文档库 最新最全的文档下载
当前位置:文档库 › 基于Matlab的数字锁相环的仿真设计

基于Matlab的数字锁相环的仿真设计

基于Matlab的数字锁相环的仿真设计
基于Matlab的数字锁相环的仿真设计

基于Matlab的数字锁相环的仿真设计

摘要:锁相环是一个能够跟踪输入信号相位变化的闭环自动跟踪系统。它广泛应用于无线电的各个领域,并且,现在已成为通信、雷达、导航、电子仪器等设备中不可缺少的一部分。然而由于锁相环设计的复杂性,用SPICE对锁相环进行仿真,数据量大,仿真时间长,而且需进行多次仿真以提取设计参数,设计周期长。本文借助于Matlab中Simulink仿真软件的灵活性、直观性,在Simulink 中利用仿真模块搭建了全数字锁相环的仿真模型。先借助模拟锁相环直观形象、易于理解的特点,通过锁相环在频率合成方面的应用,先对模拟锁相环进行了仿真,对锁相环的工作原理进行了形象的说明。在模拟锁相环的基础上,重新利用仿真模块搭建了全数字锁相环的仿真模型,通过仿真达到了设计的目的,验证了此全数字锁相环完全能达到模拟锁相环的各项功能要求。

关键词:锁相环,压控振荡器,锁定,Simulink,频率合成,仿真模块

1引言

1932年法国的H.de Bellescize提出同步捡波的理论,首次公开发表了对锁相环路的描述。到1947年,锁相环路第一次应用于电视接收机的水平和垂直扫描的同步。到70年代,随着集成电路技术的发展,逐渐出现集成的环路部件、通用单片集成锁相环路以及多种专用集成锁相环路,锁相环路逐渐变成了一个成本低、使用简便的多功能组件,为锁相技术在更广泛的领域应用提供了条件。锁相环独特的优良性能使其得到了广泛的应用,其被普遍应用于调制解调、频率合成、电视机彩色副载波提取、FM立体声解码等。随着数字技术的发展,相应出现了各种数字锁相环,它们在数字信号传输的载波同步、位同步、相干解调等方面发挥了重要的作用。而Matlab强大的数据处理和图形显示功能以及简单易学的语言形式使Matlab在工程领域得到了非常广泛的应用,特别是在系统建模与仿真方面,Matlab已成为应用最广泛的动态系统仿真软件。利用MATLAB建模可以快速地对锁相环进行仿真进而缩短开发时间。

1.1选题背景与意义

Matlab是英文MATrix LABoratory(矩阵实验室)的缩写。1980年,时任美国新墨西哥大学计算机系主任的Cleve Moler教授在给学生讲授线性代数课程时,为使学生从繁重的数值计算中解放出来,用FORTRAN语言为学生编写了方便使用Linpack和Eispack的接口程序并命名为MATLAB,这便是MATLAB的雏形。经过几年的校际流

传,在John Little的推动下,由John Little 、Cleve Moler和Steve Bangert合作,于1984年成立了MathWorks公司,并正式推出MATLAB第一版。以后,MATLAB版本不断更新,内容不断扩充,功能也越来越强大,并以其强大的扩展功能为其在各个领域的应用提供了基础。如今各个领域的专家学者相继推出了Matlab工具箱,其中主要有信号处理(signal processing)、控制系统(control system)、神经网络(neural network)、图形处理(image processing)、鲁棒控制(robust control)、非线性系统控制设计(nonlinear control system disign)、系统辨识(sys identification)、最优化(optimisation)、μ分析与综合(μ analysis and synthesis)、模糊逻辑(fuzzy logic)、小波(wavelet)、样条(spline)等工具箱、而且工具箱还在不断增加。这些工具箱给各个领域的研究和工程应用提供了有力的工具、借助于这些“巨人肩上的工具”,各个层次的研究人员可直观、方便地进行分析、计算及设计工作。

Simulink是Matlab的重要组成部分,它是MathWorks公司于20世纪90年代开发的产品,是Matlab环境下对动态系统进行建模、仿真和分析的一个软件包。它支持连续、离散及两者混合的线性和非线性系统,也支持具有多种采样频率的系统,Simulink 包含有Sinks(输入方式)、Source(输入源)、Linear(线性环节)、Nonlinear(非线性环节)、Connections(连接与接口)和Extra(其他环节)子模型库,而且每个子模型库中包含有相应的功能模块,且用户可以定制和创建用户自己的模块。在该软件环境下,用户可以在屏幕上调用现成的模块,并将它们适当连接起来以构成系统的模型,即所谓的可视化建模。建模以后,以该模型为对象运行simulink中的仿真程序,可以对模型进行仿真,并可以随时观察仿真结果和干预仿真过程。Simulink由于功能强大、使用简单方便,已成为应用最为广泛的动态系统仿真软件。

锁相环是继IC之后出现的新技术,其历史很悠久。锁相环的方案是与负反馈放大器同时提出的。在锁相环出现以前,几乎所有的无线接收机中都采用超外差方式。超外差接收方式是由E.H.Armstrong于1918年发明的,接收机接收来的电波信号与接收机内部振荡器产生的信号进行混频,从而得到较低频率的信号,即中频信号。再对中频信号进行检波与放大,然后驱动扬声器发声。这就构成了高灵敏度而频率选择性优良的接收机。然而,由于超外差接收机是由本振、混频、中频、放大器、检波器等组成的,其构成很复杂,而且,本振需要使用频率漂移非常小的振荡器。1932年,法国的H.de Bellescize提出采用PLL电路作为新的无线接收方式替代超外差方式,并发表了相关论文。当时不使用PLL术语,而称为Synchrodyne(同步接收机)。它是使内部振荡器与接

收的电波信号同步振荡,为此,原理上内部振荡器不会产生频率漂移,电路构成也比较简单。20世纪50年代,电视机实用化,电视机的垂直与水平同步电路广泛采用PLL电路。然而,当时还没有称之为PLL电路,而是根据其功能称为AF(Automatic Frequency Control,自动频率控制)。但是,由于技术上的复杂性以及较高的成本,锁相环的应用并没有得到普及,应用锁相电路的领域主要在航天方面,包括轨道卫星的测速定轨和深空探测,性能要求较高的精密测量仪器和通信设备有时也用到它。到70年代,随着集成电路技术的发展,逐渐出现集成的环路部件、通用单片集成锁相环路以及多种专用集成锁相环路,锁相环路逐渐变成了一个成本低、使用简便的多功能组件,这为锁相技术在更广泛的领域应用提供了条件。锁相环独特的优良性能使其得到了广泛的应用,其被普遍应用于调制解调、频率合成、电视机彩色副载波提取、FM立体声解码等。随着数字技术的发展,相应出现了各种数字锁相环,它们在数字信号传输的载波同步、位同步、相干解调等方面发挥了重要的作用。

近几年数字电路技术迅猛发展,尤其是大规模集成电路及微处理机的广泛应用,使得通信与控制方面一些复杂的、灵敏的信号处理方法能在数字域付诸实施。锁相环是相干数字通信系统中的关键部件,为了与数字系统兼容,吸收数字电路固有的可靠性、体积小、价格低等优点,人们在发展模拟锁相环的同时,亦致力于发展数字锁相环。数字锁相环除具有数字电路的优点外,还解决了若干模拟环遇到的难题,如直流零点漂移、部件饱和、必须进行初始校准等。这些都表明,数字锁相环的发展是必然的。因而对数字锁相环的研究具有非常现实的意义。

第一章锁相环的原理(模拟锁相环)

2方案介绍

锁相环是一个相位负反馈控制系统,它主要由三部分组成,分别是鉴相鉴频器(PFD)、环路滤波器(LF)和电压控制器(VCO)。其中鉴相鉴频器的作用是完成相位的比较,用来比较输入信号和基准信号之间的相位。它的输出电压正比于两个输入信号之间的相位差;环路滤波器(LF)是个线性电路,其作用是滤除鉴相器输出电压中的高频分量,起平滑滤波的作用.通常由电阻、电容或电感等组成,有时也包含运算放大器。压控振荡器(VCO),振荡频率受控制电压控制的振荡器,而振荡频率与控制电压之间成线性关系。在PLL中,压控振荡器实际上是把控制电压转换为相位。在此仿真模型中,我们基于频率合成的原理,在Simulink中用模块搭建了锁相环的仿真模型。如下图1

所示:

图1锁相环的仿真模型

其电路结构主要包括鉴相鉴频器(PFD)、低通滤波器(LPF)、压控振荡器(VCO)和分频器四部份。环路中使用了模拟的巴特沃斯低通滤波器和模拟的压控振荡器,在压控振荡器的输出端采用一个转换器把模拟信号转换成方波信号。其中脉冲发生器Pulse Generator产生幅值为1,占空比为50%,相位延迟为0,参考频率为

f=30MHz的方波

r

信号。经过M=3的分频器,变成10MH z的信号,送到鉴相器的参考信号输入端。在鉴相鉴频器中与压控振荡器经过N=10的分频器分频后的反馈信号比较相位误差,误差信号经过低通滤波器滤除其中的高频分量后送入压控振荡器,压控振荡器在误差信号的的控制下输出振荡信号。

3模型的建立

在锁相环路中,鉴相器起着关键的作用,它检测出参考信号与反馈信号之间的误差信号,是一个具有抽样性质的电路。当PFD检测到参考信号和反馈信号均有一次下降沿时,PFD输出一次相位误差。随后的相位误差被送入低通滤波器,低通滤波器滤除其中的高频信号,计算出控制信号送入压控振荡器,压控振荡器根据控制信号输出合成信号。合成信号经过分频器分频后,反馈到PFD,与参考信号比较相位误差。可以看出,锁相环这个闭环系统状态的变化依赖于PFD输出的相位误差。相位误差输出一次,锁相环状态改变一次;PFD不输出相位误差,锁相环里的所有信号均不改变状态。根据上面的分析,可以将仿真过程分为两个过程:

1)计算PFD输出的相位误差;

2)根据相位误差,计算锁相环里各个模块的状态。

下面根据算法顺序,依次介绍各个模块模型的建立。

3.1 鉴相临频器(PFD )

锁相环中的鉴相器又称相位检波器或相敏检波器,它的作用是检测输入信号和输出

信号的相位差,并将检测出的相位差信号转换成电压信号()d u t 输出,该信号经低通滤波

器滤波后形成压控振荡器的控制电压()c u t ,对振荡器输出信号的频率实施控制。对输入

信号与环路输出信号的相位进行比较, 产生误差控制电压,鉴相电路通常可以分为模拟

电路型和数字电路型两大类。而在集成电路系统中,常用的电路有乘积型鉴相和门电路

鉴相。鉴相器除了用于解调调相波外,还可构成鉴频电路。特别是在锁相环路中作为主

要部分得到了广泛的应用。

在此模拟锁相环的模型中,鉴相器用一个XOR 异或门来实现,因为两路二进制方波

异或的结果,只有完全相同才有0输出,丝毫的差异就有非0的输出,差别愈大,输出

的1的个数愈多。异或门的真值表如下图3所示

图4 (0-低电平;1-高电平)

在MATLAB 中我们搭建了鉴相器的仿真模型,如图4所示

图4 鉴相器的仿真模型

脉冲发生器A 产生频率为a f =1Hz ,脉冲宽度为50%,相位延迟为0的方波信号;脉冲

发生器B 产生频率为b f =2Hz ,脉冲宽度为50%,相位延迟为0的方波信号;经过异或

门之后到达示波器。其仿真结果如下图5所示:

图5 鉴相器的仿真波形

由仿真结果可见只有在两列方波完全相同的情况下才有0输出,只要一有差异,鉴

相器就会有高电平1输出。符合鉴相器特性要求。

3.2 环路低通滤波器(LPF )

在锁相环路中,环路滤波器的设计是决定锁相环路特性的重要问题。参考信号和压

控振荡器的反馈信号经过鉴相器的检测输出相位误差,相位差经过低通滤波器滤除其中

的高频分量和参杂在信号中的噪音,为压控振荡器提供控制信号。若环路滤波器的滤波

效果不理想,则使锁相环路产生自激振荡,由于噪音的干扰,锁相环路将无法进行锁定

或者锁定时间变长。对环路滤波器的要求是,在鉴相器的输出端衰减高频误差分量,以

提高抗干扰性能;在环路跳出锁定状态时,提高环路以短期存储,并迅速恢复信号。此

模型中采用一阶巴特沃斯低通滤波器。

巴特沃斯滤波器的Matlab 实现,采样率为8MHz ,通带截止频率 2.1p f MHz =,阻带截止

频率为 2.5s f MHz =,通带内波动3p R dB =,即通带内所允许的最大衰减;阻带内最小衰减

25s R dB ,程序如下:

f_N=8000; %采样率

f_p=2100;f_s=2500;R_p=3;R_s=25; %设计要求指标

Ws=f_s/(f_N/2);Wp=f_p/(f_N/2); %计算归一化角频率

[n,Wn]=buttord(Wp,Ws,R_p,R_s); %计算阶数和截止频率

[b,a]=butter(n,Wn); %计算H(z)

freqz(b,a,1000,8000) %作出H(z)的幅频相频图

subplot(2,1,1);axis([0 4000 -30 3]) %作图

程序运行后所设计的出的巴特沃斯低通滤波器的频率响应如图6所示

图6 巴特沃斯低通滤波器的频率响应

3.3 压控振荡器(VCO )

压控振荡器(Voltage-Controlled Oscillator )是一个电压—频率变换装置,在环路中作为被控振荡器,它的振荡频率随输入控制电压()c u t 线性地变化,即应有变换关系:

()()

v o o c t k u t ωω=+ 式中()v t ω是压控振荡器的瞬时角频率;o k 为控制灵敏度或称增益系数,单位是rad/s.V 。实际应用中的压控振荡器的控制特性只有有限的线性控制范围,超出这个范围之后控制灵敏度将会下降。由于压控振荡器的输出反馈到鉴相器上,对鉴相器输出误差电压U d (t)起作用的不是其频率,而是其相位,故压控振荡器具有一个积分因子1/p,

这是相位与角频率之间的积分关系形成的。锁相环路中要求压控振荡器输出的是相位,因此,这个积分作用是压控振荡器所固有的。正因为这样,通常称压控振荡器是锁相环路中的固有积分环节。这个积分作用在环路中起着相当重要的作用。所以压控振荡器应是一个具有线性控制特性的调频振荡器,对它的基本要求是:频率稳定度好(包括长期稳定度与短期稳定度;控制灵敏度K o 要高;控制特性的线性度要好;线性区域要宽等等。

在Matlab 中压控振荡器即表示为对连续信号的积分,它的输出信号的频率随着输入信号幅度的变化而发生相应的变化,其的工作原理通过下面的公式来描述:

1

0()cos(22())c c o y t A f t k u t dt ππ?=++? 其中,()u t 表示输入信号,()y t 表示输出信号。由于输出信号的频率取决于输入信号电压的大小,因此称为“压控振荡器”。其它影响压控振荡器输出信号的参数还有信号幅度c A 、中心振荡频率c f 、输入信号灵敏度o k 、以及初始相位?。

对上述公式进行变换,取输出信号的相角

1

022()c o f k u t dt ππ??=++? 对输出信号的相角?求微分,得到输出信号的角频率ω和

out f 分别为:

22()c o f k u t ωππ=+ /2()out c o f f k u t ωπ==+

从out f 的表达式中可以清楚地看到,压控振荡器输出信号的频率out f 与输入信号幅度()

u t 正比。当输入信号()u t 等于0时,输出信号的频率out f 等于c f ;当输入信号()u t 大于0时,

输出信号的频率out f 高于c f ;当输入信号()u t 小于0时,输出信号的频率out f 低于c f 。这样,通过改变输入信号的幅度大小就可以准确地控制输出信号的频率。

3.4 输出转换器

由于我们在此环路中使用了模拟器件,分别是一阶巴特沃斯低通滤波器和压控振荡器,所以在环路的输出端采用一个转换器,把压控振荡器的输出转换成数字式的方波信号其模型如下图7所示:

图7 输出转换器的模型

3.5 分频器

大部分的锁相环路都会在压控振荡器和鉴相鉴频器之间的反馈回路上包含有分频器,以便构成频率合成器。一个可编程的分频器在无线电传输应用中显得特别有用,因为在传输过程中使用的大量频率可以从一个单一的稳定的,精确的,而且较便宜的晶振得到。一些锁相环路在参考时钟和鉴相器的输入回路之间含有分频器。如果分频器的分频系数为M ,则压控振荡器的输出频率就等于参考频率乘以N/M ,为了使输入到锁相环路的信号的频率较低而在环路中使用分频器这看起来显得比较简单,但是在某些场合当参考频率受到其它因素限制的时候,分频器就显得优为重要。频率相乘可以通过使锁相环中锁定信号的“n ”次调谐信号而得到。在此模型的建立中使用了两个分频器,分别是在参考信号到鉴相器的输入回路中,分频系数为M=30;另一个是从压控振荡器到鉴相器的反馈回路中,分频系数为N=10。

4 仿真结果及分析

至此我们讨论完了模拟锁相环路在Matlab 的Simulink 环境下的各个模块的建模,建立了锁相环完整的仿真模型。由Pluse generator 脉冲发生器产生幅值为1,占空比为50%,相位延迟为0,参考频率为30r f MHz =的方波信号,经过Divide frequency by M

分频器分频后成为10r f MHz =的方波信号,送到鉴相器的参考信号输入端。VCO (压控振

荡器)的输出频率out o f f v Sen =+?,即输出频率等于Oscillation frequency (振荡频率)

o f 加上v (控制输入电压)与Input sencitivity(输入灵敏度) Sen 的乘积。VCO 的初始

值设定为30o f MHz =与40/Sen MHz V =。分频比设为N=10。低通滤波器的直流电压输出在

经历了开机以后短暂的过渡状态最终稳定在 1.75c U V =。此时

30401.751o u t o f f v S e n M H z =+?=+?= 但是,在仿真图中,随着()v t (控制电压)在1.75左右波动,输出频率还稍有差别。100MHz 的VCO(压控振荡器)输出经过N =10分频后变成10MHz 的信号送到鉴相器的监测信号输入端。输入到鉴相器的两个信号的差别,通过一阶低通巴特沃斯滤波器及Gai (放大器)后,变成稳定的直流控制电压,馈送到VCO 的电压输入端。下图8是控制电压的仿真波形:

图8 控制电压的仿真波形

由仿真波形可以清楚地看到,在环路开始工作的瞬间,控制作用还未建立起来,控制电压等于0,此时环路的瞬时频差等于固有频差。在捕获过程中,控制作用逐渐增强,控制频差逐渐加大,控制电压逐渐加大,经过一个短暂的波动过程,环路对输入的信号进行锁定,稳态频差等于0,稳态相差为一固定值。此时稳态相差即反映为误差电压,约为1.75v

下图9是VCO (压控振荡器)的输出波形:

图9 VCO (压控振荡器)的输出波形

3040 1.75100out o f f v Sen MHz =+?=+?= ,由上图可以看出VCO (压控振荡器)输出信号的频率约为9.93×107Hz ,基本符合理论计算值。

下图10是参考信号的波形:

图10 参考信号的波形

经过M =3的分频器后变为频率为10MHz 的信号。

由以上对于模拟锁相环在频率合成方面应用的仿真,我们对于锁相环的工作原理有了一个深刻的理解,一般锁相环可以用如下的原理框图来表示:

图11锁相环的原理框图

PLL 环路在某一因素作用下,利用输入与输出信号的相位差()e t ?产生误差电压,并通过环路滤波器滤除其中的非线性成分与噪声后得到的纯净控制信号()c t υ控制压控振荡器,使()e t ?朝着缩小固有角频差方向变化,一旦()e t ?趋向很小常数e ?∞(称为剩余相位

差)时,则锁相环路被锁定,即0i ωω= 。随着最近几年数字电路技术的发展以及锁相环技

术在现代电子技术中的重要性,数字锁相环也于1995年被提出,越来越多的研究者开始涉足全数字锁相环。第二章中将以以上频率合成的应用及图11中模拟锁相环的原理为指导,全面讨论全数字锁相环各个仿真模块在MATLAB 环境下的建立。

第二章 全数字锁相环

随着最近几年数字电路技术的发展,锁相环路在数字领域获得了越来越多的使用。与模拟锁相环相比,全数字锁相环不含无源器件、面积小、具有较强的抗噪声能力,锁定时间短,可以很方便地在各个工艺之间转换,重用性高,设计周期短。

5 方案介绍

全数字锁相环包括数字鉴相鉴频器(PDF )、数字滤波器(LPF )、数字振荡器(NCO )三部分,如下图12所示:

图12 全数字锁相环的仿真框图

由图12和图11的比较可以看出,全数字锁相环实际上是通过将模拟锁相环路替换成数字电路得到的。这意味着鉴相鉴频器(PDF )、环路低通滤波器(LPF )需要转换到离散系统。环路低通滤波器(LPF )可以通过一个希望的传输函数的拉普拉斯变换的z 变换而得到。压控振荡器需要转换成数控振荡器(Numerically Controlled Oscilaator )。下面详细讨论鉴相鉴频器(PDF )、环路低通滤波器(LPF )以及数控振荡器(Numerically Controlled Oscilaator )模型的建立。

6模型的建立

正和上述基于频率合成的模拟锁相环的仿真模型的建立相似,全数字锁相环仿真模型的建立也基于相同的算法:

锁相环闭环系统状态的变化依赖于PFD输出的相位误差。相位误差输出一次,锁相环状态改变一次;PFD不输出相位误差,锁相环里的所有信号均不改变状态。根据上面的分析,可以将仿真过程分为两个过程:1)计算PFD输出的相位误差;2)根据相位误差,计算锁相环里各个模块的状态。

6.1数字鉴相鉴频器(PDF)

PFD电路用于检测参考信号和反馈信号之间的相位误差。它的状态转换如图13所示

图13PFD(鉴相鉴频器)的状态转换图

当PFD(鉴相鉴频器)为0状态时,如果参考信号REF先出现一个下降沿,则PFD转换到1状态,发出up信号。反之,PFD转到-1状态,发出down信号。当PFD 检测到参考信号REF和反馈信号CLK均为低电平时,PFD复位到0状态。

通过以上分析,可以得出以下几点结论:

1) PFD 的抽样周期是由参考时钟和反馈时钟中较慢的时钟周期决定的;

2) 相位误差除了和当前时钟周期,还与上一次输出的相位误差有关;

3) 相位误差周期不超过参考时钟和反馈时钟中较慢的时钟周期;

4) 一次相位误差的输出需要参考时钟和反馈时钟的下降沿都出现过一次。当参考时钟频率和反馈时钟频率相差很大时,快时钟可能要经过几个周期,慢时钟才会出现一次下降沿。根据上述结论,可以用下面的程序来描述PFD的工作原理。

%PFD behavioral model in matlab environment

ev = p hase_error (i-1) ;

if ev = = 0

timeclk (i) = timeclk (i-1) + Tclk (i-1) ;

timeref (i) = timeref (i-1) + Tref (i-1) ;

end

if ev < 0 %timeclk (i-1) is bigger

timeclk (i) = timeclk (i-1) + mix Tclk ;

timeref (i) =

timeref ( i-1) + (fix ( ev/ Tref ( i-1) ) + 1) *

Tref (i-1) ;

end

if ev > 0 %timeclk (i-1) is smaller

timeref (i) = timeref (i-1) + Tref (i-1) ;

timeclk (i) =

timeclk (i-1) + fix (ev/ Tclk (i-1) )*

Tclk (i-1) + mix Tclk ;

end

p hase_error (i) = timeref (i)-timeclk (i) ;

上面的程序里,p hase_error (i-1) 代表第i-1 次PFD 相位误差输出; timeclk (i) 代表第i 次PFD 相位输出时反馈时钟下降沿出现的时间; Tclk (i) 代表第i 次PFD 相位误差输出后,DCO 经过分频器输出的反馈时钟周期。依此类推,timeref (i) 是第i 次PFD 相位输出时参考时钟下降沿出现的时间; Tref(i) 代表第i 次PFD 相位误差输出后输出的参考时钟周期;fix 是matlab 提供的取整函数

6.2 数字低通滤波器(LPF )

数字低通滤波器和模拟滤波器的作用一样,都是滤除高频信号,降低振荡器输出频率的抖动。本次仿真模型中使用的数字低通滤波器的传输函数为:

G(s)=21.88600613.2060170.99011e s es e s

-+-+- (1) 通过(1)式,可以很容易地推出数字低通滤波器的模型。

6.3 数控振荡器(NCO )

本文用一个子系统来构建数控振荡器。数控振荡器包含如下图14的一个子系统:

图14 数控振荡器模块

在MATLAB 中利用子系统的封装技术把上述子系统封装成一个数控振荡器模型如下图15所示:

图15 数控振荡器模型

与模拟压控振荡器相比,数控振荡器由频率稳定的信号钟Center Freq ,计数器与比较器组成,其输出是一取样脉冲序列,脉冲周期受数字环路滤波器送来的校正电压控制。前一个取样时刻的校正电压将改变下一个取样时刻的脉冲时间的位置。计数器记录信号钟的脉冲数目,直记录到其总数与加到比较器的控制电压0k y E +相对应,比较器才产生一个复位脉冲输出,使计数器复位,重新计数。复位脉冲也送到取样器,作为数字压控振荡器的取样脉冲输出。0E 是固定偏压,k y 为校正电压,当k y 等于零时,0E 控制输出复位脉冲的周期等于0T 。k y 是数字环路滤波器输出的校正电压,它将控制输出取样脉冲的周期。

数字压控振荡器的含义可以用数学式子表示。对于第k 个取样周期k T ,有

001k k T T T y N

-=- 式中0T /N 为数控振荡器周期相对于中心周期0T 变化的最小单位。当无控制时,1k y -=0,k T =0T ;有控制时周期以±0T /N 或其倍数的量相对于0T 作阶跃式的改变。与0T /N 相对应的相位改变量为:

2()rad N

π?= 所以N 是表示2π弧度内相位受控变化大小的一个量,也叫模2π内状态数。这就是说,数控振荡器输出脉冲的瞬时相位0()k θ,在2π弧度内只能以?或其倍数离散地变化。在这时,0T /N =c T ,c T 为信号钟的周期,因此有:0c

T N T = 6.4 仿真结果及分析

至此我们在模拟锁相环的基础上介绍完了全数字锁相环在MATLAB 中仿真模型的建立,其仿真模型如下图16所示:

图16 全数字锁相环的仿真模型

其中输入的参考信号源输入频率为6/2210/21ref f MHz ωπππ==??=,运行仿真,得如下的仿真结果:

图17 数控振荡器输出信号的频率幅度响应曲线

图18 经过数字数字滤波器后的控制字

图19 由Scope 示波器观测到的输入参考信号(上)与数控振荡器的输出信号(下)

由以上的住址数据可以看出,当输入的参考信号为6/2210/21ref f MHz ωπππ==??=时,图17显示全数字锁相环的输出信号频率约为out f =1.1MHz ;由图18显示的经过数字数字滤波器后的控制字,对过大约5微秒后环路进入锁定状态,此时由图19我们可以清楚地看到此时环路的输出(下方)已经与输入参考信号同步。由以上的模拟锁相环的仿真结果与全数字锁相环的仿真结果来看,两次仿真都达到了仿真的预期效果。 7 结 论

本文基于锁相环的工作原理,以参考文献中的锁相环为原型,在Matlad 的Simulink 环境下,先用模块搭建了模拟锁相环的仿真模型,利用锁相环路在频率合成方面的应用以及模拟锁相环直观形象、易于理解的特点对锁相环路的工作原理进行了仿真,从仿真结果看,模拟锁相环的仿真完全达到了预期的效果。第二章在模拟锁相环的基础上用仿真模块搭建了全数字锁相环的仿真模型,对全数字锁相环的工作过程进行了仿真,从仿真结果看,该全数字锁相环仿真模型完全达到了对全数字锁相环仿真的目的。在仿真波形中,我们可以看到环路输出信号与输入参考信号存在一个较小的相差,而这个较小的

相差正是维持环路工作所必需的。两个仿真模型完全对锁相环路自输入信号加入环路致环路到达锁定的全过程进行了仿真,诸如捕获过程、同步,并借助Matlab强大的可视化图形表现功能,以图形的形式显示了各个信号在仿真过程中的行为表现。其中全数字锁相环的仿真模型可以直接应用到实际工程中。

致谢

毕业设计即将结束,心里感到很高兴。在本论文完成之际,首先要向我的指导老师黄际乐老师致以诚挚的谢意。在论文的写作过程中,黄老师给了我许许多多的帮助和关怀。黄老师学识渊博、治学严谨,平易近人,在黄老师的悉心指导中,我不仅学到了扎实的专业知识,也在怎样处人处事等方面收益很多;同时他对工作的积极热情、认真负责、有条不紊、实事求是的态度,给我留下了深刻的印象,使我受益非浅。在此我谨向黄老师表示衷心的感谢和深深的敬意。

同时,我要感谢给我们授课的各位老师,正是由于他们的传道、授业、解惑,让我学到了专业知识,并从他们身上学到了如何求知治学、如何为人处事。我也要感谢我的母校河池学院,是她提供了良好的学习环境和生活环境,让我的大学生活丰富多姿,为我的人生留下精彩的一笔。

另外,衷心感谢我的同窗同学们和物电系的师兄师姐们,在我毕业论文写作中,与他们的探讨交流使我受益颇多;同时,他们也给了我很多无私的帮助和支持,我在次深表谢意。

最后,向我的亲爱的家人和亲爱的朋友表示深深的谢意,他们给予我的爱、理解、关心和支持是我不断前进的动力。

学无止境。明天,将是我终身学习另一天的开始。

锁相环电路设计

锁相环的原理 2007-01-23 00:24 1.锁相环的基本组成 许多电子设备要正常工作,通常需要外部的 输入信号与部的振荡信号同步,利用锁相环 路就可以实现这个目的。 锁相环路是一种反馈控制电路,简称锁相环(PLL)。锁相环的特点是:利用外部输入的参考信号控制环路部振荡信号的频率和相位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。 2.锁相环的工作原理 锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为: (8-4-1) (8-4-2) 式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。则模拟乘法器的输出电压u D为: 用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压u C (t)。即u C(t)为: (8-4-3) 式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:

锁相环应用电路仿真

高频电子线路实训报告锁相环路仿真设计 专业 学生姓名 学号 2015 年 6 月24日

锁相环应用电路仿真 锁相环是一种自动相位控制系统,广泛应用于通信、雷达、导航以及各种测量仪器中。锁相环及其应用电路是“通信电子电路”课程教学中的重点容,但比较抽象,还涉及到新的概念和复杂的数学分析。因此无论是教师授课还是学生理解都比较困难。为此,我们将基于Multisim的锁相环应用仿真电路引入课堂教学和课后实验。实践证明,这些仿真电路可以帮助学生对相关容的理解,并为进行系统设计工作打下良好的基础。锁相环的应用电路很多,这里介绍锁相环调频、鉴频及锁相接收机的Multisim仿真电路。 1.锁相环的仿真模型 首先在Multisim软件中构造锁相环的仿真模型(图1)。基本的锁相环由鉴相器(PD)、环路滤波器(I P)和压控振荡器(VCO)三个部分组成。图中,鉴相器由模拟乘法器A 实现,压控振荡器为V3,环路滤波器由R1、C1构成。环路滤波器的输出通过R2、R3串联分压后加到 压控振荡器的输入端,直流电源V2用来调整压控振荡器的中心频率。仿真模型中,增加R2、R3及的目的就是为了便于调整压控振荡器的中心频率。 图1 锁相环的仿真模型 2.锁相接收机的仿真电路 直接调频电路的振荡器中心频率稳定度较低,而采用晶体振荡器的调频电路,其调频围又太窄。采用锁相环的调频器可以解决这个矛盾。其结构原理如图2所示。

图2 锁相环调频电路的原理框图 实现锁相调频的条件是调制信号的频谱要处于低通滤波器通带之外,也就是说,锁相环路只对慢变化的频率偏移有响应,使压控振荡器的中心频率锁定在稳定度很高的晶振频率上。而随着输人调制信号的变化,振荡频率可以发生很大偏移。 图3 锁相环调频的仿真电路 根据图2建立的仿真电路如图3所示。图中,设置压控振荡器V1在控制电压为0时,输出频率为0;控制电压为5V时,输出频率为50kHz。这样,实际上就选定了压控振荡器的中心频率为25kHz,为此设定直流电压V3为2.5V。调制电压V4通过电阻Rs接到VCO的输人端,R实际上是作为调制信号源V4的阻,这样可以保证加到VCO输人端的电压是低通滤波器的输出电压和调制电压之和,从而满足了原理图的要求。本电路中,相加功能也可以通过一个加法器来完成,但电路要变得相对复杂一些。 VCO输出波形和输人调制电压的关系如图4所示。由图可见,输出信号频率随着输人信号的变化而变化,从而实现了调频功能。

基于Matlab的数字锁相环的仿真设计金佳琪

基于Matlab的数字锁相环的仿真设计 1115101021 金佳琪 摘要:锁相环是一个能够跟踪输入信号相位变化的闭环自动跟踪系统。它广泛应用于无线电的各个领域,并且,现在已成为通信、雷达、导航、电子仪器等设备中不可缺少的一部分。然而由于锁相环设计的复杂性,用SPICE对锁相环进行仿真,数据量大,仿真时间长,而且需进行多次仿真以提取设计参数,设计周期长。本文借助于Matlab中Simulink仿真软件的灵活性、直观性,在Simulink 中利用仿真模块搭建了全数字锁相环的仿真模型。利用仿真模块搭建了全数字锁相环的仿真模型,通过仿真达到了设计的目的,验证了此全数字锁相环能达到的各项功能要求。 关键词:锁相环,MATLAB,锁定,Simulink,频率合成 全数字锁相环 随着最近几年数字电路技术的发展,锁相环路在数字领域获得了越来越多的使用。与模拟锁相环相比,全数字锁相环不含无源器件、面积小、具有较强的抗噪声能力,锁定时间短,可以很方便地在各个工艺之间转换,重用性高,设计周期短。 方案介绍 全数字锁相环包括数字鉴相鉴频器(PDF)、数字滤波器(LPF)、数字振荡器(NCO)三部分,如下图12所示: 图1 全数字锁相环的仿真框图 由图12和图11的比较可以看出,全数字锁相环实际上是通过将模拟锁相环路替换成数字电路得到的。这意味着鉴相鉴频器(PDF)、环路低通滤波器(LPF)需要转换到离散系统。环路低通滤波器(LPF)可以通过一个希望的传输函数的拉普拉斯变换的z变换而得到。压控振荡器需要转换成数控振荡器(Numerically Controlled Oscilaator)。下面详细讨论鉴相鉴频器(PDF)、环路低通滤波器(LPF)以及数控振荡器(Numerically Controlled Oscilaator)模型的建立。 模型的建立 正和上述基于频率合成的模拟锁相环的仿真模型的建立相似,全数字锁相环仿真模型的建立也基于相同的算法: 锁相环闭环系统状态的变化依赖于PFD输出的相位误差。相位误差输出一次,锁相环状态改变一次;PFD不输出相位误差,锁相环里的所有信号均不改变状态。根据上

模拟锁相环实验报告

实验一 模拟锁相环模块 一、实验原理和电路说明 模拟锁相环模块在通信原理综合实验系统中可作为一个独立的模块进行测试。在系统工作中模拟锁相环将接收端的256KHz 时钟锁在发端的256KHz 的时钟上,来获得系统的同步时钟,如HDB3接收的同步时钟及后续电路同步时钟。 f 0=256K H z 64K H z U P 04U P 03B U P 02 U P 01512K H z 分频器÷4 分频器÷8 H D B 3 环路 滤波器 放大器图 2.1.1 模拟锁相环组成框图 T P P 02T E S T 跳线器K P 02V C O T P P 03T P P 06 T P P 04T P P 05 256K b itp s T P P 07带通滤波器 T P P 01 U P 03A 64K H z 该模块主要由模拟锁相环UP01(MC4046)、数字分频器UP02(74LS161)、D 触发器UP04(74LS74)、环路滤波器和由运放UP03(TEL2702)及阻容器件构成的输入带通滤波器(中心频率:256KHz )组成。在UP01内部有一个振荡器与一个高速鉴相器组成。该模拟锁相环模块的框图见图2.1.1。因来自发端信道的HDB3码为归零码,归零码中含有256KHz 时钟分量,经UP03B 构成中心频率为256KHz 有源带通滤波器后,滤出256KHz 时钟信号,该信号再通过UP03A 放大,然后经UP04A 和UP04B 两个除二分频器(共四分频)变为64KHz 信号,进入UP01鉴相输入A 脚;VCO 输出的512KHz 输出信号经UP02进行八分频变为64KHz 信号,送入UP01的鉴相输入B 脚。经UP01内部鉴相器鉴相之后的误差控制信号经环路滤波器滤波送入UP01的压控振荡器输入端;WP01可以改变模拟锁相环的环路参数。正常时,VCO 锁定在外来的256KHz 频率上。 模拟锁相环模块各跳线开关功能如下:

基于Matlab的数字锁相环的仿真设计

基于Matlab的数字锁相环的仿真设计 摘要:锁相环是一个能够跟踪输入信号相位变化的闭环自动跟踪系统。它广泛应用于无线电的各个领域,并且,现在已成为通信、雷达、导航、电子仪器等设备中不可缺少的一部分。然而由于锁相环设计的复杂性,用SPICE对锁相环进行仿真,数据量大,仿真时间长,而且需进行多次仿真以提取设计参数,设计周期长。本文借助于Matlab中Simulink仿真软件的灵活性、直观性,在Simulink 中利用仿真模块搭建了全数字锁相环的仿真模型。先借助模拟锁相环直观形象、易于理解的特点,通过锁相环在频率合成方面的应用,先对模拟锁相环进行了仿真,对锁相环的工作原理进行了形象的说明。在模拟锁相环的基础上,重新利用仿真模块搭建了全数字锁相环的仿真模型,通过仿真达到了设计的目的,验证了此全数字锁相环完全能达到模拟锁相环的各项功能要求。 关键词:锁相环,压控振荡器,锁定,Simulink,频率合成,仿真模块 1引言 1932年法国的H.de Bellescize提出同步捡波的理论,首次公开发表了对锁相环路的描述。到1947年,锁相环路第一次应用于电视接收机的水平和垂直扫描的同步。到70年代,随着集成电路技术的发展,逐渐出现集成的环路部件、通用单片集成锁相环路以及多种专用集成锁相环路,锁相环路逐渐变成了一个成本低、使用简便的多功能组件,为锁相技术在更广泛的领域应用提供了条件。锁相环独特的优良性能使其得到了广泛的应用,其被普遍应用于调制解调、频率合成、电视机彩色副载波提取、FM立体声解码等。随着数字技术的发展,相应出现了各种数字锁相环,它们在数字信号传输的载波同步、位同步、相干解调等方面发挥了重要的作用。而Matlab强大的数据处理和图形显示功能以及简单易学的语言形式使Matlab在工程领域得到了非常广泛的应用,特别是在系统建模与仿真方面,Matlab已成为应用最广泛的动态系统仿真软件。利用MATLAB建模可以快速地对锁相环进行仿真进而缩短开发时间。 1.1选题背景与意义 Matlab是英文MATrix LABoratory(矩阵实验室)的缩写。1980年,时任美国新墨西哥大学计算机系主任的Cleve Moler教授在给学生讲授线性代数课程时,为使学生从繁重的数值计算中解放出来,用FORTRAN语言为学生编写了方便使用Linpack和Eispack的接口程序并命名为MATLAB,这便是MATLAB的雏形。经过几年的校际流

基于锁相环的频率合成电路设计

基于锁相环的频率合成电路设计 0 引言 锁相环简称PLL,是实现相位自动控制的一门技术,早期是为了解决接收机的同步接收问题而开发的,后来应用在电视机的扫描电路中。由于锁相技术的发展,该技术已逐渐应用到通信、导航、雷达、计算机到家用电器的各个领域。自从20 世纪70年代起,随着集成电路的发展,开始出现集成的锁相环器件、通用和专用集成单片锁相环,使锁相环逐渐变成一个低成本、使用简便的多功能器件。如今,PLL 技术主要应用在调制解调、频率合成、彩电色幅载波提取、雷达、FM立体声解码等各个领域。随着数字技术的发展,还出现了各种数字PLL器件,它们在数字通信中的载波同步、位同步、相干解调等方面起着重要的作用。随着现代电子技术的飞快发展,具有高稳定性和准确度的频率源已经成为科研生产的重要组成部分。高性能的频率源可通过频率合成技术获得。随着大规模集成电路的发展,锁相式频率合成技术占有越来越重要的地位。由一个或几个高稳定度、高准确度的参考频率源通过数字锁相频率合成技术可获得高品质的离散频率源。 1 锁相环及频率合成器的原理 1.1 锁相环原理 PLL是一种反馈控制电路,其特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。因PLL可以实现输出信号频率对输入信号频率的自动跟踪,所以PLL通常用于闭环跟踪电路。PLL在工作的过程中,当输出信号的频率与输入信号的频率相同时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是PLL名称的由来。PLL通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,PLL组成的原理框图如图1所示。 PLL中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图2所示。

基于matlab的二阶锁相环仿真设计

1 绪论 1.1 课题背景及研究意义 在现代集成电路中,锁相环(Phase Locked Loop)是一种广泛应用于模拟、数字及数模混合电路系统中的非常重要的电路模块。该模块用于在通信的接收机中,其作用是对接收到的信号进行处理,并从其中提取某个时钟的相位信息。或者说,对于接收到的信号,仿制一个时钟信号,使得这两个信号从某种角度来看是同步的(或者说,相干的)。其作用是使得电路上的时钟和某一外部时钟的相位同步,用于完成两个信号相位同步的自动控制,即锁相。它是一个闭环的自动控制系统,它将自动频率控制和自动相位控制技术融合,它使我们的世界的一部分有序化,它的输出信号能够自动跟踪输入信号的相位变化,也可以将之称为一个相位差自动跟踪系统,它能够自动跟踪两个信号的相位差,并且靠反馈控制来达到自动调节输出信号相位的目的。其理论原理早在上世纪30年代无线电技术发展的初期就已出现,至今已逐步渗透到各个领域。伴随着空间技术的出现,锁相技术大力发展起来,其应用范围已大大拓宽,覆盖了从通信、雷达、计算机到家用电器等各领域。锁相环在通信和数字系统中可以作为时钟恢复电路应用;在电视和无线通信系统中可以用作频率合成器来选择不同的频道;此外,PLL还可应用于频率调制信号的解调。总之,PLL已经成为许多电子系统的核心部分。 锁相环路种类繁多,大致可分类如下]1[。 1.按输入信号特点分类 [1]恒定输入环路:用于稳频、频率合成等系统。 [2]随动输入环路:用于跟踪解调系统。 2.按环路构成特点分类 [1]模拟锁相环路:环路部件全部采用模拟电路,其中鉴相器为模拟乘法器,该类型的锁相环也被称作线性锁相环。 [2]混合锁相环路:即由模拟和数字电路构成,鉴相器由数字电路构成,如异或门、JK触发器等,而其他模块由模拟电路构成。 [3]全数字锁相环路:即由纯数字电路构成,该类型的锁相环的模块完全由数字电路构成而且不包括任何无源器件,如电阻和电容。 [4]集成锁相环路:环路全部构成部件做在一片集成电路中。

简述锁相环

南京机电职业技术学院 毕业设计(论文) 题目 40MHz简易锁相环的设计 系部电子工程系专业电子信息技术工程 姓名王鑫学号 G1210145 指导教师吕彬森 2015 年 04 月09日

摘要 在无线收发信机电路中,除了发射机和接收机外,还有一个非常重要的部分就是本地振荡电路。为了保证本地振荡模块输出信号的频率稳定性和较低的相位噪声,通常本振采用锁相环技术来实现,特别在无线通信领域。 本文阐述了锁相环的基本结构和工作原理,从锁相环稳定性的角度出发,给出了无线通信电路中使用40MHz 锁相环的电路设计,并且将方案中锁相环电路进行了仿真,最终满足40MHz 锁相环的设计要求。 关键词:锁相环;鉴相器;压控振荡器

Abstract(外语专业的需要) 【英文摘要正文输入】 In the wireless transceiver circuit, in addition to the transmitter and the receiver, there is a very important part of the local oscillator circuit is. In order to ensure the stability of the local oscillator module, output signal frequency and low phase noise, the vibration by using phase locked loop technique, especially in the field of wireless communications. This paper introduces the basic structure and working principle of the phase-locked loop PLL, starting from the stability of the 40MHz PLL circuit design is given of the use of wireless communication circuit, and the scheme of PLL circuit simulation, and ultimately meet the design requirements of 40MHz phase locked loop. Keywords: Attenuation network; Attenuation quantity; Amplifier; broadband

锁相环仿真(基于MATLAB)

锁相环仿真 1.锁相环的理论分析 1.1锁相环的基本组成 锁相环路是一种反馈控制电路,简称锁相环(PLL,Phase-Locked Loop)。锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。锁相环通常由鉴相器(PD,Phase Detector)、环路滤波器(LF,Loop Filter)和压控振荡器(VCO,Voltage Controlled Oscillator)三部分组成,锁相环组成的原理框图如图示: 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。 1.2锁相环的工作原理 1.2.1鉴相器 锁相环中的鉴相器(PD)通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图示: 鉴相器的工作原理是:设外界输入的信号电压和压控振荡 器输出的信号电压分别为: 式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。则模拟乘法器的输出电压u D为:

1.2.2 低通滤波器 低通滤波器(LF)的将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压u C(t)。即u C(t)为: 式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为: 即 则,瞬时相位差θd为 对两边求微分,可得频差的关系式为 上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态,u c(t)为恒定值。当上式不等于零时,说明锁相环的相位还未锁定,输入信号和输出信号的频率不等,u c(t)随时间而变。 1.2.3 压控振荡器 压控振荡器(VCO)的压控特性如图示 该特性说明压控振荡器的振荡频率ωu以ω0为中心,随输入信号电压u c(t)线 性地变化,变化的关系如下:

基于MATLAB的数字锁相环的仿真设计讲解

本科生毕业设计(申请学士学位) 论文题目基于Matlab的 数字锁相环的仿真设计 作者姓名 专业名称电子信息工程 指导教师 2014年5月

学生:(签字)学号: 答辩日期:2014 年 5 月24 日指导教师:(签字)

目录 摘要 (1) Abstract (1) 1 绪论 (2) 1.1 本文研究背景 (2) 1.2 本文研究意义 (2) 1.3 锁相环和仿真方式 (2) 1.3.1 锁相环 (2) 1.3.2 仿真方式 (2) 1.4 本文研究内容 (3) 2 模拟锁相环Matlab仿真 (3) 2.1 模拟锁相环方案 (3) 2.1.1 模拟鉴相器 (3) 2.1.2 模拟低通滤波器 (6) 2.1.3 模拟压控振荡器 (7) 2.2 模拟锁相环仿真 (8) 2.3 本章小结 (9) 3 数字锁相环Matlab仿真 (10) 3.1 数字锁相环方案 (10) 3.1.1 数字鉴相器 (10) 3.1.2 数字滤波器 (12) 3.1.3 数字压控振荡器 (13) 3.2 数字锁相环仿真 (14) 3.3 本章小结 (15) 4 总结与展望 (15) 参考文献 (16) 致谢 (18)

基于Matlab的数字锁相环的仿真设计 摘要:锁相环是一种能够自动跟踪信号相位并达到锁频目的的闭环负反馈系统。数字锁相环在无线电领域得到较广泛的应用和发展。而且已经成为雷达、通信、导航等各类电子信号产品不可替代的元器件之一。锁相环的窄带跟踪性能使其得到较广泛应用。因为锁相技术在实际应用中较为复杂,所以锁相环的设计通常采用仿真设计这种方式。本次设计采用Matlab这一软件进行辅助仿真设计,完全能达到设计预期的目标。Matlab中的Simulink仿真软件,具有很强的灵活性和直观性。本次设计所采用的方法是在simulink中搭建模拟锁相的模型,并对模拟锁相环的组成、结构、设计进行不断的分析和改进。然后根据模拟锁相环的原理进行改进,并搭建数字锁相环。 关键词:锁相环;自动跟踪;matlab;simulink Simulative design of digital phase-locked loop based on Matlab Abstract:PLL is the automatic tracking system of close loop atracking signal phase. It is widely used in various fields of radio. It has become an irreplaceable part of radar, communication, navigation and all kinds of electronicsignal device. PLL is able to be widely used. Because, it has unique narrow-band tracking performance. However, because of the complexity of phase lock technique, for the design of PLL have brought great difficulty. This design uses Matlab, the simulative software for design assistance, can completely meet the design expectations. Simulink simulative software on Matlab, has strong flexibility and intuitive. Methods used by this project is to build the analog phase locked in the Simulink model, and the composition, structure, design of analog phase-locked loop of continuous improvement and analysis. It improved according to the principle of analog PLL, build digital phase-locked loop in Simulink, and then reach the simulation design of digitalphase-locked loop based on Matlab the design objective . Key words: PLL, Automatic tracking, Matlab, simulink

锁相环设计与MATLAB仿真

本科毕业设计论文 题目锁相环设计与MATLAB仿真 _______________________________________ 专业名称电子科学与技术 学生姓名何鹏 指导教师李立欣 毕业时间2010年6月

毕业 任务书 一、题目 《锁相环设计与MATLAB 仿真》 二、指导思想和目的要求 在了解锁相环的基本工作原理的基础上,熟悉其构成及数学模型,在对锁相环有了充分的要了解后,运用MATLAB 仿真软件对其进行仿真。通过仿真看锁相环是否工作正常,参数指标是否合格来判断是否达到了仿真要求。 三、主要技术指标 1.锁相环的基本原理 2.锁相环工作期间是否经历了失锁、跟踪、捕获、锁定等四个状态。 3.锁定后平率相位是否平稳。 四、进度和要求 第3~5 周:查阅和整理资料文献,确定研究模型和研究方向; 第6~8 周:分析模型,找出其中的缺陷; 第9~11 周: 提出更容易实现的结构,对该结构具体分析; 第11~13 周:整理资料进行论文撰写、装订并翻译英文文献; 第14~15 周: 论文评阅,答辩准备,答辩 五、主要参考书及参考资料 Floyd M .Gardner,锁相环技术(第三版)姚剑清 译,人民邮电出版社,2007 Roland E.Best,锁相环设计、仿真与应用(第五版),李永明 等译,清华学出版社,2007.4 学生 ___________ 指导教师 ___________ 系主任 ___________ 设计 论文

目录 中文摘要 (3) 英文摘要 (4) 前言 (6) 第一章绪论 (7) 1.1 锁相环的发展及国内外研究现状 (7) 1.2 本文的主要内容组织 (9) 第二章锁相环的基本理论 (10) 2.1锁相环的工作原理 (11) 2.1.1鉴相器 (11) 2.1.2 低通滤波器 (13) 2.1.3 压控振荡器 (15) 2.2锁相环的工作状态 (15) 2.3锁相环的非线性工作性能分析 (17) 2.3.1跟踪性能 (18) 2.3.2捕获性能 (18) 2.3.3失锁状态 (19) 2.4锁相环的稳定性 (20) 2.5信号流程图 (21) 2.6锁相环的优良特性 (21) 2.7锁相环的应用 (22) 2.7.1锁相环在调制和解调中的应用 (22) 2.7.2锁相环在频率合成器中的应用 (23) 2.8本章小结 (23) 第三章锁相环的噪声分析 (24)

Saber常见电路仿真实例介绍

Saber常见电路仿真实例 一稳压管电路仿真 (2) 二带输出钳位功能的运算放大器 (3) 三5V/2A的线性稳压源仿真 (4) 四方波发生器的仿真 (7) 五整流电路的仿真 (10) 六数字脉冲发生器电路的仿真 (11) 七分频移相电路的仿真 (16) 八梯形波发生器电路的仿真 (17) 九三角波发生器电路的仿真 (18) 十正弦波发生器电路的仿真 (20) 十一锁相环电路的仿真 (21)

一稳压管电路仿真 稳压管在电路设计当中经常会用到,通常在需要控制电路的最大输入、输出或者在需要提供精度不高的电压参考的时候都会使用。下面就介绍一个简单例子,仿真电路如下图所示: 在分析稳压管电路时,可以用TR分析,也可以用DT分析。从分析稳压电路特性的角度看,DT分析更为直观,它可以直接得到稳压电路输出与输入之间的关系。因此对上面的电路执行DT分析,扫描输入电压从9V到15V,步长为0.1V,分析结果如下图所示: 从图中可以看到,输入电压在9~15V变化,输出基本稳定在6V。需要注意的是,由于Saber仿真软件中的电源都是理想电源,其输出阻抗为零,因此不能直接将电源和稳压管相连接,如果直接连接,稳压管将无法发挥作用,因为理想电源能够输

出足以超出稳压管工作范围的电流。 二带输出钳位功能的运算放大器 运算放大器在电路设计中很常用,在Saber软件中提供了8个运放模板和大量的运放器件模型,因此利用Saber软件可以很方便的完成各种运方电路的仿真验证工作.如下图所示的由lm258构成的反向放大器电路,其放大倍数是5,稳压二极管1N5233用于钳位输出电压. 对该电路执行的DT分析,扫描输入电压从-2V->2V,步长为0.1V,仿真结果如下图所示:

数字锁相环参数设计与仿真

%%***********************************************% % author: sjqian % date: 2013 07 17 % description: %**************************************************** %*************system initial************************* clc; clear all; close all; Legtick=['g-o';'k-x';'b-v';'r-o';'m-x';'c-v';'r-s';'y-v';'g-s';'k-x';'b-o';]; adB=10; Qb=10; % generate input signal f=100; fs=400; Ts=1/fs; N=10;% depth of lookuptable resulution=fs/(2^N); freqCon=round(f/resulution); Kd=2^(adB+Qb); K0=2*pi/(2^N); loop=1; BL=10; BWacq=0.42*BL; wn=BL/0.53; Tacq=1.2/BL/Ts; Gain=Kd*K0; zeta=sqrt(2)/2; c1=2*zeta*wn*Ts/Gain; c2=(wn*Ts)^2/Gain; t=0/fs:1/fs:2;

fmod=f+BWacq; a=2^adB*sin(2*pi*fmod*t+pi/6)+10*randn(1,length(t)); a=round(a); b=zeros(1,length(a)); index=(0:2^N-1)/(2^N); table=round(2^Qb*sin(2*pi*index)); phaseindex=freqCon+1; b(1)=table(1);b(2)=table(freqCon+1); path2(1)=0; for i=2:length(t) dp(i)=a(i-1)*b(i)-a(i)*b(i-1); path1=c1*dp(i); path2(i)=path2(i-1)+c2*dp(i); phaseindex=phaseindex+freqCon+path1+path2(i); phaseindex=mod(round(phaseindex),2^N); b(i+1)=table(phaseindex+1); end figure; plot(a); hold on; plot(b,'r'); title('timing waveform'); grid on; figure; plot(dp); stit=sprintf('phase detector output,converge time=%d point',Tacq); title(stit); grid on; figure; plot(path2*resulution); title({'frequency offset estimation value ',num2str(BWacq)});

模拟锁相环实验报告

实验十四模拟锁相环实验 一、实验目的 1、了解用锁相环构成的调频波解调原理。 2、学习用集成锁相环构成的锁相解调电路。 二、实验容 1、掌握锁相环锁相原理。 2、掌握同步带和捕捉带的测量。 三、实验仪器 1、1号模块1块 2、6号模块1块 3、5号模块1块 4、双踪示波器1台 四、锁相环的构成及工作原理 1、锁相环路的基本组成 锁相环由三部分组成,如图14-1所示,它由相位比较器PD、低通滤波器LF、压控振荡器VCO三个部分组成一个闭合环路,输入信号为V i(t),输出信号为V0(t),反馈至输入端。下面逐一说明基本部件的作用。 图14-1 锁相环组成框图 一、压控振荡器(VCO) VCO是本控制系统的控制对象,被控参数通常是其振荡频率,控制信号为加在VCO上的电压,故称为压控振荡器,也就是一个电压-频率变换器,实际上还有一种电流-频率变换器,但习惯上仍称为压控振荡器。 二、鉴相器(PD)

PD 是一个相位比较装置,用来检测输出信号V 0(t)与输入信号V i (t)之间的相位差θe (t),并把θe (t)转化为电压V d (t)输出,V d (t)称为误差电压,通常V d (t)作为一直流分量或一低频交流量。 三、环路滤波器(LF ) LF 作为一低通滤波电路,其作用是滤除因PD 的非线性而在V d (t)中产生的无用的组合频率分量及干扰,产生一个只反映θe (t)大小的控制信号V e (t)。 按照反馈控制原理,如果由于某种原因使VCO 的频率发生变化使得与输入频率不相等,这必将使V 0(t)与V i (t)的相位差θe (t)发生变化,该相位差经过PD 转换成误差电压V d (t),此误差电压经LF 滤波后得到V c (t),由V c (t)去改变VCO 的振荡频率使趋近于输入信号的频率,最后达到相等。环路达到最后的这种状态就称为锁定状态,当然由于控制信号正比于相位差,即 )()(t t V e d θ∝ 因此在锁定状态,θe (t)不可能为零,换言之在锁定状态V 0(t)与V i (t)仍存在相位差。 2、 锁相环锁相原理 锁相环是一种以消除频率误差为目的的反馈控制电路,它的基本原理是利用相位误差电压去消除频率误差,所以当电路达到平衡状态后,虽然有剩余相位误差存在,但频率误差可以降低到零,从而实现无频差的频率跟踪和相位跟踪。 当调频信号没有频偏时,若压控振荡器的频率与外来载波信号频率有差异时,通过相位比较器输出一个误差电压。这个误差电压的频率较低,经过低通滤波器滤去所含的高频成份,再去控制压控振荡器,使振荡频率趋近于外来载波信号频率,于是误差越来越小,直至压控振荡频率和外来信号一样,压控振荡器的频率被锁定在与外来信号相同的频率上,环路处于锁定状态。 当调频信号有频偏时,和原来稳定在载波中心频率上的压控振荡器相位比较的结果,相位比较器输出一个误差电压,如图14-2,以使压控振荡器向外来信号的频率靠近。由于压控振荡器始终想要和外来信号的频率锁定,为达到锁定的条件,相位比较器和低通滤波器向压控振荡器输出的误差电压必须随外来信号的载波频率偏移的变化而变化。也就是说这个误差控制信号就是一个随调制信号频率而变化的解调信号,即实现了鉴频。

锁相环电路设计

锁相环电路设计 PLL(锁相环)电路原理及设计 在通信机等所使用的振荡电路,其所要求的频率范围要广,且频率的稳定度要高。无论多好的LC振荡电路,其频率的稳定度,都无法与晶体振荡电路比较。但是,晶体振荡器除了可以使用数字电路分频以外,其频率几乎无法改变。如果采用PLL(锁相环)(相位锁栓回路,PhaseLockedLoop)技术,除了可以得到较广的振荡频率范围以外,其频率的稳定度也很高。此一技术常使用于收音机,电视机的调谐电路上,以及CD唱盘上的电路。 一 PLL(锁相环)电路的基本构成 PLL(锁相环)电路的概要 图1所示的为PLL(锁相环)电路的基本方块图。此所使用的基准信号为稳定度很高的晶体振荡电路信号。 此一电路的中心为相位此较器。相位比较器可以将基准信号与VCO (Voltage Controlled Oscillator……电压控制振荡器)的相位比较。如果此两个信号之间有相位差存在时,便会产生相位误差信号输出。 (将VCO的振荡频率与基准频率比较,利用反馈电路的控制,使两者的频率为一致。) 利用此一误差信号,可以控制VCO的振荡频率,使VCO的相位与基准信号的相位(也即是频率)成为一致。 PLL(锁相环)可以使高频率振荡器的频率与基准频率的整数倍的频率相一致。由

于,基准振荡器大多为使用晶体振荡器,因此,高频率振荡器的频率稳定度可以与晶体振荡器相比美。 只要是基准频率的整数倍,便可以得到各种频率的输出。 从图1的PLL(锁相环)基本构成中,可以知道其是由VCO,相位比较器,基准频率振荡器,回路滤波器所构成。在此,假设基准振荡器的频率为fr,VCO的频率为fo。 在此一电路中,假设frgt;fo时,也即是VC0的振荡频率fo比fr低时。此时的相位比较器的输出PD会如图2所示,产生正脉波信号,使VCO的振荡器频率提高。相反地,如果frlt;fo时,会产生负脉波信号。 (此为利用脉波的边缘做二个信号的比较。如果有相位差存在时,便会产生正或负的脉波输出。) 此一PD脉波信号经过回路滤波器(LoopFilter)的积分,便可以得到直流电压VR,可以控制VCO电路。 由于控制电压vr的变化,VCO振荡频率会提高。结果使得fr=f。在f与f的相位成为一致时,PD端子会成为高阻抗状态,使PLL(锁相环)被锁栓(Lock)。 相位比较器的工作原理 此所说明的相位比较器为相位.频率比较器(PFC:Phase-Frequency Comparator)之型式,后述之LSI MC145163P便内藏有此一电路。 此一型式的相位此较器并非只做相位的比较,也即是,并非只做之比较,在频率f不同的场合,也可以做为频率比较器工作原理。 所谓相位差利时△与时间t的关系为

锁相环电路设计和调试

锁相环电路设计和调试 1.锁相环的设计的起因: 这个电路设计的初衷就是为了我项目中的DDS电路提供可选的时钟输入。因为我选用的DDS电路本身自带有内部的倍频器,其实现的方法就是内部的锁相环。开始我一位内部的锁相环会比我自己外部设计性能更好,但是后来查到AD的技术资料,发现内部的锁相环的性能并不是达到很好的配置,仔细一想,也是这样的,因为外部的环路滤波器的配置对于任意的频率都如此,显然没有经过精心设计的更加有效果。鉴于上面分析的原因,我把采用锁相环提供时钟作为一项可选的优化方案。 再有一个原因,就是大学的时候采用的锁相环,到最后也没有调好,所以对这件事情还是老放不下,所以想借此机会完善一下这个过程。 2.锁相环的设计过程: 整个设计过程,比起dds电路来说,时间是非常的短的。原因之一就是整个PLL的设计就是一个芯片实现。比大学的PLL要简单一些。再有就是,这个毕竟不是项目的重点,而是一个改进方案。电路板采用两层板设计,环路滤波器在背板设计。环路滤波器的设计采用AD公司的ADSIMPLL。开始的供电设计,由于电路板的走线上比较困难,所以采用多处引线的方法。后来调试过程中发现,这样做是在是太麻烦,也比较危险,因为万一出现加反电,或加错电压就危险了。所以我建议以后做电路时,采用通用的便携式的变压器插头,这样调试起来就非常的简单了,不用再依赖于庞大的稳压电源了,而且绝对不会出现危险。调试时发现电路中的测试点对于测试非常的方便,对于地,可以留两个焊盘,然后安装弧形的金属勾,这样对于采用示波器测试是非常方便的,可以很方便的用小架子加上。再有就是安装孔的问题,内径为3mm的安装空可以采用通用的八角螺母进行固定,这样对于调试和焊接,即方便有安全。在一个就是SMA接头到底是选朝上的还是侧面的,其实再对于空间和对接口电路要求来考虑。在PCB 中间的接头肯定是选朝上的。如果没有别的要求,在电路板的边上的信号尽量采用侧面的接头。调节电流在技术资料上说是典型为50uA,最大值为100uA.我采用的是50K的电位器调节。25K*50uA=1.25V。显然由于输入的变化造成输出的变化是一定的。建议以后采用值比较小的电阻或电位器。 3.锁相环的调试过程: 真正是调试才能发现设计中的问题。太哦是工程的第一件就是先调节电源电路。在电电原的调试过程中,我发

锁相仿真电路

直接调频电路的振荡器中心频率稳定度较低,而采用晶体振荡器的调频电路,其调频范围又太窄。采用锁相环的调频器可以解决这个矛盾。其结构原理如图1 所示。 图1 锁相环调频电路的原理框图 实现锁相调频的条件是调制信号的频谱要处于低通滤波器通带之外,也就是说,锁相环路只对慢变化的频率偏移有响应,使压控振荡器的中心频率锁定在稳定度很高的晶振频率上。而随着输入调制信号的变化,振荡频率可以发生很大偏移。 图2锁相环调频的仿真电路 根据图1 建立的仿真电路如图2 所示。图中,设置压控振荡器V 1 在控制电压为0 时,输出频率为0;控制电压为5V 时,输出频率为50kHz。这样,实际上就选定了压控振荡器的中心频率为25kHz ,为此设定直流电压V 3 为2. 5V。调制电压V 4 通过电阻R5 接到VCO 的输入端, R5 实际上是作为调制信号源V 4 的内阻,这样可以保证加到VCO 输入端的电压是低通滤波器的输出电压和调制电压之和,从而满足了原理图的要求。本电路中,相加功能也可以通过一个加法器来完成,但电路要变得相对复杂一些。VCO 输出波形和输入调制电压V 4 的关系如图3 所示。由图可见,输出信号频率随着输入信号的变化而变化,从而实现了调频功能。 图3锁相环调频实验结果波形

用锁相环可实现调频信号的解调,其原理框图如图4 所示。为了实现不失真的解调,要求锁相环的捕捉带必须大于调频波的最大频偏,环路带宽必须大于调频波中输入信号的频谱宽度。 图4 锁相环鉴频电路的原理框图 图5为相应锁相鉴频电路的仿真电路。图中的压控振荡器的设置与锁相环调频电路相同。为了进一步改善低通滤波器的输出波形,在R1 、C1 的输出端,又串接了一级低通滤波电路( R4 、C2 ) 。 图5 锁相环鉴频的仿真电路 由于锁相环鉴频时要求调制信号要处于低通滤波器的通带之内,因此电阻R1 的阻值要比调频电路中的阻值小。本例中, R1 = 10kΩ。仿真波形如图6 所示。由图可见,该电路实现了鉴频功能。如果将R4 、C2 的输出作为VCO 的输入,则仿真结果不再正确,这在实际仿真时需要注意。 图6 锁相环鉴频实验结果波形

锁相环频率合成器的仿真设计

锁相环频率合成器的仿真设计 1任务 设计一个具有输出jhhug 频率等于N/M输入频率功能的锁相环频率合成电路,并用Proteus 完成仿真。电路示意图如下图所示。 2基本要求 分别用地址开关控制M分频和N分频,当输入信号频率10kHz时,使输出信号频率能在1kHz—200kHz范围内步进变化,步进值为0.5kHz和5kHz。 3提高要求 分别用“加”、“减”按钮开关控制M分频和N分频,当输入信号频率10kHz时,使输出信号频率能在1kHz—200kHz范围内步进变化,步进值为0.5kHz和5kHz。 RC有源滤波器的仿真设计 1任务 设计一组RC有源滤波器电路,它们分别为低通滤波器、高通滤波器、带阻滤波器、和全通滤波器,并用Proteus完成仿真。 2基本要求 二阶低通滤波器:截止频率f0=1kH z±10%,通带增益<3,Q<10; 二阶高通滤波器:截止频率f0=100H z±10%,通带增益<3,Q<10; 二阶带通滤波器:中心频率f0=3kH z±10%,通带增益<5,Q<10; 二阶带阻滤波器:中心频率f0=50H z±10%,Q<10; 一阶全通滤波器:频率f0=1kH z±10%,通带增益=1,相移=90°; 3提高要求 分别将上述电路进行组合,使之成为一些实用的电路。并综合出调整电路参数改变性能指标的方法。

图1 系统示意图 信号合成电路的仿真设计与制作 1任务 设计制作一个具有产生多个不同频率的正弦信号,并将这些信号再合成为近似方波和三角波功能的电路。系统示意图如图1所示: 2基本要求 2.1方波振荡器的信号经分频与滤波处理,同时产生频率为1kHz 和3kHz 与5kHz 的正弦波信号,这三种信号应具有确定的相位关系;产生的信号波形无明显失真;幅度峰峰值分别为6V 与2V 和1.2V; 2.2制作一个由移相器和加法器构成的信号合成电路,将产生的1kHz 和3kHz 正弦波信号,作为基波和3次谐波,合成一个近似方波,波形幅度为5V,合成波形的形状如图2所示。 图2利用基波和3次谐波合成的近似方波 2.3再用5kHz 的正弦信号作为5次谐波,参与信号合成,使合成的波形更接近于方波,波形幅度为5V; 2.4根据三角波谐波的组成关系,设计一个新的信号合成电路,将产生的1kHz、3kHz、5kHz 各个正弦信号,合成一个近似的三角波形,波形幅度为5V; 3提高要求 合成波形的幅度与直流电平能数字设置和数控步进可调,步进值为0.5V 和0.05V; 1KHz 正弦波

相关文档