文档库 最新最全的文档下载
当前位置:文档库 › 静态工作点分析

静态工作点分析

静态工作点分析
静态工作点分析

设计单级共基极放大电路

——静态工作点分析

1绪论

本课程设计的基本要求是对静态工作点分析(白冰);输入信号的变化对放大电路输出的影响(师晓辉);测量放大电路的放大倍数(闫斌);输入电阻(刘特);输出电阻(齐帅)。

本论文针对静态工作点的分析,静态工作点是在分析放大电路时提出来的,它是放大电路正常工作的重要条件。当把放大器的输入信号短路,把IN直接接地,则放大器处于无信号输入状态,称为静态。如果静态工作点选择不合适,则输出波形会失真,因此设置合适静态工作点是放大电路正常工作的前提。

静态分析就是求解静态工作点Q,再输入信号为零时,晶体管和场效应管各电极间的电流和电压就是Q点。可用估算法和图解法求解。

Multisim软件是一个专门用于电子线路仿真与设计的 EDA 工具软件。作为 Windows 下运行的个人桌面电子设计工具, Multisim 是一个完整的集成化设计环境。Multisim计算机仿真与虚拟仪器技术可以很好地解决理论教学与实际动手实验相脱节的这一问题。学生可以很方便地把刚刚学到的理论知识用计算机仿真真实的再现出来,并且可以用虚拟仪器技术创造出真正属于自己的仪表。它具有直观的图形界面, 丰富的元器件,强大的仿真能力,丰富的测试仪器,完备的分析手段,独特的射频模块,强大的MCU模块,完善的后处理,详细的报告,兼容性好的信息转换特点。所以NI Multisim软件电子学教学的首选软件工具。

2 设计任务

(一)目的:

1. 了解单极共基极放大电路的基本工作原理;

2.学会运用软件模拟设计电路、应用各种仪器。了解电路在不同状态下的变

化特点,学会对电路的变化分析;

3.了解设置静态工作点分析的必要性

4.熟悉静态工作点与动态参数的估算

5.了解稳定静态工作点的措施

(二)原理:

1.共基极放大电路中,输入信号是由三极管的发射极与基极两端输入的,再由三极管的集电极与基极两端获得输出信号因为基极是共同接地端,所以称为共基极放大电路。

2.共基极放大电路具有以下特性:

(1)、输入信号与输出信号同相;

(2)、电压增益高;

(3)、电流增益低(≤1);

(4)、功率增益高;

(5)、适用于高频电路。

共基极放大电路的最大优点是频带宽,因而常用于无线电通信方面。

3设计电路

(一)单级共基极放大电路图

图3—1 单级共基极放大电路图

(二)放大器静态工作点的测量与调试

由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术术在技术前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和转被以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计和实验调试相结合的产物。因此,除了学会放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。

放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激震荡及放大器各项动态参数的测量与调试等。

1. 静态工作点的测量

测量放大器的静态工作点,应在输入信号=0的情况下进行,即将放大器的输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流以及各电极对地的电位、和。一般实验中,为了避免短开集电极,所以采用测量电压,然后算出的方法,例如,只要测出,即可用≈

=/算出(也可根据=(CC U -)/,由确定IC )

同时也能算出E B BE U U U -=,E C CE U U U -=。为了减小误差,提高测量精度,应选用内阻较高的直流电压表。

2.静态工作点的调试

放大器静态工作点的调试是指对管子集电极电流(或CE U )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时的负半周将被削低,如图3—1(a )所示;如工作点偏低则易产生截止失真,即的正半周被缩顶(一般截止失真不如饱和失真明显),如图3—2(b )所示。这写情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的,接茬输出电压的大小和波形是否满足要求。如不满足,则应调试工作点的位置。

改变电路参数

U、、(、)都会引起静态工作点的变化,如图3—3所示。

CC

但通常多采用调节偏电阻的方法来改变静态工作点,如减小,则可使静态工作点提高等。

最后还要说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。

(三)单级共基静态工作点的分析过程

1.测量:

图 3—4 2.测量

图 3—5 3.测量

图3—6

U:

4.测量

BEQ

图3—7

U:

5.测量

CEQ

图3—8

上图为基本共基放大电路,令=0,发射极电位EQ U =—BQ U ,集电极电位C CQ CC CQ R I V U -=,便可得出静态工作点.

()

E BEQ BB EQ R U V I -=

()β+=1EQ BQ I I

BEQ C CQ CC EQ CQ CEQ U R I V U U U +-=-=

用晶体管的h 参数等效模型取代所示电路中的晶体管,便可得到基 本共基放大电路的交流等效电路。

4 结论总结

本次课程设计是以实验为基础,以Multisim 为模拟辅助进行的。从分析可以总结出,静态工作点不但决定了电路是否会产生失真,而且还影响着电压放大倍数、输入电阻等动态参数。实际上电源电压的的波动、元件的老化以及因温度变化所引起晶体管参数的变化,都会造成静态工作点不稳定的诸多因素,温度对晶体管参数的影响是最为主要的。

(一)静态工作点Q的设置

1.设置Q点的作用:放大电路在处于动态时(≠0),电路中既有交流,又有直流。直流是偏置为放大信号建立条件、搭建平台。若电路中没有直流量,交流放大无法实现。这犹如收音机没有电池供电,肯定收听不到电台信号一样的道理。

2.设置Q点的原则:一般来说,Q点应在交流负载线AB的中央位置处,这样可获得最大的不失真输出,亦即可得到最大的动态工作范围。

3.合理地设置Q 点对交流输出的影响:

(1)若Q点设置合理,输出波形失真会尽可能小。但当Q点位置选择不当时,会出现严重的非线性失真。

图4—1

分析图4—1 共射放大电路(倒相作用)。对于晶体管它有三个工作区,即放大区、截止区、饱和区,如图4—2。Q点设置合理,那么交流小信号在输入的整个周期内,都被放大电路放大,然后输出一个完整的正弦波形供给负载。

图 4—2

(2)若Q 点设置过高或过低,在 信号作用下,晶体管一段时间工作在饱和区或截止区、一段时间工作在放大区,这样放大电路输出波形就出现失真。因在动态时(≠0),电路中的电流、电压为直流分量和交流分量的叠加,都是一个变动值。电路中电压、电流是随时在变,如输出回路中集电极电流、集射电

压。由这两个量所确定的点M 在交流负载线上AB 上移动(过Q 点,斜率为 'L R 1

L C L R R R //='的直线)

。若M 点“误入”非线性区域,那么就会出现波形失真,如图4—3(a )(饱和失真),如图4—3(b )(截止失真)。

(a ) (b )

图 4—3

(二)基极输出器静态工作点

基极输出器静态工作点的稳定性对电路动态性能影响很小,可近似忽略。 放大电路直流偏置电路的构成形式,要根据动态性能受到静态工作点的影响和

图3—9 稳定静态工作点的措施

(a)利用二极管的反向特性进行稳步补偿(b)利用二极管的正向特性进行温度补偿

为二极管的反向电流,为晶体管基极静态电流。当温度升高时,一方面增大,另一方面由于增大导致减小,从而随之减小。当参数合适时,可基本不变。其

过程简述如下:

T(℃)↑→↑

↘↑→↓→↓

从这个过程的分析可知,温度补偿方法的考温度敏感器件直接对基极电流产生影响,使之产生与相反方向的变化。

图 3—9(b)所示电路同时使用引入直流负反馈和温度补偿两种方法来稳定Q点。设温度升高时二极管内电流基本不变,因此其压降必然减小,稳定过程简述如下:

T(℃)↑→↑→↑↘

↘↓→↓→

U↓→↓

BE

当温度降低时,各物理量想相反方向变化。

对于放大电路中的最基本要求,一是不失真,二是能够放大。如果输出的波形严重失真,所谓“放大”毫无意义,因此,设置合适的静态工作点,以保证放大电路不产生失真是非常必要的

5收获心得

本次模拟电子线路课程设计过程,我学到了很多东西,通过静态工作点的分析,不仅掌握了共基极放大电路的分析思路,全面了解到晶体管单管放大电路的三种基本揭发的特点。更是对一学期以来所学的电子方面的知识也重新学习和复习了一遍,也对自己在模拟电子方面的能力有了更客观的认识和评价。在这次设计过程中,从最基本的查原件,找资料做起,了解了完整的电子设计的一般步骤,也和同学们共同探讨,学到了很多课堂上学不到的东西,也遇到了各种各样从没有想到的问题,通过请教老师,和同学交流,搜索资料等各种方面解决它们,可以说是为我们以后再电子领域的发展做了一些有意的尝试,同时也使我增加了对电子方面知识的兴趣,也从中发现了自己的一些不足的地方,以后会多多改进。最后,在这里也非常感谢指导老师,感谢你们的耐心指导,谢谢!

6 参考文献

[1]华中理工大学电子学教研室,康华光主编,电子基础基础(模拟部分).第四版. 北京: 高等教育出版社,1999.

[2]西安交通大学电子学教研室,沈尚贤主编. 电子技术导论. 北京 : 高等教育出版社, 1985.

[3]谢佳奎主编,电子线路第4版. 北京: 高等教育出版社, 1999.

[4]王远主编, 模拟电子技术. 北京: 机械工业出版社, 1994.

[5]浙江大学电子学教研室, 郑家龙、王小海、章安元主编. 模拟集成电子技术教程. 北京: 高等教育出版社, 2002.

[6] 汪惠、王志华编著.电子电路的计算机辅助分析与设计方法. 北京: 清华大

学出版社, 2006.

[7]童诗白、何金茂主编. 电子技术试题汇编(模拟部分). 北京: 高等教育出版社, 1992.

三极管放大电路设计-参数计算及静态工作点设置方法

三极管放大电路设计,参数计算及静态工作点设置方法 说一下掌握三极管放大电路计算的一些技巧 放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大路要掌握些什么容? (1)分析电路中各元件的作用; (2)解放大电路的放大原理; (3)能分析计算电路的静态工作点; (4)理解静态工作点的设置目的和方法。 以上四项中,最后一项较为重要。 图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说明的是,电容两端的电压不能突变,但不是不能变。 R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。 在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCC。

静态工作点的计算方法

在学习之前,我们先来了解一个概念: 什麽是Q 点?它就是直流工作点,又称为静态工作点,简称Q 点。我们在进行静态分析时,主要是求基极直流电流I B 、集电极直流电流I C 、集电极与发射极间的直流电压U CE 一:公式法计算Q 点 我们可以根据放大电路的直流通路,估算出放大电路的静态工作点。下面把求I B 、I C 、U CE 的公式列出来 三极管导通时,U BE 的变化很小,可视为常数,我们 一般认为:硅管为 0.7V 锗管为 0.2V 例1:估算图(1)放大电路的静态工作点。其中R B =120千欧,R C =1千欧,U CC =24伏,?=50,三极管为硅管 解:I B =(U CC -U BE )/R B =24-0.7/120000=0.194(mA) I C =?I B =50*0.194=9.7(mA) U CE =U CC -I C R C =24-9.7*1=14.3V 二:图解法计算Q 点 三极管的电流、电压关系可用输入特性曲线和输出特性曲线表示,我们可以在特性曲线上,直接用作图的方法来确定静态工作点。用图解法的关键是正确的作出直流负载线,通过直流负载线与i B =I BQ 的特性曲线的交点,即为Q 点。读出它的坐标即得I C 和U CE 图解法求Q 点的步骤为: (1):通过直流负载方程画出直流负载线,(直流负载方程为U CE =U CC -i C R C ) (2):由基极回路求出I B (3):找出i B =I B 这一条输出特性曲线与直流负载线的交点就是Q 点。读出Q 点的坐标即为所求。 例2:如图(2)所示电路,已知Rb=280千欧,Rc=3千欧,Ucc=12伏,三极管的输出特性曲线如图(3)所示,试用图解法确定静态工作点。

OrCAD实验3 直流工作点分析

电路计算机辅助设计实验名称:直流工作点分析 学生姓名: *** 专业:电子信息工程 班级:电信10-1 学号: *********** 指导教师:张涛 日期: 2012 年 9 月 25日

实验二 直流工作点分析 一、 实验目的: 1、 练习直流工作点(Bias Point )的分析过程,了解输出文件的内容; 2、 掌握修改元件参数的步骤; 3、 练习直流传输特性分析的过程。 4、 了解直流灵敏度分析的过程和内容。 二、 实验内容: R1 10k D1D1N4536 VDD 10V 1、 电路如上图所示,图中R =10k ,二极管选用D1N4536,且I s = 10 nA ,n =2。在电源V DD =10V 和V DD =1V 两种情况下,求二极管电流I D 和二极管两端电压V D 的值 。 元件名称 元件库 说明 R Library/Pspice/Analog.olb 电阻 VDC Library/Pspice/Sourse.olb 直流电压源 D1N4536 Library/Pspice/Diode.olb 二极管 步骤:进入Schematics 主窗口,绘出图所示电路,并设置好参数。其中二极管的I s = 10 nA ,n =2要进入模型参数修改窗修改(先选中二极管,再选择菜单中Edit|Pspice Model 项,单击Instance Model(Text)可打开模型参数修改窗)。 设置直流工作点分析(Bias Point),将右侧Output File Option 下第一项选中。设置电压源VDD 分别为10V 和1V 。进行仿真后,在View/Output File 中得到如下结果: 当V DD =10V 时,ID = ( 0.97 ) mA ,VD = ( 0.532 ) V 当V DD =1V 时,ID = ( 61.51 ) uA ,VD = ( 0.385 ) V 2、 电路如下图所示。三极管参数为I s=5×15 10 -A,100F β=,'bb R = 100 ,50A V V =。要求: a) 计算电路的直流工作点。 b) 计算电路的电压放大倍数和输入、输出电阻。

三极管放大电路设计,参数计算及静态工作点设置方法

三极管放大电路设计,参数计算及静态工作点设置方法 说一下掌握三极管放大电路计算的一些技巧 放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种 类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大路要掌握些什么内容? ⑴ 分析电路中各元件的作用; (2) 解放大电路的放大原理; (3) 能分析计算电路的静态工作点; (4) 理解静态工作点的设置目的和方法。 图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的 电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说 明的是,电容两端的电压不能突变,但不是不能变。 R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。 在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三 种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。 首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCG 若Uce接近于0V,则三极管工作于饱和状态,何谓饱和状态?就是说,Ic电流达到了最大值,就算I b增大,它也不能再增大了。 以上两种状态我们一般称为开关状态,除这两种外,第三种状态就是放大状态,一般测Uce接近于电源电压的一半。若测Uce偏向VCC,则三极管趋向于载止状态,若测Uce偏向0V,则三极管趋向于饱和状态。 理解静态工作点的设置目的和方法 放大电路,就是将输入信号放大后输出,(一般有电压放大,电流放大和功率放大几种,这个不在这 讨论内)。先说我们要放大的信号,以正弦交流信号为例说。在分析过程中,可以只考虑到信号大 小变化是有正有负,其它不说。上面提到在图1放大电路电路中,静态工作点的设置为Uce接近于

实验2直流工作点分析(数据记录)

实验二 直流工作点分析 一、 实验目的: 1、 练习直流工作点(Bias Point )的分析过程,了解输出文件的内容; 2、 掌握修改元件参数的步骤; 3、 练习直流传输特性分析的过程。 4、 了解直流灵敏度分析的过程和内容。 二、 实验内容: R1D1D1N4536 10V 1、 电路如上图所示,图中R ,二极管选用D1N4536,且I s = 10 nA ,n =2。在电源V DD =10V DD D D 步骤:进入Schematics 主窗口,绘出图所示电路,并设置好参数。其中二极管的I s = 10 nA ,n =2要进入模型参数修改窗修改(先选中二极管,再选择菜单中Edit|Pspice Model 项,单击Instance Model(Text)可打开模型参数修改窗)。 设置直流工作点分析(Bias Point),将右侧Output File Option 下第一项选中。设置电压源VDD 分别为10V 和1V 。进行仿真后,在View/Output File 中得到如下结果: 当V DD =10V 时,ID = ( 0.947 ) mA ,VD = ( 0.532 ) V 当V DD =1V 时,ID = ( 61.5 ) uA ,VD = ( 0.385 ) V 2、 电路如下图所示。三极管参数为I s=5×1510-A,100F β=,'bb R ,50A V V =。 要求: a) 计算电路的直流工作点。 b) 计算电路的电压放大倍数和输入、输出电阻。

Vb 1V 步骤:进入Schematics 主窗口,绘出图所示电路,并设置好参数。其中三极管的I s=5×1510-A,100F β=,'bb R ,50A V V =要进入模型参数修改窗修改(先选中三极管,再选择菜单中Edit|Pspice Model 项,单击Instance Model(Text)可打开模型参数修改窗)。将相应参数修改为Is=5.0E-15,Bf=100,Rb=100,Vaf=50。 1、设置直流工作点分析(Bias Point),将右侧Output File Option 下第一项选中。进行仿真后,在View/Output File 中得到如下结果: B I =( 3.01E-02 )mA , C I =( 2.55 )mA ,CE V =( 4.90 )V 。 2、设置直流工作点分析(Bias Point),将右侧Output File Option 下第三项选中。From input source: Vb ; To output: V(out) 。进行仿真后,在View/Output File 中得到如下结果: 放大倍数Av=( -1.522E+01 ) 输入电阻Ri=( 1.105E+04 Ω ) 输出电阻Ro=( 1.828E+03 Ω) 3、 电路图如上题,了解电路中各个元件对电路特性的影响。 步骤:设置直流工作点分析(Bias Point),将右侧Output File Option 下第二项选中。设置Output I/V: V(out) 。进行仿真后,在View/Output File 查看电阻及三极管中的各个参数对输出电压的影响。 DC SENSITIVITIES OF OUTPUT V(OUT) ELEMENT NAME ELEMENT VALUE ELEMENT SENSITIVITY (VOLTS/UNIT) NORMALIZED SENSITIVITY (VOLTS/PERCENT) R_Rb 1.000E+04 4.584E-04 4.584E-02

静态工作点分析要点

设计单级共基极放大电路 ——静态工作点分析 1绪论 本课程设计的基本要求是对静态工作点分析(白冰);输入信号的变化对放大电路输出的影响(师晓辉);测量放大电路的放大倍数(闫斌);输入电阻(刘特);输出电阻(齐帅)。 本论文针对静态工作点的分析,静态工作点是在分析放大电路时提出来的,它是放大电路正常工作的重要条件。当把放大器的输入信号短路,把IN直接接地,则放大器处于无信号输入状态,称为静态。如果静态工作点选择不合适,则输出波形会失真,因此设置合适静态工作点是放大电路正常工作的前提。 静态分析就是求解静态工作点Q,再输入信号为零时,晶体管和场效应管各电极间的电流和电压就是Q点。可用估算法和图解法求解。 Multisim软件是一个专门用于电子线路仿真与设计的 EDA 工具软件。作为 Windows 下运行的个人桌面电子设计工具, Multisim 是一个完整的集成化设计环境。Multisim计算机仿真与虚拟仪器技术可以很好地解决理论教学与实际动手实验相脱节的这一问题。学生可以很方便地把刚刚学到的理论知识用计算机仿真真实的再现出来,并且可以用虚拟仪器技术创造出真正属于自己的仪表。它具有直观的图形界面, 丰富的元器件,强大的仿真能力,丰富的测试仪器,完备的分析手段,独特的射频模块,强大的MCU模块,完善的后处理,详细的报告,兼容性好的信息转换特点。所以NI Multisim软件电子学教学的首选软件工具。

2 设计任务 (一)目的: 1. 了解单极共基极放大电路的基本工作原理; 2.学会运用软件模拟设计电路、应用各种仪器。了解电路在不同状态下的变 化特点,学会对电路的变化分析; 3.了解设置静态工作点分析的必要性 4.熟悉静态工作点与动态参数的估算 5.了解稳定静态工作点的措施 (二)原理: 1.共基极放大电路中,输入信号是由三极管的发射极与基极两端输入的,再由三极管的集电极与基极两端获得输出信号因为基极是共同接地端,所以称为共基极放大电路。 2.共基极放大电路具有以下特性: (1)、输入信号与输出信号同相; (2)、电压增益高; (3)、电流增益低(≤1); (4)、功率增益高; (5)、适用于高频电路。 共基极放大电路的最大优点是频带宽,因而常用于无线电通信方面。 3设计电路 (一)单级共基极放大电路图

静态工作点稳定地放大电路分析资料报告

静态工作点稳定的放大电路分析 一、课题名称 静态工作点稳定的放大电路分析 二、设计任务及要求 分析静态工作点、失真分析、动态分析、参数扫描分析、频率响应等。(包括原始数据、技术参数、条件、设计要求等) 三、电路分析 1.静态工作点Q的分析 (1)什么是静态工作点Q 静态工作点就是输入信号为零时,电路处于直流工作状态,这些直流电流、电压的数值在三极管特性曲线上表示为一个确定的点,设置静态工作点的目的就是要保证在被被放大的交流信号加入电路时,不论是正半周还是负半周都能满足发射结正向偏置,集电结反向偏置的三极管放大状态。 可以通过改变电路参数来改变静态工作点,这样就可以设置静态工作点。 若静态工作点设置的不合适,在对交流信号放大时就可能会出现饱和失真(静态工作点偏高)或截止失真(静态工作点偏低)。 如图1为阻容耦合电路 图1 晶体管型号BC107BP 参数 .MODEL BC107BP NPN IS =1.8E-14 ISE=5.0E-14 NF =.9955 NE =1.46 BF =400 BR =35.5

+IKF=.14 IKR=.03 ISC=1.72E-13 NC =1.27 NR =1.005 RB =.56 RE =.6 RC =.25 VAF=80 +VAR=12.5 CJE=13E-12 TF =.64E-9 CJC=4E-12 TR =50.72E-9 VJC=.54 MJC=.33 在放大电路中,当有信号输入时,交流量与直流量共存。将输入信号为零,即直流电流 源单独作用时晶体管的基极电流I B,集电极电流I C,b-e之间电压U BE,管压降U CE称为放大电 路的静态工作点Q,常将四个物理量记作I BQ,I CQ,U BEQ,U CEQ。在近似估算中常认为U BEQ为已知量, 对于硅管U BEQ=0.7V,锗管U BEQ=0.2V。 为了稳定Q点,通常使参数的选取满足 I1>>I BQ 因此B点电位 U BQ=Rb1/(Rb1+Rb2)·Vcc 静态工作点的估算 U BQ= Rb1/(Rb1+Rb2)·Vcc I EQ=(U BQ-U BEQ)/Re U CEQ=V CC-I CQ(Rc+Re) (2)为什么要设置合适的静态工作点 对于放大电路最基本的要求,一是不失真,二是能够放大。为什么要设置合适的静态 工作点呢?如果输出的波形严重失真,所谓的“放大”毫无意义。因此,设置合适的静态工 作点是很必要的。 Q点不仅影响电路是否会产生失真,而且还影响着放大电路几乎所有的动态参数。 (3)使用软件进行仿真 理论值: U BQ= Rb1/(Rb1+Rb2)·Vcc= 5/(15+5)*12=3V I EQ=(U BQ-U BEQ)/Re=(3-0.7)/2.3=1mA U CEQ=VCC-I CQ(Rc+Re)=12-7.4*1=4.6V 仿真结果:

三极管放大电路设计-参数计算及静态工作点设置方法

三极管放大电路设计-参数计算及静态工作点设置方法

————————————————————————————————作者:————————————————————————————————日期:

三极管放大电路设计,参数计算及静态工作点设置方法 说一下掌握三极管放大电路计算的一些技巧 放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大路要掌握些什么内容? (1)分析电路中各元件的作用; (2)解放大电路的放大原理; (3)能分析计算电路的静态工作点; (4)理解静态工作点的设置目的和方法。 以上四项中,最后一项较为重要。 图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说明的是,电容两端的电压不能突变,但不是不能变。 R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。 在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近

【E课堂】三极管放大电路静态工作点设置目的和方法

【E课堂】三极管放大电路静态工作点设置目的和方法 放大电路,就是将输入信号放大后输出,(一般有电压放大,电流放大和功 率放大几种,这个不在这讨论内)。先说我们要放大的信号,以正弦交流信号为例说。在分析过程中,可以只考虑到信号大小变化是有正有负,其它不说。上面提 到在这是为了使信号正负能有对称的变化空间,在没有信号输入的时候,即信号 输入为0,假设Uce为电源电压的一半,我们当它为一水平线,作为一个参考点。 当输入信号增大时,则Ib增大,Ic电流增大,则电阻R2的电压U2=Ic乘以R2会 随之增大,Uce=VCC-U2,会变小。U2最大理论上能达到等于VCC,则Uce最小 会达到0V,这是说,在输入信增加时,Uce最大变化是从1/2的VCC变化到0V. 同理,当输入信号减小时,则Ib减小,Ic电流减小,则电阻R2的电压U2=Ic 乘以R2会随之减小,Uce=VCC-U2,会变大。在输入信减小时,Uce最大变化是从1/2的VCC变化到VCC。这样,在输入信号一定范围内发生正负变化时,Uce以 1/2VCC为准的话就有一个对称的正负变化范围,所以一般要把Uce设计成接近于电源电压的一半,这是我们的目的,但如何才能把Uce设计成接近于电源电压 的一半?这就是的手段了。 这里要先知道几个东西,第一个是我们常说的Ic、Ib,它们是三极管的集电极电流和基极电流,它们有一个关系是Ic=β乘以Ib,但我们初学的时候,老师很明显的没有告诉我们,Ic、Ib是多大才合适?这个问题比较难答,因为牵涉的东 西比较的多,但一般来说,对于小功率管,一般设Ic在零点几毫安到几毫安,中功率管则在几毫安到几十毫安,大功率管则在几十毫安到几安。 在 在一般R4取100Ω,R3为2.9KΩ,实际上R3我们一般直取

实验二 直流工作点分析

实验二: 直流工作点分析 一、 实验目的: 1、 练习直流工作点(Bias Point )的分析过程,了解输出文件的内容; 2、 掌握修改元件参数的步骤; 3、 练习直流传输特性分析的过程。 4、 了解直流灵敏度分析的过程和内容。 二、 实验内容: 1、 电路如上图所示,图中R ,二极管选用D1N4536,且I s = 10 nA ,n =2。在电源V DD =10V DD D D 位于Place/Ground/source.olb 下。 步骤:进入Schematics 主窗口,绘出图所示电路,并设置好参数。其中二极管的I s = 10 nA ,n =2要进入模型参数修改窗修改(先选中二极管,再选择菜单中Edit|Pspice Model 项,单击Instance Model(Text)可打开模型参数修改窗)。 设置直流工作点分析(Bias Point),将右侧Output File Option 下第一项选中。设置电压源VDD 分别为10V 和1V 。进行仿真后,在View/Output File 中得到如下结果: 当V DD =10V 时,ID = (9.47E-01) mA ,VD = (5.32E-01) V 当V DD =1V 时,ID = (61.51) uA ,VD = (3.85E-01) V 2、 电路如下图所示。三极管参数为I s=5×15 10 -A, 100F β=,'bb R ,50A V V =。 要求: a) 计算电路的直流工作点。 b) 计算电路的电压放大倍数和输入、输出电阻。 R1 D1D1N4536 10V

步骤:进入Schematics 主窗口,绘出图所示电路,并设置好参数。其中三极管的I s=5×15 10-A, 100F β=,'bb R ,50A V V =要进入模型参数修改窗修改(先选中三极管,再 选择菜单中Edit|Pspice Model 项,单击Instance Model(Text)可打开模型参数修改窗)。将相应参数修改为Is=5.0E-15,Bf=100,Rb=100,Vaf=50。 1、设置直流工作点分析(Bias Point),将右侧Output File Option 下第一项选中。进行仿真后,在View/Output File 中得到如下结果: B I =(3.01E-02)mA , C I =(2.55 )mA ,CE V =(4.90)V 。 2、设置直流工作点分析(Bias Point),将右侧Output File Option 下第三项选中。From input source: Vb ; To output: V(out) 。进行仿真后,在View/Output File 中得到如下结果: 放大倍数Av=(-1.522E+01 ) 输入电阻Ri=(1.105E+04)Ω 输出电阻Ro=(1.828E+03)Ω 3、 电路图如上题,了解电路中各个元件对电路特性的影响。 步骤:设置直流工作点分析(Bias Point),将右侧Output File Option 下第二项选中。设置Output I/V: V(out) 。进行仿真后,在View/Output File 查看电阻及三极管中的各个参数对输出电压的影响。 Vb 1V

静态工作点的计算方法

在学习之前,我们先来了解一个概念: ?什麽是Q点?它就是直流工作点,又称为静态工作点,简称Q点。我们在进行静态分析时,主要是求基极直流电流I B、集电极直流电流I C、集电极与发射极间的直流电压U CE 一:公式法计算Q点 我们可以根据放大电路的直流通路,估算出放大电路的静态工作点。下面把求I B、I C、U CE的公式列出来 三极管导通时,U BE的变化很小,可视为常数,我们? 一般认为:硅管为 ????????? 锗管为 例1:估算图(1)放大电路的静态工作点。其中R B=120千欧,R C=1千欧,U CC=24伏,?=50,三极管为硅管解:I B=(U CC-U BE)/R B=120000=(mA) ???? I C=?I B=50*=(mA) ???? U CE=U CC-I C R C=*1= 二:图解法计算Q点 ??三极管的电流、电压关系可用输入特性曲线和输出特性曲线表示,我们可以在特性曲线上,直接用作图的方法来确定静态工作点。用图解法的关键是正确的作出直流负载线,通过直流负载线与i B=I BQ的特性曲线的交点,即为Q点。读出它的坐标即得I C和U CE 图解法求Q点的步骤为: (1):通过直流负载方程画出直流负载线,(直流负载方程为U CE=U CC-i C R C) (2):由基极回路求出I B (3):找出i B=I B这一条输出特性曲线与直流负载线的交点就是Q点。读出Q点的坐标即为所求。 例2:如图(2)所示电路,已知Rb=280千欧,Rc=3千欧,Ucc=12伏,三极管的输出特性曲线如图(3)所示,试用图解法确定静态工作点。

解:(1)画直流负载线:因直流负载方程为U CE =U CC -i C R C i C =0,U CE =U CC =12V ;U CE =4mA ,i C =U CC /R C =4mA ,连接这两点,即得直流负载线:如图(3)中的兰线 (2)通过基极输入回路,求得I B =(U CC -U BE )/R C =40uA (3)找出Q 点(如图(3)所示),因此I C =2mA ;U CE =6V 三:电路参数对静态工作点的影响 ??静态工作点的位置在实际应用中很重要,它与电路参数有关。下面我们分析一下电路参数Rb ,Rc ,Ucc 对静态工作点的影响。 改变Rb 改变Rc 改变Ucc Rb 变化,只对I B 有影响。 Rb 增大,I B 减小,工作点沿直流负载线下移。 Rc 变化,只改变负载线的纵 坐标 Rc 增大,负载线的纵坐标上 移,工作点沿i B =I B 这条特性 曲线右移 Ucc 变化,I B 和直流负载线同时变 化 Ucc 增大,IB 增 大,直流负载线 水平向右移动, 工作点向右上方移动 Rb 减小,I B 增大,工作点沿直流负载线上移 Rc 减小,负载线的纵坐标下移,工作点沿i B =I B 这条特性Ucc 减小,IB 减小,直流负载线

放大电路的直流工作状态分析

放大电路的直流工作状态分析 直流工作状态分析即求出电路未加输入信号时,管子的基极电流,集电极电流 BQ I,静 态管压降 CEQ V。 常见放大电路如图3.1所示。 o u CC U + - L R VT (a)(b) C L R VT (c) 图3.1 它们的静态工作点的估算按下述公式进行: (a) BQ I A 40 300 12 300 6.0 12 b BE CCμ R V V = ≈ - = - = BQ CQ I Iβ ≈ C CQ CC CEQ R I V V- =

(b ) BQ I e b BE CC )1(R R V V β++-= BQ CQ I I β≈ )(e C CQ CC CEQ R R I V V +-= (c ) CC b2 b1b2 B V R R R V += EQ I CQ e BE B I R V V ≈-= β += 1EQ BQ I I )(e C CQ CC CEQ R R I V V +-= 对PNP 放大电路Q 点的计算与上述一样,实际电流方向与NPN 相反,电压极性相反。 另一种分析方法是图解法:它的关键点是正确做出直流负载线,通过直流负载线与 BQ B I i =的特性曲线的交点,即为Q 点,从图上读出Q 点坐标即得CQ I 和CEQ V 。 元件参数变化对直流工作点的影响: b R 变化改变BQ I 值,对直流负载线不产生影响。 C R 变化改变直流负载线的斜率,对基极电流B I 没有影响,所以Q 点将沿直流负载线移动。 CC V 的变化比较复杂,既影响基极电流B I ,也影响直流负载线。如果C R 没有变化,直流负载线是平行移动的。Q 点将在原位置右上方或左下方移动。

直流工作点分析

实验二 直流工作点分析 一、 实验目的: 1、 练习直流工作点(Bias Point )的分析过程,了解输出文件的内容; 2、 掌握修改元件参数的步骤; 3、 练习直流传输特性分析的过程。 4、 了解直流灵敏度分析的过程和内容。 二、 实验内容: R1 D1D1N4536 10V 1、 电路如上图所示,图中R =10k ,二极管选用D1N4536,且I s = 10 nA ,n =2。在电源V DD =10V 和V DD =1V 两种情况下,求二极管电流I D 和二极管两端电压V D 的值 。 步骤:进入Schematics 主窗口,绘出图所示电路,并设置好参数。其中二极管的I s = 10 nA ,n =2要进入模型参数修改窗修改(先选中二极管,再选择菜单中Edit|Pspice Model 项,单击Instance Model(Text)可打开模型参数修改窗)。 设置直流工作点分析(Bias Point),将右侧Output File Option 下第一项选中。设置电压源VDD 分别为10V 和1V 。进行仿真后,在View/Output File 中得到如下结果: 当V DD =10V 时,ID = ( 0.947 ) mA ,VD = ( 0.532 ) V 当V DD =1V 时,ID = ( 61.51 ) uA ,VD = ( 0.385 ) V 2、 电路如下图所示。三极管参数为I s=5×1510-A,100F β=,'bb R = 100 ,50A V V =。要求: a) 计算电路的直流工作点。 b) 计算电路的电压放大倍数和输入、输出电阻。 c V Vb 1V

静态工作点的图解分析

模拟电子技术 知识点: 静态工作点的图解分析

没有输入信号(v =0)时,放大电路 i 中各处的电压和电流都是不变的直流,称为直流工作状态或静止状态,简称 静态。 静态时,BJT各电极的直流电压和直流电流的数值将在管子的特性曲线上 确定一点,称为Q点。 静态分析的第一步: 画出直流等效电路!

R B C 1 v o C 2 V CC +12V R C 300k 1.5k v i β=100 ——把所有的耦合电容开路! 如何得到直流等效电路?

CC B 12V 40300k V A R μ≈==Ω 1. Q 点计算CE C B ,,V I I 由KVL 可得: 求得: +V CC –I B R B –V BE = 0CC BE B B V V I R -=mA 440100B C =?==A I I μβV 6k 5.1mA 4V 12C C CC CE =Ω?-=-=R I V V R B C 1v o C 2V CC +12V R C 300k 1.5k v i β=100

例:用估算法计算图示电路的静态工作点。C E C C C C E E V V I R I R =--C C BE B B E (1 )V V I R βR -=++B C E I I I β=≈C C B B B E E E V I R V I R =++B B B E B E (1 )I R V βI R =+++由KVL 可得:+V CC R B R C T +– V BE +V CE –I E I C I B R E

2. 图解法求解Q 点 ?列输入回路方程 ?列输出回路方程(直流负载线)v CE =V CC -i C R C ?首先,画出直流通路BE CC B b V i R =-v R b V CC R C i C i B 300K 1.5K R B C 1v o C 2 β=100V CC +12V R C 300k 1.5k v i

静态工作点和动态工作点

静态工作点和动态工作点 静太工作点,指输入无信号时,在三极管基极加上偏流,使集电极负载电流达到既定值。我们把这个电流称为这个静态工作点静态工作点。 为什么要静态工作点呢?原来三极管在交流放大电路中,输入的交变信号是强弱不等的,在交流较弱或信号间隙时,较低的工作点可以满足需要,当信号比较强时,超过了三极管的动态电流,输出失真,我们称为大信号阻塞,因此,需要给三极管一个合适的工作点,理论上是越大越好,但太大带来一个问题,就是耗电,这是我们不希望看到的,根据需要,选择一个电流,这就是静态工作点。 放大电路的静态工作点也称直流工作点,是指输入信号为零时,晶体管放大器的基极电流Ib、集电极电流Ic,和集电极与发射极间的电压Uce之值,当放大电路中电源Ue和电阻Re确定以后,其静态工作点是由Ib来确定酌,调节基极偏置电阻Rb可得到合适的静态工作点。. 放大器在工作时,需要有一个合适的静态工作点,否则使放大后的被形和输入情号的波形不能保持一致而产生波形失真。因此,为了把晶体管的基极和集电极的电压、电流提高,避开死区,使晶体管基本上工作在特性曲线的直线段,保证ib、Ie随输入信号的变化而完整地变化,并不发生失真,必须设置合适的静态工作点。 静态工作点是在分析放大电路时提出的,它是放大电路正常工作的重要条件。当放大器处于无信号输入状态时,称为静态。对于放大器,静态工作点选择不合适,则输出波形会失真,因此设置合适的静态工作点是放大电路正常工作的前提。 交流负载线与输出特性曲线的每一个交点都代表动态运用时iB,iC,uCE三个总瞬时值之间的关系.这些交点称为放大器的瞬时工作点(也称动态工作点).当Zs随着信号电压变化时,动态工作点沿着交流负载线(而不沿直流负载线)移动.所以,只有交流负载线才是动态工作点移动的轨迹.另外,由于RL`

静态工作点的计算方法

精品字里行间 放心做自己想做的在学习之前,我们先来了解一个概念: 什麽是Q 点?它就是直流工作点,又称为静态工作点,简称 Q 点。我们在进行静态分析时,主要是求基极直流电流I B 、集电极直流电流 I C 、集电极与发射极间的直流电压U CE 一:公式法计算Q 点 我们可以根据放大电路的直流通路,估算出放大电路的静态工作点。下面把求 I B 、I C 、U CE 的公式列出来三极管导通时,U BE 的变化很小,可视为常数,我们 一般认为:硅管为0.7V 锗管为0.2V 例1:估算图(1)放大电路的静态工作点。其中R B =120千欧,R C =1千欧,U CC =24伏,?=50,三极管为硅管解:I B =(U CC -U BE )/R B =24-0.7/120000=0.194(mA) I C =?I B =50*0.194=9.7(mA) U CE =U CC -I C R C =24-9.7*1=14.3V 二:图解法计算Q 点 三极管的电流、电压关系可用输入特性曲线和输出特性曲线表示,我们可以在特性曲线上,直接用作图 的方法来确定静态工作点。用图解法的关键是正确的作出直流负载线,通过直流负载线与i B =I BQ 的特性曲线的交点,即为Q 点。读出它的坐标即得I C 和U CE 图解法求Q 点的步骤为: (1):通过直流负载方程画出直流负载线,(直流负载方程为U CE =U CC -i C R C ) (2):由基极回路求出I B (3):找出i B =I B 这一条输出特性曲线与直流负载线的交点就是Q 点。读出Q 点的坐标即为所求。 例2:如图(2)所示电路,已知Rb=280千欧,Rc=3千欧,Ucc=12伏,三极管的输出特性曲线如图(3)所示,试用图解法确定静态工作点。

实验二-晶体三极管特性分析和静态工作点设置

实验二 晶体三极管特性分析和静态工作点设置 实验目的: 1.熟悉仿真软件Multisim 的使用,掌握基于软件的电路设计和仿真分析方法 2.熟悉仿真软件Multisim 的直流工作点分析、交流分析、温度扫描和参数扫描分析方法 3.熟悉PocketLab 硬件实验平台,掌握基本功能的使用方法 4.通过软件仿真,了解晶体三极管输入特性和输出特性 5.通过软件仿真和硬件实验验证,掌握晶体三极管静态工作点分析和设计方法 实验预习: 图2-1所示电路中,双极型晶体管2N3904的120≈β,7.0)(=on BE V V 。计算三机关各极电流和电压,填入表2-1计算栏。 图2-1 解: =2.9367V 实验内容: 一、仿真试验 1. 在Multisim 中搭建图2-2所示电路,利用器件扫描方式仿真双极型晶体管2N3904的输 入特性曲线。

图2-2 设置其扫描参数为V2,扫描种类为List并设定扫描值为0、0.3V和10V。再设定扫描主变量参数V1,扫描种类为Liner,设定好其实质、终止值和步进值。然后设定输出变量为IB,进行扫描就得到了输入特性曲线族。 输入特性曲线族如下: 分析: 1).从图中可以看出在放大区,V2越大,在同一输入电压V1处,输入电流越大。V2不变时,输入电流随输入电压的增大而增大。 2).三极管有一定的导通电压,其值在0.7V附近。 2.采用图2-2所示电路,利用器件扫描方式仿真双极型晶体管2N3904的输出特性曲线。 设置其扫描参数为V1,扫描种类为List并设定扫描值为0.7V、0.9V、1V和10V。再设定扫描主变量参数V2,扫描种类为Liner,设定好其实质、终止值和步进值。然后设定输出变量为IC,进行扫描就得到了输入特性曲线族。 输出曲线族如下:

图说三极管的三个工作状态

抛开三极管内部空穴和电子的运动,还是那句话只谈应用不谈原理,希望通过下面的“图解”让初学者对三极管有一个形象的认识。 三极管是一个以b(基极)电流Ib 来驱动流过CE 的电流Ic 的器件,它的工作原理很像一个可控制的阀门。 图1 左边细管子里蓝色的小水流冲动杠杆使大水管的阀门开大,就可允许较大红色的水流通过这个阀门。当蓝色水流越大,也就使大管中红色的水流更大。如果放大倍数是100,那么当蓝色小水流为1千克/小时,那么就允许大管子流过100千克/小时的水。三极管的原理也跟这个一样,放大倍数为100 时,当Ib(基极电流)为1mA 时,就允许100mA 的电流通过Ice。 有了这个形象的解释之后,我们再来看一个单片机里常用的电路。 图2 我们来分析一下这个电路,如果它的放大倍数是100,基极电压我们不计。基极电流就是10V&pide;10K=1mA,集电极电流就应该是100mA。根据欧姆定律,这样Rc上的电压就是0.1A×50Ω=5V。那么剩下的5V 就吃在了三极管的C、E 极上了。好!现在我们假如让Rb为1K,那么基极电流就是10V&pide;1K=10mA,这样按照放大倍数100算,Ic就是不是就为1000mA 也就是1A了呢?假如真的

为1安,那么Rc上的电压为1A×50Ω=50V。啊?50V!都超过电源电压了,三极管都成发电机了吗?其实不是这样的。见下图: 图3 我们还是用水管内流水来比喻电流,当这个控制电流为10mA 时使主水管上的阀开大到能流过1A 的电流,但是不是就能有1A 的电流流过呢?不是的,因为上面还有个电阻,它就相当于是个固定开度的阀门,它串在这个主水管的上面,当下面那个可控制的阀开度到大于上面那个固定电阻的开度时,水流就不会再增大而是等于通过上面那个固定阀开度的水流了,因此,下面的三极管再开大开度也没有用了。因此我们可以计算出那个固定电阻的最大电流10V/50Ω=0.2A 也就是200mA。就是说在电路中三极管基极电流增大集电极的电流也增大,当基极电流Ib增大到2mA 时,集电极电流就增大到了200mA。当基极电流再增大时,集电极电流已不会再增大,就在200mA 不动了。此时上面那个电阻也就是起限流作用了。 上面讲的三极管是工作在放大状态,要想作为开关器件来应用呢?毫无疑问三极管必须进入饱和导通和截止状态。图4所示的电路中,我们从Q的基极注入电流IB,那么将会有电流流入集电极,大小关系为:IC=βIB 。而至于BJT 发射结电压VBE,我们说这个并不重要,因为只要IB 存在且为正值时,这个结电压便一定存在并且基本恒定(约0.5~1.2V,一般的管子取0.7V左右),也就是我们所讲的发射结正偏。既然UBE是固定的,那么,如果BJT基极驱动信号为电压信号时,就必须在基极串联一个限流电阻,如图5。此时,基极电流为 IB=(Ui-UBE)/RB。一般情况省略RB是不允许的,因为这样的话IB将会变得很大,造成前级电路或者是BJT 的损坏。

三极管放大电路设计,参数计算及静态工作点设置方法

数字电路即为TTL或C-MOS逻辑电路,而谈到模拟电路,首先就应想到运算放大器。但是,这里讲的运算放大器是怎样一个器件呢? 简而言之,运算放大器是具有两个输入端,一个输出端,以极大的放大率将两输入端之间的电压放大之后,传递到输出端的一种放大器。 如果以电路符号来表示运算放大器,则如右图,可表示为三角形。它的两个输入部分分别叫做非倒相输入(1N+)和倒相输入(IN-)。它以极大的放大率将倒相输入端与非倒相输人端之间的电压放大,然后从输出端(OUT)输出。 在一个封装之中,放入一个运算放大器电路的称为单(Single)运算放大器,放入两个运算放大器电路称为双(Dual)运算放大器,放入四个运算放大器电路,称为四(Quad)运算放大器。使用四运算放大器的电路,比使用单、双运算放大器组装的电路板,面积可变得更小。在几乎所有的封装中,若为单运算放大器,则使用管壳型封装或8引脚双列式封装;若为双运算放大器,则使用8引脚双列式封装;若为四运算放大器,则使用14引脚双列式封装。并且,在一般情况下,引脚的排列一般是通用的,尽管也有例外,对业余爱好者使用的运算放大器来讲,可能只会使用以上几种封装方式。因此,弄清这种引线的分布方式,将非常方便。 B类OTL功率放大电路原理

图a 半对称互补OTL放大电路图b 全对称互补OTL放大电路

图一输入变压器式功放电路 输入变压器式SEPP电路如图一,利用输入变压器进行相位反转作用。线路简单而中心电压又稳定,如果使用两电源方式,可简单剪掉输出电容器。又,输出短路时,不容易流出大电流,对过载引起的破坏,有很大的防止作用。不过因为输入变压器的影响,不能有较深的负反馈,所以不能获得较低的失真,在高频特性及失真会显著恶化是主要缺点。

相关文档