文档库 最新最全的文档下载
当前位置:文档库 › 模具设计

模具设计

模具设计
模具设计

塑料模具设计说明书

题目名称摩托车尾灯罩模具设计

专业班级模具 2 班

学号13941231 学生姓名徐义鹏

指导教师章勇

设计时间2015.1月~2月

一、零件分析 (1)

1.1 零件工艺性分析 (1)

1.2 注射成型分析 (1)

二、基本结构和零部件设计 (2)

2.1 分型面的选择 (2)

2.2 成型零件的设计 (2)

2.2.1凹模设计及计算 (3)

2.2.2 型芯设计及计算 (4)

2.3 结构零件的设计 (5)

2.4 加热与冷却装置的设计 (5)

三、注射模设计 (6)

3.1 选取注射机 (6)

3.2 浇注系统设计 (7)

3.2.1 主流道 (7)

3.2.2 分流道 (8)

3.2.3 浇口 (9)

3.3 侧向分型与抽芯结构设计 (9)

3.3.1侧向分型抽芯机构类型 (10)

3.3.2抽芯距的确定 (10)

3.3.3斜导柱分型与抽芯结构 (10)

3.3.4斜导柱的确定 (12)

3.3.5滑块与导滑槽 (13)

3.3.6楔紧块的设计 (13)

3.4 推出机构的设计 (13)

3.5选取模架 (14)

四、校核 (14)

4.1校核锁模力 (14)

4.2校核注射压力 (14)

4.3校核模具闭合高度 (14)

4.4校核开模行程 (14)

一、零件分析

1.1 零件工艺性分析

零件图如上

分析如下:

1、塑件有侧孔,须采用侧抽芯结构;

2、塑件两侧有一定角度,方便脱模;

3、壁厚均匀,容易注射成型;

4、塑件表面要求较高,应尽量使熔接痕不出现在外表面;

5、塑件转角有圆弧过渡,避免应力集中,提高强度,利于充满型腔,便于脱模。

1.2 注射成型分析

成型本零件使用聚苯乙烯(PS),该材料为热塑性塑料,聚苯乙烯无色,透明,有光泽,无毒无味,落地时有清脆的金属声比重小,具有高的强度、刚性、硬度,耐腐蚀、性耐热性、电绝缘性优良,可以与熔融的石英相媲美,密度为1.054g/cm3 ,取1.054g/cm3成型收缩率为0.8%~8.5%,可在100℃左右使用。该塑料为无定形高聚物,注射时一般不需要进行干燥。流动性好,它的流变特性是黏度对剪切速率的依赖性比温度的依赖性大。

精度为MT5,较低。

大批量生产,因此模具设置一模两腔。

二、基本结构和零部件设计

2.1 分型面的选择

方案一:方案二:

单一分型面两个分型面,点浇口适用

结构简单

方案三:

分型面投影面积大,锁模力大,飞边大,不采用

基于分型面的选择原则和总体方案考虑,本设计采用方案二。

2.2 成型零件的设计

模具中决定塑件几何形状和尺寸的零件称为成型零件,包括凹模、型芯、镶件、成型杆和成型环等。成型零件工作时,直接与塑料接触,承受塑料熔体的高压、料流的冲刷,脱模时与塑件间还发生摩擦。因此,成型零件要求有正确的几何形状,较高的尺寸精度和较低的表面粗糙度,此外,成型零件还要求结构合理,有较高的强度、刚度及较好的耐磨性能。

设计成型零件时,应根据塑料的特性和塑件的结构及使用要求,确定型腔的总体结构,选择分型面和浇口位置,确定脱模方式、排气部位等,然后根据成型零件的加工、热处理装配等要求进行成型零件结构设计,计算成型零件的工作尺寸,对关键的成型零件进行强度和刚度校核。

2.2.1凹模设计及计算

凹模是成型零件外表面的主要零件,按其结构不同,可分为整体式和组合式两类。

1、整体式凹模 整体式凹模由整快材料加工而成。结构简单,成型的制品质量较好。但消耗模具钢多,对于形状复杂的凹模,其机械加工工艺性较差。但随着数控技术和电加工技术的发展与应用,采用整体式凹模将会越来越多

2、组合式凹模 组合式凹模是指凹模由两个以上零件组合而成,其改善了加工性,减少了热处理变形,节约了模具钢,但装配调整较麻烦,有时制品表面可能存在拼块的拼接线痕迹。因此适用于形状复杂的塑件成型。

由于本制品尺寸小,模具也将为中小型模具,形状复杂程度一般,因此采用整体式凹模。如下图:

型腔尺寸计算:

径向尺寸:L M =[δ+?-

+0]4

3)1(S L s 式中 L M ——型腔的径向基本尺寸;

L s ——塑件的径向基本尺寸; S ——塑料的平均收缩率,取S=0.006;

Δ——塑件的公差;根据参考文献【1】中表3-10选取; δ——模具制造公差,精度要求不高的塑件按1/3?选取。 根据塑件零件图有:L s1 =90, L s2 =22,L s3 =75, L s4 =4

则型腔径向尺寸为:

L M1=[101]4

3)1(δ+?-+S L s =[90×(1+0.006)-43×1.033.00]+=33

.008.89+

L M2=[202]4

3)1(δ+?-+S L s =[22×(1+0.006)-43×0.4415.00]+=15

.008.21+

L M3 =[ L S3(1+S )-4330]δ+?=[75×(1+0.006)-4329.00]86.0+?=29

.008.74+

L M4 =[ L S4(1+S )-4340]δ+?=[4×(1+0.006)-4

308.00]24.0+?=08

.008.3+

深度尺寸:H M =[ H S (1+S )-3

+?0]

式中 H M ——型腔的深度基本尺寸;

H S ——塑件的深度基本尺寸。

根据塑件零件图有:H S1 =75, H S2 =20

则型腔的深度尺寸为:

H M1 =[ H S1(1+S )-3210]δ+?=[75×(1+0.006)-3229.00]86.0+?=29

.009.74+

H M2 =[ H S2(1+S )-3220]δ+?=[20×(1+0.006)-3

215.00]44.0+?=15

.008.19+

2.2.2 型芯设计及计算

型芯是成型塑件内表面的零件。根据型芯所成型零件内表面大小不同,通常又有型芯与成型杆之分。型芯一般指成型制品中较大的主要内型的成型零件,又

称主型芯;成型杆一般是指成型制品上较小孔的成型零件,又称小型芯。

1、主型芯设计及计算

型芯(主型芯)分为整体式和组合式两类。整体式型芯型芯与模板为一整体,其结构牢固,成型的制品质量较好,但消耗贵重模具钢多,不便加工,主要用于形状简单的型芯。组合式型芯的优缺点与组合式凹模的基本相同,设计和制造这一类型芯时,必须注意提高拼块的加工和热处理工艺性,拼接必须牢靠严密。

本设计所需的主型芯结构简单,因此采用整体式型芯,使用螺钉连接主型芯与模板,结构牢固。如右图:

主型芯尺寸计算:

径向尺寸:l M =[ l s (1+S)+

4

3

?0

]δ- 式中 l M ——型芯的径向基本尺寸;

l s ——塑件的径向基本尺寸;

其余符号与型腔计算公式相同。

根据塑件零件图有:l S =2 则型芯径向尺寸为:

l M =[ l S (1+S )+43δ+?0]=[2×(1+0.006)+43007.0]2.0-?=0

07.02.2- 2、侧型芯设计及计算

侧型芯采用螺钉固定,如下图:

侧型芯尺寸计算:

径向尺寸公式同主型芯

根据塑件零件图有:l S1 =60,l S2 =4

则侧型芯径向尺寸为:

l M1 =[ l S1(1+S )+4310]δ+?=[60×(1+0.006)+4

3021.0]64.0-?=0

21.08.60- l M2 =[ l S2(1+S )+4320]δ+?=[4×(1+0.006)+4

3008.0]24.0-?=0

08.02.4- 高度尺寸:h M =[ h S (1+S )+32

0]δ

-?

根据零件图有:h S =26

则侧型芯高度尺寸为:

h M =[ h S (1+S )+320]δ-?=[26×(1+0.006)+3

2023.0]7.0-?=0

23.06.26-

2.3 结构零件的设计

1、导向装置设计

采用导柱导套定位,使用带头导柱,直导套。 2、支承零件设计

定模座板和动模座板:是动模和定模的基座,也是固定式塑料模具与成型设备连接的模板。

定模扳和动模板:作用是固定型芯、凹模、导柱和导套等零件,所以也称固定板。

支承板:是垫在动模板背面的模板,作用是防止型芯、凹模、导柱、导套等零件脱出,增强这些零件的稳定性并承受型芯和凹模等传递来的成型压力。

垫块:主要作用是使动模支承板与动模座板之间形成用于推出机构运动的空间和调节模具总高度以适应成型设备上模具安装空间对模具总高的要求。

2.4 加热与冷却装置的设计

本制品材料为PS ,不需要加热装置,因此只设计冷却装置。 冷却装置设计原则:

冷却回路数量应尽量多,冷却通道孔径尽量大,冷却通道布置应合理,应特

别注意的是一般情况下型芯的散热能力差,因而对型芯应加强冷却,并特别注意型芯冷却回路的布置。

型腔冷却采用了循环式冷却装置,冷却效果较好;型芯冷却采用了隔板式冷却装置,结构简单,制造方便。

三、 注射模设计

3.1 选取注射机

1、根据注射量

塑件成形所需的注射总量应该小于所选注射机的注射量。为了保证正常的注射成型,注射机的最大注射量应稍大于制品的质量或体积(包括流道凝料)。通常注射机的实际注射量最好在注射机的最大注射量的80%以内。

当注射机最大注射量以最大注射容积标定时,其应满足:

KV 0≥V=∑=n

i Vi 1+V 流

V 0——注射机最大注射容积(cm 3)

V ——制品的总体积(包括制品、流道凝料在内)(cm 3) Vi ——一个制品的体积(cm 3) V 流——流道凝料的体积(cm 3) n ——型腔数,n=2

K ——注射机最大注射量的利用系数,取K=0.8

由ProE 测量两个塑件体积∑=21i Vi =87.91216 cm 3

,取V 流=0.8∑=2

1

i Vi =70.329728

cm 3

,所以V=∑=2

1

i Vi +V 流=158.24189 cm 3,因此V 料≥197.80233 cm 3

2、根据锁模力

锁模力又称合模力,是指注射机的合模结构对模具所能施加的最大夹紧力。当熔体充满型腔时,注射压力在型腔内所产生的作用力总是力图使模具沿分型面胀开,因此,注射机的锁模力要大于型腔内熔体压力与塑料制品及浇注系统在分型面上的投影之和的乘积,即:

F 0≥F=p 模*A 分

F 0——注射机最大锁模力

p 模——模内平均压力(型腔内的熔体平均压力), A 分——制品、流道、浇口在分型面上的投影面积之和。 由计算可得塑件在分型面的投影面积为A=2*75*90=13500mm2,取流道凝料投影面积为0.8A=10800mm2,所以F 0≥34.3*(13500+10800)=833.49kN 。

综上所述,选取型号为XS-ZY-250的注射机。

3.2 浇注系统设计

浇注系统设计原则

1.适应塑料的成型工艺特性

2.有利于型腔内的气体排出

3.尽量减少塑料熔体的热量损失与压力损失

4.避免熔料直冲细小型芯或嵌件

5.便于修整,不影响塑件的外观和质量

6.减小塑料用量和模具尺寸

7. 防止塑件翘曲变形

3.2.1 主流道

主流道是浇注系统中从注射机喷嘴与模具相接触的部位开始,到分流道为止的塑料熔体的流动距离。它与注射机喷嘴在同一轴线上,熔体在主流道中不改变流动方向。主流道是熔融塑料最先经过的流道,所以它的大小直接影响熔体的流动速度和充模时间。

本制品采用直浇注系统。

如右图,主流道为圆锥形,锥度为α,

依图中公式,小端直径d=4.5mm,主流道长

度L≤60mm.,取L=30mm。

由于主流道需要与高温塑料和喷嘴频

繁接触,设置主流道衬套是很有必要的。尤

其是当主流道需要穿过几块模板时更应该

设置主流道衬套,否则在模板接触面可能开

始溢料,致使主流道凝料难以取出。

一般主流道衬套采用碳素工具钢如T8A、T10A等,热处理要求淬火53~57HRC。主流道衬套应设置在模具的对称中心位置上,并尽可能保证与相联接的注射机喷嘴为同一轴心线。主流道衬套形式如下图所示,(a)为主流道与定位圈设计成整体式,一般用于小型模具;(b)和(c)所示为将主流道衬套和定位圈设计成两个零件,然后配合固定在模板上。在本设计中,为了安装与拆卸方便,所以采用图(b)的形式。

(a) (b) (c)

3.2.2 分流道

在多型腔或单型腔多浇口时应设置分流道。分流道是指主流道末端与浇口之间这一段塑料熔体的流动通道。它是浇注系统中熔融状态的塑料由主流道流入型腔前,通过截面积的变化及流向变换以获得平稳流态的过渡段,因此要求所设计的分流道应能满足良好的压力传递和保持理想的填充状态,使塑料熔体尽快地流经分流道充满型腔,并且流动过程中压力损失及热量损失尽可能小。

为便于机械加工及凝料脱模,分流道大多设置在分型面上。常用的分流道截面形状一般可分为圆形、梯形、U形、半圆形及矩形等。

1、分流道的截面形状和尺寸

分流道截面形状及尺寸应根据塑料制件的结构(大小和壁厚)、所用塑料的工艺特性、成型工艺条件及分流道的长度等因素来确定。由理论分析可知,圆形截面的流道总是比任何其他形状截面的流道更可取,因为在相同截面积的情况下,其比表面积最小(流道表面积与体积之比值称为比表面积),即它在热的塑料熔体和温度相对较低的模具之间提供的接触面积最小,因此从流动性、传热性等方面考虑,圆形截面是分流道比较理想的形状。

圆形截面分流道因其要以分型面为界分成两半进行加工才利于凝料脱出,但这种加工的工艺性不佳,且模具闭合后难以精确保证两半圆对准,故生产实际中不常使用。而U形截面分流道容易加工,且塑料的热量散失及流动阻力均不大,经过多方面的考虑,在本设计里采用U形截面(即图中的抛物线截面)的分流道。

等效尺寸(使效率值均为0.25D时应取的尺寸):D=7mm。

2、分流道的布置

本模具采用一模两腔,因此分流道对向分布,分流道较长时应设置冷料穴。分流道与浇口的过渡应平滑,有利于熔体的流动和填充,否则会使料流产生紊流和涡流,从而使充模条件恶化。

3.2.3 浇口

浇口亦称进料口,是连接分流道与型腔的通道。除直接浇口外,它是浇注系统中截面积最小的部分,但却是浇注系统的关键部分。浇口的位置、形状及尺寸对塑件的性能和质量的影响很大。按浇口形状可分为扇形浇口、环形浇口、盘形浇口、轮辐式浇口、薄片式浇口、点浇口,按浇口的特殊性又分为潜伏式浇口、护耳浇口等。

1、浇口形状:本制品要求表面光洁,因此采用点浇口,只会在制品表面留下很浅的痕迹。

2、浇口位置:本模具采用一模两腔,对向布置。

方案一:浇口设置在制品上方正中间,表面会留下痕迹,但流程短;

方案二:浇口设置在制品下方,表面不留痕迹,但流程长。

本制品属于薄壁零件,且点浇口所留痕迹很小,不影响使用,因此采用方案一,将浇口设置在制品上方正中间。

点浇口设置须是双分型面,三板式。

本设计还设计了自动拉断点浇口装置,如下图,在定模型腔板内镶一托板。开模时,由定距分型机构(弹簧)保证定模板与定模座板首先分型,拉料杆将主流道凝料从主流道衬套内拉出。当开模一定距离后,限位螺钉带动托板使主流道凝料与拉料杆脱离,同时拉断点浇口,整个浇注系统凝料便自动落下。

3.3 侧向分型与抽芯结构设计

本制品侧壁上带有与开模方向不同的孔,阻碍制品成型后直接脱模,因此将成型侧孔的成型零件做成活动的侧型芯,在制品脱模前抽出侧型芯,再从模具中推出制品。因此设计侧向分型抽芯机构。

3.3.1侧向分型抽芯机构类型

侧向分型抽芯机构可分为手动、机动、气动或液压型,本设计采用机动侧向分型抽芯机构。

机动侧向分型抽芯机构有斜导柱、斜滑块、齿轮齿条,及其他形式的结构。本制品底部不平齐,因此排除斜滑块侧向分型抽芯机构;齿轮齿条侧向分型抽芯机构较复杂,因而不采用,本设计最终采用斜导柱侧向分型抽芯机构。

3.3.2抽芯距的确定

如上图,抽芯距S

=h+(2~3)mm=5mm

3.3.3斜导柱分型与抽芯结构

有四种形式:

①斜导柱在定模,滑块在动模:

该形式必须避免复位时滑块与推杆出现干涉。

②斜导柱在动模,滑块在定模:

该形式特点是没有推出机构。

③斜导柱、滑块在动模:

该形式可以通过推出机构或顺序分型机构来实现斜导柱与滑块的相对运动。

④斜导柱、滑块在定模:

该形式必须使滑块带着侧型芯先从制品中抽出,才不会损坏制品的侧孔或凸台。因此,应使定模板与定模座板先分型。

本设计采用第④种形式,即斜导柱、滑块都在定模。

3.3.4斜导柱的确定

① 斜导柱斜角:

L 4=S 抽/sin α,H 4=S 抽sin α

当抽芯距(S 抽)一定时,α越小,斜导柱工作长度(L4)越长,完成抽芯所需的开模行程(H4)越大。生产中斜导柱斜角一般取15o ~20o ,本设计取150。

②斜导柱截面形状:常用为圆形和矩形,圆形截面加工方便,装配容易,应用较广;矩形截面在相同截面积的条件下,具有较大的抗弯截面系数,能承受较大弯矩,强度、刚度好,但加工与装配较难,适用于抽拔力较大的场合。本设计采用圆形截面。

③斜导柱截面尺寸

斜导柱截面尺寸取决于所受的弯矩: []弯

σ——斜导柱材料的许用弯曲应力,对于碳钢,[]弯

σ=127.2MPa

1L ——弯曲力作用点(B )距斜导柱伸出部分根部(A )的距离

本次设计,分型面在侧型芯上方7mm 处,因此1L =7/cos150=7.25mm ,F 弯经计算得3163.96N ,因此斜导柱截面直径d=11.87mm ,斜导柱为标准件,圆整后取

d=12.5mm 。

④斜导柱长度

m m

S ha

D l l l l L )10~5(sin cos tan 25421+++=+++=ααα抽

由上面可得

α=15°,S 抽=5mm ,

则D=16mm , ha=55mm , 计算取整可得斜导柱长度L=80mm 。

[]

31

cos 1.0弯

σαL F d =

3.3.5滑块与导滑槽

①滑块与侧型芯连接形式

有整体式和组合式两种:

?整体式:滑块与侧型芯做成一体

?组合式:滑块与侧型芯单独制造并通过

一定方式连接

本设计采用组合式,使用通槽加销钉固定侧型芯。如右

图:

②滑块导滑形式

为了确保侧型芯可靠地抽出和复位,保证滑块在移

动过程中平稳、无上下窜动和卡死现象,导块和导滑槽

必须很好地配合和导滑。本设计采用如图所示的导滑形

式。

③滑块定位装置

滑块在完成抽芯动作后,必须可靠地留在要求的

位置上,不能任意滑动,否则合模时导柱无法准确插

入滑块斜孔中。

3.3.6楔紧块的设计

楔紧块楔角α’必须大于斜导柱的斜角α:α’= α+(20~30),保证在模具开模过程中,楔紧块先松开,斜导柱才拨动滑块抽芯动作。

干涉现象:为了防止干涉现象损坏制品侧孔,使用弹簧先复位机构。

3.4 推出机构的设计

脱出机构设计原则

1.结构可靠、运动自如

2.保证塑件外观良好

3.保证塑件推出时不变形不损坏

?脱模力作用位置靠近型芯

?脱模力应作用于塑件刚度及强度最大的部位

?作用力面积尽可能大

?一般而言:塑件收缩率大、壁厚、大而复杂的型芯、深度大、脱模斜度小、成型零件表面粗糙时脱模力大。

4.尽量使塑件留于动模一侧

?塑件留于动模则推出机构简单,否则要设计定模推出机构。

推出机构常用的结构形式:推杆推出机构、推管推出机构、推件板推出机构、推块推出机构、活动镶块或凹模推出机构、联合推出机构。

本制品底面不平齐,又有侧型芯,因此采用推块推出机构,表面不会留下推杆痕迹,且推出力较均匀。

3.5选取模架

依据上述设计过程,估算大概尺寸,选取P1型模架,尺寸BXL=355X355。

四、校核

4.1校核锁模力

设计完成,分型面面积A

分=A

+2A

=8x110+2x75x90=14380mm2

所需锁模力F=A

分*p

=493.234 kN<F

(注射机最大锁模力)=1800Kn

校核合格

4.2校核注射压力

ABS所需注射压力P塑为60~100MPa

P机(注射机最大注射压力)=130MPa>P塑

校核合格

4.3校核模具闭合高度

模具闭合高度H=322.1mm,最大模具高度Hmax=350mm,最小模具高度Hmin=250mm,Hmin≤H≤Hmax

校核合格

4.4校核开模行程

注射机XS-ZY-250,注射机最大开模行程与模具厚度有关,双分型面开模行程校核公式为:H1+H2+a+(5~10)mm≤S

式中 H

1——脱模距离(推出距离)(mm);H

1

=30mm;

H

2

——塑件高度(mm);H2=75mm;

a——取出浇注系统凝料所需的定模座板与中间板分离的距离(mm);a=36mm;

S——注射机模板行程;S=350mm。

则有

30+75+36+(5~10)=146~151mm≤S=350mm

校核合格

第四章-拉深工艺及拉深模具设计--习题题目练习(附答案)

第四章拉深工艺及拉深模具设计复习题答案 一、填空题 1.拉深是是利用拉深模将平板毛坯压制成开口空心件或将开口空心件进一步变形的冲压工艺。 2.拉深凸模和凹模与冲裁模不同之处在于,拉深凸、凹模都有一定的圆角而不是锋利的刃口,其间隙 一般稍大于板料的厚度。 3.拉深系数m是拉深后的工件直径和拉深前的毛坯直径的比值,m越小,则变形程度越大。 4.拉深过程中,变形区是坯料的凸缘部分。坯料变形区在切向压应力和径向拉应力的作用下,产生切 向压缩和径向伸长的变形。 5.对于直壁类轴对称的拉深件,其主要变形特点有:(1)变形区为凸缘部分;(2)坯料变形区在切 向压应力和径向拉应力的作用下,产生切向压缩与径向的伸长,即一向受压、一向收拉的变形;(3)极限变形程度主要受传力区承载能力的限制。 6.拉深时,凸缘变形区的起皱和筒壁传力区的拉裂是拉深工艺能否顺利进行的主要障碍。 7.拉深中,产生起皱的现象是因为该区域内受较大的压应力的作用,导致材料失稳_而引起。 8.拉深件的毛坯尺寸确定依据是面积相等的原则。 9.拉深件的壁厚不均匀。下部壁厚略有减薄,上部却有所增厚。 10.在拉深过程中,坯料各区的应力与应变是不均匀的。即使在凸缘变形区也是这样,愈靠近外缘,变 形程度愈大,板料增厚也愈大。 11.板料的相对厚度t/D越小,则抵抗失稳能力越愈弱,越容易起皱。 12.因材料性能和模具几何形状等因素的影响,会造成拉深件口部不齐,尤其是经过多次拉深的拉深件, 起口部质量更差。因此在多数情况下采用加大加大工序件高度或凸缘直径的方法,拉深后再经过切边工序以保证零件质量。 13.拉深工艺顺利进行的必要条件是筒壁传力区最大拉应力小于危险断面的抗拉强度。 14.正方形盒形件的坯料形状是圆形;矩形盒形件的坯料形状为长圆形或椭圆形。 15.用理论计算方法确定坯料尺寸不是绝对准确,因此对于形状复杂的拉深件,通常是先做好拉深模, 以理论分析方法初步确定的坯料进行试模,经反复试模,直到得到符合要求的冲件时,在将符合要求的坯料形状和尺寸作为制造落料模的依据。 16.影响极限拉深系数的因素有:材料的力学性能、板料的相对厚度、拉深条件等。 17.一般地说,材料组织均匀、屈强比小、塑性好、板平面方向性小、板厚方向系数大、硬化指数大的 板料,极限拉深系数较小。 18.拉深凸模圆角半径太小,会增大拉应力,降低危险断面的抗拉强度,因而会引起拉深件拉裂,降低 极限变形。 19.拉深凹模圆角半径大,允许的极限拉深系数可减小,但过大的圆角半径会使板料悬空面积增大,容 易产生失稳起皱。

模具设计与制造专业简介

模具设计与制造专业介绍 一、模具的概念和基本分类 1、什么是模具 模具,是以特定的结构形式通过一定方式使材料成型的一种工业产品,同时也是能成批生产出具有一定形状和尺寸要求的工业产品零部件的一种生产工具。大到飞机、汽车,小到茶杯、钉子,几乎所有的工业产品都必须依靠模具成型。用模具生产制件所具备的高精度、高一致性、高生产率是任何其它加工方法所不能比拟的。模具在很大程度上决定着产品的质量、效益和新产品开发能力。所以模具又有“工业之母”的荣誉称号。 2、模具的基本分类 可分为塑胶模具及非塑胶模具: (1)非塑胶模具有:冲压模、铸造模、锻造模、压铸模等。 A.冲压模——汽车外形覆盖件 B.锻造模——发动机曲轴 C.铸造模——水龙头 D.压铸模——发动机缸体 (2)塑胶模具根据生产工艺和生产产品的不同又分为: A.注射成型模——电视机外壳、键盘按钮(应用最普遍) B.吹塑模——饮料瓶 C.压塑成型模——电木开关、科学瓷碗碟 D.转移成型模——集成电路制品 E.挤压成型模——胶水管 F.热成型模——透明成型包装外壳

G.旋转成型模——软胶洋娃娃玩具 二、模具在制造业中的地位 模具工业被喻为“百业之母”, 有“永不衰亡工业”之称。模具制造是制造业的根基,在电子、汽车、电机、电器、仪器、仪表、家电、通讯产品中,六到八成的零件都要依靠模具成型。以汽车行业为例,一种车型的轿车共需模具约4000套,价值达2亿元至3亿元,而当汽车更换车型时约有80%的模具需要更换。单台电冰箱需要模具生产的零件约150个,共需模具约350套,价值约400万元。可以说模具工业与各行业都密切相关, 从支柱产业对模具的需求当中可以看到模具工业地位的重要性。现代模具行业是技术、资金密集型的行业。它作为重要的生产装备行业在为各行各业服务的同时,也直接为高新技术产业服务。由于模具生产要采用一系列高新技术,如CAD/CAE/CAM/CAPP等技术、计算机网络技术、激光技术、逆向工程和并行工程、快速成型技术及敏捷制造技术、高速加工及超精加工技术等等,因此,模具工业已成为高新技术产业的一个重要组成部分,有人说,现代模具是高技术背景下的工艺密集型工业。模具技术水平的高低,已成为衡量一个国家制造业水平高低的重要标志,并在很大程度上决定着产品质量、效益和新产品的开发能力。 模具工业是无以伦比的"效益放大器"。用模具加工产品大大提高了生产效率,而且还具有节约原材料、降低能耗和成本、保持产品高一致性等特点。从另一个角度上看,模具是人性化、时代化、个性化、创造性的产品。更重要的是模具发展了,使用模具的产业其产品的国际竞争力也提高了。据国外统计资料,模具可带动其相关产业的比例大约是1:100,即模具发展1亿元,可带动相关产业100亿元。 三、我国模具行业的现状和发展趋势 我国模具工业近年来发展很快,据不完全统计,2004年我国模具生产厂约有3万多家,从业人员80万人,2005年模具行业的发展保持良好势头,模具企业总体上订单充足,任务饱满,模具销售额610亿元,比2004年增长25%,据统计:20年前,我国模具工业年产值只有约20亿元,而现在已达到800亿元以上。

PROE模具设计实例教程

7
模具體積塊 與 元件

7-1 7-2 7-3 7-4 模具體積塊 建立體積塊-分割 建立體積塊-聚合 模具元件


7-1 模具體積塊
在分模面完成之後,接下來的工作是準備將工件一分為二。利用分 模 面 可 將 模 具 組 合 中 的 工 件 ( Workpiece ) 分 割 成 兩 塊 , 即 公 模 (Core)和母模(Cavity)。一般而言,利用 Split(分割)的方式來建 立模具體積塊是較為快速的方法,但是在使用分割時卻有一個先決條 件,那就是先前所建立的分模面必須是正確且完整的,否則將會造成分 割的失敗。 此 外 , Pro/E 同 時 也 提 供 了 手 動 的 方 式 來 建 立 模 具 體 積 塊 , 即 Create(建立)。Create(建立)方式主要有兩種,分別是 Gather(聚 合)及 Sketch(草繪)。Gather(聚合)指令是藉由定義曲面邊界及封 閉範圍來產生體積,而 Sketch(草繪)則是透過一些實體特徵的建構方 式來產生。利用手動的方式來建立模具體積塊並不需要事先建立好分模 面,因此,在使用上並不如分割那樣容易、快速,但是卻可以省下建立 分模面的時間。 模 具 體 積 塊 是 3D、 無 質 量 的 封 閉 曲 面 組 , 由 於 它 們 是 閉 合 的 曲 面 組,故在畫面上皆以洋紅色顯示。 建立模塊體積與元件的指令皆包含在 Mold Volume(模具體積塊) 選單中,選單結構如【圖 7-1】所示。
7-2

【圖7-1】
Mold Volume(模具體積塊)選單結構
Mold Volume(模具體積塊) 在 Mold Volume ( 模 具 體 積 塊 ) 選 單 中 有 十 個 指 令 , 分 別 為 Create( 建 立 ) 、 Modify( 修 改 ) 、 Redefine( 重 新 定 義 ) 、 Delete ( 刪 除 ) 、 Rename ( 重 新 命 名 ) 、 Blank ( 遮 蔽 ) 、 Unblank(撤銷遮 蔽)、Shade(著色) 、 Split(分 割) 以及 Attach(連接)。 Create(建立) 建立一個模具元件體積塊。在輸入體積塊名稱後便可進入模具體 積選單中,可利用 Gather(聚合)或是 Sketch(草繪)的方式 來建立模塊體積。使用 Gather(聚合)指令必須定義曲面邊界 及封閉範圍來產生體積,而 Sketch(草繪)則是透過一些實體
7-3

精密自动级进模具设计与制造研究

精密自动级进模具设计与制造研究 本文主要论述了一种精密自动级进模具设计和制造研究,本次研究首先对模具设计的继承框架进行分析和研究,最后对设计研究的进程动态进行了详细的分析,希望通过本次研究对更好的开展模具设计和制造有一定的帮助。 标签:精密自动级进模具设计制造研究 精密自动级进模具设计和制造实际上就是利用一系列大型的、大规模的金属零件器具,然后再利用相应的工程技术,实现了对现有模具的改善和开发挖掘的过程。本次研究主要提出了一种设计和制造创建,进一步对下游元件和器具的加工或者计算辅助处理进行规划,因此,整个模具从设计到开发是呈现出高度的集成化。 一、集成框架的设计研究 1.数据集成和过程集成 明确集成框架的主要目的是为了原来离散设计过程提供一种数据集成和过程集成的作用。在之前的设计和制造研究过程中,这些功能的体现都是在一系列的设计和工具制造过程中完成的。在整个框架中,对于数据集成功能的发挥,在终端的用户采用了一种全局性的数据,并对这些数据采用了一系列完全配套的设备和系统元件管理实施进行支撑。在整个框架中,对于特定的项目数据集成会将其立即的收集并进行不断的优化,方便用户对数据信息的搜集、共享,并在系统中以一种特殊的形式避免数据在储存过程中产生冲突,而对于集成功能的终端,用户可以采用标准的工程序列的方式进行体现。为了能够更好的完成相应的模具产品的设计和制造,终端用户需要不断对每一个设计流程进行咨询和关注,保证每一个项目中的任务以及采用的数据都是正确的,当每一位独立的项目完成任务之后,相应的数据输出就会自动的对数据进行储存,并作为相应配置数据被保存下来。 2.框架环境和功能 在本次研究的这个框架中,框架的工程环境主要包括基金模具设计和制造以及最后的集成框架等内容。在这个框架中还纳入了一个共享台、框架内核以及两个数据库。在框架中,管理数据储存主要包括了原始數据的库指针的原始数据,而框架内核主要是指将其设计成为一种制定的交易处理系统,在这个系统中其作用主要是保障好系统使数据库的功能在工作台应用程序的直接干预之下依然能够正常进行工作。而CAX工具能够在整个框架的监督之下自主的进行运行,其展示出的各种项目成果的进度情况都会被框架放置于一个集成的储存模块中,但是,在设计过程中,目前该框架的主要问题就是模具设计和制造过程中需要考虑到很多复杂的数据和管理功能,因此,在框架制定过程中,框架的内核功能应该被划成为四个单元,也就是数据管理单元、进程管理内核以及原始数据处理单元

模具设计与制造专业建设方案

宜宾职业技术学院 模具设计与制造专业建设方案 项目组 组长:李恩田杨明(五粮液普什集团模具公司总经理) 成员:闫庆禹(五粮液普什集团模具公司技术部长) 陈方周(宜宾力源电机有限公司技术部长) 陈军(宜宾商业职业中等专业学校机电专业部主任) 贺大松阳彦雄袁永富唐永艳杨宇郭晟曾欣 刘存平刘光虎罗宗平张锐丽刘勇赖啸宋宁 一、行业背景与人才需求分析 1、背景分析 模具工业是国家的重要支柱产业,是工业生产的基础工艺装备,被称为“工业之母”。我国模具工业从起步到飞跃发展,历经了半个多世纪,近几年来,我国模具技术有了很大发展,模具水平有了较大提高,模具CAD/CAM/CAE及先进制造技术的应用越来越普及,模具向着大型、精密、复杂、高效和长寿命的方向发展。 模具及精密制造产业是宜宾市的重点发展产业。根据国家科技部国科函高[2011]3号文件,“宜宾市国家精密模具与特种材料集成制造高新技术产业化基地”被确认为国家高新技术产业化基地,是全国被认定的22家国家高新技术产业化基地中唯一以发展精密模具和特种材料集成制造为主的高新技术产业化基地。宜宾市“十二五”规划指出:做大做强优势产业“机械装备制造产业”,充分发挥五粮液普什集团(含普什模具、普什重机等)等机械制造企业综合配套能力强的优势,形成全省乃至西部重要的装备制造中心,到2015年,宜宾精密模具及机械装备制造业产值达到年产500亿(2010年为92.6亿),对模具高端技能型专门人才的需求十分旺盛。 2、人才需求分析

宜宾地区精密模具设计与制造类技能应用人才紧缺。随着宜宾国家精密模具与特种材料集成制造高新技术产业化基地建设的逐步展开,以及宜宾以五粮液集团普什模具有限公司为首的模具产业集群的发展,本地区对于精密模具设计与制造相关岗位的模具类高技能应用型人才的需求急增,而宜宾地处川滇黔结合部的地域特点,决定了该专业需求的人才主要依靠本地培养。因此,培养一批稳定的模具高端技能型专门人才成了首要解决的问题,加强我院模具设计与制造专业的建设也就成了首选。 3、服务方向及技术领域 本专业以支撑“宜宾市国家精密模具与特种材料集成制造高新技术产业化基地”对模具高端技能型专门人才的需求为核心,坚持立足宜宾、面向川南、突出为地方经济服务的指导思想,培养德、智、体、美全面发展,具有良好职业道德、创新精神和“两懂两会”(懂冲塑模具设计、懂模具CAD/CAM/CAE软件应用、会应用先进制造技术对模具进行制造、会经营管理)的高技能人才。毕业生面向生产第一线,从事模具设计、制造、装配与调试,模具加工设备的调整与操作,生产、技术的组织与经营管理等工作。 二、专业建设基础 2001年开办模具专业,2009年确定为学院重点建设专业。随宜宾及周边地区模具专业人才需求的扩大,专业发展迅速,。 1、学生规模 专业招生规模逐年扩大,现有在校学生共624人。 图2-1 近3年模具专业学生入学情况 2、师资情况

拉延模设计手册

拉延模设计手册 一、拉延模的分类 拉延模分双动拉延模与单动拉延模两类 1、双动拉延模是在专用的双动压力机上生产的拉延模,通常上模为凸模,下模为凹模,压边圈安装在压机的外滑块上,其结构如下图,此种结构拉延模压边力较为稳定,但由于需要专用的压机,安装较为烦琐,且结构尺寸较大,现在已经运用的越来越少。 2、单动拉延模是在单动压机上生产的拉延模,通常上模是凹模,下模是凸模,压边圈由下气垫或其它压力源(例于氮气弹簧)提供压料力,其结构如下图,由于模具通用性好,现大部分拉延模为此种结构。 工作台 下模 上模 压边圈 上模垫板 内滑块 外滑块 下模 上模 工作台 压边圈 上滑块

二、拉延模的主要零件(主要为单动拉延模) 拉延模一般有上模、下模、压边圈三大部件组成(根据结构的不同要求,可能增加一此部件,例于局部的小压料板),以及安装这三大部件上的其它功能零件,主要有以下零件: 1、导向零件:耐磨板、导向腿,导柱; 2、限位调压零件:平衡块、到底块; 3、坯料定位零件:定位具、气动定位具; 4、安全装置:卸料螺钉(等向套筒,也起锁付的作有)、安全护板; 5、拉延功能零件:到底印记、弹顶销、通气管、CH孔合件; 6、取送料辅助零件:辅助送出料杆、打料装置。 三、单动拉延模的设计 (一)模具中心的确认与顶杆的分布 模具中心的确认通常依据顶杆的布置的需要设定。一般在工艺设计时,会按钣件的中心确定一个数模中心。顶杆的分布需尽量靠近分模线,并均匀布,通常两根顶杆之间最多空一个顶杆位,顶杆数量要尽可能多。在模具设计时首先以数模中心与压机工作台中心重合,如顶杆分布满足上述要求,则以数模中心做为模具中心。如无法满足上述要求,侧在需要更改的方向上移动(最大1/2顶杆间距),确认一个最优化的方案,同时以工作台的中心做为模具的中心。 (注:在试模压力机与工作压力机顶杆孔不致时,需设置试模顶杆,并在优先保证生产顶杆的要求下,优化顶杆部置) 模具中心与数模中心重合

模具设计与模具制图教程

模具设计与模具制图教程 模具图样的绘制 在绘制模具装配图时,初学者的主要问题是图面紊乱无条理、结构表达不清、剖面选择不合理等,以及作图质量差,如引出线重叠交叉,螺钉销钉作图比例失真。上述问题除平时练习过少外,更主要的是缺乏作图技巧所致。一旦掌握了必要的技巧,这些错误均可避免。1. 装配图的画法 模具装配图最主要的目的是要反映模具的基本构造,表达零件之间的相互装配关系,包括位置关系和配合关系。从这个目的出发,一张模具装配图所必须达到的最基本要求为:首先,模具装配图中各个零件(或部件)不能遗漏,不论哪个模具零件,装配图中均应有所表达;其次,模具装配图中各个零件位置及与其他零件间的装配关系应明确。在模具装配图中,除了要有足够的说明模具结构的投影图、必要的剖视图、断面图、技术要求、标题栏和填写各个零件的明细栏外,还应有其他特殊的表达要求。模具装配图的绘制要求须符合国家制图标准,现总结如下: ⑴总装图的布图及比例。 ①应遵守国家标准机械制图中图纸幅面和格式的有关规定(GB/T14689—2008)。 ②可按模具设计中习惯或特殊规定的制图方法作图。 ③尽量以1:1的比例绘图,必要时按机械制图要求的比例缩放,但尺寸按实际尺寸标注。 ④模具总装图的布置方法如图1-72所示。 (a)冲压模具总装配图的布置 (b)塑料模具总装配图的布置 图1-72 模具总装图的布置方法 ⑵模具设计绘图顺序 ①主视图。绘制总装图时,应采用阶梯剖或旋转剖视,尽量使每一类模具零件都反映在主视图中。按先里后外、由上而下,即按产品零件图、凸模、凹模的顺序绘制,零件太多时允许只画出一半,无法全部画出时,可在左视图或俯视图中画出。 ②俯视图。将模具沿冲压或注射方向“打开”上(定)模,沿冲压或注射方向分别从上往下看“打开”的上(定)模或下(动)模,绘制俯视图。主、俯视图要一一对应画出。 ③左、右视图。当主、俯视图表达不清楚装配关系时,或者塑料模具以卧式为工作位置时,左、右视图绘制按注射方向“打开”定模看动模部分的结构。 ⑶模具装配图主视图的要求。 ①在画主视图前,应先估算整个主视图大致的长与宽,然后选用合适的比例作图。主视图画好后其四周一般与其他视图或外框线之间应保持50~60mm的空白。 ②主视图上应尽可能将模具的所有零件画出,可采用全剖视图、半剖视图或局部视图。若有局部无法表达清楚的,可以增加其他视图。 ③在剖视图中剖切到圆凸模、导柱、顶件块、螺栓(螺钉)和销钉等实心旋转体零件时,其剖面不画剖面线;有时为了图面结构清晰,非旋转体的凸模也可不画剖面线。

精密模具设计要点

轿车精密塑料件成型模具的设计要点 轿车的塑料零部件如线圈骨架、基座、保险丝盒、灯座、片式熔断器、中央配电盒、护套、推动架、簧片排组件及外罩等大都采用注射成型,由于这些塑料件本身具有较高的设计精度,使得对这些塑料件不能采用常规的注射成型,而必须采用精密注射成型工艺技术。为了保证轿车精密塑料件的性能、质量与可靠性,注射成型出质量较高、符合产品设计要求的塑料制品,必须对塑料材料、注塑设备与模具及注塑工艺不断进行改进。 1 影响精密注塑的主要因素 判定精密注塑的依据是注塑制品的精度,即制品的尺寸公差、形位公差和表面粗糙度。要进行精密注塑必须有许多相关的条件,而最本质的是塑料材料、注塑模具、注塑工艺和注塑设备这四项基本因素。设计塑料制品时,应首先选定工程塑料材料,而能进行精密注塑的工程塑料又必须选用那些力学性能高、尺寸稳定、抗蠕变性能好、耐环境应力开裂的材料。其次应根据所选择的塑料材料、成品尺寸精度、件重、质量要求以及预想的模具结构选用适用的注塑机。在加工过程中,影响精密注塑制品的因素主要来自模具的精度、注塑收缩,以及制品的环境温度和湿度变化幅度等方面。 在精密注塑中,模具是用以取得符合质量要求的精密塑料制品的关键之一,精密注塑用的模具应切实符合制品尺寸、精度及形状的要求。但即使模具的精度、尺寸一致,其模塑的塑料制品之实际尺寸也会因收缩量差异而不一致。因此,有效地控制塑料制品的收缩率在精密注塑技术中就显得十分重要。 模具设计得合理与否会直接影响塑料制品的收缩率,由于模具型腔尺寸是由塑料制品尺寸加上所估算的收缩率求得的,而收缩率则是由塑料生产厂家或工程塑料手册推荐的一个范围内的数值,它不仅与模具的浇口形式、浇口位置与分布有关,而且与工程塑料的结晶取向性(各向异性)、塑料制品的形状、尺寸、到浇口的距离及位置有关。影响塑料收缩率的主要有热收缩、相变收缩、取向收缩、压缩收缩与弹性回复等因素,而这些影响因素与精密注塑制品的成型条件或操作条件有关。因此,在设计模具时必须考虑这些影响因素与注塑条件的关系及其表观因素,如注塑压力与模腔压力及充模速度、注射熔体温度与模具温度、模具结构及浇口形式与分布,以及浇口截面积、制品壁厚、塑料材料中增强填料的含量、塑料材料的结晶度与取向性等因素的影响。上述因素的影响也因塑料材料不同、其它成型条件如温度、湿度、继续结晶化、成型后的内应力、注塑机的变化而不同。 由于注塑过程是把塑料从固态(粉料或粒料)向液态(熔体)又向固态(制品)转变的过程。从粒料到熔体,再由熔体到制品,中间要经过温度场、应力场、流场以及密度场等的作用,在这些场的共同作用下,不同的塑料(热固性或热塑性、结晶性或非结晶性、增强型或非增强型等)具有不同的聚合物结构形态和流变性能。凡是影响到上述"场"的因素必将会影响到塑料制品的物理力学性能、尺寸、形状、精度与外观质量。 这样,工艺因素与聚合物的性能、结构形态和塑料制品之间的内在联系会通过塑料制品表现出来。分析清楚这些内在的联系,对合理地拟定注塑加工工艺、合理地设计并按图纸制造模具、乃至合理选择注塑加工设备都有重要意义。精密注塑与普通注塑在注塑压力和注射速率上也有区别,精密注塑常采用高压或超高压注射、高速注射以获得较小的成型收缩率。综合上述各种原因,设计精密注塑模具时除考虑一般模具的设计要素外,还须考虑以下几点:①采用适当的模具尺寸公差;②防止产生成型收缩率误差;③防止发生注塑变形;④防止发生脱模变形;⑤使模具制造误差降至最小;⑥防止模具精度的误差;⑦保持模具精度。 2 防止产生成型收缩率误差 由于收缩率会因注塑压力而发生变化,因此,对于单型腔模具,型腔内的模腔压力应尽量一致;至于多型腔模具,型腔之间的模腔压力应相差很小。在单型腔多浇口或多型腔多浇

模具设计与制造1

一、填空题 1. 冲裁既可以直接冲制成品零件,又可以为其它成形工序制备毛坯。 2.从广义来说,利用冲模使材料相互之间分离的工序叫冲裁。它包括冲孔、落料、切断、修边、等工序。但一般来说,冲裁工艺主要是指冲孔和落料工序。 3.冲裁根据变形机理的不同,可分为普通冲裁和精密冲裁。 4.冲裁变形过程大致可分为弹性变形、塑性变形、断裂分离三个阶段。 5.冲裁件的切断面由圆角带、光亮带、剪裂带、毛刺四个部分组成。 6.圆角带是由于冲裁过程中刃口附近的材料被牵连拉入变形的结果。 42 ?落料时,应以凹模为基准配制凸模,凹模刃口尺寸按磨损的变化规律分别进行计算。 43 ?冲孔时,应以凸模为基准配制凹模,凸模刃口尺寸按磨损的变化规律分别进行计算。 44 ?凸、凹模分开制造时,它们的制造公差应符合δ凸+ δ凹≤ Z max -Z min 的条件。 45 ?配制加工凸、凹模的特点是模具的间隙由配制保证,工艺比较简单,不必校核δ凸 + δ凹≤ Z max-Z min 的条件,并且可放大基准件的制造公差,使制造容易。 46 ?冲孔用的凹模尺寸应根据凸模的实际尺寸及最小冲裁间隙配制。故在凹模上只标注基本尺寸,不标注公差,同时在零件图的技术要求上注明凹模刃口尺寸按凸模实际尺寸配制,保证双面间隙为 Z min ~ Z max 。 47 ?冲裁件的经济公差等于不高于 IT11 级,一般落料件公差最好低于 IT1 0 级,冲孔件最好低于 IT9 级。 二、判断题(正确的打√,错误的打×) 1 ?冲裁间隙过大时,断面将出现二次光亮带。(× ) 2 ?冲裁件的塑性差,则断面上毛面和塌角的比例大。(× ) 3 ?形状复杂的冲裁件,适于用凸、凹模分开加工。(× )用配合加工 4 ?对配作加工的凸、凹模,其零件图无需标注尺寸和公差,只说明配作间隙值。(× ) 5 ?整修时材料的变形过程与冲裁完全相同。(× )

拉伸工艺与拉深模具设计

拉深(又称拉延)是利用拉深模在压力机的压力作用下,将平板坯料或空心工序件制成开口空心零件的加工方法。它是冲压基本工序之一,广泛应用于汽车、电子、日用品、仪表、航空和航天等各种工业部门的产品生产中,不仅可以加工旋转体零件,还可加工盒形零件及其它形状复杂的薄壁零件,如图4.1.1所示。 a)轴对称旋转体拉深件b)盒形件c)不对称拉深件 图4.1.1拉深件类型 拉深可分为不变薄拉深和变薄拉深。前者拉深成形后的零件,其各部分的壁厚与拉深前的坯料相比基本不变;后者拉深成形后的零件,其壁厚与拉深前的坯料相比有明显的变薄,这种变薄是产品要求的,零件呈现是底厚、壁薄的特点。在实际生产中,应用较多的是不变薄拉深。本章重点介绍不变薄拉深工艺与模具设计。 拉深所使用的模具叫拉深模。拉深模结构相对较简单,与冲裁模比较,工作部分有较大的圆角,表面质量要求高,凸、凹模间隙略大于板料厚度。图4.1.2为有压边圈的首次拉深模的结构图,平板坯料放入定位板6内,当上模下行时,首先由压边圈5和凹模7将平板坯料压住,随后凸模10将坯料逐渐拉入凹模孔内形成直壁圆筒。成形后,当上模回升时,弹簧4恢复,利用压边圈5将拉深件从凸模10上卸下,为了便于成形和卸料,在凸模10上开设有通气孔。压边圈在这副模具中,既起压边作用,又起卸载作用。

图4.1.2拉深模结构图 1-模柄2-上模座3-凸模固定板4-弹簧5-压边圈 6-定位板7-凹模8-下模座9-卸料螺钉10-凸模 圆筒形件是最典型的拉深件。平板圆形坯料拉深成为圆筒形件的变形过程如图

图4.2.1拉深变形过程图4.2.2 拉深的网格试验

拉深过程中出现质量问题主要是凸缘变形区的起皱和筒壁传力区的拉裂。凸缘区起皱是由于切向压应力引起板料失去稳定而产生弯曲;传力区的拉裂是由于拉应力超过抗拉强度引起板料断裂。同时,拉深变形区板料有所增厚,而传力区板料有所变薄。这些现象表明,在拉深过程中,坯料内各区的应力、应变状态是不同的,因而出现的问题也不同。为了更好地解决上述问题,有必要研究拉深过程中坯料内各区的应力与应变状态。 图4.2.3是拉深过程中某一瞬间坯料所处的状态。根据应力与应变状态不同,可将坯料划分为五个部分。

SolidWorks模具设计教程

SolidWorks模具设计教程 作者:无维网gaoch 参考文献:SolidWorks 高级教程:模具设计 SolidWorks模具设计教程之内容提要: ●型心和型腔 通过检测面的拔模角度对模型进行分析; 利用收缩率调整塑料产品的大小; 修复塑料产品中的未拔模面; 明确分型线和创建分型线曲面; 创建关闭曲面; 创建分型面; 创建连锁曲面; 创建切削分割。 ●修复和曲面 在输入几何体上修复未拔模面 使用直纹曲面创建拔模面 创建复杂关闭曲面 手工创建连锁曲面 使用放样曲面添加曲面 ●多个分型方向 利用底切检查; 创建侧抽芯,斜顶杆和型芯销。 ●改变方法进行模 SolidWorks模具设计教程之具体步骤: 型心和型腔 模具设计是由多个步骤组成。一旦你想为创建的模型设计模具,你就需要遵循几个步骤去创建型心和型腔。下面用一个实例示范了怎样为塑料畚箕零件创建一副简单的两板模。

1. 拔模分析 为了创建可以实现注塑的模具, 塑料产品必须被设计和拔模正确才能从围绕在周围的模具中顶出。要对模型产品进行拔模分析,使用拔模分析命令有助于发现拔模和设计的错误。对前视面进行向上拔模分析。 来看看各分析面的含义: 跨立面:是横跨分型线的面。用户必须把跨立面分割成两块以分开模具的表面。跨立面可以通过跨立面命令手工处理或者通过单击分型线命令中的分割面选项自动完成。 正陡面:这些表面中包含部分拔模量不够的区域。如果整个面的拔模量都不够,它将被归类为【需要拔模】。这些面能在模具中的正侧找到。 负陡面:这些表面包含部分拔模量不够的区域。这些面能在模具中的负侧找到。 2. 调整收缩率 模具上产品型腔部分的加工要略微比从模具中生产出来的塑料件大些。这样做是为了补偿高温的被顶出的塑料件冷却后的收缩率。在通过塑料产品创建模具之前,模具设计者需要放大塑料产品来解决收缩率。不同的材料,收缩率也是不同

SolidWorks模具设计教程

SolidWorks 模具设计 1. 拔模分析 为了创建可以实现注塑的模具, 塑料产品必须被设计和拔模正确才能从围绕在周围的模具中顶出。要对模型产品进行拔模分析,使用拔模分析命令有助于发现拔模和设计的错误。对前视面进行向上拔模分析。 来看看各分析面的含义:跨立面:是横跨分型线的面。用户必须把跨立面分割成 两块以分开模具的表面。 跨立面可以通过跨立面命令手工处理或者通过单击分型线命令中的分割面选项自动完成。 正陡面:这些表面中包含部分拔模量不够的区域。如果整个面的拔模量都不够,它将被归类为【需要拔模】。这些面能在模具中的正侧找到。负陡面:这些表面包含部分拔模量不够的区域。这些面能在模具中的负侧找到。 2. 调整收缩率 模具上产品型腔部分的加工要略微比从模具中生产出来的塑料件大些。这样做是为了补偿高温的被顶出的塑料件冷却后的收缩率。在通过塑料产品创建模具之前,模具设计者需要放大塑料产品来解决收缩率。不同的材料,收缩率也是不同

的,SolidWorks 用比例缩放命令在解决这个问题。这个零件我们以ABS 材料来做,5%的收缩率。 3. 确定分型线分型线是注塑类塑料产品中型腔与型心曲面中相互接触的边界。分型线是那些用来分割型心和型腔曲面的边界。它们也构成了分型面的内部边界。 型腔面(正拔模)是绿色的,型心面(负拔模)是红色的。任何一条被红色和绿色面共用的边都是分型线边界。 当拔模分析完成后,所有的被绿色和红色边共用的边被自动选中并被添加到分型线列表中。单击确定。 手动添加分型线:在这个例子中,当分型线命令运行时,分型线边被自动的选中。因为这是一个简单的分型线边界,这些边界被自动添加到位于分型线PropertyManager 的边线列表中。有时分型线可能会更复杂以致于软件无法自动搜索到分型线。当这种情况发生时,使用位于边线列表框下方的边线选择按钮去选择分型线。 4. 关闭孔和开口 在分型线建立后,下一步是决定塑料产品上哪些开放的成型区域需要关闭曲面。一个开放的成型区域或者是一个孔或者是一个开口,在注塑产品上就是模具型心型腔完全吻合形成的孔。如图所示一个简单的关闭曲面。它创建在拔模后开口较小的一侧。关闭曲面命令自动关闭塑料产品中的开放孔。

精密垫片精冲工艺与模具设计

少年易学老难成,一寸光阴不可轻- 百度文库 精密垫片精冲工艺与模具设计 摘要分析了精密垫片的冲压工艺性,介绍了精密垫片的精冲工艺和精冲压力的计算及在普通冲床上实现精密冲裁的精冲复合模的设计。该模具投入生产后,冲出的零件毛刺极小,断面平整光滑,达到了预期的要求,保证了产品的质量。 关键词:精密垫片精冲工艺模具设计 1、引言 精冲又称精密冲裁,是一种对模具有特殊要求的 金属塑性加工工艺。这种冲裁件具有较高的尺寸精度 与形状精度以及完全光亮的冲裁面。甚至可以直接装 配使用。它具有优质、高效、生产成本低等特点,容易实现自动化生产。精冲是在普通冲压的基础上发展起来的一种精密板料加工工艺,精冲成型工艺是在普通压力机或者专用压力机(精冲机)上,通过专用的精密冲裁模具,在强力压料状态下对金属板料进行冲压,使金属材料产生塑性变形,由原材料直接获得比普通冲压零件精度高、光洁度好、平面度高、垂直度好,并拥有光洁剪切面及所需形状和质量特性的产品。 精密冲裁的本质是将冲裁模具的凹凸模具之间的间隙调整到普通冲裁模具的10%,甚至实现负间隙(即凹凸模之间产生过盈),从而大幅度提高冲裁件的精度。图1为冲裁间隙对冲裁件精度的影响关系图,图中,曲线与=0的交点为最合理的间隙值。此时,冲裁件的尺寸与模具刃口的尺寸完全一致,当曲线位于交点右边时,冲裁件与模具间存在间隙。间隙越大,会使冲裁件与模具之间的摩擦力减小,所需要的冲裁力也小,但会造成冲裁件的变形增大,影响冲裁件精度。 (a) 落料 (b) 冲孔 精密冲裁理论的核心是:固体在多向受压的情况下比在单向受压时塑性好、变形状态更好,更易变形。因此在板料精密冲裁时,利用精冲模特殊结构,在板料的剪切分离区,三向施压形成立体压应力状态,对材料进行纯剪切分离,实现精密冲裁。根据该理论发明的使用V型齿圈强力压边进行精冲的工艺技术简称FB精冲法。 因此,近年来精冲技术得到了快速的发展,在机械工业领域得到了越来越高的重视。 2 精冲工艺过程及特征 用普通冲裁所得到的工件,剪切断面比较粗糙;而且还有塌角、毛刺,并带有斜度,同时制件的尺寸精度也较低。当要求冲裁件的剪切面作为工作表面或配合表面时,采用一般的冲裁工艺往往不能满足零件的技术要求,这时,就可以采用精冲模具来解决上述存在的问题。 精冲是直接从板料上一次冲出公差等级高、断面质量好的冲裁件。达到通常需后序精加工才可达到的精度要求,无需后序车、磨、铣等机加工。剪切面粗糙度Ra=1.6~3.2μm尺寸公差达IT8级,而且保证零件的高平面度,大大降低了生产的加工成本。图2为

模具设计与制造毕业设计论文

目录 摘要 (1) 绪论 (2) 第1章工艺分析 (5) 1.1 冲压件的工艺分析 (5) 1.1.1 材料分析 (5) 1.1.2 结构分析 (6) 1.1.3 精度分析 (6) 第2章工艺方案的确定 (7) 2.1 模具类型的确定 (7) 2.2 模具结构的选择 (7) 第3章工艺参数的计算 (9) 3.1 拉深毛坯的尺寸计算 (9) 3.2 拉深系数与拉深次数的确定 (9) 3.3 确定拉深圆角半径 (10) 3.4 拉深直径的计算 (10) 3.5 拉深力 (10) 3.6 拉深间隙 (11) 3.7 拉深凸模的工作尺寸 (11) 3.8 拉深凹模的工作尺寸 (12) 3.9 压边装置确定 (12) 3.10 压边力 (12) 3.11 冲裁力 (13) 3.12 冲裁凹模的工作尺寸 (13) 3.13 冲裁凸模的工作尺寸 (14) 3.14 相关计算 (15) 3.14.1 排样设计 (15)

3.14.2 压力机的公称压力 (15) 第4章模具主要零件的设计 (16) 4.1 冲裁凹模的结构设计 (16) 4.2 压边圈 (17) 4.2.1 压边圈内径尺寸计算 (17) 4.2.2 压边圈外径尺寸计算 (17) 4.3 拉深凸模的结构计算 (18) 4.4 凸凹模的结构设计 (19) 第5章模架的选择 (20) 第6章压力机的选择 (22) 6.1 压力机的选择 (22) 6.1.1 冲裁拉深模的闭合高度的计算 (22) 6.2 压力机的校核 (23) 设计总结 (24) 设计图纸 制造的模具装配图 加工零件图 加工工艺卡 模具加工、装配、调试总结 (25) 模具实物图 参考文献 (26) 致谢词 (27)

文献综述 - 壳体拉深模具设计

本科生毕业设计(论文)文献综述 设计(论文)题目壳体拉深模具设计 作者所在系别材料工程系 作者所在专业材料成型及控制工程 作者所在班级 作者姓名 作者学号 指导教师姓名 指导教师职称 完成时间年11 月 北华航天工业学院教务处制

说明 1.根据学校《毕业设计(论文)工作暂行规定》,学生必须撰写毕业设计(论文)文献综述。文献综述作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。 2.文献综述应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,由指导教师签署意见并经所在专业教研室审查。 3.文献综述各项内容要实事求是,文字表达要明确、严谨,语言通顺,外来语要同时用原文和中文表达。第一次出现缩写词,须注出全称。 4.学生撰写文献综述,阅读的主要参考文献应在10篇以上(土建类专业文献篇数可酌减),其中外文资料应占一定比例。本学科的基础和专业课教材一般不应列为参考资料。 5.文献综述的撰写格式按毕业设计(论文)撰写规范的要求,字数在2000字左右。文献综述应与开题报告同时提交。

毕业设计(论文)文献综述 《壳体拉深模具设计》的文献综述 内容摘要 本文介绍了冲压工艺的发展背景、概念及特点,冲压模具现阶段国内及台湾的发展前景和冲压行业信息化、数字化的状况以及先进成形技术的发展和应用状况,讨论了我国冲压行业存在的问题,提出了发展的思路,而且从模具的结构、生产工艺方面阐述了金属冲压拉深成型工艺,力图通过改善冲压工艺,提高产品质量。 关键词:模具设计现状发展趋势计算机辅助设计/制造/工程

第1章前言 1.1冲压的历史渊源、概念及优点 1.1.1冲压的历史渊源 冲压加工技术始于18世纪末叶至19世纪初年,因为产业革命促成了动力制造技术的发展,以机械化方式来加工金属板就逐渐成为主流,其后,由于辊轧机rolling mill 的发明,生产者利用它来高速、连续的生产金属板,利用表面光滑,厚度均匀的金属板来制造各种装饰品,家庭用品及机械零件的工作方法,逐步形成产业化。[1] 1.1. 2.冲压加工及拉伸的概念 所谓冲压加工,就是指利用钣金加工机械(sheet metal working machine),泛称冲压机械,即冲床(press),及其专用的工具,及模具(die),对薄钣金属施行冲裁、成型、弯曲、拉深等加工,借以制造各种工业用及家庭用钣金零件与制品。 拉深(俗称拉延)是利用专用的模具将平板毛坯制成开口空心零件的一种冲压工艺方法。拉深过程中,在模具凸模的作用下,毛坯被拉进凸、凹模之间的间隙里形成圆筒件。工件的直壁部分是由毛坯的环形部分转变而来,拉深时,毛坯的外部环形部分是变形区,而底部是不变形区,被拉入凸、凹模之间的直壁部分是已变形区。[2]用拉深方法可以制成筒形、阶梯形、锥形、球形和其他不规则形状的薄壁零件,如果与其它冲压成形工艺配合,还可能制造形状极为复杂的零件。拉深件的可加工尺寸范围相当广泛,从几毫米的小零件直到轮廓尺寸达2—3米,厚度达200—300毫米的大型零件,都可以用拉深方法制成。因此,在汽车、飞机、拖拉机、电器、仪表、电子等工业部门以及日常生活用品的冲压生产当中,拉深工艺占据相当重要的地位。 1.1.3冲压的优点 冲压是高效的生产方法,采用复合模,尤其是多工位级进模,实现由带料开卷、矫平、冲裁到成形、精整的全自动生产。生产效率高,劳动条件好,生产成本低。与机械加工及塑性加工的其它方法相比,冲压加工无论在技术方面还是经济方面都具有许多独特的优点[3]。主要表现如下。 (1)可以常温加工,对于形状复杂难以加工零件同样适用(2)使用压延材料为主几乎不经过变形加工,韧性好,因加工产生加工硬化,可提高零件强度(3)加工精度高、适用大批量生产,(4)生产效率高(5)利用率高,剩余废料变形少,可用来加工小零件(6)操作简单。

模具设计过程图文教程

图文并茂的模具设计练习教程山东UG网模具设计练习教程 第一部分:分模设计 第一步-进入分模设计 第二步-快速断开 第三步-拔模角分析 第四步-预览分模线 第五步-创建内分模线 第六步-创建内分模面 第七步-创建外分模面 第八步-重新附属分模面 第九步-创建工件坐标系 第十步-保存文档 第二部分:模具设计 第一步-进入模具工程 第二步-进入分模环境 第三步-创建分模面零件 第四步-定义激活、创建激活。 第五步-加载模架 第六步-创建毛坯 第七步-切槽操作 第八步-产品零件装配 第九步-浇道设计 第十步-顶杆设计

第十一步-水道设计 第十二步-侧滑块和斜导柱设计 第十三步-行位揳紧块设计 第十四步-行位限位装置设计 本练习以客户实际零件lamp.elt为例讲解模具分模和模具设计的整个设计过程。 第一部分:分模设计 第一步-进入分模设计 选择分模设置图标, 分模设置向导即被打开。 选择文档:lamp.elt。 勾选创建新文件夹复选框。 勾选应用收缩命令改变工作模型复选框,收缩比例设置成1.008。 第二步-快速断开 选择分模向导条中的快速断开图标,并更改默认的断开参数垂直面-不包括为垂直面-增加到顶部,确认。 注意到经过第一步自动断开后还有一部分曲面未被分配,选择新方向选项,并点击方向箭头端部的实心点,定义方向为沿x轴反方向,确定。 重新附属曲面,选择下图所示的应该被分配到SPLIT-3部分的曲面,然后在特征树中选择SPLIT-3特征,点击鼠标右键,再选择弹出的及时菜单中的附加选项,这样就把所选择的曲面附属到SPLIT-3部分了。 结果如下: 重命名分模特征:

模具设计与制造毕业论文

长江工程职业技术学院 毕业实践报告 关于在深圳龙华富士康FKD印刷二课从事手机按键生产的实践报告 姓名:何昱璋 专业:模具设计与制造 班级:模具0803 学号: 0811883 指导教师:郑莹 2011年 2月

模具是一种技术密集、资金密集型产品,在我国国民经济巾的地位也非常重要。模具工业已被我国正式确定为基础产业,并在“十五”中列为重点扶持产业。由于新技术、新材料、新工艺的不断发展,促使模具技术不断进步,对人才的知识、能力、素质的要求也在不断提高。 本次毕业论文是为了让我们更清楚地理解怎样确定零件的加工方案,为我们即将走上工作岗位的毕业生打基础,最后,让我们在数控机床上加工出该零件达到图纸要求。模具设计与制造技术的广泛应用给传统的制造业的生产方式,产品结构带来了深刻的变化。也给传统的机械,机电专业的人才带来新的机遇和挑战。 随着我国综合国力的进一步加强和加入世贸组织。我国经济全面与国际接轨,并逐步成为全球制造中心,我国企业广泛应用现代化数控技术参与国际竞争。模具设计与制造技术是制造实现自动化,集成化的基础,是提高产品质量,提高劳动生产率不可少的物资手段。 毕业设计让我们毕业生更好的熟悉数控车床,确定加工工艺,学会分析零件为走上工作岗位打下基础。

1概述 (1) 1.1 实践时间 (1) 1.2 实践目的 (1) 1.3 实践单位简介 (1) 1.4工作岗位简介 (2) 2实践项目简介 (4) 2.1手机按键工艺简介 (4) 2.2印刷在手机行业中的分类 (5) 2.2.1手机显示屏、镜片单、双色印刷 (5) 2.2.2功能性印刷 (6) 2.2.3装饰性印刷 (7) 2.2.4网络商商标印刷 (8) 3 实践内容综合分析 (9) 3.1手机按键结构设计 (9) 3.2 手机按键制作设计规范 (12) 3.3 rubber键制作流程 (13) 3.4手机上的按键部分的生产工艺和流程 (14) 4 实践总结 (16) 4.1产品设计问题前期分析: (16) 4.1.1结构问题 (16) 4.1.2 工艺问题 (17)

拉延模设计规范

拉延模设计规范 模具大小分类: 注:为导板宽度

5 模具端头设计 上下模导向型式尺寸 导柱规格 d di D D1 D2 H1 H2 A ?50 50 40 70 60 125 75 70 140 ?60 60 50 :80 70 135 : 90 90 160 ?80 80 60 100 90 155 120 120 190 ?100 100 80 120 110 不套导 柱 150 150 210 h ■ 1? 严1 1 1 J' 常 — 工 I 1 町 1 1B 1 10 d . A A rj o 十 p — 1 II I 1 —1 + “ ,1 ■ L ---- ■ ? ----- 11 |i —1— 模具端头主要型式和尺寸如下: A <1> <2> <3>

模具锁附及压板槽结构压板槽结构如下: 4 60r ir' 般 模 结 自动装模、 用结构 装 用 构 注:1.H值见筋厚规定 9 Or In 模具长度L 压板槽单边数量 L W 1600 2 1600VL W 2500 3 L>2500 4 压板槽设置数量:

5 限位柱 模具类别 特大型 大型 中型 小型 限位柱直径D 80 P 70 60 60 限位柱处方形 平 台尺寸A 100 90 80 80 注:1.每套模具在四角设置4处 材科:45

5 安全平面 每套模具必须设置4处安全平面(空间不允许时可仅设2处),且设置在明显处 安全平面尺寸: 注:1.中型模具空间有限时可设成120X120或120X150 2.上下模安全平面在闭合状态下相距110。

相关文档
相关文档 最新文档