文档库 最新最全的文档下载
当前位置:文档库 › 怎样把交流变成直流

怎样把交流变成直流

怎样把交流变成直流
怎样把交流变成直流

怎样把交流变成直流

一:引入例题

一个普通5号干电池,电动势为1.5V,储存的电荷量大约0.8Ah,使用过程中最多可以提供1.2 Wh电能。若每个普通5号干电池的价格是1元,干电池提供的电能价格是 833 元/KWh。现行电网电能的价格是 0.528 元/KWh。

提出问题:我怎样把220V交流转变成5V直流?

分析问题:

1电压不匹配怎么办?——用变压器降压。

2交流怎样转换成直流?

活动一:半波整流。

通过比较交流和直流方向上的区别,回忆二极管的单向导电特性,首先想出用二极管进行

半波整流。如图。

实验观察交流和半波整流的波形

半波整流交流

波形半波整流后直

流波形

交流转换成直流叫整流,用一个

二极管可以实现整流。

发现问题:

我们发现这种方法只利用了交流电的一半波形,且转换成的直流电大小在变化,不利于许

多要直流稳定电压的电器工作,我们仍然要面对利用率低和稳定性差的问题。

活动二:全波整流

介绍历史上使用过的2个全波整流电路,

双线圈全波整流桥式整流

全波

整流

后的

波形

活动小结,提高了交流电的利用率,现在简单电路、要求不高的少数电路采用半波整流,普遍使用桥式整流,且4个二极管可以做成整流模块。

活动三,滤波

全波整流后的直流电叫脉动直流,是因为直流里含有交流的成分。

减小脉动直流中交流成分,使之变成较稳定的电流叫滤波。

如何去除或阻碍交流成分通过负载,使电压平稳,形成稳恒电流?

观察半波整流和桥式整流加滤波电容后的波形。

观察电容器电容大小对波形的影响

活动小结,电容和电感都可以滤波。

活动四,稳压

观察输出电压随负载和输入电压的变化而变化。

稳压的办法有二

1采用稳压管

2采用三端稳压器

观察经过三端稳压器后的电压波形。

三:小结

解决问题:把220V交流变成低压直流的四个组成部分:降压—整流—滤波—稳压。

1整流电路是将工频交流电转为具有直流电成分的脉动直流电,二极管在电路中起开关的作用。

2滤波电路是将脉动直流中的交流成分滤除,减少交流成分,增加直流成分,电容和电感起滤波的作用。

3稳压电路对整流后的直流电压采用技术进一步稳定直流电压。三端稳压器是常用的稳压器件。

4该转换电路整体转换效率比较高。几乎所有的用电器都有需要稳定直流电源才能正常工作的电路,因此交流变直流有广泛的实用价值。

直流电与交流电在应用中的优缺点

直流电与交流电在应用中的优缺点 高压直流输电方式与高压交流输电方式相比,有明显的优越性.历史上仅仅由于技术的原因,才使得交流输电代替了直流输电.下面先就交流电和直流电的主要优缺点作出比较,从而说明它们各自在应用中的价值. 交流电的优点主要表现在发电和配电方面:利用建立在电磁感应原理基础上的交流发电机可以很经济方便地把机械能(水流能、风能……)、化学能(石油、天然气……)等其他形式的能转化为电能;交流电源和交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉;交流电可以方便地通过变压器升压和降压,这给配送电能带来极大的方便.这是交流电与直流电相比所具有的独特优势. 直流电的优点主要在输电方面: ①输送相同功率时,直流输电所用线材仅为交流输电的2/3~l/2 直流输电采用两线制,以大地或海水作回线,与采用三线制三相交流输电相比,在输电线载面积相同和电流密度相同的条件下,即使不考虑趋肤效应,也可以输送相同的电功率,而输电线和绝缘材料可节约1/3. 如果考虑到趋肤效应和各种损耗(绝缘材料的介质损耗、磁感应的涡流损耗、架空线的电晕损耗等),输送同样功率交流电所用导线截面积大于或等于直流输电所用导线的截面积的1.33倍.因此,直流输电所用的线材几乎只有交流输电的一半.同时,直流输电杆塔结构也比同容量的三相交流输电简单,线路走廊占地面积也少. ②在电缆输电线路中,直流输电没有电容电流产生,而交流输电线路存在电容电流,引起损耗. 在一些特殊场合,必须用电缆输电.例如高压输电线经过大城市时,采用地下电缆;输电线经过海峡时,要用海底电缆.由于电缆芯线与大地之间构成同轴电容器,在交流高压输线路中,空载电容电流极为可观.一条200kV的电缆,每千米的电容约为0.2μF,每千米需供给充电功率约3×103kw,在每千米输电线路上,每年就要耗电2.6×107kw·h.而在直流输电中,由于电压波动很小,基本上没有电容电流加在电缆上. ③直流输电时,其两侧交流系统不需同步运行,而交流输电必须同步运行.交流远距离输电时,电流的相位在交流输电系统的两端会产生显著的相位差;并网的各系统交流电的频率虽然规定统一为50HZ,但实际上常产生波动.这两种因素引起交流系统不能同步运行,需要用复杂庞大的补偿系统和综合性很强的技术加以调整,否则就可能在设备中形成强大的循环电流损坏设备,或造成不同步运行的停电事故.在技术不发达的国家里,交流输电距离一般不超过300km而直

电压电流转换器

级《模拟电子技术》课程设计说明书 电压电流转换器 院、部:电气与信息工程学院 学生: 指导教师:、职称 专业: 班级: 完成时间:

《模拟电子技术》课程设计任务书学院:电气与信息工程学院 适应专业:自动化、电气工程及其自动化、通信工程、电子信息工程

摘要 电压电流转换器是将输入的电压信号转换成电流信号的电路,是电压控制的电流源。在工业控制和许多传感器的应用电路中,摸拟信号输出时,一般是以电压输出。在以电压方式长距离传输模拟信号时,信号源电阻或传输线路的直流电阻等会引起电压衰减,信号接收端的输入电阻越低,电压衰减越大。为了避免信号在传输过程中的衰减,只有增加信号接收端的输入电阻,但信号接收端输入电阻的增加,使传输线路抗干扰性能降低,易受外界干扰,信号传输不稳定,这样在长距离传输模拟信号时,不能用电压输出方式,而把电压输出转换成电流输出。另外许多常规工业仪表中,以电流方式配接也要求输出端将电压输出转换成电流输出。V/I转换器就是把电压输出信号转换成电流输出信号,有利于信号长距离传输。课题所设计的V/I转换器可实现输入为0-5V直流电压,输出为0-10mA的直流电流;输入为0-10V直流电压,输出为0-10mA的直流电流;输入为-10V—+10V直流电压,输出为4-20mA的直流电流。其中,对于-10V—+10V转换为4-20mA,首先采用一个电压串联负反馈电路,将输入电压放大一定倍数,再采用一个电流串联负反馈电路将电压转换为对应的电流输出。经过后期测试,设计电路符合课题设计要求。 关键词:电压控制电流源;长距离传输;电压串联负反馈电路;电流串联负反馈电路

交流电变为直流方案

交流电变为直流方案 电力网供给用户的是交流电,而各种无线电装置需要用直流电。整流,就是把交流电变为直流电的过程。利用具有单向导电特性的器件,可以把方向和大小交变的电流变换为直流电。下面介绍利用晶体二极管组成的各种整流电路。 一、半波整流电路 图5-1、是一种最简单 的整流电路。它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2 ,D 再把交流电 变换为脉动直流电。 下面从图5-2的波形图上看着二极管是怎样整流的。 变压器砍级电压e2 ,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在0~K时间内,e2 为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2 通过它加在负载电阻Rfz上,在π~2π 时间内,e2 为负半周,变压器次级下端为正,上端为负。这时D 承受反向

电压,不导通,Rfz,上无电压。在π~2π 时间内,重复0~π 时间的过程,而在3π~4π时间内,又重复π~2π 时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc 。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 二、全波整流电路 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、Rfz与e2b 、D2 、Rfz ,两个通电回路。 全波整流电路的工作原理,可用图5-4 所示的波形图说明。在0~π 间内,e2a 对Dl为正向电压,D1 导通,在Rfz 上得到上正下负的电压;e2b 对D2 为反向电压,D2 不导通(见图5-4(b)。在π-2π时间内,e2b 对D2 为正向电压,D2 导通,在Rfz 上得到的仍然是上正下负的电压;e2a 对D1 为反向电压,D1 不导通(见图5-4(C)。

交流变换为直流的稳定电源设计方案

交流变换为直流的稳定电 源设计方案 1.1.设计目的及意义 本次设计的直流稳压电源和直流稳流电源具有较高的实用价值。通过本次设计让我充分理解了直流稳压电源和直流稳流电源的工作原理,了解其工作特点以及目前市面上一些直流稳定电源存在的一些缺陷。通过设计尽量去完善直流稳定电源系统。使得这个电源在使用的时候尽量便捷,尽量直观。在一系列的设计过后能够使自己初步形成工程设计的基本思想和一般设计方法。此外通过本次设计让我学到了一些东西:较熟练的掌握了电子线路仿真软件(Multisim2001)的使用。 1.2.设计的任务及要求 要求完成的主要任务: 设计并制作交流变换为直流的稳定电源。 基本要求: (1)稳压电源在输入电压220V、50Hz、电压变化围+15%~-20%条件下:a.输出电压可调围为+9V~+12V b.最大输出电流为1.5A c.电压调整率≤0.2%(输入电压220V变化围+15%~-20%下,空载到满载)d.负载调整率≤1%(最低输入电压下,满载) e.纹波电压(峰-峰值)≤5mV(最低输入电压下,满载) f.效率≥40%(输出电压9V、输入电压220V下,满载) g.具有过流及短路保护功能 (2)稳流电源在输入电压固定为+12V的条件下: a.输出电流:4~20mA可调

b.负载调整率≤1%(输入电压+12V、负载电阻由200Ω~300Ω变化时,输出电流为20mA时的相对变化率) 2.设计方案 2.1.直流稳压电源电路设计 2.1.1.晶体管串联式直流稳压电路 该电路中,输出电压UO经取样电路取样后得到取样电压,取样电压与基准电压进行比较得到误差电压,该误差电压对调整管的工作状态进行调整,从而使输出电压发生变化,该变化与由于供电电压UI发生变化引起的输出电压的变化正好相反,从而保证输出电压UO为恒定值(稳压值)。因输出电压要求从0 V起实现连续可调,因此要在基准电压处设计辅助电源,用于控制输出电压能够从0 V开始调节。 单纯的串联式直流稳压电源电路很简单,但增加辅助电源后,电路比较复杂,由于都采用分立元件,电路的可靠性难以保证。 2.1.2.采用三端集成稳压器电路 该电路采用输出电压可调且部有过载保护的三端集成稳压器,输出电压调整围较宽,设计一电压补偿电路可实现输出电压从0 V起连续可调,因要求电路具有很强的带负载能力,需设计一软启动电路以适应所带负载的启动性能。该电路所用器件较少,成本低且组装方便、可靠性高。 2.1. 3.用单片机制作的可调直流稳压电源 该电路采用可控硅作为第一级调压元件,用稳压电源芯片LM317,LM337作为第二级调压元件,通过AT89CS51单片机控制继电器改变电阻网络的阻值,从而改变调压元件的外围参数,并加上软启动电路,获得0~24 V,0.1 V步长,驱动能力可达1 A,同时可以显示电源电压值和输出电流值的大小。

高压直流输电与特高压交流输电的优缺点比较

高压直流输电与特高压交流输电的优缺点比较 从经济方面考虑,直流输电有如下优点: (1) 线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。 (2) 年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。 所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。 直流输电在技术方面有如下优点: (1) 不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。 (2) 限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。 (3) 调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。 (4) 没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。 (5) 节省线路走廊。按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。 下列因素限制了直流输电的应用范围: (1) 换流装置较昂贵。这是限制直流输电应用的最主要原因。在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。这就引起了所谓的“等价距离”问题。 (2) 消耗无功功率多。一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。 (3) 产生谐波影响。换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。 (4) 缺乏直流开关。直流无波形过零点,灭弧比较困难。目前把换流器的控制脉冲信号闭锁,能起到部分开关功能的作用,但在多端供电式,就不能单独切断事故线路,而要切断整个线路。 (5) 不能用变压器来改变电压等级。 直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流500 kV输电(经济输送容量为1 000 kW、输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。

浅谈高压直流输电与交流输电各自优缺点

浅谈高压直流输电与交流输电各自优缺点 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

追溯历史,最初采用的输电方式是直流输电,于1874年出现于俄国。当时输电电压仅100V。随着直流发电机制造技术的提高,到1885年,直流输电电压已提高到6000V。但要进一步提高大功率直流发电机的额定电压,存在着绝缘等一系列技术困难。由于不能直接给直流电升压,输电距离受到极大的限制,不能满足输送容量增长和输电距离增加的要求。19世纪80年代末,人类发明了三相交流发电机和变压器。1891年,世界上第一个三相交流发电站在德国竣工。此后,交流输电普遍代替了直流输电。随着电力系统的迅速扩大,输电功率和输电距离的进一步增加,交流输电遇到了一系列技术困难。大功率换流器(整流和逆变)的研究成功,为高压直流输电突破了技术上的障碍,直流输电重新受到人们的重视。1933年,美国通用电器公司为布尔德坝枢纽工程设计出高压直流输电装置;1954年,建起了世界上第一条远距离高压直流输电工程。之后,直流输电在世界上得到了较快发展,现在直流输电工程的电压等级大多为±275~±500kV,投入商业运营的直流工程最高电压等级为±600kV(巴西伊泰普工程),我国计划在西南水电送出的直流工程中采用±800kV电压等级。 在现代直流输电系统中,只有输电环节是直流电,发电系统和用电系统仍然是交流电。在输电线路的送端,交流系统的交流电经换流站内的换流变压器送到整流器,将高压交流电变为高压直流电后送入直流输电线路。直流电通过输电线路送到受端换流站内的逆变器,将高压直流电又变为高压交流电,再经过换流变压器将电能输送到交流系统。在直流输电系统中,通过控制换流器,可以使其工作于整流或逆变状态。

桥式整流电路为何能将交流电变为直流电

思考题 8.1 桥式整流电路为何能将交流电变为直流电?这种直流电能否直接用来作为晶体管放大器的整流电源? 8.2 桥式整流电路接入电容滤波后,输出直流电压为什么会升高? 8.3 什么叫滤波器?我们所介绍的几种滤波器,它们如何起滤波作用? 8.4 倍压整流电路工作原理如何?它们为什么能提高电压? 8.5 为什么未经稳压的电源在实际中应用得较少? 8.6 稳压管稳压电路中限流电阻应根据什么来选择? 8.7 集成稳压器有什么优点? 8.8 开关式稳压电源是怎样实现稳压的? 练习题 8.1 判断下列说法是否正确,用“√”或“×”表示判断结果填入空格内。 (1)整流电路可将正弦电压变为脉动的直流电压。() (2)电容滤波电路适用于小负载电流,而电感滤波电路适用于大负载电流。()(3)在单相桥式整流电容滤波电路中,若有一只整流管断开,输出电压平均值变为原来的一半。() 8.2 判断下列说法是否正确,用“√”或“×”表示判断结果填入空格内。 (1)对于理想的稳压电路,△U O/△U I=0,R o=0。() (2)线性直流电源中的调整管工作在放大状态,开关型直流电源中的调整管工作在开关状态。() (3)因为串联型稳压电路中引入了深度负反馈,因此也可能产生自激振荡。()(4)在稳压管稳压电路中,稳压管的最大稳定电流必须大于最大负载电流;()而且,其最大稳定电流与最小稳定电流之差应大于负载电流的变化范围。() 8.3 选择合适答案填入空格内。 (1)整流的目的是。 A.将交流变为直流B.将高频变为低频 C.将正弦波变为方波 (2)在单相桥式整流电路中,若有一只整流管接反,则。 A.输出电压约为2U V D B.变为半波整流 C.整流管将因电流过大而烧坏 (3)直流稳压电源中滤波电路的作用是。 A.将交流变为直流B.将高频变为低频 C.将交、直流混合量中的交流成分滤掉 8.4 选择合适答案填入空格内。 (1)若要组成输出电压可调、最大输出电流为3A的直流稳压电源,则应采用。 A.电容滤波稳压管稳压电路B.电感滤波稳压管稳压电路 C.电容滤波串联型稳压电路D.电感滤波串联型稳压电路

柔性直流输电与高压直流输电的优缺点

柔性直流输电 一、常规直流输电技术 1. 常规直流输电系统换流站的主要设备。常规直流输电系统换流站的主要设备一般包括:三相桥式电路、整流变压器、交流滤波器、直流平波电抗器和控制保护以及辅助系统(水冷系统、站用电系统)等。 2. 常规直流输电技术的优点。 1)直流输送容量大,输送的电压高,最高已达到800kV,输送的电流大,最大电流已达到4 500A;所用单个晶闸管的耐受电压高,电流大。 2)光触发晶闸管直流输电,抗干扰性好。大电网之间通过直流输电互联(背靠背方式),换流阀损耗较小,输电运行的稳定性和可靠性高。 3)常规直流输电技术可将环流器进行闭锁,以消除直流侧电流故障。 3. 常规直流电路技术的缺点。常规直流输电由于采用大功率晶闸管,主要有如下缺点。 1)只能工作在有源逆变状态,不能接入无源系统。 2)对交流系统的强度较为敏感,一旦交流系统发生干扰,容易换相失败。 3)无功消耗大。输出电压、输出电流谐波含量高,需要安装滤波装置来消除谐波。 二、柔性直流输电技术

1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 三、常规直流输电技术和柔性直流输电技术的对比

通信直流变换电源模块

通信直流变换电源模块 RT4820S 用 户 手 册

目录 通信直流变换模块介绍 (2) 1.1 结构及接口 (2) 1.1.1模块外观 (2) 1.1.2前面板 (2) 1.1.3后面板 (4) 1.2模块工作原理 (5) 1.3模块主要功能 (5) 1.3.1保护功能 (5) 1.3.2 其它功能 (6) 1.4模块性能参数 (7) 1.4.1环境要求 (7) 1.4.2输入特性 (8) 1.4.3输出特性 (8) 1.4.4其他特性 (8) 1.5模块安装尺寸 (9) 1.6包装维护 (10) 1.6.1运输包装 (10) 1.6.2维护 (10) 1.7使用注意事项及处理 (10) 1.7.1模块均流 (10) 1.7.2输出电压设定 (11) 1.7.3分组号设定 (11) 1.7.4地址设定 (11) 1.7.5模块告警现象及处理 (11) 注意事项 (12)

通信直流变换模块介绍 RT4820S 型模块额定输入AC220V/DC220V 或DC110V 电源,输出为DC48/20A ;可用于一体化电源系统用作通信电源使用,下面将做系统的介绍: 1.1 结构及接口 1.1.1 模块外观 模块的外观如下图: 图2-1 充电模块外观 1.1.2 前面板 模块前面板如下图所求: 图2-2 充电模块前面板 指示灯 LED 上键(长按5秒取消设置) 下键(长按5秒取消设置) 紧固螺钉

1)LED显示面板 可显示模块电压、电流、告警、地址、分组号、运行方式等信息。若按键无操作超过一分钟,将自动显示模块电压和电流,此时如果存在告警,则显示告警信息。电压显示精度为±0.5V,电流显示精度为±0.2A。 2)指示灯 模块面板上有3个指示灯,分别为电源指示灯(绿色)、保护指示灯(黄色)和故障指示灯(红色),见下表。 表2-1 面板指示灯说明 3)手动操作按键 模块面板上有两个按键,上键和下键。 通过按键,可查看模块信息。例如模块输出电压48V、输出电流10.0A、地址2、运行在自动方式、分组号1,按上键或下键将依次显示如图2-3。 输出电压48V 输出电流10A 地址2 分组号1 运行在自动模式 图2-3 模块信息显示顺序

220v交流电转5v直流电的电源设计

220v交流电转5v直流电的电源设计(电路图+详解) 一.电路实现功能 该电路输入家用220v交流电,经过全桥整流,稳压后输出稳定的5v直流电。 二.特点 方便实用,输出电压稳定,最大输出电流为1A,电路能带动一定的负载 三.电路工作原理 从图上看,变压器输入端经过一个保险连接电源插头,如果变压器或后面的电路 发生短路,保险内的金属细丝就会因大电流引发的高温溶化后断开。 变压器后面由4个二极管组成一个桥式整流电路,整流后就得到一个电压波动很大的直流电源,所以在这里接一个330uF/25V的电解电容。 变压器输出端的9V电压经桥式整流并电容滤波,在电容C1两端大约会有11V 多一点的电压,假如从电容两端直接接一个负载,当负载变化或交流电源有少许波动都会使C1两端的电压发生较大幅度的变化,因此要得到一个比较稳定的电压,在这里接一个三端稳压器的元件。 三端稳压器是一种集成电路元件,内部由一些三极管和电阻等构成,在分析电路时可简单的认为这是一个能自动调节电阻的元件,当负载电流大时三端稳压器内

的电阻自动变小,而当负载电流变小时三端稳压器内的电阻又会自动变大,这样就能保持稳压器的输出电压保持基本不变。 因为我们要输出5V的电压,所以选用7805,7805前面的字母可能会因生产厂家不同而不同。LM7805最大可以输出1A的电流,内部有限流式短路保护,短时间内,例如几秒钟的时间,输出端对地(2脚)短路并不会使7805烧坏,当然如果时间很长就不好说了,这跟散热条件有很大的关系。 三端稳压器后面接一个105的电容,这个电容有滤波和阻尼作用。 最后在C2两端接一个输出电源的插针,可用于与其它用电器连接,比如MP3等。 虽然7805最大电流是一安培,但实际使用一般不要超过500mA,否则会发热很大,容易烧坏。一般负载电有200mA以上时需要散热片。 四.设计过程 平时对于5v 的直流电源需求的情况比较多,在单片机,以及一些电路中应用的较多,因此,为了更方便快捷的由220v 的交流电得到这样的电源,故设计了一个电路。 首先,翻阅了参考书,复习了整流稳压的一些电路知识,然后设计出一个实现电路,使用了portel99绘制出电路图,对电路进行简单的仿真和校验。

交、直流输电的优缺点及比较

交、直流输电的优缺点 直流输电的优势 直流输电的再次兴起并迅速发展,说明它在输电技术领域中确有交流输电不可替代的优势。尤其在下述情况下应用更具优势: (1)远距离大功率输电。直流输电不受同步运行稳定性问题的制约,对保证两端交流电网的稳定运行起了很大作用。 (2)海底电缆送电是直流输电的主要用途之 一。"输送相同的功率,直流电缆不仅费用比交流省,而且由于交流电缆存在较大的电容电流,海底电缆长度超过40km时,采用直流输电无论是经济上还是技术上都较为合理。 (3)利用直流输电可实现国内区网或国际间的非同步互联,把大系统分割为几个既可获得联网效益,又可相对独立的交流系统,避免了总容量过大的交流电力系统所带来的问题。 (4)交流电力系统互联或配电网增容时,直流输电可以作为限制短路电流的措施。这是由于它的控制系统具有调节快、控制性能好的特点,可以有效地限制短路电流,使其基本保持稳定。 (5)向用电密集的大城市供电,在供电距离达到一定程度时,用高压直流电缆更为经济,同时直流输电方式还可以作为限制城市供电电网短路电流增大的措施。 4直流输电与交流输电的技术比较 4.1直流输电的优点 (1)直流输电不存在两端交流系统之间同步运行的稳定性问题,其输送能量与距离不受同步运行稳定性的限制; (2)用直流输电联网,便于分区调度管理,有利于在故障时交流系统间的快速紧急支援和限制事故扩大;

(3)直流输电控制系统响应快速、调节精确、操作方便、能实现多目标控制; (4)直流输电线路沿线电压分布平稳,没有电容电流,不需并联电抗补偿; (5)两端直流输电便于分级分期建设及增容扩建,有利于及早发挥效益。 4.2直流输电的缺点 (1)换流器在工作时需要消耗较多的无功功率; (2)可控硅元件的过载能量较低; (3)直流输电在以大地或海水作回流电路时,对沿途地面地下或海水中的金属设施造成腐蚀,同时还会对通信和航海带来干扰; (4)直流电流不像交流电流那样有电流波形的过零点,因此灭弧比较困难。 5直流输电与交流输电的经济比较 (1)直流架空线路投资省。直流输电一般采用双极中性点接地方式,直流线路仅需两根导线,三相交流线路则需三根导线,但两者输送的功率几乎相等,因此可减轻杆塔的荷 重,减少线路走廊的宽度和占地面积。在输送相同功率和距离的条件下,直流架空线路的投资一般为交流架空线路投资的三分之 二。" (2)直流电缆线路的投资少。相同的电缆绝缘用于直流时其允许工作电压比用于交流时高两倍,所以在电压相同时,直流电缆的造价远低于交流电缆。 (3)换流站比变电站投资大。换流站的设备比交流变电站复杂,它除了必须有换流变压器外,还要有目前价格比较昂贵的可控硅换流器,以及换流器的其它附属设备,因此换流站的投资高于同等容量和相应电压的交流变电站。

高压直流输电课后习题答案

《高压直流输电技术》思考题及答案 一.高压直流输电发展三个阶段的特点? 答:1 1954年以前——试验阶段; 参数低;采用低参数汞弧阀;发展速度慢。 2 1954年~1972年——发展阶段; 技术提高很大;直流输电具有多方面的目的(如水下传输;系统互联;远距离、大容量传输)。 3 1972年~现在——大力发展阶段; 采用可控硅阀;几乎全是超高压;单回线路的输电能力比前一阶段有了很大的增加;发展速度快。 二.高压直流输电的基本原理是什么? 答:直流输电线路的基本原理图见图1.3所示。从交流系统 向系统 输电能时,换流站CS1把送 端系统送来的三相交流电流换成直流电流,通过直流输电线路把直流电流(功率)输送到换流站CS2,再由CS2把直流电流变换成三相交流电流 三.高压直流输电如何分类? 答:分两大类: 1 单极线路方式; A.单极线路方式; 采用一根导线或电缆线,以大地或海水作为返回线路组成的直流输电系统。 B.单极两线制线路方式; 将返回线路用一根导线代替的单极线路方式。 2 双极线路方式; A. 双极两线中性点两端接地方式; B. 双极两线中性点单端接地方式; C. 双极中性点线方式; D. “背靠背”(back- to- back)换流方式。 四.高压直流输电的优缺点有哪些? 答:优点:1 输送相同功率时,线路造价低; 2 线路有功损耗小; 3 适宜海下输电; 4 没有系统的稳定问题; 5 能限制系统的短路电流; 6 调节速度快,运行可靠 缺点:1 换流站的设备较昂贵; 2 换流装置要消耗大量的无功; 3 换流装置是一个谐波源,在运行中要产生谐波,影响系统运行,所以需在直流系统的交流侧和直 流侧分别装设交流滤波器和直流滤波器,从而使直流输电的投资增大; 4换流装置几乎没有过载能力,所以对直流系统的运行不利。 5 由于目前高压直流断路器还处于研制阶段,所以阻碍了多端直流系统的发展。 6 以大地作为回路的直流系统,运行时会对沿途的金属构件和管道有腐蚀作用;以海水作为回路时, 会对航海导航仪产生影响。 五.为什么输送相同功率时,直流输电线路比交流输电线路造价低? 答:因为(1)对于架空线路,交流输电通常采用了三根导线而直流只需一根或二根导线,在输送

交流电压_直流电压转换电路(课程设计)

电子技术课程设计 简要说明: 该电路将微小的输入交流信号u i 的有效值精确地转换成为直流电压输出U o ,以便于用直流电表进行测量。 思考题: 1.直接用二极管整流电路能否实现上述电路功能?为什么? 2.该电路能够测量的信号的频率范围是多少? 参考文献: 施良驹 《集成电路应用集锦》电子工业出版社,1988,6 何希才,白广存 《最新集成电路应用300例》科学技术文献出版社,1995 庄效恒,李燕民 《模拟电子技术》机械工业出版社,1998,2 R 3 u i 10μF U o C

一、课题名称:交流电压/直流电压转换电路 二、课题摘要:该电路将微小的输入交流信号ui的有效值精确地转换成为直流电压输出Uo,以便于用直流电表进行测量。 三、电路原理图: R 3 u i U o C 四、工作原理分析: (一)、电路原理分析 本电路依次运用微分运算放大电路、半波整流电路和积分电路将微小的交流 信号 i u的有效值精确的转换为直流电压输出 o U。 第一部分:同向比例运算电路。 ·· 此电路为同向比例运算电路。由[1]P129,根据虚断路原则,0 i i=,1R上的 压降为0。 i u u + =。 电阻 2 R上的电压

223 f o R u u u R R θ -== + 由虚断路原则u u +-≈, 有 223 o R u u R R += + 代入i u u +=,得 32 (1)o i R u u R =+ 放大倍数 32 1511 2.510 uf R A R =+ =+ = (2) 当2i u 在正半周期时1D 导通,2D 截止。 由虚断路原则,流入运放输入端的净输入电流0d i =,0u +=。 由虚短路原则0u u +-≈=,所以反向输入端为虚地, 故有: 214 i u i R = , 55 o o f u u u i R R --= =-;

特高压交直流输电的优缺点对比

特高压交直流输电的优缺点对比 一、直流输电技术的优点 1.经济方面: (1)线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根,采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。 (2)年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。 所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。 2.技术方面: (1)不存在系统稳定问题,可实现电网的非同期互联。由此可见,在一定输电电压下,交流输电容许输送功率和距离受到网络结构和参数的限制,还须采取提高稳定性的措施,增加了费用。而用直流输电系统连接两个交流系统,由于直流线路没有电抗,不存在上述稳定问题。因此,直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。 (2)限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制’,将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。 (3)调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。 (4)没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。

AC220V-DC48V通讯模块直流转换器

深圳市普顿电力设备有限公司 一:通信电源简介 普顿电力AC220-DC24V/48V 系列通信电源模块采用先进的高频脉宽调制技术,使效率得到了极大提高。整机具有稳压精度高、动态响应快、输出杂音低、抗干扰能力强、工作温度范围宽等特点。N+1模块组合结构,各模块间可自动均流均衡供电,可为电信、电力及无线基站组建高频开关电源系统。 表头型模块采用3位半的表头显示,显示输出电流电压,简单实用。 模块采用宽度为19"、高度为2U的标准机箱,易于安装。可用于组成电源系统,并且模块可并联带电池使用,不需监控单元。 本电源模块适用于交流220VAC和直流220VDC的输入条件的使用场合。 本电源模块适用于直流输出24VDC 10A-60A DC 的输出条件的使用场合。 本电源模块适用于直流输出48VDC 5A-50A DC 的输出条件的使用场合。 二:通信电源工作方式 1:AC220-DC24/48V时,把交流220V转换成直流24V或直流48V,供直流负载使用;当市电断电后,由电池组稳压输出; 2:DC220-DC24/48V时,把直流220V降压至直流24V或直流48V,供直流负载使用;当市电断电后,由电池组稳压输出; 3:带充放电管理型,当用户需要单独一个模块使用,并且能单独对电池进行充电时,可以选用带充电管理型的通信电源模块,在模块把AC220转换为DC24/48V输出时,同时也能对电池进行智能充电,当市电断电后,由电池组稳压输出; 三:通信电源技术参数 ◆输入电压:单相三线制 AC:220V± 20% ◆输入电流:≤10A(RMS)交流输入为220V,直流输出为48V时 ◆频率: 50Hz±10% ◆功率因数:≥0.99 ◆效率:≥0.87 ◆启动冲击电流:≤150%Imax (额定输入状态下) ◆保护功能:输入过欠压保护;输出过压保护;输出限流保护;短路保护;模块并联保护; 过温保护;过流保护; ◆输入过压关机: 265--275V ◆输入欠压关机: 160--170V ◆交流输入范围: 160--270V ◆输出直流电压: 48VDC或-48VDC(42∽58V可调) 或24V(21∽29V可调)

交流变直流变换电路综述

班级:11自动化2班姓名:王帅学号:201110320222 电力电子技术论文 交流变直流变换电路综述 基本概念 交直流转换有热电变换、电动系、静电系、电子系等方法。迄今,热电变换仍是一种误差小、灵敏度高、有较好稳定性的交直流转换方法。交流/直流(AC/DC)变换器AC-DC transfer 热电变换器由加热丝和热电偶组成,其间有云母绝缘,热电变换器原理示意图1.加热丝;2.云母片;3.热偶洪.隔离云母片; 5.冷端散热片;6.加热丝引线刃.热偶引线电流通过加热丝所产生的热量使热电偶产生热电势,大小决定于通过加热丝的电流。有效值相等的交流和直流电流在加热丝上产生的电功率相等,翰出的热电势也相等,由此可实现交直流电流的比较。热电变换器的交直流转换误差中包含有在热电转换过程中通过直流和交流电流时,由于一些物理效应(汤姆孙效应和帕尔蒂效应)的影响不同所引起的直流误差,这是因为,这些效应所引起的附加发热在通过直流时不能像通过交流时可以抵消。此外,还有高频下容性泄漏和趋肤效应所引起的高频误差,以及低频下温度波动所引起的低频误差。单元热电变换器的转换误差小于1 x 10一5,使用频率可到10MHZ;多元热电变换器的转换误差则小于1 x 10,但其频率特性较单元热点变换器的差,一般只使用在100khz以下。中国研制的具有保护热电偶的多元热电变换器在4OHZ- 15kHZ范围内交直流转换误差小于1 x 10一‘。还有一种称为薄膜型的热电变换器,是利用集成电路制造技术将加热丝和热偶都集中在一块小基片上而成的,目前有的已做到2(X)多个结。其频率特性介于单结和多结变换器之间,可使用到1 MHz以上,在100翻Hz以下不确定度也可达10一6数t级。近年来发展起来的模数转换器和采样及数据处理技术,也可看作为一种交直流转换方法,尽管准确度目前还比不上热电转换,但已经取得了很多实际应用。当模数转换器对交流信号采样测量时,得到的是交流信号的瞬时值,再按照交流量的定义,通过计算获得如有效值、平均值等特征量模数转换器一般是以直流参考电压(齐纳管)为转换标准的,因此实际上这也是一种交直流转换。为了提高转换精度,人们在提高数模转换器的性能(速率和位数)、改进采样策略和数据处理。由于方法等方面进行了有意义的工作 工作原理 单相AC-DC变换电路设计以Boost升压斩波电路为主电路,MSP430F1611单片机作为微处理器。通过检测电路,单片机控制电路,驱动电路完成对Boost 升压斩波电路实现闭环反馈控制。硬件电路包括Boost升压斩波电路拓扑、场效应管驱动电路、电压采样电路、电流采样电路、矩阵键盘、5110液晶显示模块、辅助电源供电模块、和MSP430F1611单片机最小系统控制电路。 设计以Boost升压斩波拓扑电路作为电源主电路,控制部分以MSP430F1611单片机为控制微处理器。交流20V-30V输入电压条件下Boost升压斩波电路可满

高压直流输电优缺点

浅谈特高压直流输电 将电能从大型火力、水力等发电厂输送到远方负荷中心地区时会遇到远距离输电问题。要实现远距离的大功率传输,需采用超高压或特高压输电技术。在特高压输电技术中有交流和直流两种方案,可根据技术经济条件和自身特点加以选择。特高压交流输电是目前国内外最基本的远距离输电方式,而特高压直流输电不存在同步稳定性问题,是大区域电网互联的理想方式。下面我将结合自己所学知识与查阅的资料对特高压直流输电进行概括的阐述。 直流输电是指将送端系统的正弦交流电在送端换流站升压整流后通过直流线路传输到受端换流站,受端换流站将直流逆变成正弦的工频交流电后降压和受端系统相连。而对于换流站,它的核心元件是换流器,,由1 个或数个换流单元串联而成,电路均采用三相换流桥,材料多采用可控硅阀。它的基本工作原理是,控制调节装置通过控制桥阀的触发时刻,可改变触发相位,进而调节直流电压瞬时值、电阻上的直流电流、直流输送功率。同时,相同的触发脉冲控制每个桥阀的所有可控硅元件。当三相电源为对称正弦波的情况下,线电压由负到正的过零点时,脉冲触发桥阀,同时阀两端电压变正,阀立即开通。6 个脉冲发生器分别完成对单桥换流器的6 个桥阀的触发,恰好交流正弦波电源经过1 个周期,线电压又达到下一个过零点进行第二个触发周期。一般,工程上为了获得脉波更小的直流输电电压,通常采用12脉的双桥换流器。 与交流输电相比,直流输电技术具有以下特点:输电功率大小、方向可以快速控制调节;直流输电系统的接入不会增加原有系统的短路容量;利用直流调制可以提高系统的稳定水平;直流的一个极发生故障,另一个极可以继续运行,且可以利用其过负荷能力减少单极故障下的树洞功率损失;另外直流架空线路走廊宽度约为相同电压等级交流输线路走廊宽度的一半。而对于特高压直流输电,它不但具有常规直流输电的特点,而且还能够很好的解决我国一些现存的问题: 1、我国一次能源分布很不均衡, 水利资源2/ 3分布在西南地区, 煤矿资源2/ 3 分布在陕西、山西及内蒙古西部。而电力需求又相对集中在经济发展较好较快的东部、中部和南部区域。能源产地和需求地区之间的距离为1 000~ 2 500 km。因此我国要大力发展西电东送, 实现南北互供, 全国联网。特高压直流输电在远距离输电方面较为经济, 而且控制保护灵活快速, 是实现南北互供的较好途径。 2、我国东部、中部、南部地区是我国经济发达地区, 用电需求大, 用电负荷有着较高的增长率。特高压直流输电能够实现大容量输电, 规划的特高压直流输电工程的送电容量高

高压直流输电

电力电子技术在电力系统中的应用 专业:电气工程及其自动化 班级:电气0902 学号: 0901120211 姓名:白云龙

电力电子技术在电力系统中的应用 本学期开设了《电力电子技术在电力系统中的应用》一科,结合电力电子与电力系统的知识。通过以前的学习我们知道,电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,已成为现代电气工程与自动化专业不可缺少的一门专业基础课。而电力系统是由发电、变电、输电和用电等环节组成的电能生产、传输、分配和消费的系统。本门学科即是讲电力电子技术在电力系统中的应用。其中包括无触点开关、有源电力滤波器、高压直流输电、交流不间断电源、静止无功补偿器等。本次我将着重介绍电力电子在电力系统中的应用之一—高压直流输电。 所谓高压直流输电(HVDC),即利用稳定的直流电具有无感抗,容抗也不起作用,无同步问题等优点而采用的大功率远距离直流输电。输电过程为直流。目前应用较为广泛,常用于海底电缆输电,非同步运行的交流系统之间的连络等方面。 高压直流输电技术被用于通过架空线和海底电缆远距离输送电能;同时在一些不适于用传统交流联接的场合,它也被用于独立电力系统间的联接。世界上第一条商业化的高压直流输电线路。1954年诞生于瑞典,用于连接瑞典本土和哥特兰岛。 在一个高压直流输电系统中,电能从三相交流电网的一点导出,在换流站转换成直流,通过架空线或电缆传送到接受点;直流在另一侧换流站转化成交流后,再进入接收方的交流电网。直流输电的额定功率通常大于100兆瓦,许多在1000-3000兆瓦之间。 高压直流输电用于远距离或超远距离输电,因为它相对传统的交流输电更经济。 应用高压直流输电系统,电能等级和方向均能得到快速精确的控制,这种性能可提高它所连接的交流电网性能和效率,直流输电系统已经被普遍应用。 高压直流输电是将三相交流电通过换流站整流变成直流电,然后通过直流输电线路送往另一个换流站逆变成三相交流电的输电方式。它基本上由两个换流站和直流输电线组成,两个换流站与两端的交流系统相连接。 直流输电线造价低于交流输电线路但换流站造价却比交流变电站高得多。一

DCDC直流转换电源

理论与实践总是相得益彰才完美,当然嵌入式程序设计与实际电源系统设计也要统一才能做出高效优质的DCDC直流转换电源。有时候搞嵌入式的工程师们往往把单片机、ARM、DSP、FPGA搞的得心应手,而一旦进行系统设计,到了给电源系统供电,虽然也能让其精心设计的程序运行起来,但对于新手来说,有时可能效率低下,往往还有供电电流不足或过大引起这样那样的问题,本文十一大金律轻松搞定DCDC电源转换电路设计。 第一条、搞懂DC/DC电源怎么回事? DC/DC电源电路又称为DC/DC转换电路,其主要功能就是进行输入输出电压转换。一般我们把输入电源电压在72V以内的电压变换过程称为DC/DC转换。常见的电源主要分为车载与通讯系列和通用工业与消费系列,前者的使用的电压一般为48V、36V、24V 等,后者使用的电源电压一般在24V以下。不同应用领域规律不同,如PC中常用的是12V、5V、3.3V,模拟电路电源常用5V 15V,数字电路常用3.3V等,现在的FPGA、DSP还用2V以下的电压,诸如1.8V、1.5V、1.2V等。在通信系统中也称二次电源,它是由一次电源或直流电池组提供一个直流输入电压,经DC/DC变换以后在输出端获一个或几个直流电压。 第二条、需要知道的DC/DC转换电路分类 DC/DC转换电路主要分为以下三大类: ①稳压管稳压电路。②线性(模拟)稳压电路。③开关型稳压电路 第三条、最简单的稳压管电路设计方案 稳压管稳压电路电路结构简单,但是带负载能力差,输出功率小,一般只为芯片提供基准电压,不做电源使用。比较常用的是并联型稳压电路。选择稳压管时一般可按下述式子估算:(1)Uz=Vout;(2)Izmax=(1.5-3)ILmax;(3)Vin=(2-3)Vout这种电路结构简单,可以抑制输入电压的扰动,但由于受到稳压管最大工作电流限制,同时输出电压又不能任意调节,因此该电路适应于输出电压不需调节,负载电流小,要求不高的场合,该电路常用作对供电电压要求不高的芯片供电。 第四条、基准电压源芯片稳压电路

相关文档