = 检验数12,0σσ>,则进行继续调整,调整后的单纯形法表如表1-3所示: 表 1-3 ()()22,3,0,8,0T X =

权重确定和计算

3.3评价因素权重确定的基本理论 权重是一个相对的概念,在评价因素体系中每个因素对实现评价目标和功能的相对重要程度就是该因素的权重。权重是综合评价的重要信息,一组评价指标体系相对应的权重组成权重体系。一组权重体系{i w |i=1,2,…,n } 必须满足下 述两个条件: (1)0 < wi ≤1,i=1,2,…,n。 (3-1) (2)11=∑=n i i w (3-2) 其中n 是权重指标的个数 一级指标和二级指标权重的确定: 设某一评价的一级指标体系为{i v |i=1,2,…,n } 其对应权重体系为{i w |i=1,2,…,n } 则有: (1)0 < w i ≤1,i=1,2,…,n。 (3-3) (2)11=∑=n i i w (3-4) 如果该评价的二级指标体系为{ij v |i=1,2,…,n;j=1,2,…,m },则其对应的权重体系为{ij w |i=1,2,…,n;j=1,2,…,m }应满足: (1)0< w i ≤1,i=1,2,…,n。 (3-5) (2)11=∑=n i i w (3-6) (3)∑∑==n i m j ij i w w 11 = 1 (3-7) 对于三级、四级指标可以以此类推。权重体系是相对指标体系来确定的。首先必须有指标体系,然后才有相应权重系数。指标权重的选择实际也是对系统评价指标进行排序的过程,而且权重值的构成应符合以上的条件。

3.4权重确定的方法 权重确定的方法很多,主要有主成分分析法、德尔菲法(Delphi )、层次分析法(AHP )。本文中主要运用层次分析法来确定评价因素的权重。 层次分析法通过分析复杂系统所包含的因素及相关关系,将系统分解为不同的要素,并将这些要素划规不同层次,从而客观上形成多层次的分析结构模型。将每一层次的各要素进行两两比较判断,按照一定的标度理论,得到其相对重要程度的比较标度,建立判断矩阵。通过计算判断矩阵的最大特征值极其相应的特征向量,得到各层次要素的重要性次序,从而建立权重向量5【】。 层次分析法确定权重的步骤: (1)建立树状层次结构模型。在本文中,该模型就是安全评价因素体系。 (2)确立思维判断定量化的标度。在两个因素相互比较时,需要有定量的标度,假设使用前面的标度方法,则其含义如表4-1所示, 按表4-1标度方法来确定标度。 表3-1层次分析法判断标度确定原则 标度 含义 1 表示两个因素相比具有等性 3 表示两个因素相比一个因素比另一个因素稍微重要 5 表示两个因素相比一个因素比另一个因素明显重要 7 表示两个因素相比一个因素比另一个因素强烈重要 9 表示两个因素相比一个因素比另一个因素极端重要 2、4、6、8 为上述相邻判断的中值 (3)构造判断矩阵。运用两两相比的方法,对各相关元素进行两两相比较评分,根据中间层若干指标,可得到若干两两比较判断矩阵。 (4)计算权重。这一步将解决n 个元素1A ,2A ,…n A 权重的计算问题,对于表4-2的两两比较的方法得到矩阵A ,解矩阵特征根,计算权重向量和特征根 m ax λ的方法有“和积法”、“方根法”、和“根法”。 本文选用了计算较为简便的“和积法”,其计算步骤如下: ①对A 按列规范化,即对判断矩阵A 每一列正规化: ∑== n i ij ij ij a a a 1 (i,j =1,2,…,n ) (3-8)

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤 1>初始化 将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都是非负的(否则无解),接下来的m列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示 2>最优化测试 如果目标行的所有单元格都是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为0 3>确定输入变量 从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列 4>确定分离变量 对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量和主元行 5>建立下一张表格 将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格和新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0).把主元列的变量名进行代换,得到新的单纯形表,返回第一步 为求简单 在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式: 1:指定行和列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0); 2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化和处理(本程序所用的实例用的是这种方法) 程序中主要的函数以及说明 ~SimpleMatrix(); 销毁动态分配的数组.用于很难预先估计矩阵的行和列,所以在程序中才了动态的内存分配.需要重载析构函数 bool Is_objectLine_All_Positive(); //判断目标行是否全部为非负数,最后一列不作考虑 这个函数用来判断是否已经存在最优解 bool Is_MainCol_All_Negative(int col);//判断主元列是否全部为负数或零 这个函数用来判断线性规划是否是无解的 bool Is_column_all_Positive(int col); //判断col列中是否全部为正(不包括目标行)

(完整版)高考数学解题思想方法数学归纳法

五、数学归纳法 归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物 全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察 了一类事物的全部对象后归纳得出结论来。 数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有 着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n =1(或n )时 0成立,这是递推的基础;第二步是假设在n =k 时命题成立,再证明n =k +1时命题也成立, 这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命 题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可 以断定“对任何自然数(或n≥n 且n∈N)结论都正确”。由这两步可以看出,数学归纳法 0是由递推实现归纳的,属于完全归纳。 运用数学归纳法证明问题时,关键是n =k +1时命题成立的推证,此步证明要具有目标 意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐 步减小,最终实现目标完成解题。 运用数学归纳法,可以证明下列问题:与自然数n 有关的恒等式、代数不等式、三角不 等式、数列问题、几何问题、整除性问题等等。 Ⅰ、再现性题组: 1. 用数学归纳法证明(n +1)(n +2)…(n +n)=2·1·2…(2n -1) (n∈N),从“k 到 n k +1”,左端需乘的代数式为_____。 A. 2k +1 B. 2(2k +1) C. D. 211k k ++231 k k ++2. 用数学归纳法证明1+++…+1)时,由n =k (k>1)不等式成立,1213121n -推证n =k +1时,左边应增加的代数式的个数是_____。 A. 2 B. 2-1 C. 2 D. 2+1 k -1k k k 3. 某个命题与自然数n 有关,若n =k (k∈N)时该命题成立,那么可推得n =k +1时该 命题也成立。现已知当n =5时该命题不成立,那么可推得______。 (94年上海高考) A.当n =6时该命题不成立 B.当n =6时该命题成立 C.当n =4时该命题不成立 D.当n =4时该命题成立 4. 数列{a }中,已知a =1,当n≥2时a =a +2n -1,依次计算a 、a 、a 后, n 1n n -1234猜想a 的表达式是_____。 n A. 3n -2 B. n C. 3 D. 4n -3 2n -15. 用数学归纳法证明3+5 (n∈N)能被14整除,当n =k +1时对于式子3 42n +21n ++5应变形为_______________________。 412()k ++211()k ++6. 设k 棱柱有f(k)个对角面,则k +1棱柱对角面的个数为f(k+1)=f(k) +_________。

单纯形法求解原理过程

单纯形法 需要解决的问题: 如何确定初始基本可行解; 如何由一个基本可行解迭代出另一个基本可行解,同时使目标函数获得较大的下降; 如何判断一个基本可行解是否为最优解。 min f(X)=-60x1-120x2 s.t. 9x1+4x2+x3=360 3x1+10x2+x4=300 4x1+5x2+x5=200 x i≥0 (i=1,2,3,4,5) (1) 初始基本可行解的求法。当用添加松弛变量的方法把不等式约 束换成等式约束时,我们往往会发现这些松弛变量就可以作为 初始基本可行解中的一部分基本变量。 例如:x1-x2+x3≤5 x1+2x2+x3≤10 x i≥0 引入松弛变量x4,x5后,可将前两个不等式约束换成标准形式 x1-x2+x3+x4=5 x1+2x2+x3+x5=10 x i≥0 (i=1,2,3,4,5) 令x1=x2=x3=0,则可立即得到一组基本可行解 x1=x2=x3=0,x4=5,x5=10 同理在该实例中,从约束方程式的系数矩阵 中可以看出其中有个标准基,即 与B对应的变量x3,x4,x5为基本变量,所以可将约束方程写成 X3=360-9x1-4x2 x4=300-3x1-10x2 x5=200-4x1-5x2 若令非基变量x1=x2=0,则可得到一个初始基本可行解X0 X0=[0,0,360,300,200] T 判别初始基本可行解是否是最优解。此时可将上式代入到目标函数中,得:

F(X)=-60x1-120x2 对应的函数值为f(X0)=0。 由于上式中x1,x2系数为负,因而f(X0)=0不是最小值。因此所得的解不是最优解。 (2) 从初始基本可行解X0迭代出另一个基本可行解X1,并判断X1是否 为最优解。从一个基本可行解迭代出另一个基本可行解可分为 两步进行: 第一步,从原来的非基变量中选一个(称为进基变量)使其成为基本变量; 第二步,从原来的基本变量中选一个(称为离基变量)使其成为新的非基变量。 选择进基和离基变量的原则是使目标函数值得到最快的下降和使所有的基本变量值必须是非负。 在目标函数表达式中,非基变量x1,x2的系数是负值可知,若x1,x2不取零而取正值时,则目标函数还可以下降。因此,只要目标函数式中还存在负系数的非基变量,就表明目标函数还有下降的可能。也就还需要将非基本变量和基本变量进行对换。一般选择目标函数式中系数最小的(即绝对值最大的负系数)非基变量x2换入基本变量,然后从x3,x4,x5中换出一个基本变量,并保证经变换后得到的基本变量均为非负。 当x1=0,约束表达式为: X3=360-4x2≥0 x4=300-10x2≥0 x5=200-5x2≥0 从上式中可以看出,只有选择 x2=min{}=30 才能使上式成立。由于当x2=30时,原基本变量x4=0,其余x3和x5都满足非负要求。因此,可以将x2,x4互换。于是原约束方程式可得到:4x2+x3=360-9x1 10x2 =300-3x1-x4 5x2+x5=200-4x1 用消元法将上式中x2的系数列向量变[4,10,5]T换成标准基向量[0,1,0]T。其具体运算过程如下: -*4/10 : x3=240-78x1/10+4 x4/10 /10 : x2 =30-3x1/10-x4/10

数学解题方法谈5:一些特殊数和式的求和积法

数学解题方法谈5: 一些特殊数和式的求和积法 (一)、倍数型求法: 解:设原式=S ,则2S=1+2+3+…+59=1770,∴原式=S=885. 3、计算: 1+22+23+24+…+22015 解: 记S=1+22+23+24+...+22015 (1) 则2S=2+22+23+24+...+22016 (2) ∴ (2)-(1) 可得:S=22016-1 4、20+21+22+23+…+22008 . 解:令W=20+21+22+3+...+22008 (1) 则2W=21+22+23+24+...+22009 (2) ∴原式=W=(2)-(1)=22009-1 (二)拆数型求法 1、31×2-52×3+73×4-94×5+115×6-…+199×10 . 解:原式=1+21×2-2+32×3+3+43×4-4+54×5+5+65×6-…+9+109×10 =1+12-12+13-13+14-14+…+110=1110 .

解:原式=(1-12+1)+(1-13+1+12)+(1-14+1+13)+…+(1-110+1+19) =1-12+1+1-13+1+12+1-14+1+13+…+1-110+1+19 =9×2-110+1=18910 3、11×2+12×3+13×4+…+199×100 . 解:原式=1-12+12-13+13+…+199-1100=1-1100=99100 4、1+11×2+52×3+113×4+…+899×10 . 解:原式=1+1-11×2+1-12×3+1-13×4+…+1-19×10=9+110=9110 5、31×2×3×4+32×3×4×5+33×4×5×6+…+38×9×10×11 . 解:原式= 11×2×3-12×3×4+12×3×4-13×4×5+…+18×9×10-19×10×11 =16-1990=164990=82495 =(1+2+3+…+9)-12( 1+2+3+…+8)+13( 1+2+3+…+7)-…-18(1+2)+19 =45-18+283-214+5-106+67-38+19=335504 7、14+128+170+1130+…+18554 . 解:原式=11×4+14×7+17×10+110×13+…+191×34

相关文档
相关文档 最新文档