文档库 最新最全的文档下载
当前位置:文档库 › 数字信号处理DFT对称性验证及应用

数字信号处理DFT对称性验证及应用

数字信号处理DFT对称性验证及应用
数字信号处理DFT对称性验证及应用

1.DFT 的对称性原理分析

1.1共轭对称序列

长度为N 的有限长序列)(n x ,若满足

)()(*n N x n x -=, 10-≤≤N n (1.1) 称序列)(n x 为共轭对称序列,一般用)(n x ep 来表示。

若满足 )()(*n N x n x --=, 10-≤≤N n (1.2) 称序列)(n x 为共轭反对称序列,一般用)(n x op 来表示

把 n

N n -=

2代入式(1.1)与式(1.2),得

=-)2(

n N

x ep )2(

*

n N

x ep +, 12

0-≤

≤N

n (1.3)

=-)2(n N

x op

)2(*n N

x op +-, 120-≤≤N n (1.4) 式(1.3)与式(1.4)说明共轭对称序列与其共轭序列以2/N n =成偶对称,共轭反对称序列与其共轭序列2/N n =成奇对称

设一长度为N 的有限长序列)(n x ,令

)]()([21)(n N x n x n x ep -+=

*

(1.5) )]()([2

1

)(n N x n x n x op --=

* (1.6)

则有

)( )()(n x n x n x op ep += (1.7)

说明任一有限长序列,都表示成一个共轭对称序列与共轭反对称序列的和,

)(n x ep 称为)(n x 的共轭对称分量,)(n x op 称为)(n x 的共轭反对称分量。在频域下同样有类似结论

)()()(k X k X k X op ep += (1.8) 式中 )]()([2

1)( k N X k X k X ep -+=

*

(1.9) )]()([2

1)(k N X k X k X op --=

* (1.10)

1.2有限长序列的对称分量分解及其DFT 表示

(1)当x(n)为长度N 的复数序列时,有

)()()(n jx n x n x i r += )]()([2

1)]([*

n x n x DFT n x DFT r +=

= )()([2

1

k N X k X -+*]

= )(k X ep (1.11) 同理可得

)

()]()([2

1)([*

k X

n x n x DFT n jx DFT op

i =-=

(1.12)

式(1.11)和(1.12)说明复数序列实数部分的离散傅立叶变换是原来序列离散傅立叶变换的共轭对称分量;复序列虚数部分的离散傅立叶变换的共轭反对称分量。 另一方面,由式(1.7)知有限长序列可分解为共轭对称分量与共轭反对称分量,可得其离散傅立叶变换

)]

()([2

1)]([*

n N x n x DFT n x DFT ep -+=

=)](Re[k X (1.13) 同理可得

)]()([2

1)]([*

n N x n x DFT n x DFT op --=

=)](Im[k X j (1.14)

上面两式说明复序列共轭对称分量序列的离散傅立叶变换是原来序列离散傅立叶变换的实数部分;复序列共轭对称分量的离散傅立叶变换是原来序列离散傅立叶变换的虚数部分。

离散傅立叶变换的对称性,在求实序列的离散傅立叶变换中有重要作用。例如,有两个实数序列)(1n x 和)(2n x ,为求其离散傅立叶变换,可以分别用)(1n x 和)(2n x 作为虚部和实部构造一个复数序列x(n),求出x(n)的离散傅立叶变换)(k X ,然后根据式(1.9)和(1.10)得到)(k X 的共轭对称分量)(k X ep 和)(k X op ,分别对应)(1k X 和)(2k X ,从而实现一次DFT 的计算可得到两个序列DFT 的高效算法。而DFT 可以通过一次快速FFT 变换来实现。

(2)当x(n)为长度N的实数序列或纯虚数序列时,有当x(n)为实序列时,则

)

(

)

(k

X

k

X

ep

=

又据)

(k

X

ep

)的对称性:

当x(n)为纯虚序列时,则

)

(

)

(k

X

k

X

op

=

又据)

(k

X

op )的对称性:

)

(

))

((

)

(*k

R

k

N

X

k

X

N

N

ep

ep

-

=

)

(

))

((

)

(*k

R

k

N

X

k

X

N

N

-

=

)

(

))

((

)

(*k

R

k

X

k

X

N

N

op

op

-

-

=

)

(

))

((

)

(*k

R

k

X

k

X

N

N

-

-

=

2.对称性分析及流程图

本次课设分两个部分,一个是要验证11点的DFT 的对称性,另一个是要用一次快速傅立叶变换FFT 实现两个序列的DFT

由于函数ezplot 只能画出既存在Symbolic Math Toolbox 中又存在于总MATLAB 工具箱中的函数,而 circevod (实信号分解为循环偶分量和循环奇分量)和dft(计算离散付利叶变换)仅存在Symbolic Math Toolbox 中,因此需要在自己的工作目录work 下创建。此后可以直接调用这些函数。11点的DFT 的对称性流程图2.1

和一次快速傅立叶变换FFT 实现两个序列的DFT 流程图2.2

3.程序设计

3.1 验证对称性程序

在目录work下创建circevod的M文件,circevod的M文件是计算对称分量的,程序如下:

function [xec,xoc]=circevod(x);

N=length(x);

n=0:(N-1);

xec=0.5*(x + x(mod(-n,N)+1));

xoc=0.5*(x - x(mod(-n,N)+1));

在目录work下创建dft的M文件,dft为离散傅立叶变换,程序如下:

function [Xk]=dft(xn,N);

n=[0:1:N-1];

k=[0:1:N-1];

WN=exp(-j*2*pi/N);

nk=n'*k;

WNnk=WN.^nk;

Xk=xn*WNnk;

主程序:

figure(1)

n=0:10;x=input('请输入序列x=');

[xep,xop]=circevod(x);

subplot(2,1,1);

stem(n,xep);

title('共轭对称分量')

xlabel('n');

ylabel('xep(n)');

axis([-0.5,10.5,-1,11]); subplot(2,1,2);

stem(n,xop);

title('共轭反对称分量'); xlabel('n');

ylabel('xop(n)');

axis([-0.5,10.5,-6,4]); figure(2)

X=dft(x,11);

Xep=dft(xep,11);

Xop=dft(xop,11); subplot(2,2,1);

stem(n,real(X));

axis([-0.5,10.5,-5,50]); title('Re{DFT[x(n)]}'); xlabel('k');

subplot(2,2,2);

stem(n,imag(X));

axis([-0.5,10.5,-20,20]); title('Im{DFT[x(n)]}'); xlabel('k');

subplot(2,2,3);

stem(n,Xep);

axis([-0.5,10.5,-5,50]); title('DFT[xep(n)]'); xlabel('k');

subplot(2,2,4);

stem(n,imag(Xop)); axis([-0.5,10.5,-20,20]);

title('DFT[xop(n)]');

xlabel('k');

3.2 用一次FFT实现两个序列的DFT

x1=input('请输入序列x1=');

x2=input('请输入序列x2=');

N=input('请输入N=');

x=x1+j*x2;

X=fft(x,N);

k=0:N-1;

c=conj(X);

Xep=0.5*(X+ c(mod(-k,N)+1));

Xop=-j*0.5*(X- c(mod(-k,N)+1));

X1=Xep

X2=Xop

subplot(2,1,1);stem(k,X1);

xlabel('k');ylabel('X1');

axis([-0.5,7.5,-10,40]);

subplot(2,1,2);stem(k,X2);

xlabel('k');ylabel('X2');

axis([-0.5,7.5,-10,40]);

4.运行结果和总结

4.1验证对称性

当输入的序列x=10*(0.8).^n时,11点共轭对称分量和共轭反对称分量如图4.1,图4.2为验证对称性。

图4.1 共轭对称和反对称分量

图4.2 验证对称性

分析:从图4.2可以看出复数序列实数部分的离散傅立叶变换是原来序列离散傅立叶变换的共轭对称分量;复序列虚数部分的离散傅立叶变换的共轭反对称分量。复序列共轭对称分量序列的离散傅立叶变换是原来序列离散傅立叶变换的实数部分;复序列共轭对称分量的离散傅立叶变换是原来序列离散傅立叶变换的虚数部分。从而验证了DFT的对称性。

4.2用一次FFT实现两个序列的DFT

当运行程序(2)时,会出现提示,按提示输入x1=[1 2 3 4 5 6 7 8],x2=[2 4 6 8 1 3 4 5],N=8,程序运行结果如下:

请输入序列x1=[1 2 3 4 5 6 7 8]

请输入序列x2=[2 4 6 8 1 3 4 5]

请输入序列N=8

按回车键,程序运行:

X1 =

Columns 1 through 7

36.0000 -4.0000+9.6569i -4.0000+4.0000i -4.0000+1.6569i -4.0000 -4.0000-1.6569i -4.0000-4.0000i

Column 8

-4.0000-9.6569i

X2 =

Columns 1 through 7

33.0000 -0.4142-4.8284i -7.0000+6.0000i 2.4142-0.8284i -7.0000 2.4142+0.8284i -7.0000-6.0000i

Column 8

-0.4142+4.8284i

X1和X2分别为x1,x2的离散傅立叶变换,X1和X2的图形如图4.3所示:

图4.3 x1的离散傅立叶变换

当直接调用dft时,程序运行结果和上面的是相同的,从而实现了用一次FFT实现了两个序列的DFT。

5.心得体会

从本次课设可以看出,利用MATLAB软件可以大大的简化计算,可以直观迅速的得到所需要的结果。MATLAB软件功能强大,通过本次强化训练更一步了解和掌握该软件的使用方法,更好的利用该软件解决一些比较复杂的问题。

本次课设与信号与系统该门知识有关,所以必须掌握该课的基本知识,还要学会怎样利用MATLAB软件和实际结合起来,解决信号与系统中的问题。通过理论与实际的结合,可以更好的掌握该门学科知识,为后一阶段的进一步学习打下好的基础,同时,通过本次强化训练看出自己运用该软件的不熟练,可以及时的调整自己,认真学号怎样使用该软件以及掌握该门学科。

通过本次课程设计我学到了很多新的东西,极大地拓宽了我的知识面,锻炼了能力,综合素质也得到较大提高,我感到收获不小。但在设计中也发现了大量问题,有些在设计过程中已经解决,有些还需要在今后慢慢学习,只要学习就会有更多的问题,有更多的难点,但也会有更多的收获。

从这次的课程设计中,我真真正正的意识到,在以后的学习中,要理论联系实际,把我们所学的理论知识用到实际当中,由于此次课设我们用到了单片机的相关知识,虽然我们还未学过相关课程。但我们通过此次课设积极主动去查阅相关资料并向其他同学和学长请教,学到了不少东西,在这个过程中与其他同学积极探讨,培养了我的团队协作精神。这就是我在这次课程设计中的最大收获。

参考文献

1.郑君里,杨万理编. 信号与系统(第二版)(上、下册).北京:高等教育出版社,2000.

2.刘泉,江雪梅编.信号与系统. 北京:高等教育出版社,2006.

3 .范世贵编.信号与系统常见题型解析及模拟题.西安:西北工业大学出版社,1999.

4.赵红怡,张常年编著. 数字信号处理及其MATLAB实现.化学工业出版社.

5.薛定宇,陈阳泉编.基于 MATLAB/Simulink 的系统仿真技术与应用 .北京:清华大学出版社,2002.

6.梁虹,普园媛,梁洁编.信号与线性系统分析基于MATLAB的方法与实现北京:高等教育出版社,2006.

数字信号处理的应用和发展前景

数字信号处理的应用与发展趋势 作者:王欢 天津大学信息学院电信三班 摘要: 数字信号处理是应用于广泛领域的新兴学科,也是电子工业领域发展最为迅速的技术之一。本文就数字信号处理的方法、发展历史、优缺点、现代社会的应用领域以及发展前景五个方面进行了简明扼要的阐述。 关键词: 数字信号处理发展历史灵活稳定应用广泛发展前景 数字信号处理的简介 1.1、什么是数字信号处理 数字信号处理简称DSP,英文全名是Digital Signal Processing。 数字信号处理是利用计算机或专用处理设备以数字的形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 DSP系统的基本模型如下: 数字信号处理是一门涉及许多学科且广泛应用于许多领域的新兴学科。它以众多的学科为理论基础,所涉及范围及其广泛。例如,在数学领域、微积分、概率统计、随即过程、数值分析等都是数字信号处理的基本工具;同时与网络理论、信号与系统、控制论、通信理论、故障诊断等学科也密切相关。近年来的一些新兴学科,如人工智能、模式识别、神经网络等,都是与数字信号处理密不可分的。数字信号处理可以说许多经典的理论体系作为自己的理论基础,同时又使自己成为一门新兴学科的理论基础。 1.2、数字信号系统的发展过程 数字信号处理技术的发展经历了三个阶段。 70 年代DSP 是基于数字滤波和快速傅里叶变换的经典数字信号处理, 其系统由分立的小规模集成电路组成, 或在通用计算机上编程来实现DSP 处理功能, 当时受到计算机速度和存储量的限制,一般只能脱机处理, 主要在医疗电子、生物电子、应用地球物理等低频信号处理方面获得应用。 80 年代DSP 有了快速发展, 理论和技术进入到以快速傅里叶变换(FFT) 为主体的现代信号处理阶段, 出现了有可编程能力的通用数字信号处理芯片, 例如美国德州仪器公司(TI公司) 的TMS32010 芯片, 在全世界推广应用, 在雷达、语音通信、地震等领域获得应用, 但芯片价格较贵, 还不能进 入消费领域应用。 90 年代DSP 技术的飞速发展十分惊人, 理论和技术发展到以非线性谱估计为代表的更先进的信号处理阶段, 能够用高速的DSP 处理技术提取更深层的信息, 硬件采用更高速的DSP 芯片, 能实时地完成巨大的计算量, 以TI 公司推出的TMS320C6X 芯片为例, 片内有两个高速乘法器、6 个加法器, 能以200MHZ 频率完成8 段32 位指令操作, 每秒可以完成16 亿次操作, 并且利用成熟的微电子工艺批量生产,使单个芯片成本得以降低。并推出了C2X 、C3X 、C5X 、C6X不同应用范围的系列, 新一代的DSP 芯片在移动通信、数字电视和消费电子领域得到广泛应用, 数字化的产品性能价 格比得到很大提高, 占有巨大的市场。 1.3、数字信号处理的特点

函数的对称性

函数的对称性 知识梳理 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数; ⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c -。 二、抽象函数的对称性 【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称 ①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -= ?)2()(x a f x f +=-

DSP技术与算法实现学习报告

DSP技术与算法实现学习报告 一.课程认识 作为一个通信专业的学生,在本科阶段学习了数字信号处理的一些基本理论知识,带着进一步学习DSP技术以及将其理论转化为实际工程实现的学习目的,选择了《DSP技术与算法实现》这门课程。通过对本课程的学习,我在原有的一些DSP基础理论上,进一步学习到了其一些实现方法,系统地了解到各自DSP芯片的硬件结构和指令系统,受益匪浅。 本门课程将数字信号处理的理论与实现方法有机的结合起来,在简明扼要地介绍数字信号处理理论和方法的基本要点的基础上,概述DSP的最新进展,并以目前国际国内都使用得最为广泛的德克萨斯仪器公式(TI,Texas Instruments)的TMS320、C54xx系列DSP为代表,围绕“DSP实现”这个重点,着重从硬件结构特点,软件指令应用和开发工具掌握出发,讲解DSP应用的基础知识,讨论各种数字信号处理算法的实现方法及实践中可能遇到的主要问题,在此基础上实现诸如FIR、IIR、FFT等基本数字信号处理算法等等。 1.TI的DSP体系 TI公司主要推出三大DSP系列芯片,即TMS320VC2000,TMS320VC5000,TMS320VC6000系列。 TMS320VC200系列主要应用于控制领域。它集成了Flash存储器、高速A/D转换器、可靠的CAN模块及数字马达控制等外围模块,适用于三相电动机、变频器等高速实时的工控产品等数字化控制化领域。 TMS320VC5000系列主要适用于通信领域,它是16为定点DSP芯片,主要应用在IP 电话机和IP电话网、数字式助听器、便携式音频/视频产品、手机和移动电话基站、调制调解器、数字无线电等领域。它主要分为C54和C55系列DSP。课程着重讲述了C54系列的主要特性,它采用改进哈弗结构,具有一个程序存储器总线和三个数据存储器总线,17×17-bit乘法器、一个供非流水的MAC(乘法/累加)使用的专用加法器,一个比较、选择、存储单元(Viterbi加速器),配备了双操作码指令集。 TMS320VC6000系列主要应用于数字通信和音频/视频领域。它是采用超长指令字结构设计的高性能芯片,其速度可以达到几十亿MIPS浮点运算,属于高端产品应用范围。

数字信号处理知识点总结

《数字信号处理》辅导 一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念 信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。 连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。 模拟信号:是连续信号的特例。时间和幅度均连续。 离散信号:时间上不连续,幅度连续。常见离散信号——序列。 数字信号:幅度量化,时间和幅度均不连续。 (2)基本序列(课本第7——10页) 1)单位脉冲序列 1,0()0,0n n n δ=?=?≠? 2)单位阶跃序列 1,0 ()0,0n u n n ≥?=?≤? 3)矩形序列 1,01 ()0,0,N n N R n n n N ≤≤-?=?<≥? 4)实指数序列 ()n a u n 5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列 1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。 注意正弦周期序列周期性的判定(课本第10页) 2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓 设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即 ()()i x n x n iL ∞ =-∞ = -∑ 当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠ (4)序列的分解 序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即

函数的对称性

函数的对称性 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。 一、对称性的概念及常见函数的对称性 1、对称性的概念: ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为a b x 2-=。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x 与y=-x 均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y 轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,2π π+=k x 是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x ,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x ,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。 ⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,)0,2(ππ+k 是它的对称中心。 (11)正切函数:不是轴对称,但是是中心对称,其中)0,2(π k 是它的对称中心, 容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)。 (12)对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。但容易犯错误的是同学们可能误以为最值处是它的对称轴。 (13)三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。

DSP常见算法的实现

3.6 常见的算法实现 在实际应用中虽然信号处理的方式多种多样,但其算法的基本要素却大多相同,在本节中介绍几种较为典型的算法实现,希望通过对这些例子(单精度,16bit )的分析,能够让大家熟悉DSP 编程中的一些技巧,在以后的工作中可以借鉴,达到举一反三的效果。 1. 函数的产生 在高级语言的编程中,如果要使用诸如正弦、余弦、对数等数学函数,都可以直接调用运行库中的函数来实现,而在DSP 编程中操作就不会这样简单了。虽然TI 公司提供的实时运行库中有一些数学函数,但它们所耗费的时间大多太长,而且对于大多数定点程序使用双精度浮点数的返回结果有点“大材小用”的感觉,因此需要编程人员根据自身的要求“定制”数学函数。实现数学函数的方法主要有查表法、迭代法和级数逼近法等,它们各有特点,适合于不同的应用。 查表法是最直接的一种方法,程序员可以根据运算的需要预先计算好所有可能出现的函数值,将这些结果编排成数据表,在使用时只需要根据输入查出表中对应的函数值即可。它的特点是速度快,但需要占用大量的存储空间,且灵活度低。当然,可以对上述查表法作些变通,仅仅将一些关键的函数值放置在表中,对任意一个输入,可根据和它最接近的数据采用插值方法来求得。这样占用的存储空间有所节约,但数值的准确度有所下降。 迭代法是一种非常有用的方法,在自适应信号处理中发挥着重要的作用。作为函数产生的一种方法,它利用了自变量取值临近的函数值之间存在的关系,如时间序列分析中的AR 、MA 、ARMA 等模型,刻画出了信号内部的特征。因为它只需要存储信号模型的参量和相关的状态变量,所以所占用的存储空间相对较少,运算时间也较短。但它存在一个致命的弱点,由于新的数值的产生利用了之前的函数值,所以它容易产生误差累积,适合精度要求不高的场合。 级数逼近法是用级数的方法在某一自变量取值范围内去逼近数学函数,而将自变量取值在此范围外的函数值利用一些数学关系,用该范围内的数值来表示。这种方法最大的优点是灵活度高,且不存在误差累积,数值精度由程序员完全控制。该方法的关键在于选择一个合适的自变量取值区间和寻找相应的系数。 下面通过正弦函数的实现,具体对上述三种方法作比较。 查表法较简单,只需要自制一张数据表,也可以利用C5400 DSP ROM 内的正弦函数表。 迭代法的关键是寻找函数值间的递推关系。假设函数采样时间间隔为T ,正弦函数的角频率为ω,那么可以如下推导: 令()()()T T ω?β?αω?-+=+sin sin sin 等式的左边展开为 T T side left ω?ω?sin cos cos sin _+= 等式的右边展开为 ()T T side right ω?βωα?sin cos cos sin _-+= 对比系数,可以得到1,cos 2-==βωαT 。令nT =?,便可以得到如下的递推式: [][][]21cos 2---=n s n s T n s ω

数字信号处理总结与-习题(答案

对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字信号。2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。4、)()(5241 n R x n R x ==,只有 当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是 ()n h n ∞ =-∞ <∞ ∑ 6、用来计算N =16点DFT ,直接计算需要(N 2 )16*16=256_次复乘法,采用基2FFT 算法, 需要__(N/2 )×log 2N =8×4=32 次复乘法。7、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型_和 并联型_四种。8、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并 联型的运算速度最高。9、数字信号处理的三种基本运算是:延时、乘法、加法 10、两个有限长序列 和 长度分别是 和 ,在做线性卷积后结果长度是__N 1+N 2-1_。11、N=2M 点基2FFT ,共有 M 列蝶形, 每列有N/2 个蝶形。12、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对 13、数字信号处理的三种基本运算是: 延时、乘法、加法 14、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。18、单位脉冲响应分别为 和 的两线性系统相串联,其等效系统函数时域及频域表达式分别是h(n)=h 1(n)*h 2(n), =H 1(e j ω )× H 2(e j ω )。19、稳定系统的系统函数H(z)的收敛域包括 单位圆 。20、对于M 点的有限长序列x(n),频域采样不失真的条件是 频域采样点数N 要大于时域采样点数M 。 1、下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( y(n)=x(n 2 ) ) A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法能用于设计FIR 高通滤波4、因果FIR 滤波器的系统函数H(z)的全部极点都在(z = 0 )处。6、已知某序列z 变换的收敛域为|z|<1,则该序列为(左边序列)。7、序列)1() (---=n u a n x n ,则)(Z X 的收敛域为(a Z <。8、在对连续信号均匀 采样时,要从离散采样值不失真恢复原信号,则采样周期T s 与信号最高截止频率f h 应满足关系(T s <1/(2f h ) ) 9、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 (16=N )。10、线性相位FIR 滤波器有几种类型( 4) 。11、在IIR 数字滤波器的设计中,用哪种方法只适 合于片断常数特性滤波器的设计。(双线性变换法)12、下列对IIR 滤波器特点的论述中错误的是( C )。 A .系统的单位冲激响应h(n)是无限长的B.结构必是递归型的C.肯定是稳定的D.系统函数H(z)在有限z 平面(0<|z|<∞)上有极点 13、有限长序列h(n)(0≤n ≤N-1)关于τ= 2 1 -N 偶对称的条件是(h(n)=h(N-n-1))。14、下列关于窗函数设计法的说法中错误的是( D )。A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法不能用于设计FIR 高通滤波器 15、对于傅立叶级数而言,其信号的特点是(时域连续非周期,频域连续非周期)。

数字信号处理技术的应用和发展

数字信号处理技术的应用和发展 摘要互联网信息化技术的不断进步和应用范围的持续拓宽加速了数字时代的到来。数字信号处理技术是将声音、图片或者是视频进行信息的模拟再将其转化为数字信息,该技术也是数字时代的标志性技术,目前已经在仪器仪表、通信、计算机以及图像图形处理等领域得到了广泛应用。本文结合数字处理技术的特点,就其应用现状和发展方向进行了思考。【关键词】数字信号处理数字时代计算机技术发展 计算机、机械制造、通讯等技术的进步为数字信号处理技术的发展提供了基础。数字信息护理技术可以对更大层面的数据信息进行分析处理,作为数字信号处理环节中实用性较强的应用型技术综合了数字信号处理理论、硬件技术、软件技术等。分析数字信号技术的发展现状对于技术和优化和应用水平的提高有着重要的理论意义和现实意义。 1 数字信号处理技术概述 1.1 数字信号处理技术的特点 数据提取和转化是数字信号处理技术的本质特征,该技术就是将各类信号从复杂的环境中提取出来并将其转化为更加容易识别和利用的形式。高速的运算能力和高准确性的运算结果是数字信号处理技术的显著特征。通过独特的寻址模式和流水线结构是数字信号处理技术的主要运算方法。在一个指令周期内分别进行一次乘法和一次加法就是硬件乘法累加操作,该技术应用在实际的操作中速度可以达到800Mb/s。除此之外数字信号处理技术的稳定性也十分出色,通过二值逻辑的采用使得数字信号处理技术可以保证较强的环境使用能力。在软件的作用下数字处理技术可以实现参数的修改,保证较强的灵活性。 1.2 数字信号处理技术应用的意义

各类新技术的出现与发展对于社会生产和人类生活产生了巨大的影响,数字信号处理技术作为一项发展较快且适用性强的技术,其发展迅速在各个领域的应用水平也不断提高,销售价格也随之降低。目前应用中的数字信号处理技术的总线、资源及技术结构的标准化程度不断提高,一方面这会加剧我国的电子产品行业的竞争,另一方面也会促进电子产品和其他相关行业的进步与发展。 2 数字信号处理技术的应用思考 2.1 通信领域的应用 目前数字信号技术已经在众多领域得到了应用,通信领域中信号处理技术的应用推动了通信技术的发展和通信行业的变革。数字信号处理技术显著提高了通信信号和信息的处理效率和处理质量,为通信技术的进步与变革提供了基础,数字信号处理技术已经成为了通信理论中的一个新的学科,加快了无线系统成为主流通信方式的进程,数字信号处理技术对于通信行业的发展有着重要的支撑和引导作用,可视电话以及通信扩频等都需要数字信号处理技术参与的情况下才可以实现。 2.2 图像图形技术领域的应用 数字信号处理技术在图像图形技术领域的应用主要集中在有线电视机高品位卫星广播中,除此之外在MPEG2编码器和译码器、DVD活动中的图像压缩和解压中也发挥着重要的作用。数字信号处理技术的应用有效推动了信息处理速度和处理功能的提高,科技的不断进步加快了活动影像解压技术的快速发展。 2.3 仪器仪表领域中的应用 目前仪器仪表领域中相关测量工作中也有着数字信号处理技术的应用,于此同时该技术有取代高档单片机成为主流仪器仪表测量方式的趋势。在仪器仪表的开发和测量中应用数字信号处理技术有利于产品档次的提高,相较于传统的信息处理技术数字信号处理技术的内在资源

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念 0.1信号、系统与信号处理 1?信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号能量信号/功率信号 连续时间信号/离散时间信号/数字信号按自变量与函数值的取值形式不同分类: 2?系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3. 信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理, 而且也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 精选

PrF ADC DSP DAC PoF (1)前置滤波器 将输入信号X a(t )中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次X a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术 ----- D igitalSignalProcessing 另一层是狭义的理解,为数字信号处理器----- DigitalSignalProcesso。 0.5课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号 频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessin)信号对象主要是随机信 号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1 ?按自变量与函数值的取值形式是否连续信号可以分成哪四种类型?

数字信号处理应用论文

摘要:介绍了DSP技术(器件)的主要特点.总结了DSP在家电、办公设备、控制和通信领域的主要应用及其发展趋势。 关键词:数字信号处理;音频/视频;控制;通信 DSP数字信号处理技术(Digital Signal Processing)指理论上的技术;DSP数字信号处理器(Digital Sig—hal Processor)指芯片应用技术。因此,DSP既可以代表数字信号处理技术,也可以代表数字信号处理器,两者是不可分割的,前者要通过后者变成实际产品。两者结合起来就成为解决实际问题和实现方案的手段DsPs一数字信号处理解决方案。DSP运用专用或通用数字信号处理芯片,通过数字计算的方法对信号进行处理,具有精确、灵活、可靠性好、体积小、易于大规模集成等优点。DSP芯片自从1978年AMI公司推出到现在,其性能得到了极大的提高。 1 DSP的特点 1.1 修正的哈佛结构 DSP芯片采用修正的哈佛结构(Havardstructure),其特点是程序和数据具有独立的存储空间、程序总线和数据总线,非常适合实时的数字信号处理口]。同时,这种结构使指令存储在高速缓存器中(Cache),节约了从存储器中读取指令的时间,提高了运行速度。如美国德州仪器公司——TI(Texas Instruments)的DSP芯片结构是基本哈佛结构的改进类型。 1.2 专用的乘法器 一般的算术逻辑单元AI U(Arithmetic and Logic Unit)的乘法(或除法)运算由加法和移位实现,运算速度较慢。DSP设置了专用的硬件乘法器、多数能在半个指令周期内完成乘法运算,速度已达每秒数千万次乃至数十亿次定点运算或浮点运算,非常适用于高度密集、重复运算及大数据流量的信号处理。如MS320C3x系列DSP芯片中有一个硬件乘法器:TMS320C6000系列中则有两个硬件乘法器。 1.3 特殊的指令设置 DSP在指令系统中设置了“循环寻址”(Circular addressing)及“位倒序”(bit—reversed)等特殊指令,使寻址、排序及运算速度大大提高引。另外,DSP指令系统的流水线操作与哈佛结构相配合,把指令周期减小到最小值,增加了处理器的处理能力。尽管如此,DSP芯片的单机处理能力还是有限的,多个DSP芯片的并行处理已成为研究的热点。 2 DSP在家电、办公设备中的应用 2.1高清晰度电视 传统电视采用线性扫描的信号处理方式,画面像素最高仅4O~5O万个,会带来画质的损失,而DSP数字超微点阵(Digital SuperMicro Pixe1)技术,超越传统的线性扫描,进入由“点”组成的微显示数字技术层面,从模拟的“线”飞跃到数字的“点”。DSP是逐点优化的。它运用全新的逐点扫描技术,修复并优化每一个点的质量,消降图像边缘模糊现象,细节部分的锐利度成倍提高。 2.2 A/V(Audio/Video)设备 家庭影院主要由数字化A/V(Audio/Video)设备组成,DSP不仅带来环绕声,而且提供虚拟各种现场效果。VCD(VideoCompact Disc)、DVD(Digital Video Disc)、MD(Minidiskette)、DAB(Digital Audio Brod—casting)、DVB(Digital Video Box)等数字音视频产品中,DSP的价值主要体现在音频的Hi—Fi(HighFideli—ty)处理上。目前,对MPEG(Moving Picture Expe Group)音频Layer2、I ayer3等用c语言仿真研究,在此基础上用C549实现了MP3解码器的采样;用’C6201和’C6701分别实现MP3编码器和MPEG一2AAC编解码器。MPEG 一2AAC重建的音质超过MP3和AC一3将成为直播卫星、地面DAB和SW、Mw、AM 广

函数的对称性82459

函数的对称性 一、教学目标 函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。 1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到; 2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。 二、举例分析 例1. 设()f x 是定义在R 上的函数, (1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2 a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。 选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。 思路分析: (1)要证明()f x 图象上任意一点()00,P x y 关于直线2 a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。 事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-????????,即得点()00,Q a b x y +-也在()f x 的图象上。

数字信号处理学习心得体会

数字信号处理学习心得 体会

数字信号处理学习心得 一、课程认识和内容理解 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。 数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下: 第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。 第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。 第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。 第四单元的课程我们重点理解基 2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂基FFT算法。 第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响

应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。 第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。 第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器 二、专业认识和未来规划 通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。 对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层数越多,要做的越稳定就越难,这可是非常有难度的,如果学好了学精了,也是非常好找工作的。也可以从事软件方面,这实际上要我们具备比较好的模电和数电的

(完整word版)关于数字信号处理技术的应用与发展

关于数字信号处理技术的应用与发展 摘要:在现代化科学技术发展的过程中,数字化信 号处理技术已经深入应用到各行各业的发展之中,例如工业控制、医疗卫生事业等,都有所涉猎,甚至在国防军事方面也得到了一定的应用,可以说在当前社会发展的进程中,已经完全不能脱离开数字信号处理技术的应用了。正是因为如此,本文对其应用以及今后的发展予以一定的阐述,希望在今后的应用中可以得到更加广阔的发展空间。 关键词:数字信号处理技术;实现方法;应用;发展前景 在我国近几年的发展进程中,数字信号的相关处理技术已经得到了质的的飞跃,这是一种对数字以及符号进行转化,并且排列成为有效序列的一种技术,这一技术主要应用在计算机以及其他相关设备中,并且在计算方法上具有特殊之处,主要是采用了数值计算法,可以达到方便信息应用的效果。本文主要探讨了这一技术在图形处理以及机器人控制等方 面的应用,希望在未来的时代发展中,这一技术可以具有更加广泛的应用。 1、数字信号处理技术所具有的特点以及实现方式 在数字信号的处理上,主要可以通过三种途径得以实现。

第一种途径是采用软件得以实现的,这种方式主要应用在编程的过程中,这套程序既能通过处理者的开发得到应用,也可以通过现有的程序进行处理。第二种实现方式是运用专用硬件,例如加法器或者乘法器等,将其构成一个专用的数字网络,以实现对信号处理的能力。第三种实现途径是将前两种方式进行有效的结合。这种方式目前较为普遍,广泛应用在数字信号处理的过程中。 从这一技术的优势上来看,数字信号处理的相关技术合理的应用了计算机设备,针对不同的系统具有不同的处理功能,满足各行业的需要,所以与其他技术相比具有一定的优越性。除此之外,在系统的稳定性上,这一技术得到了进一步的提升,经过对数据的耦合,有效的降低了电路中产生阻抗匹配的情况,并且在安全性方面也得到了进一步的提升,更有助于在大规模生产中的应用。同时在其他方面也具有一定的优越性,所以受到各界人士的广泛好评。 2、数字信号处理技术在当前行业中的应用 2.1图形图像领域 首先,这一技术可以应用在图形图像领域,DVD的主要工作原理是运用了图像压缩技术,将活动图像进行压缩与转码,最终呈现在人们的眼前,在采用了这一技术后,整个过程得到了明显的进步,同时还可以应用在对大气甚至气象云图的研究方面。只要是与图形图像相关的领域中,都可以运

数字信号处理在语音信号分析中的应用

《数字信号处理》 课程设计报告 数字信号处理在语音信号分析中的应用 专业班级: 姓名: 学号:

目录 摘要 (3) 1、绪论 (3) 2、课程设计的具体容 (4) 2.1.1、读取语音信号的任务 (4) 2.1.2、任务分析和解决方案 (5) 2.1.4、运行结果和相应的分析 (5) 2.2、IIR滤波器设计和滤波处理 (6) 2.2.1、设计任务 (6) 2.2.2、任务分析和解决方案 (7) 2.2.3、编程得到的MATLAB代码 (7) 2.2.4、运行结果和相应的分析 (7) 2.3、FIR滤波器设计和滤波处理 (9) 2.3.1、设计任务 (9) 2.3.2、任务分析和解决方案 (9) 2.3.3、编程得到的MATLAB代码 (9) 2.3.4、运行结果和相应的分析 (11) 3、总结 (13) 4、存在的不足及建议 (13) 5、参考文献 (13)

数字信号处理设计任务书 摘要 语音信号滤波处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前 发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。本设计通过录制一段语音,对其进行了时域分析,频谱分析,分析语音信号的特性。并应用matlab平台对语音信号进行加噪然后再除去噪声,进一步设计两种种滤波器即高通滤波器、带通滤波器,基于这两种滤波器设计原理,对含加噪的语音信号进行滤波处理。最后对比滤波前后的语音信号的时域和频域特性,回放含噪语音信号和去噪语音信号。论文从理论和实践上比较了不同数字滤波器的滤波效果。 1.绪论 通过语音传递倍息是人类最重要、最有效、最常用和最方便的交换信息的形式。语言是人类持有的功能,声音是人类常用的工具,是相互传递信息的最主要的手段。因此,语音信号是人们构成思想疏通和感情交流的最主要的途径。并且,由于语言和语音与人的智力活动密切相关,与社会文化和进步紧密相连,所以它具有最大的信息容量和最高的智能水平。现在,人类已开始进入了信息化时代,用现代手段研究语音信号,使人们能更加有效地产生、传输、存储、获取和应用语音信息,这对于促进社会的发展具有十分重要的意义。让计算机能听懂人类的语言,是人类自计算机诞生以来梦寐以求的想法。 随着计算机越来越向便携化方向发展,随着计算环境的日趋复杂化,人们越来越迫切要求摆脱键盘的束缚而代之以语音输人这样便于使用的、自然的、人性化的输人方式。作为高科鼓应用领域的研究热点,语音信号采集与分析从理论的研究到产品的开发已经走过了几十个春秋并且取得了长足的进步。它正在直接与办公、交通、金融、公安、商业、旅游等行业的语音咨询与管理.工业生产部门的语声控制,、电信系统的自动拨号、辅助控制与查询以及医疗卫生和福利事业的生活支援系统等各种实际应用领域相接轨,并且有望成为下一代操作系统和应用程序的用户界面。可见,语音信号采集与分析的研究将是一项极具市场价值和挑战性的工作。我们今天进行这一领域的研究与开拓就是要让语音信号处理技术走人人们的日常生活当中,并不断朝更高目标而努力。数字滤波器是数字信号处理的基础,用来对信号

函数的周期和对称性

专题:函数的周期性对称性 1、周期函数的定义 一般地,对于函数)(x f y =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+,那么函数)(x f y =就叫做周期函数,非零常数T 叫做这个函数的一个周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 显然,若T 是函数的周期,则)0,(≠∈k z k kT 也是)(x f 的周期。如无特别说明,我们后面一般所说的周期是指函数的最小正周期。 说明:1、周期函数定义域必是无界的。 2、周期函数不一定都有最小正周期。 推广:若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期; )2 ()2(T x f T x f -=+,则)(x f 周期为T ; ()f x 的周期为)(x f T ω?的周期为 ω T 。 2、常见周期函数的函数方程: (1)函数值之和定值型,即函数)()()(b a C x b f x a f ≠=+++ 对于定义域中任意x 满足)()()(b a C x b f x a f ≠=+++,则有)()]22([x f a b x f =-+,故函数)(x f 的周期是)(2a b T -= 特例:()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; (2)两个函数值之积定值型,即倒数或负倒数型 若)()()(可正可负,C b a C x b f x a f ≠=+?+,则得 )]22()2[()2(a b a x f a x f -++=+,所以函数)(x f 的周期是)(2a b T -=

数字信号处理 详细分析 采样

离散傅里叶变换 一、问题的提出:前已经指出,时域里的周期性信号在频域里表现为离散的值,通常称为谱线;而时域里的离散信号(即采样数据)在频域里表现为周期性的谱。 推论:时域里的周期性的离散信号,在频域里对应为周期性的离散的谱线。 由于傅里叶变换和它的反变换的对称性,我们不妨对称地把前者称为时域的采样,后者称为频域的采样;这样,采用傅里叶变换,时域的采样可以变换成为频域的周期性离散函数,频域的采样也可以变换成列域的周期性离散函数,这样的变换被称为离散傅里叶变换,简称为DFT。图3-1就是使用采样函数序列作离散傅里叶变换的简单示例。 (a )时域的采样在频域产生的周期性 (b )频域的采样在时域产生的周期性 图3-1 采样函数的离散傅里叶变换 上图就是使用采样函数序列作离散傅立叶变换的简单示例,在时域间隔为s t 的采样函数 序列的DFT 是频域里间隔为s s t f 1 =的采样函数序列;反之,频域里间隔为s f 的采样函数序列是时域里间隔为w W f T 1=的采样函数序列,如图3-1(b)所示。 由于在离散傅立叶变换中,时域和频域两边都是离散值,因此它才是真正能作为数字信号处理的变换,又由于变换的两边都表现出周期性,因此变换并不需要在),(+∞-∞区间进行,只需讨论一个有限周期里的采样作变换就可以保留全部信息。 表3-1为傅立叶变换和傅立叶级数的关系

二、DFT 的定义和性质 离散傅里叶变换(DFT )的定义为: 1、非周期离散时间信号)(n x 的Fourier 变换定义为:ωωωd e n x e X n j j -∞ ∞-∑ =)()( (1) 反变换:ωπωππωd e e X n x n j j ?-= )(21)( )(ωj e X 的一个周期函数(周期为)π 2,上式得反变换是在)(ωj e X 的一个周期内求积分的。这里数字信号的频率用ω来表示,注意ω与Ω有所不同。设s f 为采样频率,则采样周期为 f T 1 =,采样角频率T s π2=Ω,数字域的频率s s f πω2= 式1又称为离散时间Fourier 变换(DTFT )2、周期信号的离散Fourier 级数(DFS ) 三、窗函数和谱分析 1、谱泄露和栅栏效应 离散傅立叶变换是对于在有限的时间间隔(称时间窗)里的采样数据的变换,相当于对数据进行截断。这有限的时间窗既是DFT 的前提,同时又会在变换中引起某些不希望出现的结果,即谱泄露和栅栏效应。 1)谱泄露 以简单的正弦波的DFT 为例,正弦波具有单一的频率,因而在无限长的时间的正弦波,应该观察到单一δ函数峰,如下图示,但实际上都在有限的时间间隔里观察正弦波,或者在时间窗里作DFT ,结果所得的频谱就不再是单一的峰,而是分布在一个频率范围内,下图(b )示。这样信号被时间窗截断后的频谱不再是它真正的频谱,称为谱泄露。

相关文档
相关文档 最新文档