文档库 最新最全的文档下载
当前位置:文档库 › 几类常见排列组合问题解题策略

几类常见排列组合问题解题策略

几类常见排列组合问题解题策略
几类常见排列组合问题解题策略

几类常见排列组合问题解题策略

排列组合问题是高中数学中的一个难点,也是高考的必考内容。其思考方法独特,解题思路新颖。如果对题意认识出现偏差的话,极易出现计数中的“重复”和“遗漏”。在初学阶段,提高学生解排列组合题的有效途径之一是将一些常见题型进行方法归类,构造模型解题。这样有利于学生认别模式,并进而熟练运用。本文列举了八种常见的排列组合典型问题的解题策略,希望能对大家有所帮助。

1 重复排列“住店法”

重复排列问题要区分两类元素:一类可以重复,另一类不能重复。把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题。

例1 8名同学争夺3项冠军,获得冠军的可能性有 ( )

A 38

B 8

3 C 38A D 38C [解析] 冠军不能重复,但同一个学生可获得多项冠军。把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可住进任意一家“店”,每个客有8种可能,因此共有3

8种不同的结果。选(A )。

[评述]类似问题较多。如:将8封信放入3个邮筒中,有多少种不同的结果?这时8封信是“客”,3个邮筒是“店”,故共有83种结果。要注意这两个问题的区别。 2 特色元素“优先法”

某个(或几个)元素要排在指定位置,可优先将它(们)安排好,后再安排其它元素。 例2(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种(用数字作答)。

[解析]3名主力的位置确定在一、三、五位中选择,将他们优先安排,有33A 种可能;

然后从其余7名队员选2名安排在第二、四位置,有27A 种排法。因此结果为2733A A =252种。

例3 5个“1”与2个“2”可以组成多少个不同的数列?

[解析]按一定次序排列的一列数叫做数列。由于7个位置不同,故只要优先选两个位置

安排好“2”,剩下的位置填“1”(也可先填“1”再填“2”)。因此,一共可以组成2227C C =21

个不同的数列。

3 相邻问题“捆绑法”

把相邻的若干特殊元素“捆绑”为一个“大元素”,与其余普通元素全排列,是为“捆绑法”,又称为“大元素法”。不过要注意“大元素”内部还需要进行排列。

例4(1996年上海高考题)有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种(结果用数字表示)。

[解析]将数学书与外文书分别捆在一起与其它3本书一起排,有55A 种排法,再将3本

数学书之间交换有33A 种,2本外文书之间交换有2

2A 种,故共有223355A A A =1440种排法。

[评述]这里需要说明的是,有一类问题是两个已知元素之间有固定间隔时,也用“捆绑法”解决。如:7个人排成一排,要求其中甲乙两人之间有且只有一人,问有多少种不同的排法?可将甲乙两人和中间所插一人“捆绑”在一起做“大元素”,但甲乙两人位置可对调,

而且中间一人可从其余5人中任取,故共有1200552215=A A C 种排法。

4 相间问题“插空法”

元素不相邻问题,先安排好其他元素,然后将不相邻的元素按要求插入排好的元素之间的空位和两端即可。

例5(2003年北京春季高考题)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目。如果将这两个节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 ( )

A 6

B 12

C 15

D 30

[解析]原来的5个节目中间和两端可看作分出6个空位。将两个新节目不相邻插入,相

当于从6个位置中选2个让它们按顺序排列,故有3026=A 种排法,选(D )

。 [评述]本题中的原有5个节目不需要再排列,这一点要注意。请练习以下这道题:马路上有编号为1、2、3、···10的十盏路灯,为节约用电又能照明,现准备把其中的三盏灯,但不能关掉相邻的两盏或三盏,两端的灯也不许关掉,求不同的关灯方式有多少种?可得结

果为36C =20种。你能很快求解吗?

5 多元问题“分类法”

对于多个元素问题,有时有多种情况需要进行分类讨论,然后根据分类计数原理将各种可能性相加即得。需要注意的是,分类时要不重复不遗漏。

例6(1999年全国高考题)在一块并排10垄的田地中,选择2垄分别种植A 、B 两种作物,每种作物种植一垄。为有利于作物生长,要求A 、B 两种作物的间隔不小于6垄,则不同的选垄方法共有____________种(用数字作答)。

[解析]先考虑A 种在左边的情况,有三类:A 种植在最左边第一垄上时,B 有三种不同的种植方法;A 种植在左边第二垄上时,B 有两种不同的种植方法;A 种植在左边第三垄上时,B 只有一种种植方法。又B 在左边种植的情况与A 在左边时相同。故共有)123(2++?=12种不同的选垄方法。

例7 有11名翻译人员,其中5名英语翻译员,4名日语翻译员,另2人英语、日语都精通。从中找出8人,使他们组成两个翻译小组,其中4人翻译英文,另4人翻译日文,这两个小组能同时工作。问这样的分配名单共可开出多少张?

[解析]假设先安排英文翻译,后安排日文翻译。第一类,从5名只能翻译英文的人员中选4人任英文翻译,其余6人中选4人任日文翻译(若“多面手”被选中也翻译日文),则

有4645C C ;第二类,从5名只能翻译英文的人员中选3人任英文翻译,另从“多面手”中选

1人任英文翻译,其余剩下5人中选4人任日文翻译,有451235C C C ;第三类,从5名只能翻

译英文的人员中选2人任英文翻译,另外安排2名“多面手”也任英文翻译,其余剩下4

人全部任日文翻译,有442225C C C 。三种情形相加即得结果185(张)

。 [评述]本题当然也可以先安排日文翻译再安排英文翻译,请大家自己列式看看。

6 分球问题“隔板法”

计数问题中有一类“分球问题”,说的是将相同的球分到不同的盒中。如:将10个相同的球放入编号为1、2、3、4的四个盒子中,要求每个盒中至少一个球,问有多少种不同的放法?这时可以用“隔板法”解题。即将10个相同的球排成一排,中间看作有9个空,从

中选出3个不同的空插入3个“隔板”,则每一种插法对应一种球的放法,因此共有39C =84

种不同的放法。用“隔板法”可很快地解决以下问题。

例8(2002年全国高中数学联赛题)已知两个实数集合},,,{10021a a a A ???=与},,,{5021b b b B ???=,若从A 到B 的映射f 使得B 中每一个元素都有原象,且)()()(10021a f a f a f ≤???≤≤,则这样的映射共有 ( )

A 50100C

B 5099

C C 49100C

D 4999C

[解析]本题可以将A 中的100个元素按10021,,,a a a ???的顺序排成一排,中间有99个空,

从中选出49个插上隔板就是结果,即4999C ,选(D )。

7 正难则反“排除法”

有些问题从正面考虑较为复杂而不易得出答案,这时,从反面入手考虑,往往会取得意想不到的效果。

例9(1990年全国高考题)以一个正方体的顶点为顶点的四面体共有 ( )

A 70个

B 64个

C 58个

D 52个

[解析]直接统计较繁,可从反面入手。从8个顶点中任取4个有48C 种取法,而四点共

面的情况有6个表面和6个对角面,因此结果为581248=-C 个,选(C )

。 例10(1997年全国高考题)四面体的顶点和各棱的中点共10个点,在其中取4个不共面的点,不同的取法有 ( )

A 150种

B 147种

C 144种

D 141种

[解析]10个点任取4个有410C 种取法。其中同一个面内6个点中任意4点共面,有46

4C 种;又每条棱上3点与对棱中点四点共面,有6种;且各棱中点中4点共面的情形有3种。

故10点中取4点,不共面的取法有14136446410=---C C 种,选(D )

。 8先选后排“综合法”

“先选后排”是解排列组合问题的一个重要原则。一般地,在排列组合综合问题中,我们总是先从几类元素中取出符合题意的几个元素,再安排到一定位置上。

例11 对某产品的6件不同正品和4件不同次品一一进行测试,至区分出所有次品为止。若所有次品恰好在第5次时被全部发现,则这样的测试方法有多少种可能?

[解析]第5次必测出一个次品,其余3个次品在前4次中被测出。从4个中确定最后一个次品有14C 种可能;前4次中应有1个正品3个次品,有3

316C C 种;前4次测试中的顺序

有44A 种。由分步计数原理得576)(44331614=?A C C C 种。

例12(1995年全国高考题)四个不同的小球放入编号为1、2、3、4的四个盒中,则恰有一个空盒的放法共有___________种(用数字作答)。

[解析]先从4个盒中选1个成为空盒有14C 种。再把4个球分成3组每组至少1个,即

分为2,1,1的三组,有2211

1224A C C C 种。最后将三组球放入三个盒中,进行全排列有33A 种。因此,放法共有144331

42211

1224=??A C A C C C 种。

[评述]本题涉及到了“分组问题”,这是组合中一种重要的题型,它有三种情况:不均匀分组;均匀分组;部分均匀分组。以“将6本不同的书分成3组”为例,一是分为1、2、

3,是不均匀分组,结果为332516C C C ;一是分为2、2、2,是均匀分组,结果为3322

2426A C C C ;

一是分为4、1、1,是部分均匀分组,结果为2211

1246A C C C 。

新课标排列组合解题策略(精编)

新课标排列组合问题的解题策略(精编)相邻元素捆绑法 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 变式练习:1.7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法 2.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 (20) 3.有8本不同的书;其中数学书3本,外语书2本,其它学科书3本.若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种1440 不相邻问题——插空法 例2.7名学生站成一排,甲乙互不相邻有多少不同排法? 变式练习:1.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 2.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 ____(30) 3.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,2与4相邻,5与6相邻,而7与8不相邻。这样的八位数共有( )个 288 特殊元素——优先考虑法 例3 (1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法()种. 72 变式练习:1.乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有多少种? 252 2.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数 288 定序问题用除法(缩倍法) 例4.6个人排队,甲、乙、丙三人按“甲---乙---丙”顺序排的排队方法有多少种? 120 变式练习:1.4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法 2.0人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐 增加,共有多少排法? 5 C 10

排列组合问题的解题策略

排列组合问题的解题策略 排列组合问题的解题策略 一、相临问题——捆绑法 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。 评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。 二、不相临问题——选空插入法 例2.7名学生站成一排,甲乙互不相邻有多少不同排法? 解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 . 评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。 三、复杂问题——总体排除法 在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。 例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个. 解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.

四、特殊元素——优先考虑法 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。 例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种. 解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法. 例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种. 解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种. 五、多元问题——分类讨论法 对于元素多,选取情况多,可按要求进行分类讨论,最后总计。 例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A ) A.42 B.3 0 C.20 D.12 解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相

☆排列组合解题技巧归纳总结

排列组合解题技巧归纳总结 教学内容 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =++ + 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =?? ? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其 它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 5 22480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? C 14A 34C 1 3

排列组合的二十种策略

排列组合的二十种策略 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第 2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 522480A A A =种不同的

高三复习:排列组合问题的解题方法

排列组合问题的解题方法 一、特殊元素(或位置) “优先法”:排列组合问题无外乎“元素”与“位置”的关系问题,即某个元素排在什么位置或某个位置上排什么元素的问题.因此,对于有限制条件的排列组合问题,可从限制元素(或位置)入手,优先考虑. 例1、在由数字0、1、2、3、4、5所组成的没有重复数字的四位数中,不能被5整除的数共有( )个. 解1:(元素优先法)根据所求四位数对0和5两个元素的特殊要求将其分为四类:① 含0不含5,共有1324C A =48(个);②含5不含0,共有1334C A =72(个);③含0也含5,共有112224C C A =48(个);④不合0也不含5,共有4 4 A =24(个).所以,符合条件的四位数共有48+72+48+24=192(个). 解2:(位置优先法)根据所求四位数对首末两位置的特殊要求可分三步:第一步:排 个位,有14C 种方法;第二步;排首位,有14C 种方法;第三步:排中间两位,有2 4A 种方法.所以符合条件的四位数共有14C 14C 24 A =192(个). 二、相邻问题“捆绑法”:对于元素相邻的排列问题,可先将相邻元素“捆绑”起来看作一个元素(整体),先与其它元素排列,然后相邻元素之间再进行排列. 例2、6个人排成一排,甲、乙二人必须相邻的排法有多少种? 解:将甲、乙二人“捆绑”起来看作一个元素与其它4个元素一起排列,有A 55 种,甲、乙二人的排列有A 22 种,共有A 22·A 5 5=240种. 三、不相邻问题“插空法”:对元素不相邻问题,可先不考虑限制条件先排其它元素,再将不相邻元素插入已排好元素的空隙中(包括两端)即可. 例3、用1,2,3,4,5,6,7,8组成没有重复数字的八位数,其中1与2相邻、3与4相邻、5与6相邻、7与8不相邻的八位数共有 个. 解:先“相邻”排列成三个“大元素”,再三个“大元素”排列,最后7与8“插空”, 共有22232 22234576A A A A A 种. 四、有序问题“无序法”:对于元素顺序一定的排列问题,可先考虑没有顺序元素的排列,然后除以有顺序的几个元素的全排列即可. 例4、3男3女排成一排,若3名男生身高不相等,则按从高到低的一种顺序站的站法有多少种? 解:6个人的全排列有A 66 种,3名男生不考虑身高的顺序的站法有A 3 3种,而由高到低又可从左到右,或从右到左(这是两种不同的站法),故共有不同站法2A 66÷A 3 3 =240种. 五、分排问题“直排法”:n 个元素分成m (m <n )排,即为n 个元素的全排列. 例5、将6个人排成前后两排,每排3人,有多少种排法. 解:6个人中选3个人排在前排有A C 33 36种,剩下3人排在后排有A 3 3种,故共有

排列组合问题的解题方法与技巧的总结(完整版)

种。故不同插法的种数为:26A + 22A 16A =42 ,故选A 。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区 不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答) 解:由题意,选用3种颜色时,C 43种颜色,必须是②④同色,③⑤同色,与①进行全排列,涂色 方法有C 43A 33=24种4色全用时涂色方法:是②④同色或③⑤同色,有2种情况,涂色方法有 C 21A 44=48种所以不同的着色方法共有48+24=72种;故答案为72 六、混合问题--先选后排法 对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略. 例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4 人,则不同的分配方案共有( )种 A. B.3种 C. 种 D. 解:本试题属于均分组问题。则12名同学均分成3组共有 种方法,分配到三 个不同的路口的不同的分配方案共有: 种,故选A 。 例9.(2003年北京高考试题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出 3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共 有() A .24种 B .18种 C .12种 D .6种

解:黄瓜必选,故再选2种蔬菜的方法数是C32种,在不同土质的三块土地上种植的方法是A33, ∴种法共有C32A33=18,故选B. 七.相同元素分配--档板分隔法 例10.把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况?本题考查组合问题。 解一:先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”)共有2 C种插法,即有15种分 6 法。 2、解二:由于书相同,故可先按阅览室的编号分出6本,此时已保证各阅览室所分得的书不小于其编号,剩下的4本书有以下四种分配方案:①某一阅览室独得4本,有种分法;②某两个阅览室分别得1本和3本,有种分法;③某两个阅览室各得2本,有种分法;④某一阅览室得2本,其余两阅览室各得1本,有种分法.由加法原理,共有不同的分法3+=15种. 八.转化法: 对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解 。例11 高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种? 分析此题若直接去考虑的话,就会比较复杂.但如果我们将其转换为等价的其他

排列组合解题策略大全(十九种模型)

排列组合解题策略大全 一、合理分类与分步 1、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有多少种? 四位上,则有1 31333A A A 种排法,由分类计数原理,排法共有7813133344 =+A A A A (种) 解法二(排除法):甲在排头:44A ,乙在排尾: 44A ,甲在排头且乙在排尾: 3 3A ,故符合题意的不同的排法为: 5443544378A A A A --+=.注: 甲在排头和乙在排尾都包含甲在排头的同时乙在排位,所以多减了要补回来. 2、从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ① 若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有3 8A 方法, 所以共有383A ;③若乙参加而甲不参加同理也有3 83A ④(同例1)若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数4332 88883374088A A A A +++=(种) 二、特殊元素和特殊位置优先法 1、0,1,2,3,4,5能够组成多少个没有重复数字的五位奇数? 分析:特殊元素:0,1,3,5;特殊位置:首位和末位 先排末位:13C ,再排首位:14C ,最后排中间三位:34A 共有:13C 14C 3 4A =288 2、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 先种这两种特殊的花在除中间和两端外剩余的3个位置:24A ;再在其余5个位置种剩余的5种花:55A ;总共:24A 55A =1440 三、排列组合混合问题先选后排法 1、4个不同小球放入编号为1,2,3,4的四个盒中,恰有一空盒的方法有多少种? 解决排列组合混合问题,先选后排是最基本的指导思想。

排列组合解题策略

排列组合解题策略 2.A、36种B、120种C、720种D、1440种 前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共66720A =种,选C 3.把15人分成前后三排,每排5人,不同的排法种数为() (A)510515A A (B)3355510515A A A A (C)1515A (D)3355510515A A A A ÷答案:C 4.8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法? 解:看成一排,某2个元素在前半段四个位置中选排2个,有24A 种,某1个元素排在后半段的四个位置中选一个有14A 种,其余5个元素任排5个位置上有55A 种,故共有1254455760A A A =种排法. 5.10个相同的球装5个盒中,每盒至少一有多少装法?4 9C 解:从0、0、0、1、2、3…100中插入三个隔板即可3103C 。 7.某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种。 解:在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有种 8.有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法? 解:向1,2,3号三个盒子中分别放入0,1,2个球后还余下17个球,然后再把这17个球分成3份,每份至少一球,运用隔板法,共有1202 16=C 种。 9.(a+b+c+d)15有多少项?

解:当项中只有一个字母时,有种(即 a.b.c.d 而指数只有15故;当项中有2个字母时,有 而指数和为15,即将15分配给2个字母时,如何分,闸板法一分为2,即;当项中有3个字母 时指数15分给3个字母分三组即可;当项种4个字母都在时 四者都相加即可.10.将4个相同的白球、5个相同的黑球、6个相同的红球放入4各不同的盒子中的3个 中,使得有一个空盒且其他盒子中球的颜色齐全的不同放法有多少种? 解:1、先从4个盒子中选三个放置小球有3 4C 种方法;2、注意到小球都是相同的,我们可以采用隔板法。为了保证三个盒子中球的颜色齐全,可以在4个相同的白球、5个相同的黑球、6个相同的红球所产生的3个、4个5个空挡中分别插入两个板。各有23C 、24C 、25C 种方法;3、由分步计数原理可得34C 23C 24C 25C =720种。 11.用不同的5种颜色分别为ABCDE 五部分着色,相邻部分不能用同一颜色,但同一种颜色可以反复使用也可以不用,则符合这种要求的不同着色种数.(540)第11题第12题第13题第14题 12.四个区域坐定4个单位的人,有四种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两区域的颜色不同,不相邻区域颜色相同,不相邻区域颜色相同与否不受限制,那么不同的着色方法是种(84) 13.某城市中心广场建造一个花圃,花圃6分为个部分(如图),现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种同一样颜色的话,不同的栽种方法有种(以数字作答).(120) 秒杀秘籍:合并单元格解决染色问题 例3.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同 一颜色,现有四种颜色可供选择,则不同的着色方法共有种(以数字作答)。 解:分情况讨论: (ⅰ)当3、4颜色相同且1、5颜色不同时,将3、4合并成一个单元格,此时不同的 着色方法相当于4个元素的全排列数4 4A (ⅱ)当3、4颜色不同且1、5颜色相同时,与情形(ⅰ)类似同理可得44A 种着色法. (ⅲ)当3、4与1、5分别同色时,将3、4,1、5分别合并,这样仅有三个单元格,从4种颜色中选3种来着色这三个单元格,计有3334A C 种方法.由加法原理知:不同着色方法共有3 334442A C A +=48+24=72(种) 例4.将一个四棱锥S ABCD -的每个顶点染上一种颜色,并使同一条棱的两端 点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是_______. 解:可把这个问题转化成相邻区域不同色问题,如图, 若恰用三种颜色,可先从五种颜色中任选一种染顶点S,再从余下的四种颜色中任 选两种涂A、B、C、D 四点,此时只能A 与C、B 与D 分别同色,故有125460C A =种方法。 (2)若恰用四种颜色染色,可以先从五种颜色中任选一种颜色染顶点S,再从余下的四种颜色中任选两种染A 与B,由于A、B 颜色可以交换,故有24A 种染法;再从余下的两种颜色中任选一种染D 或C,而D 与C,而D 与C 中另一个只需染与其相对顶点同色即可,故有12115422240C A C C =种方法。 (3)若恰用五种颜色染色,有55120A =种染色法综上所知,满足题意的染色方法数为60+240+120=420种。涂色问题的常用方法有:(1)可根据共用了多少种颜色分类讨论;(2)根据相对区域是否同色分类讨论; (3)将空间问题平面化,转化成平面区域涂色问题。54321

排列组合基础知识及解题技巧

排列组合基础知识及习题分析 在介绍排列组合方法之前 我们先来了解一下基本的运算公式! 35C =(5×4×3)/(3×2×1) 26 C =(6×5)/(2×1) 通过这2个例子 看出 n m C 公式 是种子数M 开始与自身连续的N 个自然数的降序乘积做为分子。 以取值N 的阶层作为分母 35P =5×4×3 66P =6×5×4×3×2×1 通过这2个例子 n m P =从M 开始与自身连续N 个自然数的降序乘积 当N =M 时 即M 的阶层 排列、组合的本质是研究“从n 个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”; 其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分 类:“做一件事,完成它可以有n 类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个 标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n 个步骤”,这是说完成这件事的任何一种方法,都要分成n 个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n 个步骤后,这件事才算最终完成. 两 个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n 类办法,这n 类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完 成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n 个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个 步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理. 在解决排列与组合的应用题时应注意以下几点: 1.有限制条件的排列问题常见命题形式: “在”与“不在” “邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: ⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法.

完整版排列组合的二十种解法最全的排列组合方法总结

教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略 ;能运用解题策略解决简单的综合应用题。提高学生解决问题分 析问题的能力 3. 学会应用数学思想和方法解决排列组合问题 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有 m i 种不同的方法,在第 2类办法中有m 2种不同的方 法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有: N m i m 2 L m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有叶种不同的方法,做第2步有m 2种不同的方法,… 做第n 步有m n 种不同的方法,那么完成这件事共有: N mi m 2 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事 ,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少 类。 3. 确定每一步或每一类是排列问题 (有序)还是组合(无序)问题,元素总数是多少及取出多少个元素 . 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置 . 先排末位共有C ; 然后排首位共有C 1 最后排其它位置共有 A 3 由分步计数原理得C 4C ;A ; 288 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法 ,若以元素分析为主,需 先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位 置。若 有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 练习题:7种不同的花种在排成一列的花盆里 多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排 A 3 ,若两种葵花不种在中间,也不种在两端的花盆里,冋有 A 5 A 2 A 2 480种不同的

排列组合常见题型及解题策略(详解)

排列组合常见题型及解题策略 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复, 把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类 问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34 (3)34 【例2】 把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】 8名同学争夺3项冠军,获得冠军的可能性有( ) A 、38 B 、83 C 、38A D 、3 8C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军 看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的 结果。所以选A 二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A 种 【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女 生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96 【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有, 22223242C A A A =432种, 其中男生甲站两端的有1 222223232A C A A A =144,符合条件的排法故共有288 三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列, 再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是

排列与组合解题技巧

佛山学习前线教育培训中心 高二数学(理)讲义 专题:排列与组合解题技巧 主要技巧: 一. 运用两个基本原理 例1:n个人参加某项资格考试,能否通过,有多少种可能的结果? 练习1:同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有() (A)6种(B)9种(C)11种(D)23种 二. 特殊元素(位置)优先 例2:从0,1,……,9这10个数字中选取数字组成偶数,一共可以得到不含相同数字的五位偶数多少个? 练习2:8人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有多少种排法? 三. 捆绑法 例3:8人排成一排,甲、乙必须分别紧靠站在丙的两旁,有多少种排法? 练习3:记者要为5名志愿者和他们帮助的2为老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有 .A1440种.B960种.C720种.D480种 四. 插入法 例4:排一张有8个节目的演出表,其中有3个小品,既不能排在第一个,也不能有两个小品排在一起,有几种排法? 练习4:安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有种。 五. 排除法 例5:求以一个长方体的顶点为顶点的四面体的个数。 练习5:100件产品中有3件是次品,其余都是正品。现在从中取出5件产品,其中含有次品,有多少种取法? 练习6:8个人站成一排,其中A与B、A与C都不能站在一起,一共有多少种排法? 六. 机会均等法 例6:10个人排成一队,其中甲一定要在乙的左边,丙一定要在乙的右边,一共有多少种排法? 练习7:用1,4,5,四个数字组成四位数,所有这些四位数中的数字的总和为288,求。 七. 转化法 例7:一个楼梯共10级台阶,每步走1级或2级,8步走完,一共有多少种走法? 练习8:动点从(0,0)沿水平或竖直方向运动到达(6,8),要使行驶的路程最小,有多少种走法? 八. 隔板法 例14:20个相同的球分给3个人,允许有人可以不取,但必须分完,有多少种分法? 练习9:把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考

排列组合问题的解答技巧和记忆方法

排列组合问题的解题策略 关键词:排列组合,解题策略 ①分堆问题; ②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法). 一、相临问题——捆绑法 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。 评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。 二、不相临问题——选空插入法 例2.7名学生站成一排,甲乙互不相邻有多少不同排法? 解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 . 评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。 三、复杂问题——总体排除法 在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。 例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个. 解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个. 四、特殊元素——优先考虑法 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种. 解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法. 例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种. 解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种. 五、多元问题——分类讨论法 对于元素多,选取情况多,可按要求进行分类讨论,最后总计。 例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A ) A.42 B.30 C.20 D.12 解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?(以数字作答) 解:区域1与其他四个区域相邻,而其他每个区域都与三个区域相邻,因此,可以涂三种或四种颜色.用三种颜色着色有=24种方法, 用四种颜色着色有=48种方法,从而共有24+48=72种方法,应填72. 六、混合问题——先选后排法 对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略. 例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有() A.种B.种

(推荐)排列组合问题的类型及解答策略

排列组合问题,联系实际,生动有趣,但题型多样,思路灵活,不易掌握。实践证明,备考有效的方法是题型与解法归类,识别模式,熟练运用。本文介绍十二类典型排列组合问题的解答策略,供参考。 一、相邻问题捆绑法 例1 6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有()种 A. 720 B. 360 C. 240 D. 120 解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人, 与其余四人进行全排列有种排法;甲、乙两人之间有种排法。由分步计数原理可知,共有=240种不同排法,选C。 评注:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大”元素。 二、相离问题插空法 例2 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算) 解:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法。由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为种。 评注:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开。此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法。 三、定序问题缩倍法 例 3 信号兵把红旗与白旗从上到下挂在旗杆上表示信号。现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)。 解:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排 列均只能算作一次的挂法,故共有不同的信号种数是=10(种)。 评法:在排列问题中限制某几个元素必须保持一定顺序称为定序问题。这类问题用缩小倍数的方法求解比较方便快捷。 四、标号排位问题分步法 例4 同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有()

排列与组合解题技巧

排列与组合解题技巧

佛山学习前线教育培训中心 高二数学(理)讲义 专题:排列与组合解题技巧 主要技巧: 一. 运用两个基本原理 例1:n个人参加某项资格考试,能否通过,有多少种可能的结果? 练习1:同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有() (A)6种(B)9种(C)11种(D)23种 二. 特殊元素(位置)优先 例2:从0,1,……,9这10个数字中选取数字组成偶数,一共可以得到不含相同数字的五位偶数多少个? 练习2:8人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有多少种排法? 三. 捆绑法 例3:8人排成一排,甲、乙必须分别紧靠站在丙的两旁,有多少种排法? 练习3:记者要为5名志愿者和他们帮助的2为老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有 .A1440种.B960种.C720种.D480种

四. 插入法 例4:排一张有8个节目的演出表,其中有3个小品,既不能排在第一个,也不能有两个小品排在一起,有几种排法? 练习4:安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有种。 五. 排除法 例5:求以一个长方体的顶点为顶点的四面体的个数。 练习5:100件产品中有3件是次品,其余都是正品。现在从中取出5件产品,其中含有次品,有多少种取法? 练习6:8个人站成一排,其中A与B、A与C都不能站在一起,一共有多少种排法? 六. 机会均等法 例6:10个人排成一队,其中甲一定要在乙的左边,丙一定要在乙的右边,一共有多少种排法? 练习7:用1,4,5,四个数字组成四位数,所有这些四位数中的数字的总和为288,求。 七. 转化法 例7:一个楼梯共10级台阶,每步走1级或2级,8步走完,一共有多少种走法?

排列组合基础知识及解题技巧

排列组合基础知识及习题分析 排列、组合的本质是研究“从n个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”; 其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成. 在解决排列与组合的应用题时应注意以下几点: 1.有限制条件的排列问题常见命题形式: “在”与“不在” “邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: ⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法. ⑵“不邻”问题在解题时最常用的是“插空排列法”. ⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置. ⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果. 2.有限制条件的组合问题,常见的命题形式: “含”与“不含” “至少”与“至多” 在解题时常用的方法有“直接法”或“间接法”. 3.在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法. ***************************************************************************** 习题 1、三边长均为整数,且最大边长为11的三角形的个数为( C ) (A)25个 (B)26个 (C)36个 (D)37个 2、(1)将4封信投入3个邮筒,有多少种不同的投法? (2)3位旅客,到4个旅馆住宿,有多少种不同的住宿方法? (3)8本不同的书,任选3本分给3个同学,每人一本,有多少种不同的分法? 3、七个同学排成一横排照相. (1)某甲不站在排头也不能在排尾的不同排法有多少种?(3600) (2)某乙只能在排头或排尾的不同排法有多少种?(1440) (3)甲不在排头或排尾,同时乙不在中间的不同排法有多少种?(3120) (4)甲、乙必须相邻的排法有多少种?(1440) (5)甲必须在乙的左边(不一定相邻)的不同排法有多少种?(2520)

排列组合的解题策略 陈莉

排列组合的解题策略陈莉 发表时间:2014-04-01T17:09:56.750Z 来源:《新疆教育》2013年第5期供稿作者:陈莉 [导读] 排列组合作为高中代数课本的一个独立分支,因为极具抽象性而成为“教”与“学”难点。 重庆市江津区第八中学陈莉 排列组合作为高中代数课本的一个独立分支,因为极具抽象性而成为“教”与“学”难点。有相当一部分题目教者很难用比较清晰简洁的语言讲给学生听,有的即使教者觉得讲清楚了,但是由于学生的认知水平,思维能力在一定程度上受到限制,还不太适应。从而导致学生对题目一知半解,甚至觉得“云里雾里”。针对这一现象,笔者在日常教学过程中经过尝试总结出一些个人的想法跟各位同行交流一下。笔者认为之所以学生“怕”学排列组合,主要还是因为排列组合的抽象性,那么解决问题的关键就是将抽象问题具体化,我们不妨将原题进行一下转换,让学生走进题目当中,成为“演员”,成为解决问题的决策者。这样做不仅激发了学生的学习兴趣,活跃了课堂气氛,还充分发挥学生的主体意识和主观能动性,能让学生从具体问题的分析过程中得到启发,逐步适应排列组合题的解题规律,从而做到以不变应万变。当然,在具体的教学过程中一定要注意题目转换的等价性,可操作性。 怎样分析排列组合综合题?使用“分类计数原理”还是“分步计数原理”要根据我们完成某事件时采取的方式而定,分类来完成这件事时用“分类计数原理”,分步来完成这件事时就用“分步计数原理”,怎样确定分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步骤”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。排列与组合定义相近,它们的区别是在于是否与顺序有关。复杂的排列问题常常通过试验、画简图、小数字化等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,亦常常需要用不同的方法求解来获得检验。按元素的性质进行分类,按事件发生的连续性进行分步是处理组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。处理排列、组合综合性问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题基本方法和原理,通过解题训要注意积累分类和分步的基本技能。在解决排列、组合综合性问题时,必须深刻理解排列组合的概念,能熟练确定问题是排列问题还是组合问题,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。 下面笔者将就教学过程中的两个难点通过两个特例作进一步的说明:第一,占位子问题例1:将编号为1、2、3、4、5 的5 个小球放进编号为1、2、3、4、5 的5 个盒子中,要求只有两个小球与其所在的盒子编号相同,问有多少种不同的方法?①仔细审题:在转换题目之前先让学生仔细审题,从特殊字眼小球和盒子都已“编号”着手,清楚这是一个“排列问题”,然后对题目进行等价转换。②转换题目:在审题的基础上,为了激发学生兴趣进入角色,我将题目转换为:让学号为1、2、3、4、5 的学生坐到编号为1、2、3、4、5 的五张凳子上(已准备好放在讲台前),要求只有两个学生与其所坐的凳子编号相同,问有多少种不同的坐法? ③解决问题:这时我在选另一名学生来安排这5 位学生坐位子(学生争着上台,积极性已经得到了极大的提高),班上其他同学也都积极思考(充分发挥了学生的主体地位和主观能动性),努力地“出谋划策”,不到两分钟的时间,同学们有了统一的看法:先选定符合题目特殊条件“两个学生与其所坐的凳子编号相同”的两位同学,有C 种方法,让他们坐到与自己编号相同的凳子上,然后剩下的三位同学不坐编号相同的凳子有2 种排法,最后根据乘法原理得到结果为2×C =20(种)。 这样原题也就得到了解决。④学生小结:接着我让学生之间互相讨论,根据自己的分析方法对这一类问题提出一个好的解决方案。(课堂气氛又一次活跃起来)⑤老师总结:对于这一类占位子问题,关键是抓住题目中的特殊条件,先从特殊对象或者特殊位子入手,再考虑一般对象,从而最终解决问题。 第二,分组问题例2:从1、3、5、7、9 和2、4、6、8 两组数中分别选出3 个和2 个数组成五位数,问这样的五位数有几个?(本题我是先让学生计算,有很多同学得出的结论是P ×P )①仔细审题:先由学生审题,明确组成五位数是一个排列问题,但是由于这五个数来自两个不同的组,因此是一个“分组排列问题”,然后对题目进行等价转换。②转换题目:在学生充分审题后,我让学生自己对题目进行等价转换,有一位同学A 将题目转换如下:从班级的第一组(12 人)和第二组(10 人)中分别选3 位和2 位同学分别去参加苏州市举办的语文、数学、英语、物理、化学竞赛,问有多少种不同的选法?③解决问题:接着我就让同学A 来提出选人的方案同学A 说:先从第一组的12 个人中选出3 人参加其中的3 科竞赛,有P×P 种选法;再从第二组的10 人中选出2 人参加其中2 科竞赛有P×P 种选法;最后由乘法原理得出结论为(P×P)×(P×P)(种)。(这时同学B 表示反对)同学B 说:如果第一组的3个人先选了3 门科目,那么第二组的2 人就没有选择的余地。所以第二步应该是 P×P(. 同学们都表示同意,但是同学 C 说太蘩)同学 C说:可以先分别从两组中把5 个人选出来,然后将这5 个人在5 门学科中排列,他列出的计算式是C×C×P(种)。(再次通过互相讨论,都表示赞赏)这样原题的解答结果就“浮现”出来C×C×P(种)。④老师总结:针对这样的“分组排列”题,我们多采用“先选后排”的方法:先将需要排列的对象选定,再对它们进行排列。 以上是我一节课两个例题的分析过程,旨在通过这种方法的尝试(教学效果比较明显),进一步活跃课堂气氛,更全面地调动学生的学习积极性,发挥教师的主导作用和学生的主体作用,让学生在互相讨论的过程中学会自己分析转换问题,解决问题。

相关文档
相关文档 最新文档