文档库 最新最全的文档下载
当前位置:文档库 › 无相变热管在换热器上的应用

无相变热管在换热器上的应用

无相变热管在换热器上的应用
无相变热管在换热器上的应用

?节能技术?

无相变热管在换热器上的应用

辽宁省化工研究院(大连116023)纪凤羽 吴笳笛 朱丽珍 王维宪

摘要 阐明了无相变热管的结构、工作原理与钢-水型热管不同之处,并作了简要经济分析。

关键词 无相变热管 钢-水型热管 换热器

1 前言

热管是一种内部充填一定工质(水和丙酮、乙醇等有机化合物及无机物钾、钠等碱金属)的真空封闭金属管。其工作原理是加热端吸收热能使管内工质蒸发,蒸汽快速移到冷端放热后凝成液体再回到加热端继续吸收热能、蒸发、传热,这种靠相变传热循环不止的金属管件,称作热管。所谓钢—水型热管是一种比较经济、普通和产量大的常用热管。热管多用在节能工程上,是由传热技术需要而发展起来的一种高效传热元件。

2 热管的发展

热管40年代起源于美国,60年代用于传热技术,70年代以后广泛用于节能工程上。我国70年代有译文报导并进行探索研究,80年代作为节能产品逐步得到应用。现在南京、四

表5 中国和发达国家CO2排放对比(1994年)

项 目中国美国日本英国法国德国

排放总量

(折CM t)7841397354西欧987

单位排放量

(折Ct

GDPM

)1501306123221121179

注:总量按《能源政策研究》1997(12)

单位值按日刊《省能》1997(10)。

4 学好《节能法》,认真守法、执法《节能法》的起草至颁布经历了一个艰苦漫长的过程,但通过认真贯彻和执法以取得效果仍是一项十分艰巨的任务。试看《矿产资源法》于1986年颁布实施后,经过8年“矿产资源补偿费实施条例”于1994年4月方才出台,矿产资源才由无价变为有价,另目前还有大量的乡镇矿山进行无证非法开采;而在同一矿区内实施联营开采的规定则大部分没有实施。又如《水污染防治法》早在1984年即已颁布,但由于执法不力,严重排污超标的小造纸厂蓬勃发展,直到淮河水域的居民连饮用水都发生危机后, 1996年才被责令关闭。问题虽然解决了,但代价和教训却是惨痛的。面对如此现状,在贯彻《节能法》时应采取以下主要措施:

(1)各级政府要利用报刊、影视和办培训班等手段,大力宣传守法、执法的重要性。必要时可在今年6月份暑期用能高峰到来之前举办一次节能宣传周,并将11月改为节能宣传月,以加强全民的法制观念和提高对《节能法》的认识。

(2)各级节能主管部门要尽快把规定的实施条例颁布并严格实施。各级政府在这次调整机构中应合理配备可承担《节能法》任务的人员。

(3)对群众除加强守法教育外,并鼓励他们依法对违法者、不严格执行者进行监督、揭发。

编辑/孙玉茹

?

23

?

 1998年第5期节 能

川、河南、辽宁等地均有小规模热管换热器厂家。

(1)热管传热特点

传热能力大。热管是靠相变以潜热方式进行传热的,比显热的传导方式传热能力要大许多数量级。

温均性好。饱和蒸汽决定于温度,由相变保持一定温度。

传热方向可逆,热密流度不变。热管水平放置或失重状态下任何一端受热另一端则为放热。在热管内部传热方向是可逆的,热管的形状、传热面积根据需要可随意设计。

对环境适应能力强。根据工作环境可制成形状相适应、传热面积又能满足的热管。又因热管是一种传热元件,因此,安装、维修、更换都非常方便。

但是,作为钢—水型热管致命的弱点是不能在高温环境中长期工作(使用温度范围0~200℃),特别是冷端环境温度高于管内工作介质冷凝温度时,介质的蒸汽就不能冷凝成液体回到加热端去,因而失去了靠相变进行传热的特性,此时只能以过热蒸汽的方式传热;热管长期处于这种高温工作环境,管内还会产生一种不凝汽,直接影响传热效果降低传热效率;同时管内产生的高压还会降低热管的使用寿命,甚至爆管。为此,人们又研究出无相变热管,要取而代之。

(2)无相变热管的产生

被称为世界热导尖端—无机工质高效热管技术及元件于1989年问世[1]。这是我国物理学家渠玉芝教授经过多年潜心研究发明的。这种无相变热管具有以下的独到之处。

适应温度范围宽。可在-100~1300℃范围内工作,传热速度快,热载能力大,传热效率大于100%[2],也就是说热阻为“零”。这种特点在当今热管技术中是空前的。

无相变热管结构与工作原理。无相变热管在外型结构上与钢—水型普通热管一样,都是真空的。所不同的只是内部充填的无机工质为无机物,是无相变传热。其工作原理是在加热端无机工质粒子受热激发产生动能而运动、振动,并伴随有化学、物理变化,从而使粒子运动加速、振动甚至振荡、摩擦,吸收到一定能量之后则有以高速运动的粒子流载着大量的热能,传到冷端放热、冷却后又恢复常态回到加热端继续吸热而传导,以此往复不止,这种无相变传热效率大于100%,迄今为止还没有权威者作出解释。但须应用在360℃以上工作环境中,证明传热效率高,不爆管。

3 无相变热管在空气预热器上的应用

盘锦乙烯工业公司有一台燃油、气型70t/ h锅炉,根据节能要求由某节能设备厂配套一台热管空气预热器,热管为钢—水型,共用1680支热管如图1所示,传热面积为2635m2,设计能力为1957×104kJ/h。1996年初开始运行,开始未发现问题,在350℃左右中运转一年多,发现有部分热管失效,于1997年5月大修,再次运转至9月又发现热管失效,预热器换热能力迅速下降,空气预热温度与烟道气排放远远落后于设计指标,锅炉只能在50%~70%蒸汽负荷下运行。为了维持正常生产和冬季取暖的需要,乙烯工业公司采纳了我院的建议,用我院与大连熵立得传热技术有限公司共同开发的无相变热管再次对该炉空气预热器进行大修改造,选用三种传热面积不等的631支无相变热管代替钢—水型631支热管,安装在高温区内,占热管总数的37%,占总传热面积的29%,改造工程完毕后于10月13日开始运行。

图1 空气预热器流程示意图

1-无相变热管 2-隔板 3-空气入口

4-空气出口去炉膛 5-烟道气入口 6-烟道气出口排放

?

24

?

节 能 1998年第5期

大修改造更换的631支无相变热管,经4周运行后,决定在11月11~14日进行为期3天72h 满负荷运行,对其考核的各项指标如表1所示。

表1 对无相变热管考核的各项指标

气体名称进口温度℃

出口温度℃流量Nm 3/h

空气2025575000

烟道气

360

156~165

空气经过仅占热管总数37%的无相变热管吸收的能量是2290×104kJ/h,比原设计能力提高17%,如果无相变热管占50%或更多一些将会有更可观的效果。到目前为止又运行50多天,运转稳定,受到该公司的欢迎与好评。

运行实践表明:

(1)无相变热管解决了钢—水热管在高温区的爆管问题(所谓爆管是在真空封口处,由于焊接质量差成为热管强度的薄弱环节,热管内不凝气、水蒸气在300℃以上的工作状态下产生高压而冲破焊口)。

(2)无相变热管换热能力大,传热效率高,因为在空气预热器1680支热管中,仅更换631支,占热管总数37%,即得到2290×104kJ /h 的能量,超过原设计能力17%,而且烟道气基本达到或接近排放标准。这一点是钢—水型热管远不可比的。

4 经济分析

仅从直接经济效益和使用寿命方面简要分析。

(1)直接经济效益

钢—水型热管空气预热器原设计能力为1957×104kJ/h,开车后没有达到设计指标,更换了631支无相变热管后却达到了2290×104kJ /h ,比原设计能力提高333×104kJ /h 。

已知燃料渣油燃烧值40592kJ/h,渣油市场价1500元/t 。

每小时节约渣油

333×104÷40592=82kg

每天可节约渣油 82×24=1968kg

每年可节约渣油

1968×365=718320=718.32t

折合成人民币为1500×18.32=1077480

元,假如造一台全新的无相变热管换热器用在烟道气余热回收工程中,运行一年的节能收入可全部收回投资。

(2)使用寿命

钢—水型热管在盘锦乙烯工业公司锅炉空气预热器上的应用不理想。在360℃环境中运行的热管内将产生18.9M Pa 工作压力,失去了热管相变换热的特性;又因为真空封口处焊接质量差,强度低,故有被高压汽体冲破爆管现象产生,此时管外壁呈淡黄色;还有热管失效现象,是因热管在高温情况下内部产生不凝气体降低传热效率所致,同时又使管内压力,增高,增加爆管的可能性。从工作现场上看钢—水型热管在360℃温度中运行使用寿命可为1~2年。

无相变热管在360℃温度环境中内部压力只有0.3MPa ,根本不会出现爆管问题。在制作工艺上也不存在质量问题,使用寿命当然要长。这里影响寿命主要是烟道气体、灰渣冲刷的机械磨损,管内介质不存在消极因素。因此,使用寿命的延长其经济效益是相当可观的。由此看来无相变热管用在换热器上具有广阔的前途。

图2 空气预热器装置图

1-锅炉 2-热管空气预热器 3-鼓风机 4-烟囱

参考文献

[1]我国热导技术取得突破.天津日报.1989年7月5日第一版[2]对QU -Ⅱ型热超导材料放射性测试报告。中国人民解放军环境科学研究中心。1976.7.22.

编辑/窦玉贤

?

25? 1998年第5期节 能

热管换热器的结构形式

热管换热器的结构形式 (三)热管换热器的结构形式以热管为传热单元的热管换热器是一种新型高效换热器,其结构如图片4- 50、图片4-51所示,它是由壳体、热管和隔板组成的。热管作为主要的传热元件,是一种具有高导热性能的传热装置。它是一种真空容器,其基本组成部件为壳体、吸液芯和工作液。将壳体抽真空后充入适量的工作液,密闭壳体便构成一只热管。当热源对其一端供热时,工作液自热源吸收热量而蒸发汽化,携带潜热的蒸汽在压差作用下,高速传输至壳体的另一端,向冷源放出潜热而凝结,冷凝液回至热端,再次沸腾汽化。如此反复循环,热量乃不断从热端传至冷端。 【图片4-50】 热管换热器。 【图片4-51】 热管示意图。热管按冷凝液循环方式分为吸液芯热管、重力热管和离心热管三种。吸液芯热管的冷凝液依靠毛细管的作用回到热端,这种热管可以在失重情况下工作;重力热管的冷凝液是依靠重力流回热端,它的传热具有单向性,一般为垂直放置离心热管是靠离心力使冷凝液回到热端,通常用于旋转部件的冷却。热管按工作液的工作温度分为深冷热管、低温热管、中温热管和高温热管四种。深冷热管在200K以下工作,工作液有氮、氢、

氖、氧、甲烷、乙烷等;低温热管在200~550K 范围内工作,工作液有氟里昂、氨、丙酮、乙醇、水等;中温热管在550~750K范围内工作,工作液有导热姆 A、水银、铯、水及钾─钠混合液等;高温热管在750K 以上工作,工作液有液态金属钾、钠、锂、银等。热管的传热特点是热管中的热量传递通过沸腾汽化、蒸汽流动和蒸汽冷凝三步进行,由于沸腾和冷凝的对流传热强度都很大,而蒸汽流动阻力损失又较小,因此热管两端温度差可以很小,即能在很小的温差下传递很大的热流量。因此,它特别适用于低温差传热及某些等温性要求较高的场合。热管换热器具有结构简单、使用寿命长、工作可靠、应用范围广等优点,可用于气─气、气─液和液─液之间的换热过程。

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

热管换热器的性能比较

热管换热器的性能比较 发布时间:2011-3-25 随着我国经济实力的增长和人民物质文化生活水平的不断提高;高层建筑的迅速发展,高气密化、高隔热化影响到人们的工作和生活环境,人们对室内空气品质的要求也越来越高,都渴望拥有一个健康、舒适的室内环境,特别是经历了SARS的袭击,人们越来越注重室内空气品质,对引进室外新风换气提出了更高的要求,但是换气必然会带来能量的损失,引入新风需要消耗更多的能量,因此需要考虑一种有效的节能方法,通过热回收装置使新风和排风进行热交换。热交换器是空气调节和余热回收的关键装置。 一、各类热交换器的性能与利用分析 目前的热交换器有显热和全热回收两种形式。不同形式的性能、效率和利用方式,设备费的高低、维护保养的难易也各不相同,它们的综合比较如下表所示: 热回收方式 效 率设 备 费 维护 保养 辅 助 设 备 占 用 空 间 交 叉 污 染 自 身 耗 能 接 管 灵 活 抗冻 能力使用 寿命 转轮换热器高高中无大有有差差中 热管换热器较 高中易无中无无中好优 板式显热换热器低低中无大有无差中良 板翅式全热换热 器较 高 中中无大有无差中中 中间热媒式低低中有中无多好中良下面介绍几种常用的热交换器。 1. 转轮式全热换热器 转轮式换热器的表面为蜂窝状,涂上一层吸附材料作干燥剂。将转轮置于风道之间,使其分成两部分。来自空调房间的排风从一侧排出,室外空气以相反的方向从另一侧进入。为加大换热面积,轮子缓慢旋转(10~12转/分)。轮子的一半从较热空气中吸收存储热量,旋转到另一侧时,释放热量,使热量发生转移。附着表面的干燥剂将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收,旋转到另一侧时,将湿气释放到低湿度的气流里,这个过程将潜热转移。 换热器旋转体的两侧设有隔板,使新风与排风逆向流动。转轮芯片用特殊的纸或铝箔制成,其表面涂上吸湿性涂层,形成热、湿交换的载体,它以10-12r/min的速度旋转,先把排风中的冷热量收集在蓄热体(转轮芯)里,然后传递给新风,空气以2.5-3.5m/s的流速通过蓄热体,靠新风与排风的温差和蒸汽分压差来进行热湿交换。所以,既能回收显热,又能回收潜热。 1) 转轮换热器的功能与适用范围 功能适用范围

管壳式换热器设计 课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (2) 第二章管壳式换热器简介 (3) 第三章设计方法及设计步骤 (5) 第四章工艺计算 (6) 4.1 物性参数的确定 (6) 4.2核算换热器传热面积 (7) 4.2.1传热量及平均温差 (7) 4.2.2估算传热面积 (9) 第五章管壳式换热器结构计算 (11) 5.1换热管计算及排布方式 (11) 5.2壳体内径的估算 (13) 5.3进出口连接管直径的计算 (14) 5.4折流板 (14) 第六章换热系数的计算 (20) 6.1管程换热系数 (20) 6.2 壳程换热系数 (20) 第七章需用传热面积 (23) 第八章流动阻力计算 (25) 8.1 管程阻力计算 (25) 8.2 壳程阻力计算 (26) 总结 (28)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

列管式换热器设计(水蒸气加热水)要点

食品工程原理课程设计 设计题目:列管式换热器的设计 班级:食品卓越111班 设计者:张萌 学号:5603110006 设计时间:2013年5月13日~5月17日指导老师:刘蓉

目录 概述 1.1.换热器设计任务书 ......................................................................... - 7 - 1.2换热器的结构形式 ....................................................................... - 10 - 2.蛇管式换热器 ................................................................................. - 11 - 3.套管式换热器 ................................................................................. - 11 - 1.3换热器材质的选择 ....................................................................... - 11 - 1.4管板式换热器的优点 ................................................................... - 13 - 1.5列管式换热器的结构 ................................................................... - 14 - 1.6管板式换热器的类型及工作原理 ............................................... - 16 - 1.7确定设计方案 ............................................................................... - 17 - 2.1设计参数........................................................................................ - 18 - 2.2计算总传热系数 ........................................................................... - 19 - 2.3工艺结构尺寸 ............................................................................... - 20 - 2.4换热器核算.................................................................................... - 21 - 2.4.1.换热器内流体的流动阻力 (21) 2.4.2.热流量核算 (22)

热管及热管式换热器的研究

热管及热管式换热器的研究 天津裕能环保科技有限公司李兴 能源是发展国民经济的重要物质基础,是人类赖以生存的必要条件,能源的开发和利用程度直接影响着国民经济的发展和人民物质文化生活水平的提高,余热回收是合理利用能源、节约能源、提高能源利用率等方面不可忽视的问题。热管是一种具有高效传热性能的元件,它可利用很小的截面积远距离传输大量热量而无需外加动力。热管式换热器具有输热能力大、均温性能优良、传热方向可逆、热流密度可变、适应环境能力较强、阻力损失较小等优点,所以热管式换热器能较大限度的回收利用低品位余热。 1热管及热管式换热器的发展 1.1热管工作原理及特点 热管是依靠自身内部工作液体相变来实现传热的元件,一般由管壳、吸液芯、工质组成,管壳通常由金属制成,两端焊有端盖,管壳内壁装有一层由多孔性物质构成的管芯(若为重力式热管则无管芯),管内抽真空后注入某种工质,然后密封。热管可分为蒸发段、绝热段和冷凝段三个部分,当热源在蒸发段对其供热时,工质自热源吸热汽化变为蒸汽,蒸汽在压差的作用下沿中间通道高速流向另一端,蒸汽在冷凝段向冷源放出潜热后冷凝成液体;工质在蒸发段蒸发时,其气液交界面下凹,形成许多弯月形液面,产生毛细压力,液态工质在管芯毛细压力和重力等的回流动力作用下又返回蒸发段,继续吸热蒸发,如此循环往复,工质的蒸发和冷凝便把热量不断地从热端传递到冷端。 由于热管是利用工质的相变换热来传递热量,因此热管具有很大的传热能力和传热效率。另外,热管还具有优良的等温性、热流密度可变性、热流方向的可逆性、热二极管与热开关性、恒温特性以及对环境的广泛适应性等一

系列优点。 1.2热管分类 热管按其工作温度可分为:低温、中温及高温热管,选用热管时必须根据热管的工作温度来选用管内的工质。低温热管的工质有丙酮、氨、氟里昂等;中温热管的常用工质有:水、萘等,水的工作温度为90~250oC,萘的工作温度为280~400℃;高温热管的常用工质有:钠、钾等液态金属,工作温度一般在450℃以上。热管按工质回流的动力可分为:吸液芯热管、重力热管或两相闭式热虹吸管、重力辅助热管、旋转式热管、分离型热管、电流体动力学热管、电渗透热管等。根据热管翅片与管壳的连接方式可分为:串片式热管、镍铬合金钎焊热管、高频绕焊热管 3种形式 1.3热管式换热器结构及分类 由于单根热管传热量有限,于是把单根热管集中起来,形成一束置于冷、热源之间,使热源中的热量通过热管束源源不断地传至冷源,这就是热管式换热器。热管式换热器中的热管元件可以呈错列三角形排列,也可以呈顺列矩形排列。热管式换热器由热管、箱体和中间隔板组成,隔板将箱体分为两部分,形成冷、热介质的流道,隔板保证两侧流体互不混淆,热管横穿隔板,一端与热流体接触,一端与冷流体接触,冷热两端可按需加装翅片以增大传热面积。热管式换热器的基本结构。 热管式换热器按照流体的不同种类可分为:气一气型热管式换热器,气一液型热管式换热器,液一液型热管式换热器;按照热管式换热器的结构型式可分为:整体式、分离式、回转式和组合式。 1.4热管式换热器的特性

热管、转轮、板式换热器热回收的比较

热管、转轮、板式换热器热回收的比较 随着我国经济实力的增长和人民物质文化生活水平的不断提高;高层建筑的迅速发展,高气密化、高隔热化影响到人们的工作和生活环境,人们对室内空气品质的要求也越来越高,都渴望拥有一个健康、舒适的室内环境,特别是经历了SARS的袭击,人们越来越注重室内空气品质,对引进室外新风换气提出了更高的要求,但是换气必然会带来能量的损失,引入新风需要消耗更多的能量,因此需要考虑一种有效的节能方法,通过热回收装置使新风和排风进行热交换。热交换器是空气调节和余热回收的关键装置。 一、各类热交换器的性能与利用分析 目前的热交换器有显热和全热回收两种形式。不同形式的性能、效率和利用方式,设备费的高低、维护保养的难易也各不相同,它们的综合比较如下表所示: 下面介绍几种常用的热交换器。 1. 转轮式全热换热器 转轮式换热器的表面为蜂窝状,涂上一层吸附材料作干燥剂。将转轮置于风道之间,使其分成两部分。来自空调房间的排风从一侧排出,室外空气以相反的方向从另一侧进入。为加大换热面积,轮子缓慢旋转(10~12转/分)。轮子的一半从较热空气中吸收存储热量,旋转到另一侧时,释放热量,使热量发生转移。附着表面的干燥剂将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收,旋转到另一侧时,将湿气释放到低湿度的气流里,这个过程将潜热转移。

换热器旋转体的两侧设有隔板,使新风与排风逆向流动。转轮芯片用特殊的纸或铝箔制成,其表面涂上吸湿性涂层,形成热、湿交换的载体,它以10-12r/min 的速度旋转,先把排风中的冷热量收集在蓄热体(转轮芯)里,然后传递给新风,空气以2.5-3.5m/s的流速通过蓄热体,靠新风与排风的温差和蒸汽分压差来进行热湿交换。所以,既能回收显热,又能回收潜热。 1)转轮换热器的功能与适用范围 2)转轮换热器的主要优缺点: 3) 影响转轮换热器效率的因素: a. 空气流速:空气流过转轮时的迎风面流速越大,效率越低,反之效率则高,推荐风速2~4m/s。 b. 转轮两侧气流入口处,需要加装空气过滤器。 c. 设计时,必须计算校核转轮上是否会出现结霜、结冰现象;必要时应在新风管上设空气预热器,或在热回收器后设温度自控装置,当温度达霜点,就发出信号关闭新风阀门或开启预热器。

管壳式换热器设计说明书

1.设计题目及设计参数 (1) 1.1设计题目:满液式蒸发器 (1) 1.2设计参数: (1) 2设计计算 (1) 2.1热力计算 (1) 2.1.1制冷剂的流量 (1) 2.1.2冷媒水流量 (1) 2.2传热计算 (2) 2.2.1选管 (2) 2.2.2污垢热阻确定 (2) 2.2.3管内换热系数的计算 (2) 2.2.4管外换热系数的计算 (3) 2.2.5传热系数 K计算 (3) 2.2.6传热面积和管长确定 (4) 2.3流动阻力计算 (4) 3.结构计算 (5) 3.1换热管布置设计 (5) 3.2壳体设计计算 (5) 3.3校验换热管管与管板结构合理性 (5) 3.4零部件结构尺寸设计 (6) 3.4.1管板尺寸设计 (6) 3.4.2端盖 (6) 3.4.3分程隔板 (7) 3.4.4支座 (7) 3.4.5支撑板与拉杆 (7) 3.4.6垫片的选取 (7) 3.4.7螺栓 (8) 3.4.8连接管 (9) 4.换热器总体结构讨论分析 (10) 5.设计心得体会 (10) 6.参考文献 (10)

1.设计题目及设计参数 1.1设计题目:105KW 满液式蒸发器 1.2设计参数: 蒸发器的换热量Q 0=105KW ; 给定制冷剂:R22; 蒸发温度:t 0=2℃,t k =40℃, 冷却水的进出口温度: 进口1t '=12℃; 出口1 t " =7℃。 2设计计算 2.1热力计算 2.1.1制冷剂的流量 根据资料【1】,制冷剂的lgp-h 图:P 0=0.4MPa ,h 1=405KJ/Kg ,h 2=433KJ/Kg , P K =1.5MPa ,h 3=h 4=250KJ/Kg ,kg m 04427.0v 3 1=,kg m v 3 400078.0= 图2-1 R22的lgP-h 图 制冷剂流量s kg s kg h h Q q m 667 .0250 4051054 10=-= -= 2.1.2冷媒水流量 水的定性温度t s =(12+7)/2℃=9.5℃,根据资料【2】附录9,ρ=999.71kg/m 3 ,c p =4.192KJ/(Kg ·K)

热管换热器设计正文部分

热管换热器的设计 摘要:热管是高效的传热元件,它是一种能快速将热能从一点传至另一点的装置,由热管元件组成 的,利用热管原理实现热交换的换热器称之为热管换热器。由于其结构简单、可操控性强、换热效率高、动力消耗小等优点,热管换热器越来越受到人们的重视,是一种应用前景非常好的换热设备。目前,它被广泛应用于动力、化工、冶金、电力、计算机等领域。本文就热管换热器的发展现状、趋势、应用及设计做了一个简要的论述,着重探讨了热管换热器的设计。在讨论热管换热器的设计过程中,主要针对其热力计算、设备结构计算、元件参数的选择做了一个合理构建,并结合实际情况设计出了空气预热热管式换热器基本模型。关键词:热管;热管换热器;结构参数;设计计算Abstract:Heat pipe is a highly efficient heat transfer components, it is a fast heat to spread from one point to another point of the device, consisting of the heat pipe components, the use of the principle of heat pipe heat exchanger for thermal exchange called the heat pipe heat exchanger. Because of its simple structure, strong control, heat exchanger, high efficiency, power consumption, etc, and heat pipe heat exchanger more and more attention, is a very good prospect heat transfer equipment. At present, it is widely used in power, chemical, metallurgy, electric power, computers and other fields. In this paper, the development of heat pipe heat exchanger status, trends, applications and design had a brief discussion, focused on the design of heat pipe heat exchanger. Heat pipe heat exchanger in the discussion of the design process, mainly for the thermal calculation, equipment, structural calculations, component selection of parameters made a reasonable construction and design combined with the actual situation of the air heat pipe heat exchanger preheating the basic model. Key words: calculation Heat pipe; Heat pipe heat exchanger; Structural parameters; Design 设计(论文)专用纸 第一章前言 换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器,换热器是实现化工生产过程中热量交换和传递不可缺少的设备。换热器的热性能不仅与自身的几何形状和材料有关,而且还取决于进行热交换,热状态介质的热力学性质。节能换热器过程中能量损失包括两个方面:首先,功率促进流体流动的消耗量到达有些速度;其次,温度热传递不可逆的损失。在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体温度较低,吸收热量。在工程实践中有时也会存在两种以上的流体参加换热,但它的基本原理与前一种情形并无本质上的区别。目前,换热器在化工、石油、动力、制冷、食品等行业中被广泛使用。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益增强。换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器也相继问世。 [1] 1.1 热管 热管是高效的传热元件,它是一种能快速将热能从一点传至另一点的装置,由于它具有超常的热传导能力,而且几乎没有热损耗,因此它被称作传热超导体,其导热系数为铜的数千倍。热管传热技术于六十年代初期由美国的科学家发明,它是利用封闭工作腔内工质的相变循环进行热量传输,因而具有传输热量大及传输效率高等特点。随着热管制造成本的降

换热器的结构和分类

换热器的结构和分类 换热器的分类 按用途分类: 加热器、冷却器、冷凝器、蒸发器和再沸器 按冷热流体热量交换方式分类: 混合式、蓄热式和间壁式 主要内容: 1. 根据工艺要求,选择适当的换热器类型; 2. 通过计算选择合适的换热器规格。 间壁式换热器的类型 一、夹套换热器 结构:夹套式换热器主要用于反应过程的加热或冷却,是在容器外壁安装夹套制成。 优点:结构简单。 缺点:传热面受容器壁面限制,传热系数小。为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器。也可在釜内安装蛇管。

二、沉浸式蛇管换热器 结构:这种换热器多以金属管子绕成,或制成各种与容器相适应的情况,并沉浸在容器内的液体中。 优点:结构简单,便于防腐,能承受高压。 缺点:由于容器体积比管子的体积大得多,因此管外流体的表面传热系数较小。

三、喷淋式换热器 结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被冷却的流体从最上面的管子流入,从最下面的管子流出,与外面的冷却水进行换热。在下流过程中,冷却水可收集再进行重新分配。 优点:结构简单、造价便宜,能耐高压,便于检修、清洗,传热效果好

缺点:冷却水喷淋不易均匀而影响传热效果,只能安装在室外。 用途:用于冷却或冷凝管内液体。 四、套管式换热器 结构:由不同直径组成的同心套管,可根据换热要求,将几段套管用U形管连接,目的增加传热面积;冷热流体可以逆流或并流。 优点:结构简单,加工方便,能耐高压,传热系数较大,能保持完全逆流使平均对数温差最大,可增减管段数量应用方便。 缺点:结构不紧凑,金属消耗量大,接头多而易漏,占地较大。 用途:广泛用于超高压生产过程,可用于流量不大,所需传热面积不多的场合。 五、列管式换热器 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用。 优点:单位体积设备所能提供的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,大型装置中普遍采

热管换热器计算书

热管换热器设计计算 1 确定换热器工作参数 1.1 确定烟气进出口温度t 1,t 2,烟气流量V ,空气出口温度 ,饱和蒸汽压力 p c .对于热管式换热器,t 1范围一般在250C ~600C 之间,对于普通水-碳钢热管的工作温度应控制在300C 以下.t 2的选定要避免烟气结露形成 灰堵及低温腐蚀,一般不低于180C .空气入口温度 .所选取的各参数值 如下: 2 确定换热器结构参数 2.1 确定所选用的热管类型 烟气定性温度: = = 在工程上计算时,热管的工作温度一般由烟气温度与4倍冷却介质温度的和的平均值所得出: 烟气入口处: 烟气出口处: 选取钢-水重力热管,其工作介质为水,工作温度为30C ~250C ,满足要求,其相容壳体材料:铜、碳钢(内壁经化学处理)。

2.2 确定热管尺寸 对于管径的选择,由音速极限确定所需的管径 根据参考文献《热管技能技术》,音速限功率参考范围,取C Q 4kW =,在 启动时 因此 由携带极限确定所要求的管径 根据参考文献《热管技能技术》,携带限功率参考范围,取4Q ent =kw 管内工作温度 时 4431.010/N m δ-=? 因此 考虑到安全因素,最后选定热管的内径为 m m 22d i = 管壳厚度计算由式 ] [200d P S i V σ= 式中,V P 按水钢热管的许用压力228.5/kg mm 选取,由对应的许用230C 来选取管壳最大应力2MAX 14kg/mm σ=,而 2MAX 1 [] 3.5/4 kg mm σσ==

故 0.896mm 3.5 2000.022 28.5S =??= 考虑安全因素,取 1.5S mm =,管壳外径:m m 25.51222S 2d d i f =?+=+=. 通常热管外径为25~38mm 时,翅片高度选10~17mm (一般为热管外径的一半),厚度选在0.3~1.2mm 为宜,应保证翅片效率在0.8以上为好.翅片间距对干净气流取2.5~4mm ;积灰严重时取6~12mm ,并配装吹灰装置.综上所述,热管参数如下: 翅片节距:'415f f f S S mm δ=+=+= 每米热管长的翅片数:' 10001000 200/5 f f n m S === 肋化系数的计算: 每米长翅片热管翅片表面积 22 [2()]14 f f o f f f A d d d n π πδ=? ?-+???? 每米长翅片热管翅片之间光管面积 (1)r o f f A d n πδ=??-? 每米长翅片热管光管外表面积 o o A d π=? 肋化系数:22[2()]1(1) 4 f o f f f o f f f r o o d d d n d n A A A d π πδπδβπ??-+????+??-?+= = ? 22[0.5(0.050.025)0.050.001]2000.025(10.2) 8.70.025 ?-+??+?-= =

管壳式换热器机械设计参考资料

1前言 (1) 1.1概述 (1) 1.1.1换热器的类型 (1) 1.1.2换热器 (1) 1.2设计的目的与意义 (2) 1.3管壳式换热器的发展史 (2) 1.4管壳式换热器的国内外概况 (3) 1.5壳层强化传热 (3) 1.6管层强化传热 (3) 1.7提高管壳式换热器传热能力的措施 (4) 1.8设计思路、方法 (5) 1.8.1换热器管形的设计 (5) 1.8.2换热器管径的设计 (5) 1.8.3换热管排列方式的设计 (5) 1.8.4 管、壳程分程设计 (5) 1.8.5折流板的结构设计 (5) 1.8.6管、壳程进、出口的设计 (6) 1.9 选材方法 (6) 1.9.1 管壳式换热器的选型 (6)

1.9.2 流径的选择 (8) 1.9.3流速的选择 (9) 1.9.4材质的选择 (9) 1.9.5 管程结构 (9) 2壳体直径的确定与壳体壁厚的计算 (11) 2.1 管径 (11) 2.2管子数n (11) 2.3 管子排列方式,管间距的确定 (11) 2.4换热器壳体直径的确定 (11) 2.5换热器壳体壁厚计算及校核 (11) 3换热器封头的选择及校核 (14) 4容器法兰的选择 (15) 5管板 (16) 5.1管板结构尺寸 (16) 5.2管板与壳体的连接 (16) 5.3管板厚度 (16) 6管子拉脱力的计算 (18) 7计算是否安装膨胀节 (20) 8折流板设计 (22)

9开孔补强 (25) 10支座 (27) 10.1群座的设计 (27) 10.2基础环设计 (29) 10.3地角圈的设计 (30) 符号说明 (32) 参考文献 (34) 小结 (35)

热管的缺点

热管的缺点 热管换热器有几种类别,举个例子气-气型热管换热器这个产品,从自身的冷热物流体各自的温度跨度是相当的大,每当沿着气流的方面进行换热过程时候,必须要保证各排热管的工作温度也尽量不要相同.热管内采用的液体工质不同,它的管材也随之不同。所以从这些方面我们就可以猜想这种换热器产品具有的缺点了,归纳为以下几点: 1,达到温度最佳回应条件还未实现到,国内的热管管材还不成熟;2,换热设备投资成本相对高,由其是热管的生产成本; 3,国内的热管换热器还没有得到真正的标准化定义与模式; 4,目前的热管还未完善化,对管质上的标准还未得到最新的技术,从而导致热管换热产品寿命短,必须要尽快采用最新的解决方法去提管管质的兼容性以及热管的真空度,以保证工作温度对应。 铸铁省煤器应用广泛,其优点是:耐用、承压(给水泵可装在省煤器入口),价格低;缺点是:重量大、外形尺寸较大、容易堵灰、结构复杂(由肋片管及铸铁弯头连接而成)。热管省煤器耐低温腐蚀性能好,在同样烟气温度条件下,壁温较高,结构紧凑、体积小、重量轻,烟气侧阻力可以设计得较小;其缺点是:价格较高,通常水侧为常压。 热管式体积要小,整体重量要轻,占地小;其缺点是热管有自然失效的可能,还有部分会因工质与热管钢壳反应产生部分不凝结气体,或发生爆管,导致热管失效,须更换。使用寿命一般为1~2年。 热管空气预热器具有这么多的优点,但多年的应用也发现它存在一些比较严重的缺点。首先是由于钢水化学不相容性而导致热管的工作寿命不够长,性能不够稳定的缺点。工业上使用的热管,其外壳由碳钢制成,管中工质主要使用水,俗称钢水热管。这种热管在一定温度下,其工质水和钢管壳将发生电化反应生成四氧化三铁和氢气。生成的氢气积累在热管内,妨碍热管的传热以至最后使热管失效。目前,人们使用多种办法来克服热管的钢水化学不相容现象,取得了一定的效果。但钢水热管的工作寿命一般仍然只有 2-3年,远不能满足工程实践的要求。

管壳式换热器的工作原理及结构

管壳式换热器的工作原理及结构 随着科技高速发展的今天,换热器已广泛应用国内各个生产领域,换热器跟人们生活息息相关。换热器顾名思义就是用来热交换的机械设备。换热器是一种非常重要的换热设备,能够把热量从一种介质传递给另一种介质,在各种工业领域中有很广泛的应用。尤其在化工、能源、交通、机械、制冷、空调等领域应用更广泛。换热器能够充分利用工业的二次能源,并且能够实现余热回收和节能。换热器分为很多类型,管壳式换热器是很普遍的一种。管壳式换热器的传热强化技术主要包括管程和壳程的传热强化研究。本文对管壳式换热器的原理进行简单介绍。 一、管壳式换热器的工作原理 管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。管壳式换热器作为一种传统的标准换热设备,在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特别是在高温高压和大型换热器中的应用占据绝对优势。通常的工作压力可达4兆帕,工作温度在200℃以下,在个别情况下还可达到更高的压力和温度。一般壳体直径在1800毫米以下,管子长度在9米以下,在个别情况下也有更大或更长的。 工作原理和结构图 1 [固定管板式换热器]为固定管板式换热器的构造。A 流体从接管1流入壳体内,通过管间从接管2流出。B流体从接管3流入,通过管内从接管4流出。如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体(A流体)。管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器的传热效能,也可采用螺纹管、翅片管等。管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板和管子的总体称为管束。管子端部与管板的连接有焊接和胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板的形状有弓形、圆形和矩形等。为减小壳程和管程流体的流通截面、加快流速,以提高传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程、4程、6程和8程等。管壳式换热器的传热系数,在水-水换热时为1400~2850瓦每平方米每摄氏度〔W/(m(℃)〕;用水冷却气体时,为10~280W/(m(℃);用水冷凝水蒸汽时,为570~4000W/(m (℃)。 二、管壳式换热器的形式与结构 管壳式换热器是把管子与管板连接,再用壳体固定。它的形式大致分为固

管壳式换热器的设计(化工机械课程设计)

北京理工大学珠海学院 课程设计任务书 2011~2012学年第2 学期 学生姓名:专业班级: 指导教师:工作部门: 一、课程设计题目 管壳式换热器的设计 二、课程设计内容 1.管壳式换热器的结构设计 包括:管子数n,管子排列方式,管间距的确定,壳体尺寸计算,换热器封头选择,容器 法兰的选择,管板尺寸确定塔盘结构,人孔数量及位置,仪表接管选择、工艺接管管径计算等等。 2. 壳体及封头壁厚计算及其强度、稳定性校核 (1)根据设计压力初定壁厚; (2)确定管板结构、尺寸及拉脱力、温差应力; (3)计算是否安装膨胀节; (4)确定壳体的壁厚、封头的选择及壁厚,并进行强度和稳定性校核。 3. 筒体和支座水压试验应力校核 4. 支座结构设计及强度校核 包括:裙座体(采用裙座)、基础环、地脚螺栓 5. 换热器各主要组成部分选材,参数确定。 6. 编写设计说明书一份 7. 绘制2号装配图一张,Auto CAD绘3号图一张(塔设备的)。 三、设计条件 (1)气体工作压力 管程:半水煤气(1、0.80MPa;2、0.82 MPa;3、0.85Mpa;4、0.88 MPa ;5、0.90 MPa)壳程:变换气(1、0.75MPa;2、0.78 MPa;3、0.80Mpa;4、0.84 MPa ;5、0.85 MPa)(2)壳、管壁温差50℃,t t>t s 壳程介质温度为320-450℃,管程介质温度为280-420℃。 (3)由工艺计算求得换热面积为120m2,每组增加10 m2。

(4)壳体与封头材料在低合金高强度刚中间选用,并查出其参数,接管及其他数据根据表7-15、7-16选用。 (5)壳体与支座对接焊接,塔体焊接接头系数Φ=0.9 (6)图纸:参考图7-52,注意:尺寸需根据自己的设计的尺寸标注。 四、进度安排 制图地点:暂定CC405 五、基本要求 1.学生要按照任务书要求,独立完成塔设备的机械设计; 2.设计说明书一律采用电子版,2号图纸一律采用徒手绘制; 3.各班长负责组织借用绘图仪器、图板、丁字尺;学生自备图纸、橡皮与铅笔; 4.画图结束后,将图纸按照统一要求折叠,同设计说明书统一在答辩那一天早上8:30前,由班长负责统一交到HF508。 5.根据设计说明书、图纸、平时表现及答辩综合评分。

TEMA管壳式换热器设计原则

TEMA规格的管壳式换热器设计原则 ——摘引自《PERRY’S CHEMICAL ENGINEER’S HANDBOOK 1999》 设计中的一般考虑 流程的选择在选择一台换热器中两种流体的流程时,会采用某些通则。管程的流体的腐蚀性较强,或是较脏、压力较高。壳程则会是高粘度流体或某种气体。当管/壳程流体中的

某一种要用到合金结构时,“碳钢壳体+合金管侧部件”比之“接触壳程流体部件全用合金+碳钢管箱”的方案要较为节省费用。 清洗管子的内部较之清洗其外部要更为容易。 假如两侧流体中有表压超过2068KPa(300 Psig)的,较为节约的结构形式是将高压流体安排在管侧。 对于给定的压降,壳侧的传热系数较管侧的要高。 换热器的停运最通常的原因是结垢、腐蚀和磨蚀。 建造规则“压力容器建造规则,第一册”也就是《ASME锅炉及压力容器规范Section VIII , Division 1》, 用作换热器的建造规则时提供了最低标准。一般此标准的最新版每3年出版发行一次。期间的修改以附录形式每半年出一次。在美国和加拿大的很多地方,遵循ASME 规则上的要求是强制性的。最初这一系列规范并不是准备用于换热器制造的。但现在已包含了固定管板式换热器中管板与壳体间焊接接头的有关规定,并且还包含了一个非强制性的有关管子-管板接头的附件。目前ASME 正在开发用于换热器的其他规则。 列管式换热器制造商协会标准, 第6版., 1978 (通常引称为TEMA 标准*), 用在除套管式换热器而外的所有管壳式换热器的应用中,对ASME规则的补充和说明。TEMA “R级”设计就是“用于石油及相关加工应用的一般性苛刻要求。按本标准制造的设备,设计目的在于在此类应用时严苛的保养和维修条件下的安全性、持久性。”TEMA “C级”设计是“用于商用及通用加工用途的一般性适度要求。”而TEMA“B级”是“用于化学加工用途” *译者注:这已经不是最新版的,现在已经出到1999年第8版 3种建造标准的机械设计要求都是一样的。各TEMA级别之间的差异很小,并已由Rubin 在Hydrocarbon Process., 59, 92 (June 1980) 上做了归列。 TEMA标准所讨论的主题是:命名原则、制造公差、检验、保证、管子、壳体、折流板和支撑板,浮头、垫片、管板、管箱、管嘴、法兰连接端及紧固件、材料规范以及抗结垢问题。 API Standard 660, 4th ed., 1982*,一般炼油用途的管壳式换热器是由美国炼油协会出版的,以补充TEMA标准和ASME规范。很多从事化学和石油加工的公司都有其自己的标准以对以上各种要求作出补充。关于规范、标准和个客户的规定之间的关系已由F. L. Rubin编辑结集,由ASME 在1979年出版了(参见佩里化学工程师手册第6章关于压力容器规则的讨论)。 *译者注:这已经不是最新版的,现在已经出到2001年第6版 换热器的设计压力和设计温度通常在确定时都在预计的工作条件上又给了一个安全裕量。一般设计压力比操作中的预计最高压力或关泵时的最高压力要高大约172KPa(25 Psi);而设计温度则通常较最高工作温度高14°C (25°F)。 管束振动随着折流板换热器被设计用于流量和压降越来越高的场合,由管子振动带来的损 标准分享网 https://www.wendangku.net/doc/ca11719871.html, 免费下载

相关文档