文档库 最新最全的文档下载
当前位置:文档库 › 砌体结构局部受压

砌体结构局部受压

3.2局部受压

3.2.1 砌体局部受压的特点

局部受压:——轴向力仅作用于砌体的部分截面上。局部均匀受压:——砌体截面上作用局部均匀压力,如:承受上部柱或墙体传来压力的基础顶面;

砌体结构局部受压图N

钢筋混凝土柱

3.2局部受压

3.2.1 砌体局部受压的特点

局部受压:——轴向力仅作用于砌体的部分截面上。

局部均匀受压:——砌体截面上作用局部均匀压力,

如:承受上部柱或墙体传来压力的基础顶面;

多层砌体结构中的墙梁或钢筋混凝土过梁支座处;

支座处设置有中心传力构造装置的桁架(或屋架

和大跨度的梁)支座处。

(a)中心局压(b)边缘局压(c)中部局压(d)端部局压(e)角部局压

局部均匀受压

3.2局部受压

3.2.1 砌体局部受压的特点

局部不均匀受压:——砌体截面上作用局部非均匀压力,如:支承

梁或屋架的墙柱在梁或屋架端部支承处的砌体顶面。

N L

h c

b c

σm a x

θa

a 00.4a 0

局部不均匀受压

3.2局部受压

3.2.1 砌体局部受压的特点

A0——影响砌体的局部抗压强度的计算面积;

A l——砌体的局部受压面积。

A0

A l

影响砌体的局部抗压强度的计算面积

3.2局部受压3.3.1 砌体局部受压的特点

组别砖柱尺寸

(mm)

A截面实

际面积

(mm2)

A

l

局部受

压面积

(mm2)

f

试验值

(N/mm2)

γf

试验值

(N/mm2)

γ

提高

系数

Ⅰ365×365×71013322532400 3.188.14 2.56 365×365×72213286032400 3.187.40 2.33

Ⅱ495×497×149024601560000 2.80 6.08 2.17 487×497×150024203960000 3.097.89 2.55两组局部均匀受压试件的试验结果

套箍强化作用和应力扩散作用.

3.2局部受压

3.3.1 砌体局部受压的特点

A l

A

A l

砌体构件的局部受压的破坏形态有以下三种:

A 0/A l 不太大时,“先裂后坏” A 0/A l 较大时,“劈裂破坏、一裂就坏”(应避免)

材料强度较低时,“未裂先坏”(应避免)

局部受压的应力分布(a )竖向裂缝发展而破坏(b )劈裂破坏

砌体局部受压破坏形态

3.2局部受压

3.3.2 砌体的均匀局部受压砌体局部均匀受压时的承载力:

010.35(/)1

l l

l N fA A A γγ≤=+-?

试验表明,砌体局部抗压提高系数γ是比1大得多的值,与A 0/A l 以及荷载作用位置有关。?

通过限制γ,可以避免“劈裂破坏”。

3.2局部受压

(a)A 0 = (a+c+h )h

γ≤2.5

(b)A 0=(b+2h )h

γ≤2.0

(c)A 0 = (a+h )h +(b+h 1-h )h 1

γ≤1.5

(d)A 0 = (a+h )h

γ≤1.25

(a)

(b)

(c)

(d)

影响局部抗压强的的面积的计算

3.2.2 砌体的均匀局部受压

对多孔砖砌体和混凝土砌体灌孔砌体,在应(a )(b )(c )的情况下γ≦1.5,未灌孔混凝土砌块砌体,γ≦1.0。

A0= (a+c+h)h

γ≤2.5

A0= (b+2h)h

γ≤2.0

A0= (a+h)h+(b+h1-h)h1

γ≤1.5A

0= (a+h)h

γ≤1.25

3.2局部受压

3.3.3 砌体局部非均匀受压受局部非均匀压力时的承载力 梁端有效支承长度为:

式中:

a 0——梁的有效支承长度,当a 0 >a 时,取a 0=a ;h c ——梁的截面高度;

f ——砌体的抗压强度设计值。

a

a 0b c

h c

?

σm a x

θ

0.4a 0 楼 屋盖梁

c

010

h a f

=对楼盖和、屋盖都取0.4a 0

3.2局部受压

ψN 0N l

N l

σ0

3.3.3 砌体局部非均匀受压受局部非均匀压力时的承载力 上部荷载对局部抗压的影响

01.50.5(/)

l A A ψ=-式中:

ψ——上部荷载的折减系数,当A 0/A l ≧3时,取ψ=0;

N 0——局部受压面内上部轴力;N l ——梁端支承压力设计值。

3.2局部受压

0000l l l

l N N fA N A A a b

ψηγσ+≤==式中:

σ0——上部平均压应力设计值;

η——梁端底面压应力图形完整系数,一般可取0.7,

对于过梁和墙梁可以取1.0;b ——梁的截面宽度。

3.3.3 砌体局部非均匀受压

受局部非均匀压力时的承载力

梁端支承处砌体的局部受压承载力

3.2局部受压

3.3.4 梁下设有刚性垫块

梁端刚性垫块和柔性垫块;梁端现浇垫块和预制垫块;

梁端刚性垫块:——垫块的厚度t b ≧180mm ;

从梁边挑出的长度C ≦t b ;

带壁柱墙的壁柱内设置预制刚性垫块时,壁柱上垫块伸入墙内的长度不应小于120mm 。现浇刚性垫块和预制刚性垫块都应满足尺寸构造要求。垫块的尺寸应符合砖的模数。

3.2局部受压

3.3.4 梁下设有刚性垫块

梁端刚性垫块

(a)预制垫块(b)现浇垫块(c)壁柱上的垫块

3.2局部受压

预制刚性垫块下的砌体局部受压承载力:

0b 00b

b b b

l l N N fA N A A a b ?γσ+≤==式中:

N 0——垫块面积A b 内上部轴向力设计值;

?——垫块上N 0及N l 合力的影响系数,应采用β< 3时的值;γl ——垫块外砌体面积的有利影响系数,γl =0.8γ≥1,

γ为砌体局部抗压强度提高系数,以A b 代替A l 计算得出;A b ——垫块的面积,A b =a b ?b b ;a b ——垫块伸入墙内的长度;b b ——垫块的宽度。

0b 0.80.8(10.35(/)1) 1.0

l A A γγ==+-≥3.3.4 梁下设有刚性垫块

3.2局部受压

梁端有效支承长度a 0应按下式确定:

01

h a f

δ=3.3.4 梁下设有刚性垫块

式中:δ1——刚性垫块的影响系数;

垫块上N l 作用点的位置可取0.4a 0处;

σ0——上部平均压应力设计值;h ——梁的截面高度。

σ/f 00.20.40.60.8δ1

5.4

5.7

6.0

6.9

7.8

系数δ1值表

注:表中其间的数值可采用插入法求得。

3.2局部受压

关于垫块上N 0及N L 合力的偏心距

3.3.4 梁下设有刚性垫块

梁垫梁垫

梁垫

梁垫

N 0

N 0N 0

N 0N L

N L

N L

N L

(d)

(b)

(c)

(a)

梁端设有刚性垫块

垫块上N L 作用点的位置在0.4a 0处;只有图(c )中的N 0对垫块产生偏心。

3.2局部受压

3.3.4 梁下设有刚性垫块

现浇刚性垫块下的砌体局部受压承载力:

与梁整体现浇的刚性垫块将与梁共同挠曲,垫块与砌体

接触处的应力分布与梁底相同。因此其局压强度计算公式仍可

采用无垫块时的局压强度计算公式,不过此时梁的宽度取垫块

的宽度(A

=a0×b b)。

L

梁端局部受压示意图

3.2局部受压

3.3.4 梁下设有刚性垫块

现浇刚性垫块下的砌体局部受压承载力,也可以采用简化计算的方法,在《砌体结构设计规范》(GB50003-2001)的条文说明中有,“对于采用与梁端现浇成整体的刚性垫块与预制刚性垫下局压有些区别,但为简化计算,也可按后者计算。”

3.3.5 梁下设有长度大于πh 0的钢筋混凝土垫梁

b 00

0l 2b 0

0b b

3

02.42

2b h N N fb h N E I h Eh

πσδ+≤=

=式中:

N 0—垫梁上部轴向力设计值;

b b ,h b —分别为垫梁在墙厚方向的宽度和垫梁的高度(mm);

δ2—垫梁底面压应力分布系数,当荷载沿墙厚方向均匀分布时

(局压荷载对于墙厚方向重心线对称均匀分布)δ2取1.0;局压荷载对墙厚为不均匀分布时,δ2可取0.8;h 0—垫梁的折算高度(mm);

E b ,I b —分别为垫梁的混凝土弹性摸量和截面惯性距;

E —砌体的弹性摸量;h —墙厚(mm)。

3.2局部受压

实验三 管路局部阻力系数测定实验

实验三 管路局部阻力系数测定实验 一、实验目的要求: 1.掌握三点法,四点法测量局部阻力系数的技能。 2.通过对圆管突扩局部阻力系数的表达公式和突缩局部阻力系数的经验公式的实验与分析,熟悉用理论分析法和经验法建立函数式的途径。 3.加深对局部阻力损失机理的理解。 二、实验成果及要求 1.记录计算有关常数。 实验装置台号No d 1=D 1= 1.4 cm , d 2=d 3= d 4= D 2=1.9 cm , d 5=d 6=D 3= 1.4 cm , l 1—2=12cm , l 2—3=24cm , l 3—4=12cm , l 4—B =6cm , l B —5=6cm , l 5—6=6cm , 2 2 1) 1(A A e - ='ξ= 0.21 ,) 3 1(5.05A A s - ='ξ= 0.23 。 2.整理记录、计算表。 表1 记录表

表2 计算表 3.将实测ζ值与理论值(突扩)或公认值(突缩)比较。 三、实验分析与讨论 1.结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系: 1)不同R e 的突扩ξe 是否相同? 2)在管径比变化相同的条件下,其突扩ξe 是否一定大于突缩ξs ? 答:由式 g v h j 22 ζ = 及 ()21d d f =ζ 表明影响局部阻力损失的因素是v 和21d d 。由于有 突扩:2 211???? ? ?-=A A e ζ

突缩:???? ? ?-=2115.0A A s ζ 则有 () () 2 12 212115.0115.0A A A A A A K e s -= - -= = ζζ 当 5.021?A A 或 707.021?d d 时,突然扩大的水头损失比相应的突然收缩的要大。在本实验最大流量Q 下,突然扩大损失较突然缩小损失约大一倍,即817.160.3/54.6==js je h h 。 21d d 接近于1时,突然扩大的水流形态接近于逐渐扩大管的流动, 因而阻力损失显著减小。 2.结合流动仪演示的水力现象,分析局部阻力损失机理何在?产生突扩与 突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失? 答:流动演示仪1-7型可显示突扩、突缩、渐扩、渐缩、分流、合流、阀道、绕流等三十多种内、外流的流动图谱。据此对于局部阻力损失的机理分析如下: 从显示的图谱可见,凡流道边界突变处,形成大小不一的漩涡区。漩涡是产生损失的主要根源。由于水质点的无规则运动和激烈的紊动,相互磨擦,便消耗了部分水体的自储能量。另外,当这部分低能流体被主流的高能流体带走时,还须克服剪切流的速度梯度,经质点间的动能交换,达到流速的重新组合,这也损耗了部分能量。这样就造成了局部阻力损失。 从流动仪可见,突扩段的漩涡主要发生在突扩断面以后,而且与扩大系数有关,扩大系数越大,漩涡区也越大,损失也越大,所以产生突扩局部阻力损失的主要部位在突扩断面的后部。而突缩段的漩涡在收缩断面均有。突缩前仅在死角区有小漩涡,且强度较小,而突缩的后部产生了紊动度较大的漩涡环区。可见产生突缩水头损失的主要部位是在突缩断面后。 从以上分析可知,为了减小局部阻力损失,在设计变断面管道几何边界形状时应流线型化或昼接近流线形,以避免漩涡的形成,或使漩涡区尽可能小。如欲减小管道的局部阻力,就应减小管径比以降低突扩段的漩涡区域;或把突缩进口的直角改为圆角,以消除突缩断面后的漩涡环带,可使突缩局部阻力系数减小到原来的21~101。突然收缩实验管道使

砌体结构精选材料及构件构造要求包括答案 .docx

欢迎下载B模块:砌体结构 1B:砌体结构材料及构件构造要求/ 砌体结构构造要求 1、砌体材料中块材的种类有哪些? 答:( 1)砖( 2)砌块( 3)石材。 2、砂浆的强度等级有哪些? 答:砂浆的强度等级:M15、M10、 M7.5、 M5、 M2.5 五种。 3、什么是砌体结构? 答:砌体结构系指其承重构件的材料是由块材和砂浆砌筑而成的结构 4、砂浆有哪几种? 答:(一)水泥砂浆(二)混合砂浆三)非水泥砂浆 5、一般房屋块材和砂浆强度等级如何选用? 答:对于一般房屋,承重砌体用的砖常用 MU15、MU10、MU7.5;石材常用 MU40、MU30、MU20、MU15;砂浆常用 M1、 M2.5、 M5、 M7.5,对受力较大的重要部位可用 M10。 6、砌体的种类有哪些? 答:( 1)无筋砌体,即无筋砖砌体,无筋砌块砌体,无筋石砌体( 2)配筋砌块砌体,即配筋砖 砌体,配筋混凝土空心小砌块砌体。 7、提高砌体抗压强度的有效措施是什么? 答:( 1)块体和砂浆的强度;( 2)块体的尺寸和形状;(3)砂浆铺砌时的流动性;( 4)砌筑质量。 8、配筋砌体主要有哪几种? 答:( 1)配筋砖砌体;( 2)配筋混凝土空心小砌块砌体。 9、在混合结构房屋中,按照墙体的结构布置分为哪几种承重方案?它们各有何优缺点? 答:房屋的结构布置方案可分为四种类型:即纵墙承重体系、横墙承重体系、纵横墙承重体 系和内框架承重体系。 一、纵墙承重方案:(1)纵墙是主要的承重墙。横墙的设置主要是为了满足房间的使用要 求,保证纵墙的侧向稳定和房屋的整体刚度,因而房屋的划分比较灵活;(2)由于纵墙承受的荷载较大,在纵墙上设置的门、窗洞口的大小及位置都受到一定的限制;(3)纵墙间距一般比较大,横墙数量相对较少,房屋的空间刚度不如横墙承重体系;(4)与横墙承重体系相比,楼盖材料用量相对较多,墙体的材料用量较少。 二、横墙承重方案:( 1 ) 横墙是主要的承重墙。纵墙的作用主要是围护、隔断以及与横墙拉 结在一起,保证横墙的侧向稳定。由于纵墙是非承重墙,对纵墙上设置门、窗洞口的限制较少,外纵墙的立面处理比较灵活; ( 2 ) 横墙间距较小,一般为 3— 4.5m,同时又有纵墙在纵向拉结,形成良好的空间受力体系,刚度大,整体性好。对抵抗沿横墙方向作用的风力、地 震力以及调整地基的不均匀沉降等较为有利;( 3)由于在横墙上放置预制楼板,结构简单,

《钢结构基本原理》作业解答

《钢结构基本原理》作业 判断题 2、钢结构在扎制时使金属晶粒变细,也能使气泡、裂纹压合。薄板辊扎次数多,其 性能优于厚板。 正确错误 答案:正确 、目前钢结构设计所采用的设计方法,只考虑结构的一个部件,一个截面或者一个1 .局部区域的可靠度,还没有考虑整个结构体系的可靠度 正确答案: 、柱脚锚栓不宜用以承受柱脚底部的水平反力,此水平反力应由底板与砼基础间的20 摩擦力或设置抗剪键承受。 答案:正确 计算的剪力两者中的较、计算格构式压弯构件的缀件时,应取构件的剪力和按式19 大值进行计算。 答案:正确 、加大梁受压翼缘宽度,且减少侧向计算长度,不能有效的增加梁的整体稳定性。18 答案:错误 、当梁上翼缘受有沿腹板平面作用的集中荷载,且该处又未设置支承加劲肋时,则17 应验算腹板计算高度上边缘的局部承压强度。 答案:正确 、在格构式柱中,缀条可能受拉,也可能受压,所以缀条应按拉杆来进行设计。16 答案:错误 .愈大,连接的承载力就愈高15、在焊接连接中,角焊缝的焊脚尺寸 答案:错误 、具有中等和较大侧向无支承长度的钢结构组合梁,截面选用是由抗弯强度控制设14 计,而不是整体稳定控制设计。 答案:错误 、在主平面内受弯的实腹构件,其抗弯强度计算是以截面弹性核心几乎完全消失,13 出现塑性铰时来建立的计算公式。

答案:错误 1. 12、格构式轴心受压构件绕虚轴稳定临界力比长细比相同的实腹式轴心受压构件低。 原因是剪切变形大,剪力造成的附加绕曲影响不能忽略。 答案:正确 11、轴心受力构件的柱子曲线是指轴心受压杆失稳时的临界应力与压杆长细比之间 的关系曲线。 答案:正确 10、由于稳定问题是构件整体的问题,截面局部削弱对它的影响较小,所以稳定计算 中均采用净截面几何特征。 答案:错误 9、无对称轴截面的轴心受压构件,失稳形式是弯扭失稳。 答案:正确 8、高强度螺栓在潮湿或淋雨状态下进行拼装,不会影响连接的承载力,故不必采取 防潮和避雨措施。 答案:错误 7、在焊接结构中,对焊缝质量等级为3级、2级焊缝必须在结构设计图纸上注明,1 级可以不在结构设计图纸中注明。 答案:错误 6、冷加工硬化,使钢材强度提高,塑性和韧性下降,所以普通钢结构中常用冷加工 硬化来提高钢材强度。() 答案:错误 5、合理的结构设计应使可靠和经济获得最优平衡,使失效概率小到人们可以接受程 度。() 答案:正确 4、钢结构设计除疲劳计算外,采用以概率理论为基础的极限状态设计方法,用分项 系数设计表达式进行计算。() 答案:正确 3、钢材缺口韧性值受温度影响,当温度低于某值时缺口韧性值将急剧升高。()答案:错误 一、名词解释

管道内的局部阻力及损失计算

管道内的局部阻力及损失计算 第四节管道内的局部阻力及损失计算 在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、二次流以及流动的分离及再附壁现象。此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。这种在局部障碍物处产生的损失称为局部损失,其阻力称为局部阻力。因此一般的管路系统中,既有沿程损失,又有局部损失。 4.4.1 局部损失的产生的原因及计算 一、产生局部损失的原因 产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。这里结合几种常见的管道来说明。 , , , , 图4.9 局部损失的原因 对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 , ,所示,而且由于流体惯性的作用,流体质点在突然扩张处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。在拐角处由于流体微团相互之间

的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械能。另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。局部损失就发生在旋涡开始到消失的一段距离上。 图4.9,,给出了弯曲管道的流动。由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的压力。在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。 综上所述,碰撞和旋涡是产生局部损失的主要原因。当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。在测量局部损失的实验中,实际上也包括了沿程损失。 二、局部损失的计算 如前所述,单位重量流体的局部能量损失以表示 式中,—局部损失,阻力,系数,是一个无量纲的系数,它的大小与局部障碍物的结构形式有关,由实验确定。—管中的平均速度,通常指局部损失之后的速度,。 局部压强损失为 式中, —流经局部障碍物前后的压强差,或总压差,。 突然扩张管道的局部损失计算

钢结构受弯构件_附答案

练习五 受弯构件 一、选择题(××不做要求) 1.计算梁的( A )时,应用净截面的几何参数。 A )正应力 B )剪应力 C )整体稳定 D )局部稳定 2.钢结构梁计算公式nx x x W M γσ= 中,γx ( C )。 A )与材料强度有关 B )是极限弯矩与边缘屈服弯矩之比 C )表示截面部分进人塑性 D )与梁所受荷载有关 ××3.在充分发挥材料强度的前提下,Q235钢梁的最小高度h min ( C )Q345钢梁的h min (其他条件均相同)。 A )大于 B )小于 C )等于 D )不确定 ××4.梁的最小高度是由( C )控制的。 A )强度 B )建筑要求 C )刚度 D )整体稳定 5.单向受弯梁失去整体稳定时是( C )失稳。 A )弯曲 B )扭转 C )弯扭 D )都有可能 6.为了提高梁的整体稳定,( B )是最经济有效的办法。 A )增大截面 B )增加支撑点,减小l 1 C )设置横向加劲肋 D )改变荷载作用的位置 7.当梁上有固定较大集中荷载作用时,其作用点处应( B )。 A )设置纵向加劲肋 B )设置横向加劲肋 C )减少腹板宽度 D )增加翼缘的厚度 ××8.焊接组合梁腹板中,布置横向加劲肋对防止( A )引起的局部失稳最有效,布置 纵向加劲肋对防止( B )引起的局部失稳最有效。 A )剪应力 B )弯曲应力 D )复合应力 D )局部压应力 ××9.确定梁的经济高度的原则是( B )。 A )制造时间最短 B )用钢量最省 C )最便于施工 D )免于变截面的麻烦 ××10.当梁整体稳定系数φb >0.6时,用φ’b 代替φb 主要是因为( B )。 A )梁的局部稳定有影响 B )梁已进入弹塑性阶段 C )梁发生了弯扭变形 D )梁的强度降低了 ××11.分析焊接工字形钢梁腹板局部稳定时,腹板与翼缘相接处可简化为( D )。

砌体结构试题及答案

砌体结构复习题 一.填空题 1.结构的 . . 统称为结构的可靠性。 2.多层砌体房屋的高度不超过40m,质量和刚度沿高度分布比较均匀,水平振动时以变形为主,因此采用简化分析方法。 3.砌体结构设计采用以理论为基础的设计方法,用度量结构的可靠度,用表达式进行设计。 4.砌体是由_ 和组成的。 5.砌体受拉.受弯破坏可能发生三种破坏:,,。 6.一般情况下,砌体强度随块体和砂浆强度的提高而; 7.砂浆强度越低,变形越大,砖受到的拉应力和剪应力越,砌体强度越低;流动性越,灰缝越密实,可砖的弯剪应力; 8.灰缝平整.均匀.等厚可以弯剪应力;方便施工的条件下,砌块越好; 9.普通粘土砖全国统一规格:具有这种尺寸的砖称为标准砖; 10.砌体抗拉.弯曲抗拉及抗剪强度主要取决于的强度; 11.粘接力分为和两种; 12.在实际工程中,按时的变形模量为砌体的弹性模量。 13.结构的功能要求: . . 14.在截面尺寸和材料强度等级一定的条件下,在施工质量得到保证的前提下,影响无筋砌体受压承载力的主要因素是。《砌体规范》用考虑以上两种因素的影响。 15.在设计无筋砌体偏心受压构件时,偏心距过,容易在截面受拉边产生水平裂缝,致使受力截面,构件刚度,纵向弯曲影响,构件的承载力明显,结构既不安全又不经济,所以《砌体规范》限制偏心距不应超过。为了减小轴向力的偏心距,可采用或等构造措施。 16.局部受压分为和两种情况。通过对砌体局部受压破坏的试验表明,局部受压可能发生三种破坏:和直接与垫板接触的砌体的局压破坏。其中直接与垫板接触的砌体的局压破坏仅在砌体材料强度过低时发生,一般通过,可避免发生这种破坏。17.砌体在局部受压时,未直接受压砌体对直接受压砌体的约束作用以及力的扩散作用,使砌体的局部受压强度。 18.当局部受压承载力不满足要求时,一般采用设置的方法,满足设计要求。 19.房屋的静力计算,根据房屋的空间工作性能分为 . 和三类。 20.在进行墙体设计时必须限制其,保证墙体的稳定性和刚度。

砌体结构基本知识

第十三章砌体结构基本知识 砌体结构的定义:以块材和砂浆砌筑而成的墙、柱作为建筑物主要受力构件的结构均可称为砌体结构。 砌体结构是以受压为主的结构形式。 砌体结构的优缺点 优点:⑴便于就地取材;⑵成本低廉;⑶耐久性较好:砖石材料具有良好的耐火性、化学稳定性和大气稳定性;砖石材料具有较好的隔热、隔音性能;此外,砌体结构施工中不需要特殊的设备。 缺点:⑴砌筑劳动强度大;⑵结构自重大;⑶构件强度较低,承载力有限。 砌体结构的应用 砌体结构广泛用于多层建筑结构中。 我国目前砖砌体材料约占85%以上。 §13-1 砌体材料及其力学性能 一、砖石材料 砖石材料一般分为天然石材和人工砖石两类; 天然石材:当自重大于18N/m3的称为重石,如花岗石、石灰石、砂石等;当自重小于18N/m3的称为轻石,如凝灰石、贝壳灰岩等;重石材由于强度大,抗冻性、抗水性、抗汽性均较好,通常用于建筑物的基础和挡土墙等。 人工砖石:经过烧结的普通砖、粘土空心砖、陶土空心砖;以及不经过烧结的硅酸盐砖、矿渣砖、混凝土砌块、土坯等。 普通粘土砖全国统一规格:240x115x53,具有这种尺寸的砖称为标准砖; 空心砖分为三种型号:KP1(240x115x90)、KP2 (240x180x115)、KM1 (190x190x90)。前两种可以与标准砖混砌; 块体的强度等级: 烧结普通砖、烧结多孔砖:MU30、MU25、MU20、MU15、MU10;

蒸压灰砂砖、蒸压粉煤灰砖:MU25、MU20、MU15、MU10; 块体的强度等级:MU20、MU15、MU10、MU7.5、MU5; 石材的强度等级:MU100、MU80、MU60、MU50、MU40、MU30、MU20,块体(Masonry Unit )的缩写。 二、砂浆 砂浆是由砂、矿物胶结材料与水按合理配比经搅拌而制成的; 砌体结构对砂浆的基本要求:强度、可塑性(流动性)、保水性; 砂浆的强度等级:边长为70毫米的立方体试块在150C- 250C 的室内自然条件下养护24小时,拆模后再在同样的条件下养护28天,加压所测得的抗压强度极限值; 砂浆的强度等级:M15、M10、M7.5、M5、M2.5,其中M 表示Mortar 的缩写; 砂浆的分类:水泥砂浆、混合砂浆(如水泥石灰砂浆、水泥粘土砂浆)、非水泥砂浆(如环氧树脂砂浆)。 三、砖石和砂浆的选择 砖石和砂浆最低强度等级要求 四、砌体的种类 1、实心砌体:通常用作承重外墙、内墙以及砖柱; 2、轻型气体:空斗墙、空气夹层墙、填充墙、多层墙等; 3、大型砌块和大型墙板 4、天然石材砌体:料石砌体和毛石砌体; 5、配筋砌体:在砌体内部配筋。通常分为网状配筋砌体和组合砌体。 五、砌体的力学性能 1、砌体的轴心受压破坏特征 基土的 潮湿程度 粘土砖 混凝土 砌块 石材 混合 砂浆 水泥 砂浆 严寒 地区 一般 地区 稍潮湿的 很潮湿的 含饱和水 MU10 MU15 MU20 MU10 MU10 MU15 MU5 MU7.5 MU7.5 MU20 MU20 MU20 M5 M5 M5 M7.5

(完整版)111建筑结构复习题

第一章绪论 一、填空 1、建筑结构的构件的类型和形式基本上可以分为()、()、()。 2、结构的各种构件按照受力特点的不同,建筑结构基本构件主要有()、()、()、()、() 3、建筑结构可按不同方法分类。按照所用的材料不同,建筑结构主要有()、()、()、() 四种类型。 4、建筑结构按承重结构和类型不同分为()、()、()、()、()、()、()。 二、选择题 1、下面的构件中属于水平构件的是() A、柱、墙 B、基础 C、板、梁 D、框架 答案一、填空题 1、水平构件、竖向构件、基础 2、受弯构件、受压构件、受拉构件、受扭构件、受剪构件 3、混凝土结构、砌体结构、钢结构、木结构 4、框架结构、剪力墙结构、筒体结构、框剪结构、剪筒结构、筒中筒结构、框筒结构 二、选择题 1、C 第二章建筑结构计算基本原则 一、填空 1、随时间的变异,《荷载规范》将结构上的荷载分为()、()、()。 2、《荷载规范》规定,可变荷载的代表值有四种,分别为()、()、()、()。 3、()、()、()是结构可靠的标志。 4、结构极限状态分为()和()两类。 5、建筑抗震设防目标为()()()。 6、场地指建筑物所在的区域,其范围大体相当于厂区、居民小区和自然村的区域,范围不应太小,在平坦地区面积一般不小于() 7、场地的类别,根据()和()划分。 8、建筑的场地类别分为()、()、()、()类。 二、选择题 1、下面属于可变荷载的是() A、结构自重 B、风荷载 C、爆炸力 D、压力 2、下列不属于重点设防类建筑的是() A、电影院 B、幼儿园、小学、中学的教学用房 C、居住建筑 D、学生宿舍 3、若用S表示结构或构件截面上的荷载效应,用R表示结构或构件截面的抗力,结构或构件截面处于极限状态时,对应于()式。 A、R>S B、R=S C、R

砌体结构练习题及参考答案

砌体结构练习题答案 一.填空题 1、结构的安全性、适用性、耐久性统称为结构的可靠性。 2、砌体结构设计采用以概论理论为基础的极限状态设计方法,用分项系数表达式进行设计。 3、砌体是由块材和砂浆组成的。 4、砌体受拉、受弯破坏可能发生三种破坏:沿齿缝(灰缝)的破坏,沿块体和竖向灰缝的破坏,沿通缝(水平灰缝)的破坏。 5、一般情况下,砌体强度随块体和砂浆强度的提高而提高; 6、砂浆强度越低,变形越大,砖受到的拉应力和剪应力越大,砌体强度越低;流动性越大,灰缝越密实,可降低砖的弯剪应力; 7、灰缝平整、均匀、等厚可以降低弯剪应力。 8、普通粘土砖全国统一规格:240×115×53,具有这种尺寸的砖称为标准砖; 9、砌体抗拉、弯曲抗拉及抗剪强度主要取决于灰缝的强度; 10、粘接力分为法向粘结力和切向粘结力两种; 11、在实际工程中,按σ=0.4f m时的变形模量为砌体的弹性模量。 12、结构的功能要求:安全性、适用性、耐久性。 13、在截面尺寸和材料强度等级一定的条件下,在施工质量得到保证的前提下,影响无筋砌体受压承载力的主要因素是构件的高厚比和相对偏心距。《砌体规范》用承载力影响系数考虑以上两种因素的影响。 14、在设计无筋砌体偏心受压构件时,偏心距过大,容易在截面受拉边产生水平裂缝,致使受力截面减小,构件刚度降低,纵向弯曲影响变大,构件的承载力明显降低,结构既不安全又不经济,所以《砌体规范》限制偏心距不应超过0.6y。为了减小轴向力的偏心距,可采用设置中心垫块或设置缺口垫块等构造措施。 15、局部受压分为局部均匀受压和局部非均匀受压两种情况。通过对砌体局部受压破坏的试验表明,局部受压可能发生三种破坏:竖向裂缝发展引起的破坏、劈裂破坏和直接与垫板接触的砌体的局压破坏。其中直接与垫板接触的砌体的局压破坏仅在砌体材料强度过低时发生,一般通过限制材料的最低强度等级,

建筑结构考试试题及答案(1)

建筑结构考试试题 一、填空题 1、钢筋混凝土受弯构件正裁面的破坏形式有三种,即适筋梁、超筋梁、和少筋梁。 2、结构上的荷裁分为永久荷裁、可变荷裁和偶然荷裁。 3、多层与高层房屋常用的结构体系有混合结构、框架结构、剪力墙结构和筒体结构。 4、《建筑结构荷裁规范》给出了四种代表值,即标准值、组合值、准永久值和 频遇值。 5、钢筋混凝土受压构件(柱)按纵向力与构件裁面形心相互位置的不同,可分为 轴心受压和偏心受压构件。 6、结构的极限状态有两类,即承裁能力极限状态和正常使用极限状态,任何结构构件需进行承裁能力极限状态的计算。 7、钢筋混凝土偏心受压构件,当ξ≤ξb时为大偏心受压,当ξ > ξb时为 小偏心受压。 8、对建筑结构应具备的功能要求可以用安全性、适用性、耐久性来概括。 9、建筑结构按其所用材料的不同,可分为砼结构、砌体结构、钢结构和木结构。 10、钢筋混凝土受弯构件斜裁面破坏形式有斜压破坏(超)、剪压破坏(适)、和斜拉破坏(少)。 二、单项选择题 1.由混凝土的应力应变曲线可以看出,高强度混凝土的( B) ,说明其耐受变形的能力较差。 A. 下降段斜率较大,残余应力较高 c.下降段斜率较小,残余应力较高 B.下降段斜率较大,残余应力较低 D. 下降段斜率较小,残余应力较低 2. 一类环境中,钢筋混凝土梁的保护层厚度最小取(C )。 A .15mm B. 20mm C .25mm D .30mm B. O. 2 3. 对于受弯的梁类构件,其一侧纵向受拉钢筋力的配筋百分率不应小于(D) A.45 B. O. 2 C. 0.2 中较小者 D 0.2 中较大者

4. 受弯构件斜截面承载力计算公式是以(B )为依据的。 A.斜拉破坏 B.剪压破坏 c.斜压破坏D.斜弯破坏 5. 截面尺寸和材料强度一定时,钢筋混凝土受弯构件正截面承载力与受拉区纵筋配筋率 的关系是(A )。 A. 当配筋率在某一范围内时,配筋率越大,正截面承载力越大 B. 配筋率越大,正截面承载力越小 c.配筋率越大,正截面承载力越大 D. 没有关系 6. 一类环境中,布置有单排纵向受力钢筋的梁,其截面有效高度一般可取(C )。 A. h-60 C. h-20 B. h-35 D. h 7. (C )的破坏是塑性破坏,在工程设计中通过计算来防止其发生。 A. 小偏压破坏 B. 剪压破坏 c.斜拉破坏D.适筋破坏 8. 轴心受压构件的稳定系数主要与(A )有关。 A. 长细比 B. 配筋率 c.混凝土强度D.荷载 9.' (A)的作用是将墙体、柱箍在一起,以加强厂房的整体刚度。 A. 圈梁 B.连系梁 C. 过梁 D.基础梁 1695 10. 框架结构与剪力墙结构相比(A )。 A.框架结构延性好但抗侧力刚度差 B. 框架结构延性差但抗侧力刚度好

砌体结构计算公式

重点计算公式: 一、受压构件承载力验算 1、基本公式: u N N fA ?≤= 2、影响系数φ:考虑高厚比和轴向偏心力对受压构件承载力的影响。 3、高厚比修正系数γβ:与砌体类型有关 4、T 形截面折算厚度: 3.5T h i = 5、高厚比β: 矩形截面:0H h β=; T 形截面:0T H h β= 6、偏心距限值:0.6e y ≤ 3、验算步骤 (1)确定偏心距e ,验算偏心距限值0.6e y ≤ a) 矩形截面:e =M /N b) T 形截面:e 为集中力到截面形心距离 (2)计算高厚比β a) 矩形截面:直接套公式0H h β= b) T 形截面:计算截面面积、截面惯性矩→计算回转半径→计算折算厚度→0T H h β= (3)确定影响系数φ a )查表法:根据砂浆强度等级、高厚比及相对偏心距查表确定 b )公式法:根据公式计算 ① 根据砂浆强度确定系数α ② 计算轴心受压稳定系数21 1o ?αβ=+ ③套公式 矩形截面:21 112e h ?=?++??; T 形截面:21112T e h ?=?++?? (4)确定砌体抗压强度调整系数γa

对无筋砌体构件,其截面面积小于0.3m 2时,γa 为其截面面积加0.7。 (5)验算偏心方向承载力 u N N fA ?≤= 满足则安全 (6)对矩形截面,还要验算短边方向承载力 a) 基本步骤:计算高厚比β→计算轴心受压稳定系数φ0→验算短边方向承载力0u N N fA ?≤= b) 注意短边方向的高厚比与长边方向的高厚比不同 二、梁端支承处砌体局部受压承载力验算 1、基本公式 0l l N N fA ψηγ+≤ η是梁底压应力图形完整系数:0.7η= 2、验算步骤: (1 )计算梁端有效支承长度0a =(2)计算局部受压面积:l o A a b = (3)计算影响砌体局部抗压的计算面积:0(2)A b h h =+ (4)计算上部荷载折减系数:o A 1.5-0.5A l ψ=,Ψ小于0 (即o A 3A l >)时,取0ψ= (5)若0ψ>,则计算局部受压面积内上部荷载产生的轴向力设计值o o l N A σ=;否则不计算0N (6 )计算砌体局部抗压强度提高系数:1γ=+,若2γ>,则取2γ= (7)验算砌体局部受压承载力:0l l N N fA ψηγ+≤ 三、砌体的受力性能 (1)砌体轴心抗压强度平均值表达式 (2)砌体轴心抗压强度标准值表达式 fk=fm-1.645σf=fm(1-1.645δf) (3)砌体轴心抗压强度设计值表达式 ()221107.01k f f k f m +=α

钢结构试题及答案

1.体现钢材塑性性能的指标是( C )P11 A .屈服点 B. 强屈比 C. 延伸率 D. 抗拉强度 2.在结构设计中,失效概率p f 与可靠指标β的关系为 ( B )。P4 A .p f 越大,β越大,结构可靠性越差 B .p f 越大,β越小,结构可靠性越差 C .p f 越大,β越小,结构越可靠 D .p f 越大,β越大,结构越可靠 3.对于受弯构件的正常使用极限状态是通过控制 ( B )来保证的。P108 A .稳定承载力 B .挠跨比 C .静力强度 D .动力强度 4. 钢框架柱的计算长度与下列哪个因素无关(C )P154 A.框架在荷载作用下侧移的大小 B.框架柱与基础的连接情况 C.荷载的大小 D. 框架梁柱线刚度比的大小 5. 格构式轴压构件绕虚轴的稳定计算采用了大于x λ的换算长细比ox λ是考虑(D )P92 A 格构构件的整体稳定承载力高于同截面的实腹构件 B 考虑强度降低的影响 C 考虑单肢失稳对构件承载力的影响 D 考虑剪切变形的影响 6. 摩擦型高强度螺栓连接与承压型高强度螺栓连接( C )P64 A 没有本质差别 B 施工方法不同 C 承载力计算方法不同 D 材料不同 7.为保证格构式构件单肢的稳定承载力,应(C )。 A 控制肢间距 B 控制截面换算长细比 C 控制单肢长细比 D 控制构件计算长度 8.梁的纵向加劲肋应布置在( C )。P123 A 靠近上翼缘 B 靠近下翼缘 C 靠近受压翼缘 D 靠近受拉翼缘 9.同类钢种的钢板,厚度越大( A )P23 A. 强度越低 B. 塑性越好 C. 韧性越好 D. 内部构造缺陷越少 10. 在低温工作的钢结构选择钢材除强度、塑性、冷弯性能指标外,还需(C )指标。P12 A. 低温屈服强度 B. 低温抗拉强度 C. 低温冲击韧性 D . 疲劳强度 11. 钢材脆性破坏同构件( D )无关。 A 应力集中 B 低温影响 C 残余应力 D 弹性模量 12.焊接残余应力不影响构件的(B )P49 A .整体稳定 B .静力强度 C .刚度 D .局部稳定 13.摩擦型连接的高强度螺栓在杆轴方向受拉时,承载力(C )P64 A .与摩擦面的处理方法有关 B .与摩擦面的数量有关 C .与螺栓直径有关 D .与螺栓的性能等级无关 14.直角角焊缝的焊脚尺寸应满足1min 5.1t h f ≥及2max 2.1t h f ?≤,则1t 、2t 分别为(A )的 厚度。P31 A .1t 为厚焊件,2t 为薄焊件 B .1t 为薄焊件,2t 为厚焊件 C .1t 、2t 皆为厚焊件 D .1t 、2t 皆为薄焊件 15.理想轴心受压构件失稳时,只发生弯曲变形,杆件的截面只绕一个主轴旋转,杆的纵轴由直 线变为曲线,这时发生的是(D )。P79 A .扭转屈曲 B .弯扭屈曲 C .侧扭屈曲 D .弯曲屈曲 16.对于受弯构件的正常使用极限状态是通过控制 ( B )来保证的。

砌体结构复习重点

概述 1、P262砌体结构系指主要承重构件(墙、柱)的材料是由块体和砂浆砌筑而成的。 2、P264 砌体结构的特色:(1)受力性能:受压好、受弯和受拉性能差;(2)材料来源:易就地取材;(3)施工制作:工序简单、劳动量大;(4)技术性能:保温、隔热、耐火、耐久及稳定性比混凝土结构好,抗震和抗振动性能比混凝土结构差。 3、P264 砌体结构适用于受压为主的结构构件(轴心受压和偏心距不大),以及需要就地取材的工程。 4、砌体结构承重体系有:横墙承重、纵墙承重和纵横墙同时承重体系。 5、混合结构系指主要承重构件由不同的材料所组成的房屋。 6、P267图28-2 砌体和混凝土的混合结构承重体系有:横墙承重体系、纵墙承重体系、内框架承重体系、混合型承重体系四类。 块体、砂浆、砌体的物理力学性能 P269砌体的块体可分为三大类:砖、砌块和石材。 砌体结构的类型由砖砌体结构、石砌体结构、砖石结构和砌块砌体结构四类。 P269表29-1 烧结普通砖强度等级划分:(1)影响因数:抗压强度平均值、变异系数、强度标准值和单块最小抗压强度值。(2)安抗压强度平均值初步划分。 工程应用对砖的要求:(1)强度;(2)抗风化性能;(3)抗冻融性能。 P270 我国烧结普通砖的强度等级工分为5级:MU10、MU15、MU20、MU25、MU30,其中最常用的是MU10和MU15。 P271常用的砂浆种类有水泥砂浆和混合砂浆,还有纯石灰、石膏、粘土等拌制的砂浆。P271 砂浆的强度等级有:、M5、、M10、M15。5层及以上的墙、柱常用砂浆等级M5。 P271对砂浆的要求除强度要求外,还有流动性和保水性的要求。 9、P271零号砂浆:(1)砂浆的抗压强度小于;(2)分为新拌砂浆和已凝固砂浆两类,前者工程无法避免,后者工程不允许;(3)零号砂浆砌体可承受一定的荷载。 10、P272砌体在轴心压力作用下从加载至破坏分为三个阶段:(1)弹性变形阶段;(2)裂缝稳定发展阶段;(3)裂缝非稳定发展阶段。 11、P273为什么砌体的抗压强度低于其组成块体的抗压强度 答:因为砌体受压时,其组成块体的受力很复杂。由于块体一般采用手工铺砌在厚度、密实性都很不均匀的砂浆层上,块体的受压面不平整,而且块体之间还有未能很好填满砂浆的竖缝,故当砌体受压时,块体实际处于不均匀受压、局部受压、受弯、受剪以及竖缝处的应力集中状态下。同时由于块体和砂浆受压后横向变形不同,受其间粘结应力影响,块体还处于受拉状态。块体抗压强度最高,而抗拉、抗剪、抗弯的性能较差,故在复杂受力状态下,砌体的抗压强度低于块体的抗压强度。 12、为什么砌体主要应用于轴心或偏心距不大的受压构件 答:由于作用砌体是由块材和砂浆粘结形成的,而块材和砂浆的抗弯、抗拉强度都很低。当作用于砌体的轴向力偏心距较大时,构件截面在很低的拉应力时就会产生裂缝,使砌体的抗压强度不能充分发挥作用。 13、P274影响砖砌体抗压强度的主要因素有:(1)砖的强度等级及砖的厚度;(2)砂浆强度等级及砂浆层铺砌厚度;(3)砌筑质量。 影响砖砌体抗压强度的主要因素有:砖的强度、砂浆的强度和砖的砌筑质量。 14、P277砌体抗拉、抗弯、抗剪强度主要受砂浆强度影响。 15、P279砌体局部受压时,周围砌体限制了局部受压砌体在竖向压力作用下的横向变形,

(完整版)管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算 在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、 二次流以及流动的分离及再附壁现象。此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。这种在局部 障碍物处产生的损失称为局部损失,其阻力称为局部阻力。因此一般的管路系统中,既有沿程损失,又有局部损失。 4.4.1 局部损失的产生的原因及计算 一、产生局部损失的原因 产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。这里结合几种常见的管道来说明。 ()() 图4.9 局部损失的原因 对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张 处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地 有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械 能。另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。局部损失就发生在旋涡开 始到消失的一段距离上。 图4.9()给出了弯曲管道的流动。由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的 压力。在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。 综上所述,碰撞和旋涡是产生局部损失的主要原因。当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。 在测量局部损失的实验中,实际上也包括了沿程损失。 二、局部损失的计算 如前所述,单位重量流体的局部能量损失以表示

建筑结构习题指南

一.填空题 1. 偏心受压构件正截面破坏有——和——破坏两种形态。当纵向压力N 的相对偏心距e 0/h 0较 大,且A s 不过多时发生——破坏,也称——。其特征为——。 2. 小偏心受压破坏特征是受压区混凝土——,压应力较大一侧钢筋——,而另一侧钢筋受拉 ——或者受压——。 3. 界限破坏指——,此时受压区混凝土相对高度为——。 4. 偏心受压长柱计算中,由于侧向挠曲而引起的附加弯矩是通过_____来加以考虑的。 5. 钢筋混凝土偏心受压构件正截面承载力计算时,其大小偏压破坏的判断条件是:当____为大 偏压破坏;当——为小偏压破坏。 6. 钢筋混凝土偏心受压构件在纵向弯曲的影响下,其破坏特征有两种类型:①——;②——。对于长柱、短柱和细长柱来说,短柱和长柱属于——;细长柱属于——。 7. 柱截面尺寸bxh (b 小于h),计算长度为l 0 。当按偏心受压计算时,其长细比为——;当按轴心受压计算时,其长细比为——。 8. 由于工程中实际存在着荷载作用位置的不定性、——及施工的偏差等因素,在偏心受压构件 的正截面承载力计算中,应计入轴向压力在偏心方向的附加偏心距e a ,其值取为——和——两者中的较大值。 9. 钢筋混凝土大小偏心受拉构件的判断条件是:当轴向拉力作用在A s 合力点及A s ’合力点—— 时为大偏心受拉构件;当轴向拉力作用在A s 合力点及A s ’合力点——时为小偏心受拉构件。 10. 沿截面两侧均匀配置有纵筋的偏心受压构件其计算特点是要考虑——作用,其他与一般配 筋的偏心受压构件相同。 11. 偏心距增大系数20120 1 1()1400i l e h h ηξξ=+ 式中:e i 为______;l 0/h 为_____;ξ1为 ______。 12. 受压构件的配筋率并未在公式的适用条件中作出限制,但其用钢量A s +A s ′最小为______,从经济角度而言一般不超过_____。 13. 根据偏心力作用的位置,将偏心受拉构件分为两类。当e 0______时为小偏心受拉, 当e 0______时为大偏心受拉。 14. 偏心受拉构件的斜截面承载力由于轴向拉力的存在而_____。 二.选择题 1. 钢筋混凝土大偏压构件的破坏特征是[ ]。 a .远离纵向力作用一侧的钢筋拉屈,随后另一侧钢筋压屈,混凝土亦压碎; b .靠近纵向力作用一侧的钢筋拉屈,随后另一侧钢筋压屈,混凝土亦压碎; c .靠近纵向力作用一侧的钢筋和混凝土应力不定,而另一侧受拉钢筋拉屈; d .远离纵向力作用一侧的钢筋和混凝土应力不定,而另一侧受拉钢筋拉屈。 2. 对于对称配筋的钢筋混凝土受压柱,大小偏心受压构件的判断条件是[ ]。 a .η e i 〈0.3h 0时,为大偏心受压构件; b.ξ>ξb 时,为大偏心受压构件; c .ξ≤ξb 时,为大偏心受压构件; d .ηe i >0.3h 0时,为大偏心受压构件。 3. 一对称配筋的大偏心受压柱,承受的四组内力中,最不利的一组内力为[ ]。 a . M=500kN ·m N=200KN ; b . M=491KN ·m N=304KN ; c . M=503KN ·m N=398KN ; d . M=-512KN ·m N=506KN 。 4. 一小偏心受压柱,可能承受以下四组内力设计值,试确定按哪一组内力计算所得配筋量最 大?[ ] a . M=525KN ·m N=2050KN ; b . M=525KN ·m N=3060KN ; c . M=525KN ·m N=3050KN ; d . M=525KN ·m N=3070KN 。

钢结构试题(卷)与答案解析

1.体现钢材塑性性能的指标是( ) A .屈服点 B. 强屈比 C. 延伸率 D. 抗拉强度 2.在结构设计中,失效概率p f 与可靠指标β的关系为 ( )。 A .p f 越大,β越大,结构可靠性越差 B .p f 越大,β越小,结构可靠性越差 C .p f 越大,β越小,结构越可靠 D .p f 越大,β越大,结构越可靠 3.对于受弯构件的正常使用极限状态是通过控制 ( )来保证的。 A .稳定承载力 B .挠跨比 C .静力强度 D .动力强度 4. 钢框架柱的计算长度与下列哪个因素无关( ) A.框架在荷载作用下侧移的大小 B.框架柱与基础的连接情况 C.荷载的大小 D. 框架梁柱线刚度比的大小 5. 格构式轴压构件绕虚轴的稳定计算采用了大于x λ的换算长细比ox λ是考虑( ) A 格构构件的整体稳定承载力高于同截面的实腹构件 B 考虑强度降低的影响 C 考虑单肢失稳对构件承载力的影响 D 考虑剪切变形的影响 6. 摩擦型高强度螺栓连接与承压型高强度螺栓连接( ) A 没有本质差别 B 施工方法不同 C 承载力计算方法不同 D 材料不同 7.为保证格构式构件单肢的稳定承载力,应( )。 A 控制肢间距 B 控制截面换算长细比 C 控制单肢长细比 D 控制构件计算长度 8.梁的纵向加劲肋应布置在( )。 A 靠近上翼缘 B 靠近下翼缘 C 靠近受压翼缘 D 靠近受拉翼缘 9.同类钢种的钢板,厚度越大( ) A. 强度越低 B. 塑性越好 C. 韧性越好 D. 内部构造缺陷越少 10. 在低温工作的钢结构选择钢材除强度、塑性、冷弯性能指标外,还需( )指标。

A. 低温屈服强度 B. 低温抗拉强度 C. 低温冲击韧性 D . 疲劳强度 11. 钢材脆性破坏同构件( )无关。 A 应力集中 B 低温影响 C 残余应力 D 弹性模量 12.焊接残余应力不影响构件的( ) A .整体稳定 B .静力强度 C .刚度 D .局部稳定 13.摩擦型连接的高强度螺栓在杆轴方向受拉时,承载力( ) A .与摩擦面的处理方法有关 B .与摩擦面的数量有关 C .与螺栓直径有关 D .与螺栓的性能等级无关 14.直角角焊缝的焊脚尺寸应满足1min 5.1t h f ≥及2max 2.1t h f ?≤,则1t 、2t 分别为( )的 厚度。 A .1t 为厚焊件,2t 为薄焊件 B .1t 为薄焊件,2t 为厚焊件 C .1t 、2t 皆为厚焊件 D .1t 、2t 皆为薄焊件 15.理想轴心受压构件失稳时,只发生弯曲变形,杆件的截面只绕一个主轴旋转,杆的纵轴由直 线变为曲线,这时发生的是( )。 A .扭转屈曲 B .弯扭屈曲 C .侧扭屈曲 D .弯曲屈曲 16.对于受弯构件的正常使用极限状态是通过控制 ( )来保证的。 A .稳定承载力 B .挠跨比 C .静力强度 D .动力强度 17.钢框架柱的计算长度与下列哪个因素无关( ) A.框架在荷载作用下侧移的大小 B.框架柱与基础的连接情况 C.荷载的大小 D. 框架梁柱线刚度比的大小 18.摩擦型高强度螺栓连接与承压型高强度螺栓连接( ) A 没有本质差别 B 施工方法不同 C 承载力计算方法不同 D 材料不同 19.为保证格构式构件单肢的稳定承载力,应( )。 A 控制肢间距 B 控制截面换算长细比

相关文档