文档库 最新最全的文档下载
当前位置:文档库 › 结构静力分析教学内容

结构静力分析教学内容

结构静力分析教学内容
结构静力分析教学内容

第一章结构静力分析

1.1 结构分析概述

结构分析的定义:结构分析是有限元分析方法最常用的一个应用领域。结构这个术语是一个广义的概念,它包括土木工程结构,如桥梁和建筑物;汽车结构,如车身骨架;海洋结构,如船舶结构;航空结构,如飞机机身等;同时还包括机械零部件,如活塞,传动轴等等。

在ANSYS产品家族中有七种结构分析的类型。结构分析中计算得出的基本未知量(节点自由度)是位移,其他的一些未知量,如应变,应力,和反力可通过节点位移导出。

静力分析---用于求解静力载荷作用下结构的位移和应力等。静力分析包括线性和非线性分析。而非线性分析涉及塑性,应力刚化,大变形,大应变,超弹性,接触面和蠕变。

模态分析---用于计算结构的固有频率和模态。

谐波分析---用于确定结构在随时间正弦变化的载荷作用下的响应。

瞬态动力分析---用于计算结构在随时间任意变化的载荷作用下的响应,并且可计及上述提到的静力分析中所有的非线性性质。

谱分析---是模态分析的应用拓广,用于计算由于响应谱或PSD输入(随机振动)引起的应力和应变。

曲屈分析---用于计算曲屈载荷和确定曲屈模态。ANSYS可进行线性(特征值)和非线性曲屈分析。

显式动力分析---ANSYS/LS-DYNA可用于计算高度非线性动力学和复杂的接触问题。

此外,前面提到的七种分析类型还有如下特殊的分析应用:

●断裂力学

●复合材料

●疲劳分析

●p-Method

结构分析所用的单元:绝大多数的ANSYS单元类型可用于结构分析,单元型

从简单的杆单元和梁单元一直到较为复杂的层合壳单元和大应变实体单元。

1.2 结构线性静力分析

静力分析的定义

静力分析计算在固定不变的载荷作用下结构的效应,它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。可是,静力分析可以计算那些固定不变的惯性载荷对结构的影响(如重力和离心力),以及那些可以近似为等价静力作用的随时间变化载荷(如通常在许多建筑规范中所定义的等价静力风载和地震载荷)。

静力分析中的载荷

静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移,应力,应变和力。固定不变的载荷和响应是一种假定;即假定载荷和结构的响应随时间的变化非常缓慢。静力分析所施加的载荷包括:

●外部施加的作用力和压力

●稳态的惯性力(如中力和离心力)

●位移载荷

●温度载荷

线性静力分析和非线性静力分析

静力分析既可以是线性的也可以是非线性的。非线性静力分析包括所有的非线性类型:大变形,塑性,蠕变,应力刚化,接触(间隙)单元,超弹性单元等。本节主要讨论线性静力分析,非线性静力分析在下一节中介绍。

线性静力分析的求解步骤

1.建模

2.施加载荷和边界条件,求解

3.结果评价和分析

1.3 结构非线性静力分析

非线性结构的定义

在日常生活中,会经常遇到结构非线性。例如,无论何时用钉书针钉书,金

属钉书钉将永久地弯曲成一个不同的形状。(看图1─1(a))如果你在一个木

架上放置重物,随着时间的迁移它将越来越下垂。(看图1─1(b))。当在

汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。

(看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显

示了非线性结构的基本特征--变化的结构刚性.

图1─1 非线性结构行为的普通例子

非线性行为的原因

引起结构非线性的原因很多,它可以被分成三种主要类型:

状态变化(包括接触)

许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。轴承套可能是接触的,也可能是不接触的, 冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变在不同的值之间突然变化。状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。

接触是一种很普遍的非线性行为,接触是状态变化非线性类型形中一个特殊而重要的子集。

几何非线性

如果结构经受大变形,它变化的几何形状可能会引起结构的非线性地响应。一个例的垂向刚性)。随着垂向载荷的增加,杆不断弯曲以致于动力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。

图1─2 钓鱼杆示范几何非线性

材料非线性

非线性的应力──应变关系是结构非线性名的常见原因。许多因素可以影响材料的应力──应变性质,包括加载历史(如在弹─塑性响应状况下),环境状况(如温度),加载的时间总量(如在蠕变响应状况下)。

牛顿一拉森方法

ANSYS程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。然而,非线性结构的行为不能直接用这样一系列的线性方程表示。需要一系列的带校正的线性近似来求解非线性问题。

逐步递增载荷和平衡迭代

一种近似的非线性救求解是将载荷分成一系列的载荷增量。可以在几个载荷步内或者在一个载步的几个子步内施加载荷增量。在每一个增量的求解完成后,继续进行下一个载荷增量之前程序调整刚度矩阵以反映结构刚度的非线性变化。遗憾的是,纯粹的增量近似不可避免地随着每一个载荷增量积累误差,导种结果最终失去平衡,如图1─3(a)所示所示。

.

(a)纯粹增量式解(b)全牛顿-拉普森迭代求解(2个载荷增量)图8─3 纯粹增量近似与牛顿-拉普森近似的关系。

ANSYS程序通过使用牛顿-拉普森平衡迭代克服了这种困难,它迫使在每一个载荷增量的末端解达到平衡收敛(在某个容限范围内)。图1─3(b)描述了在单自由度非线性分析中牛顿-拉普森平衡迭代的使用。在每次求解前,NR方法估算出残差矢量,这个矢量是回复力(对应于单元应力的载荷)和所加载荷的差值。程序然后使用非平衡载荷进行线性求解,且核查收敛性。如果不满足收敛准则,重新估算非平衡载荷,修改刚度矩阵,获得新解。持续这种迭代过程直到问题收敛。

ANSYS程序提供了一系列命令来增强问题的收敛性,如自适应下降,线性搜索,自动载荷步,及二分等,可被激活来加强问题的收敛性,如果不能得到收敛,那么程序或者继续计算下一个载荷前或者终止(依据你的指示)。

对某些物理意义上不稳定系统的非线性静态分析,如果你仅仅使用NR方法,正切刚度

矩阵可能变为降秩短阵,导致严重的收敛问题。这样的情况包括独立实体从固定表面分离的静态接触分析,结构或者完全崩溃或者“突然变成”另一个稳定形状的非线性弯曲问题。对这样的情况,你可以激活另外一种迭代方法,弧长方法,来帮助稳定求解。弧长方法导致NR平衡迭代沿一段弧收敛,从而即使当正切刚度矩阵的倾斜为零或负值时,也往往阻止发散。这种迭代方法以图形表示在图1─4中。

图1─4传统的NR方法与弧长方法的比较

非线性求解的组织级别

分线性求解被分成三个操作级别:载荷步、子步、平衡迭代。

·“顶层”级别由在一定“时间”范围内你明确定义的载荷步组成。假定载荷在载荷步内是线性地变化的。

·在每一个载荷是步内,为了逐步加载可以控制程序来执行多次求解(子步或时间步)。·在每一个子步内,程序将进行一系列的平衡迭代以获得收敛的解。

图1─5说明了一段用于非线性分析的典型的载荷历史。

图1─5载荷步、子步、及“时间”

收敛容限

当你对平衡迭代确定收敛容限时,你必须答这些问题:

·你想基于载荷,变形,还是联立二者来确定收敛容限?

·既然径向偏移(以弧度度量)比对应的平移小,你是不是想对这些不同的条目建立不同的收敛准则?

当你确定收敛准则时,ANSYS程序会给你一系列的选择:你可以将收敛检查建立在力,力矩、位移、转动或这些项目的任意组合上。另外,每一个项目可以有不同的收敛容限值。对多自由度问题,你同样也有收敛准则的选择问题。

当你确定你的收敛准则时,记住以力为基础的收敛提供了收敛的绝对量度,而以位移为基础的收敛仅提供了表观收敛的相对量度。因此,你应当如果需要总是使用以力为基础(或

以力矩为基础的)收敛容限。如果需要可以增加以位移为基础(或以转动为基础的)收敛检查,但是通常不单独使用它们。

图1─6说明了一种单独使用位移收敛检查导致出错情况。在第二次迭代后计算出的位移很小可能被认为是收敛的解,尽管问题仍旧远离真正的解。要防止这样的错误,应当使用力收敛检查。

图1─6完全依赖位移收敛检查有时可能产生错误的结果。

保守行为与非保守行为:过程依赖性

如果通过外载输入系统的总能量当载荷移去时复原,我们说这个系统是保守的。如果能量被系统消耗(如由于塑性应变或滑动摩擦),我们说系统是非保守的,一个非守恒系统的例子显示在图1─7。

一个保守系统的分析是与过程无关的:通常可以任何顺序和以任何数目的增量加载而不影响最终结果。相反地,一个非保守系统的分析是过程相关的;必须紧紧跟随系统的实际加载历史,以获得精确的结果。如果对于给定的载荷范围,可以有多于一个的解是有效的(如在突然转变分析中)这样的分析也可能是过程相关的。过程相关问题通常要求缓慢加载(也就是,使用许多子步)到最终的载荷值。

图1─7 非守恒(过程相关的)过程

子步

当使用多个子步时,你需要考虑精度和代价之间的平衡;更多的子步骤(也就是,小的时间步)通常导致较好的精度,但以增多的运行时间为代价。ANSYS提供两种方法来控制子步数:

·子步数或时间步长

我们即可以通过指定实际的子步数也可以通过指定时间步长控制子步数。

·自动时间步长

ANSYS程序,基于结构的特性和系统的响应,来调查时间步长

子步数

如果你的结构在它的整个加载历史期间显示出高度的非线性特点,而且你对结构的行为子解足够好可以确保深到收敛的解,那么你也许能够自己确定多小的时间步长是必需的,且对所有的载荷步使用这同一时间步。(务必允许足够大的平衡迭代数)。

自动时间分步

如果你预料你的结构的行为将从线性到非线性变化,你也许想要在系统响应的非线性部分期间变化时间步长。在这样一种情况,你可以激活自动时间分步以便随需要调整时间步长,获得精度和代价之间的良好平衡。同样地,如果你不确信你的问题将成功地收敛,你也许想要使用自动时间分步来激活ANSYS程序的二分特点。

二分法提供了一种对收敛失败自动矫正的方法。无论何时只要平衡迭代收敛失败,二分法将把时间步长分成两半,然后从最后收敛的子步自动重启动,如果已二分的时间步再次收敛失败,二分法将再次分割时间步长然后重启动,持续这

一过程直到获得收敛或到达最小时间步长(由你指定)。

载荷和位移方向

当结构经历大变形时应该考虑到载荷将发生了什么变化。在许多情况中,无论结构如何变形施加在系统中的载荷保持恒定的方向。而在另一些情况中,力将改变方向,随着单元方向的改变而变化。

ANSYS程序对这两种情况都可以建模,依赖于所施加的载荷类型。加速度和集中力将不管单元方向的改变而保持它们最初的方向,表面载荷作用在变形单元表面的法向,且可被用来模拟“跟随”力。图1─8说明了恒力和跟随力。

注意──在大变形分析中不修正结点坐标系方向。因此计算出的位移在最初的方向上输出。

图1─8 变形前后载荷方向

非线性瞬态过程的分析

用于分析非线性瞬态行为的过程,与对线性静态行为的处理:相似以步进增量加载,程序在每一步中进行平衡迭代。静态和瞬态处理的主要不同是在瞬态过程分析中要激活时间积分效应。(因此,在瞬态过程分析中“时间”总是表示实际的时序。)自动时间分步和二等分

特点同样也适用于瞬态过程分析。

非线性分析中用到的命令

使用与任何其它类型分析的同一系列的命令来建模和进行非线性分析。同样,无论你正在进行何种类型的分析,你可从用户图形界面GUI选择相似的选项来建模和求解问题。

本章后面的部分”非线性实例分析(命令),给你显示了使用批处理方法用ANSYS 分析一个非线性分析时的一系列命令。另一部分“非线性实例分析(GUI方法)”,给你显示了如何从ANSYS的GUI中执行同样的例子分析。

非线性分析步骤综述

尽管非线性分析比线性分析变得更加复杂,但处理基本相同。只是在非线形分析的适当过程中,添加了需要的非线形特性。

如何进行非线性静态分析

非线性静态分析是静态分析的一种特殊形式。如同任何静态分析,处理流程主要由三个主要步骤组成:

1、建模。

2、加载且得到解。

3、考察结果。

步骤1:建模

这一步对线性和非线性分析都是必需的,尽管非线性分析在这一步中可能包括特殊的单元或非线性材料性质,如果模型中包含大应变效应,应力─应变数据必须依据真实应力和真实(或对数)应变表示。

步骤2:加载且得到解

在这一步中,你定义分析类型和选项,指定载荷步选项,开始有限无求解。既然非线性求解经常要求多个载荷增量,且总是需要平衡迭代,它不同于线性求解。处理过程如下:1、进入ANSYS求解器

命令:/Solution

GUI:Main Menu>Solution

2、定义分析类型及分析选项。分析类型和分析选项在第一个载荷步后(也就是,在你发出你的第一个SOLVL命令之后)不能被改变。ANSYS提供这些选项用于静态分析。

表1─1 分析类型和分析选项

这些选项中的每一个都将在下面详细地解释。

选项:新的分析〔ANTYPE〕

一般情况下会使用New Analysis(新的分析)。

选项:分析类型:静态〔ANTYPE〕

选择Static(静态)。

选项:大变形或大应变选项(GEOM)

并不是所有的非线性分析都将产生大变形。参看:“使用几何非线性”对大变型的进一步讨论。

选项:应力刚化效应〔SSTIF〕

如果存在应力刚化效应选择ON。

选项:牛顿-拉普森选项〔NROPT〕

仅在非线性分析中使用这个选项。这个选项指定在求解期间每隔多久修改一次正切矩

结构静力分析

第一章结构静力分析 1.1 结构分析概述 结构分析的定义:结构分析是有限元分析方法最常用的一个应用领域。结构这个术语是一个广义的概念,它包括土木工程结构,如桥梁和建筑物;汽车结构,如车身骨架;海洋结构,如船舶结构;航空结构,如飞机机身等;同时还包括机械零部件,如活塞,传动轴等等。 在ANSYS产品家族中有七种结构分析的类型。结构分析中计算得出的基本未知量(节点自由度)是位移,其他的一些未知量,如应变,应力,和反力可通过节点位移导出。 静力分析---用于求解静力载荷作用下结构的位移和应力等。静力分析包括线性和非线性分析。而非线性分析涉及塑性,应力刚化,大变形,大应变,超弹性,接触面和蠕变。 模态分析---用于计算结构的固有频率和模态。 谐波分析---用于确定结构在随时间正弦变化的载荷作用下的响应。 瞬态动力分析---用于计算结构在随时间任意变化的载荷作用下的响应,并且可计及上述提到的静力分析中所有的非线性性质。 谱分析---是模态分析的应用拓广,用于计算由于响应谱或PSD输入(随机振动)引起的应力和应变。 曲屈分析---用于计算曲屈载荷和确定曲屈模态。ANSYS可进行线性(特征值)和非线性曲屈分析。 显式动力分析---ANSYS/LS-DYNA可用于计算高度非线性动力学和复杂的接触问题。 此外,前面提到的七种分析类型还有如下特殊的分析应用: ●断裂力学 ●复合材料 ●疲劳分析 ●p-Method 结构分析所用的单元:绝大多数的ANSYS单元类型可用于结构分析,单元型 从简单的杆单元和梁单元一直到较为复杂的层合壳单元和大应变实体单元。 1.2 结构线性静力分析 静力分析的定义 静力分析计算在固定不变的载荷作用下结构的效应,它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。可是,静力分析可以计算那些固定不变的惯性载荷对结构的影响(如重力和离心力),以及那些可以近似为等价静力作用的随时间变化载荷(如通常在许多建筑规范中所定义的等价静力风载和地震载荷)。 静力分析中的载荷 静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移,应力,应变和力。固定不变的载荷和响应是一种假定;即假定载荷和结构的响应随时间的变化非常缓慢。静力分析所施加的载荷包括: ●外部施加的作用力和压力 ●稳态的惯性力(如中力和离心力) ●位移载荷 ●温度载荷 线性静力分析和非线性静力分析 静力分析既可以是线性的也可以是非线性的。非线性静力分析包括所有的非线性类型:大变形,塑性,蠕变,应力刚化,接触(间隙)单元,超弹性单元等。本节主要讨论线性静力分析,非线性静力分析在下一节中介绍。

衍架的结构静力分析

实验一 衍架的结构静力分析 结构静力分析是ANSYS 软件中最简单,应用最广泛的一种功能,它主要用于分析结构在 固定载荷(主要包括外部施加的作用力,稳态惯性力如重力和离心力,位移载荷和温度载荷等)作用下所引起的系统或部件的位移,应力,应变和力。一般情况下,结构静力分析适用于不考虑或惯性,阻尼以及动载荷等对结构响应的影响不大的场合,如温度,建筑规范中的等价静力风载和地震载荷等在结构中所引起的响应。 结构静力分析分为线性分析和非线性分析两类,由于非线性分析涉及大变形,塑性,蠕变和应力强化等内容,较为复杂,不适于作为入门教学。因此,本实训中只讨论ANSYS 的线性结构静力分析。 一、问题描述 图1所示为由9个杆件组成的衍架结构,两端分别在1,4点用铰链支承,3点受到一 个方向向下的力F y ,衍架的尺寸已在图中标出,单位: m 。试计算各杆件的受力。 其他已知参数如下: 弹性模量(也称扬式模量) E=206GPa ;泊松比μ=0.3; 作用力F y =-1000N ;杆件的 横截面积A=0.125m 2. 显然,该问题属于典型的衍架静力分析问题,通过理论求解 方法(如节点法或截面法)也可以很容易求出个杆件的受力,但这里为什么要用ANSYS 软件对其分析呢? 二、实训目的 本实训的目的有二:一是使学生熟悉ANSYS8.0软件的用户界面,了解有限元分析的一 般过程;二是通过使用ANSYS 软件分析的结果和理论计算结果进行比较,以建立起对利用ANSYS 软件进行问题根系的信任度,为以后使用ANSYS 软件进行更复杂的结构分析打基础。 图1衍架结构简图

三、结果演示 通过使用ANSYS8.0软件对该衍架结构进行静力分析,其分析结果与理论计算结果如表 1所示。 表1 ANSYS 分析结果与理论计算结果的比较 比较结果表明,使用ANSYS 分析的结果与理论计算结果的误差不超过0.5%,因此, 利用ANSYS 软件分析来替代理论计算是完全可行的。 四、实训步骤 (一) ANSYS8.0的启动与设置 1. 启动。点击:开始>所有程序> ANSYS8.0> ANSYS ,即可进入ANSYS 图形用户主界面。如图2所示。其中,几个常用的部分有应用菜单,命令输入栏,主菜单,图形显示区和显示 图形显示区 主菜单 应用菜单 命令输入栏 显示调整工具栏 图2 用户主界面

结构静力分析边界条件施加方法与技巧—约束条件

在结构的静力分析中载荷与约束的施加方案对计算结果有较大的影响,甚至导致计算结果不可信,笔者在《结构设计CAE主业务流程》的博文中也提到这一点。那么到底如何施加载荷与约束呢?归根到底要遵循一个原则——尽量还原结构在实际中的真实约束和受力情况。本文着重介绍几种约束的施加方法与技巧,并通过具体例子来进一步说明。 1 销轴约束 销轴连接在结构中是很常见的一种形式,其约束根据具体的结构形式有所不同,下面以一个走行装置为例具体介绍一下。 走行装置是连接平动轨道与上部结构的,其约束应是轨道通过车轮对走行装置的约束,但是通常对于车轮只要验证其轮压满足要求即可,因此在模型中往往将车轮简化掉,因此对于走行装置的约束就变为销轴约束。 图1 某走行装置 图1 中1-10是与车轮相连接的轴孔,车轮行驶于轨道上,约束位置在10对轴孔处,如果把整个轴孔都约束则约束刚度太大,结果会导致圆孔周围应力过大,因此应简化为约束轴孔中心点,将中心点与轴孔边缘通过刚性单元连接,简化为点约束。首先y方向(竖直向上)是应该约束的(此处假设车轮及轴为刚体),其次由于轨道与轮缘的相互作用,z方向(侧向)也应该是约束的,然后由于走行装置在向下的压力下会产生沿x方向(运行方向)的位移,因此x方向约束应放开,但是如果10对轴孔中心x方向的约束全放开则会导致约束不全无法计算,因此应在1轴孔或10轴孔中心处施加x方向的约束,这样实现全自由度约束。 2 转动轨道约束 图2是一个翻车机模型,该结构通过电机驱动,托辊支撑,2个端环在轨道上转动来实现翻卸功能。

图2 翻车机 由于翻车机托辊支撑端环,由电机驱动不断地翻转卸车,造成其约束位置方向不断变化,针对一个具体翻转角度,翻车机端环在与托辊接触处(线接触)应约束沿翻车机端环径向,另外,由于翻车机在荷载作用下会产生沿翻车机轴向的位移,所以两端环中要约束一个端环的轴向自由度。 3 对称面约束 图3是某钢水罐模型,该模型关于y-z面对称,下面介绍一下该结构的约束处理。 图3 钢水罐 首先在1处由于受到钢水罐起吊装置的限制,其竖直方向y及水方向z无法变形,应施加z 方向及y方向的约束,而x方向是没有约束的,此时因缺少约束无法计算,应注意到该结构(包

ANSYS Workbench Mechanical第四章 静力结构分析

Workbench -Mechanical Introduction 第四章 静力结构分析

概要 Training Manual ?本章,将练习线性静力结构分析,模拟过程中包括: A.几何和单元 B.组件和接触类型 C.分析设置 D.环境,如载荷和约束 环境如载荷和约束 E.求解模型 F.结果和后处理 ?本节描述的应用一般都能在ANSYS DesignSpace Entra或更高版本中使用。 –尽管本章中讨论的一些选项可能需要更高级的许可,但都给了提示。

线性静态结构分析基础 Training Manual ?对于一个线性静态结构分析(Linear Static Analysis),位移{x}由下面的矩阵方程解出: []{}{}F K= x 假设: –[K] 是一个常量矩阵 [K]是个常量矩阵 ?假设是线弹性材料行为 ?使用小变形理论 可能包含些非线性边界条件 ?可能包含一些非线性边界条件 –{F}是静态加在模型上的 ?不考虑随时间变化的力 ?不包含惯性影响(质量、阻尼) ?记住关于线性静态结构分析的假设是很重要的。非线性静态分析和动态分析在后面章节讲解。

A. 几何模型 Training Manual ?在结构分析中,可能模拟各种类型的实体。 ?对于面实体,在Details of surface body中一定要指定厚度值。 ?线实体的截面和方向,在DesignModeler里进行定义,并自动导入到Simulation(模拟)中。

… 质量点 Training Manual ?在模型中添加一个质量点来模拟结构中没有明确建模的重量体: –质量点只能和面一起使用。 –它的位置可以通过下面任一种方法指定: ?用户自定义的坐标系中指定(x,y,z)坐标值 ?通过选择顶点/边/面指定位置 –质量点只受包括加速度、重力加速度和角加速度的影响。 –质量是与选择的面联系在一起的,并假设它们之间没有刚度。 –不存在转动惯性

实验四 五:结构静力分析与ANSYS模态分析

注:3月20号,周二课程内容主要是完成下面实验四 特别注意:本周六没课,本五周23号,8:00--12:00有课------------------------------------------------------------------------------------- 实验四MEMS薄膜压力传感器静力学分析 一、实验目的 1、掌握静力学分析 2、验证理论分析结果 3、对不同形状膜的分析结果进行对比 二、实验器材 能够安装ANSYS软件,内存在512MHz以上,硬盘有5G空间的计算机 三、实验说明 (一)基本思路 1、建模与网格化 2、静力学分析 3、对结果进行分析和比较 (二)问题描述: 由于许多压力传感器的工作原理是将受压力作用而变形的薄膜硅片中的应变转换成所需形式的电输出信号,所以我们要研究比较一下用什么样形状的膜来作为压力传感器的受力面比较好。我们比较的膜形状有三种,分别是圆形. 正方形. 长方形。在比较的过程中,三种形状膜的面积.,厚度和承受的压力是都是相等的。设置参数具体为:F=0.1MPa, EX=1.9e11,PRXY=0.3,DENS=2.33e3.单元尺寸为5e-006。为了选

择合适的网格化类型,首先我们拿圆的结构进行一下比较,最后选择比较接近理论计算的网格化类型,通过比较,我们知道映射网格化类型比较优越,所以后面的两种类型膜结构选择了映射网格化。 四、实验内容和步骤 圆形薄膜1 1.先建立一个圆形薄膜:Main Menu>Preprocessor>modeling>Create>volumes>solid cylinder.弹出以个对话 框如图,输入数据如图4-1,单击OK. 图4-1 2.设置单元类型:Main Menu>Preprocessor>element type>add/edit/delete,弹出一个对话框,点击add,显示library of element type对话框如图:在library of element type下拉列表框中选择structural solide 项,在其右侧下拉表框中选择brick 8node 45选项,单击OK. 在点击close.如图4-2.

ANSYS WORKBENCH 11.0静力结构分析

ANSYS WORKBENCH 11.0培训教程(DS)

第四章 静力结构分析

序言 ?在DS中关于线性静力结构分析的内容包括以下几个方面: –几何模型和单元 –接触以及装配类型 –环境(包括载荷及其支撑) –求解类型 –结果和后处理 ?本章当中所讲到的功能同样适用与ANSYS DesignSpace Entra及其以上版本. –本章当中的一些选项可能需要高级的licenses,但是这些都没有提到。 –模态,瞬态和非线性静力结构分析在这里没有讨论,但是在相关的章节当中将会有所阐述。

线性静力分析基础 ?在线性静力结构分析当中,位移矢量{x} 通过下面的矩阵方程得到: 在分析当中涉及到以下假设条件: –[K] 必须是连续的 ?假设为线弹性材料?小变形理论 ?可以包括部分非线性边界条件–{F} 为静力载荷 ?不考虑随时间变化的载荷 ?不考虑惯性(如质量,阻尼等等)影响 ?在线性静力分析中,记住这些假设是很重要的。非线性分析和动力学分析将在随后的章节中给予讨论。 []{}{} F x K =

A. 几何结构 ?在结构分析当中,可以使用所有DS 支持的几何结构类型. ?对于壳体,在几何菜单下厚度选项是必须要指定的。 ?梁的截面形状和方向在DM已经指定并且可以自动的传到DS模型当中。 –对于线性体,仅仅可以得到位移结果. ANSYS License Availability DesignSpace Entra x DesignSpace x Professional x Structural x Mechanical/Multiphysics x

基于hyperworks的结构静力学分析实例教程

Linear Static Analysis of a Plate with a Hole - RD-1000 This tutorial demonstrates how to create finite elements on a given CAD geometry of a plate with a hole, apply boundary conditions, and perform a finite element analysis of the problem. Post-processing tools will be used in HyperView to determine deformation and stress characteristics of the loaded plate. The following exercises are included: ?Setting up the problem in HyperMesh ?Applying Loads and Boundary Conditions ?Submitting the job ?Viewing the results Exercise Step 1: Launch HyperMesh and set the RADIOSS (Bulk Data) User Profile https://www.wendangku.net/doc/ca18599832.html,unch HyperMesh. A User Profiles… Graphic User Interface (GUI) will appear. If it does not appear, go to Preferences> User Profiles … from the menu on the top. 2.Select RADIOSS in the User Profile dialog. 3.From the extended list, select Bulk Data. 4.Click OK. This loads the User Profile. It includes the appropriate template, macro menu, and import reader, paring down the functionality of HyperMesh to what is relevant for generating models in Bulk Data Format for RADIOSS and OptiStruct. Step 2: Open the File plate_hole.hm 1.Click the Open .hm file icon . An Open file… browser window pops up. 2.Select the plate_hole.hm file, located in the HyperWorks installation directory under /tutorials/hwsolvers/radioss/. 3.Click Open. The plate_hole.hm database is loaded into the current HyperMesh session, replacing any existing data. The database only contains geometric data. Setting Up the Problem in HyperMesh When building models, we encourage you to create the material and property collectors before creating the component collectors. This is the most efficient way of setting up the file since components need to reference materials and properties. Step 3: Create the material 1.Click the Material Collector Panel toolbar button .

1静力分析

1.静力分析 静力分析是结构分析的基础,目的是在静载荷作用下求出结构的应力分布,变形情况(刚度分析),失稳可能性及极限载荷。而在小变形满足虎克定律范围内的线弹性分析是数百年来结构分析各种力学的基础,至今也是结构设计不可小的必要步骤,北京超算提供求解复杂结构线性静力分析全面的功能。但是各个工业领域的结构工程在近代迅速发展,要求设计出强度高、重量轻、寿命长的先进结构,而且结构的工作环境往往很恶劣,这就使结构某些部位,甚至全部材料超出弹塑性,蠕变、粘塑性、粘弹性等现象,结构破坏恰恰从这些部位开始;结构变形常常很大,传统的小变形假设不再适用。要解决这些现象下的结构问题必须研究非线性。 (1) 材料非线性问题 结构在使用中往往存在应力集中点,在该点片材料已超过弹性极限进入塑性。结构高温时弹性极限常常降低很多,而且往往表现出应变与时间相关的现象,如保持应力不变应变却随时间增长的蠕变现象,又如应力不公与应变有关还与应变率有关的粘性现象。分析上述环境下工作的结构就必须考虑材料真实情况,即材料非线性。北京超算各类材料非线性功能,能分析金属材料、非金属材料、复合材料、混凝土、岩石等等材料。 (2) 几何非线性 在经典传统理论中假设位移与应变均很小,这样在结构受力过程中可以得到位移与应变成线性关系的数学方程,而且载荷作用点位置与方向在整个加载过程不变。但在很多情况下,例如,细长结构、薄壁结构、金属构件的冷、热压力成形,高速旋转结构的动态频率等等或变形很大或应变很大,沿用传统理论会给分析带来极大误差,必须考虑位移与应变之间真实的非线性关系,考虑几何非张性问题。北京超算可以提供几何非线性分析能力,能解决结构大变形、大应变、载荷随结构变形而变化(跟随力)等问题,也能解决几何非性线派生出来的线性、非线性屈曲问题、动态频率等问题,例如结构在高温与机械载荷作用下的失稳极限载荷分析,转子在高速旋转时的频率计算等等。 (3) 边界条件非线性 各工业领域中不小结构间是靠接触挤压、摩擦来传送载荷,例如齿轮蜗轮付、轴承、榫齿、键连接、热压配合等等,又如两物体在运动的情况下相撞击传递载荷情况,上述情况下两物体间接触面上载荷分布、载荷作用面积均为未知。这类问题称边界条件非线性也称接触问题。北京超算提供分析静态、动态,有摩擦、无摩擦情况下的边界条件非线性功能。 以上各非线性功能,尤其大应变、蠕变、粘塑性、接触等功能通常被视为高级有限元软件才具备的功能。 2动力分析 (1) 模态分析 北京超算可分析各类结构的线性模态(固有频率及振形),也可分析在材料、

相关文档
相关文档 最新文档