文档库 最新最全的文档下载
当前位置:文档库 › 理论力学习题答案第三章

理论力学习题答案第三章

理论力学习题答案第三章
理论力学习题答案第三章

第三章思考题解答

3.1 答:确定一质点在空间中得位置需要3个独立变量,只要确定了不共线三点的位置刚体的位置也就确定了,故须九个独立变量,但刚体不变形,此三点中人二点的连线长度不变,即有三个约束方程,所以确定刚体的一般运动不需3n 个独立变量,有6个独立变量就够了.若刚体作定点转动,只要定出任一点相对定点的运动刚体的运动就确定了,只需3个独立变量;确定作平面平行运动刚体的代表平面在空间中的方位需一个独立变量,确定任一点在平面上的位置需二个独立变量,共需三个独立变量;知道了定轴转动刚体绕转动轴的转角,刚体的位置也就定了,只需一个独立变量;刚体的平动可用一个点的运动代表其运动,故需三个独立变量。

3.2 答物体上各质点所受重力的合力作用点即为物体的重心。当物体的大小远小于地球的线度时物体上各质点所在点的重力加速度都相等,且方向彼此平行即重力场为均匀场,此时质心与重心重合。事实上但物体的线度很大时各质点所在处g 的大小是严格相等,且各质点的重力都指向地心,不是彼此平行的,重心与质心不和。

3.3答 当物体为均质时,几何中心与质心重合;当物体的大小远小于地球的线度时,质心与重心重合;当物体为均质且大小远小于地球的线度时,三者都重合。

3.4 答 主矢F 是力系各力的矢量和,他完全取决于力系中各力的大小和方向,故主矢不随简化中心的位置而改变,故而也称之为力系的主矢;简化中心的位置不同,各力对简化中心的位矢i r 也就不同则各力对简化中心的力矩也就不同,故主矩随简化中心的位置而变,被称之为力系对简化中心的主矩。分别取O 和O '为简化中心,第i 个力i F 对

O 和O '的位矢分别为i r 和i r ',则i r =i r '+O O ',故

()()i

i i

i

i

i

O F

O O r F r M ?'-'=?'=∑∑'()∑∑?'-?'=

i

i

i

i

i

F

O O F r ∑?'+=i

i o F O O M

即o o M M ≠'

主矢不变,表明刚体的平动效应不变,主矩随简化中心的位置改变,表明力系的作用对刚体上不同点有不同的转动效应,但不改变整个刚体的转动规律或者说不影响刚体绕

质心的转动。设O 和O '对质心C 的位矢分别为C r 和C r ',

则C r '=C r +O O ',把O 点的主矢∑=i

i

F F

,主矩o M 移

到C 点得力系对重心的主矩

∑?+=i

i C o C F r M M

把O '为简化中心得到的主矢∑=

i

i

F F

和主矩o 'M 移到

C 点可得

∑?+'=i

i C o

C F r M M ()∑?'-'+=i

i C o F O O r M ∑?+=i

i C o F r M

简化中心的改变引起主矩的改变并不影响刚体的运动。事实上,简化中心的选取不过人为的手段,不会影响力系的物理效应。

3.5 答 不等。如题3-5图示,

l

题3-5图

dx l

m dm =

绕Oz 轴的转动惯量

2

2

2

434

2

413

148

7??

? ??+≠

=

=

?

-

l m ml

ml

dx l

m x

I l

l z

这表明平行轴中没有一条是过质心的,则平行轴定理

2

md

I I c +=是不适应的

3.6不能,如3-5题。但平行轴定理修改后可用于不过质心的二平行轴。如题3-6图所示,

B

l

题3-6图

均质棒上B A ,二点到质心的距离分别为A x 和B x 由平行轴定理得:

2A

c A mx

I I +=

2

B c B mx I I +=

则()

22B A B A x x m I I -=-,此式即可用于不过质心的二

平行轴。如上题用此式即可求得:

2

22

2

4872431ml l l m ml

I z =??

???????? ??-????

??+=

3.7 答 任一瞬时,作平面平行运动的刚体上或与刚体固连且与刚体一起运动的延拓平面总有也仅有一点的瞬时速度为零(转动瞬心)从运动学观点看由(3.7.1)式

()0r r ωv ωv v -?+='?+=A A r

知选此点的基点较好,这样选基点,整个刚体仅绕此点作瞬时转动从(3.7.4)式

2

A ωr r d d ωa a '-'?+

=t

可知,求加速度时选加速度为零的点为基点较方便,但实际问题中,加速度瞬心往往不如速度瞬心好找。

从动力学角度考虑,选质心为基点较好,因质心的运动可由质心运动定理解决;而且质点系相对质心的动量矩定理于对固定点的动量矩定理具有相同的形式,亦即刚体绕过质心与平面垂直的轴的转动可用刚体绕定轴转动的定律去解决。

因刚体上不同点有不同的速度和加速度,基点选取的不同,则(3.7.1)和(3.7.4)式中A A a v ,不同,即A v 和A a 与基点有关;又任一点相对基点的位矢r '于基点的选取有关。故任一点绕基点转动速度r ω'?,相对基点的切线加速度

r d d ω'?t

和相对基点的向心加速度2ωr -与基点选取

有关;角速度ω为刚体各点所共有与基点选取无关,故

t

d d ω也与基点选取无关;基点选取的不同是人为的方法,

它不影响刚体上任一点的运动,故任一点的速度a v ,与基点的选取无关。这也正是基点选取任意性的实质所在。 3.8 答 转动瞬心在无穷远处,标志着此瞬时刚体上各点的速度彼此平行且大小相等,意味着刚体在此瞬时的角速度等于零,刚体作瞬时平动

3.9 答 转动瞬心的瞬时速度为零,瞬时加速度并不为零,否则为瞬时平动瞬心参考系是非惯性系,应用动量矩定理是必须计入惯性力系对瞬心的力矩。而惯性力系向瞬心简化的结果,惯性力系的主矩一般不为零(向质心简化的结果惯性力系的主矩为零),故相对瞬心与相对定点或者质心的动量矩定理有不同的形式;另外,转动瞬心在空间中

及刚体上的位置都在不停的改变,(质心在刚体上的位置是固定的),

故对瞬心的写出的动量矩定理在不同时刻是对刚体上不同点的动力学方程,即瞬心参考系具有不定性;再者,瞬心的运动没有像质心一点定理那样的原理可直接应用。故解决实际问题一般不对瞬心应用动量矩定理写其动力学方程。

3.10 答 因圆柱体沿斜面滚下时,圆柱体与斜面之间的反作用力不做功,只有重力作功,故机械能守恒且守恒定律

中不含反作用,故不能求出此力。此过程中由于圆柱体只滚动不滑动,摩擦力做功为零,故不列入摩擦力的功,也正是摩擦力不做功才保证了机械能守恒;若圆柱体即滚且滑的向下运动,摩擦力做功不为零免责必须列入摩擦力的功。机械能不守恒,必须用动能定理求解。在纯滚动过程中不列入摩擦力的功并不是没有摩擦力,事实上,正是摩擦力与重力沿下滑方向的分离组成力偶使圆柱体转动且摩擦阻力阻止了柱体与斜面的相对滑动,才使圆柱体沿斜面滚动而不滑动;如果斜面不能提供足够的摩擦力,则圆柱体会连滚带滑的向下运动;如果斜面绝对光滑,即斜面对圆柱体不提供摩擦力,则圆柱体在重力作用下沿斜面只滑动不滚动。

答 圆柱体沿斜面无滑动滚动,如课本195页例[2]示,

θ a x c =,当柱体一定时,相对质心的转动惯量越大则θ

越小,故与转动惯量有关。当圆柱体沿斜面既滚动又滑动地向下运动时,如课本图3.7.7有

f m

g x

m -=αsin 这里f 是滑动摩擦力,αμμcos mg n f ==,μ是滑动摩擦系数,(注意,无滑动时,静摩擦力f 并不一定达到极限值,n

f μ'≠,μ'是静摩擦系数)、所以

()αμαcos sin -=g x

c 与转动惯量无关。又有转动定律得

fa I =θ

αμθ

cos I

a mg =

由S a x

c +=θ得圆柱与斜面的相对滑动加速度

()αμαμαcos cos sin 2

g I

ma g S

--=

与转动惯量有关 3.11 答

3.12 答 刚体绕定点转动时,()t ωω=的大小、方向时刻改变,任意时刻ω所在的方位即为瞬时转轴,

r ω?dt

d 表

示由于ω大小和方向的改变引起的刚体上某但绕瞬时轴的转动速度,故称转动加速度。()v ωr ωω?=??是由于刚体上某点绕瞬时轴转动引起速度方向改变产生的加速度,它恒垂直指向瞬时转轴,此方向轨迹的曲率中心或定点,故称向轴加速度而不称向心加速度。

第三章习题

3.2解 如题3.2.1图所示,

题1.3.2

均质棒分别受到光滑墙的弹力1N ,光滑棱角的弹力2N ,及重力G 。由于棒处于平衡状态,所以沿y 方向的合力矩为零。即

0cos 2=-=∑G N F

y

θ①

cos 2

2cos 2

=-=∑

θθ

l G

d N M

z

由①②式得: l

d =θ3cos

所以 3

1

arccos ?

?

? ??

=l d θ 3.3解 如题3.3.1图所示。

题1.3.32

AB

棒受到重力i G ag ρ=1。棒受到的重力

i G bg ρ=2。设均质棒的线密度为ρ。

由题意可知,整个均质棒沿z 轴方向的合力矩为零。

()BH

BF G OD G M

z

--?=∑

21sin θ=

0sin cos 2sin 2=??

?

??--θθρθρa b gb a

ga

ab

a b

2tan 2

2

+=

θ

3.4解 如题3.

4.1图。

题1.3.4

Ox

轴竖直向下,相同的球A 、B 、C 互切,B 、C

切于D 点。设球的重力大小为G ,半径为r ,则对A 、

B

、C 三个球构成的系统来说,在x 轴方向的合力

应为零。即:

0cos 23=-=∑αT G F

x

对于C 球,它相对于过D 点与z 轴平行的轴的合力矩等于零。即:

()0sin sin =--=∑βαβGr Tr M

D

由式得: αβtan 3tan = 3.5解 如题3.5.1图。

1图

题1.3.5梯子受到地面和墙的弹力分别为1N ,2N ,受地面和墙的摩擦力分别为1f ,2f 。梯子和人的重力分别为1G ,2G 且123G G =。设梯长为l ,与地面夹角为

θ。由于梯子处于平衡,所以

012=-=∑f N F x

02112=--+=∑

G G N f F y ②

且梯子沿过A 点平行于z 轴的合力矩为零。即:

sin cos cos 2

cos 221

2=--+=∑

θθθθl N l f l G l G M

i

又因梯子是一个刚体。当一端滑动时,另一端也滑动,所以当梯与地面的倾角达到最小时,

112

1N f =

2

23

1N f =⑤

由①②③④⑤得:24

41tan =θ

所以 ??

?

??=-2441tan 1θ

3.6解 (a )取二原子的连线为x 轴,而y 轴与z 轴通过质心。O 为质心,则Ox ,Oy ,Oz 轴即为中心惯量主轴。

y

1

m 2m C

h

a

x ?

1

m 图

题1.3.6

设1m 、2m 的坐标为()()0,0,,0,0,21l l ,因为O 为质心(如题3.6.2图)

故 02211=+l m l m ① 且 l l l =-12 ② 由①②得2

1122

121,m m l m l m m l m l +=

+-

=

所以中心惯量主轴:()02

2

1=+=

i

i

i z

y

m I

()2

212122

2l

m m m m x

z m I i

i

i +=+=

()2

2

1212

2

3l

m m m m y

x

m I i

i

i +=

+=

(b )如题3.6.3图所示,

题3.6.3

该原子由A 、B 、D 三个原子构成。C 为三个原子分子的质心。由对称性可知,图中Cx 、Cy 、Cz 轴即为中心惯量主轴。设A 、B 、D 三原子的坐标分

别为()0,,0A y ,??

? ????? ?

?-0,,2

,0,,2

D B y a y a 因为C 为分子

的质心。所以

D

B A D

D B B A A C m m m y m y m y m y ++++=

=

1

12112=++++m m m y m y m y m D

B A ①

又由于 D B y y =②

h y y B A =-③

由①②③得:2

122

112.22m m h m y y m

m h m y D B A +-

==+=

故该分子的中心主转动惯量

()()D B A i h

m m m m z

y

m I i

i

i ,,222

2

1212

2

1=+=

+=

()()D B A i

a m x

z

m I i

i

i

,,2

2

122

2==

+=

()()D B A i a m h m m m m y

x

m I i

i

i

,,2

222

12

2

1212

23=+

+=

+=

3.10解 如题3.10.1图。

题1.3.10

z 轴过O

点垂直纸面向外。均质圆盘的密度为ρ。

设盘沿顺时针转动,则沿z 的方向有z z M dt

dI =

即 z z M I =ω ①

I

为转盘绕z 轴的转动惯量:22

1ma I =(m 为盘的

质量), ωω-=z ②

(ω为盘转动的角频率,负号因为规定顺时针转动)

3

20

2

3

2a g dr d r g M

a

z

ρμπθρμπ=

=

??

=

()2

3

2a

m ma g πρρμ=③

由①②③得 a

g 34μω-

=

又因为 (),00ωω= 故 ()t a

g t 340μωω-=

所以 (),0=t ω 得 g

a t μω430=

3.11解 如题3.11.1图所示,

题1.3.11设z 轴通过O 点垂直纸面指向外。则对z 轴有:

Z M dt

dz =

设通风机转动的角速度大小为()t ω,由于通风机顺时针转动。所以()t z ωω-=,将()()t z t k M I z ωω=-=,代入上式得: ()()t t k I ωω=- 。又由于()()00ωω= ,

解得:

()t I

k t e

-=0ωω

故当()2

0ωω=t 时,k

I t =㏑2。又由于()()

t t θω =

(θ为通风机转动的角度)

设()00=θ, ()t I

k

t e -=0ωθ

()()

???

? ??

-=

+=

--?t I k t I

k t

t e k I dt e

1000

ωθω

θ

故当k

I t =㏑2时,()k

I t 20ωθ=,t 时间内通风机转动

的转数

()()

k

I n t πωπ

θθ4200=

-=

3.12解 如题3.12.1图,

第3.12.1图

坐标Oxyz 与薄片固连,则沿z 轴方向有: Z

M dt

dz =且 z I z ω=①

现取如图阴影部分的小区域ady dS =,该区域受到

的阻力()

2

2

y kady kdSv

df z ω==

df

对z 轴的力矩dy y ka y df dM z z 32ω-=?-=所以

2

3

4

z a

z

z

b a k

dM

M

ω-==

?

又薄片对轴的转动惯量

()ab m

ma

bdy y dm y I a

a

ρρ==

=

=

?

?

2

2

2

3

1③

由①②③得:

()0

2

1

431ωω+

=

t m

b ka t z

()2

ωω=

t z 时,0

2

34ωb ka m t =

3.15解 如题3.15.1图所示坐标系Oxyz 。

题3.15.1图

由于球作无滑滚动,球与地面的接触A 的速度与地面一致,等于零,所以A 点为转动瞬心。以O 为基点。设球的角速度k ω-=ω,则

()()()0000=-=-?-+=?+=k j k i OA ωv v r v r v A

ωω

r

v 0=

ω

设轮缘上任意一点p ,Op 与x 轴交角为θ,则

Op j

i θθsin cos r r +=

故()()j i k i Op ωv v θθωsin cos 00r r v p +?-+=?+=

()j i θωθωcos sin 0r r v -+=

当 90=θ时,得最高点的速度02v v top =

()Op

ωωOp ωa a ??+?+

=dt

d p 0

()()()[]j i k k θθωωsin cos r r +?-?-=

()j i j i θθθωθωsin cos sin cos 2

02

2

+-

=--=r

v r r

当 90=θ和 90-时分别得到最高点和最低点的加速度

j a r v top 2

0-

= j a r

v bottom 20=

3.16解 如题3.16.1图所示,

3.16.1图

由题意知该时刻瞬心一定处在AC 的垂线AO 中。设瞬心为O 。则 AO ω

v =

易知B v 的方向如图,在AOB ?中

OAB

AB AO AB

AO

OB

∠?-+=cos 22

2

2

2

2

2

2

2b

a b a

v a v +-+??? ??=ωω

2

2

2

2

2

21

b

a a

b v

a v OB +-+=

ωωω

=

?=OB v B ω2

2

2

222b

a a

b v

a v +-+ωω

BO

OAB

AO AB BA

BO AO BA OB

OBA ∠-=

?-+=

∠cos 2cos 2

22

2

2

2

2

2

2

2

2b

a ab

v

a v b

a b

v

a +-++-=

ωωω

??????

?

????

???+-++-=∠-2

2

2

2

2

2

2

1

2cos b

a a

b v

a v b

a b v

a OBA ωωω OBA

∠即为B v 与CB 边的夹角大小。

3.20解 如题3.20.1图,

题3.20.1图

'

m

设圆柱体的转动角速度为k ωω-=,设它受到地面的摩擦力为f ,由动量定理和动量矩定理知:

1a M x

M f T F

c x

∑==+= ① ∑

-

=+-=ω

2

2

1Mr fr Tr M

z

对于滑块。由动量定理知:

2ma y

m mg T F

y

-==-=∑ ③ ωr x

c = ω r x

a c ==1④

以C 为基点: r a a Ax ω +=1

假设绳不可拉伸。则2a a Ax =。故r a a ω +=12⑤ 由①②③④⑤解得:

m

M mMg T m

M mg a m

M mg a 833,838,83421+=

+=

+=

3.21解 (1)如题3.21.1图。

题3.21.1图

设z 轴过O 点垂直纸面向外。绳子上的弹力为T 。对于飞轮,根据动量矩定理,在z 轴方向:

∑=-=ω

I G Tr M

z

① ma T mg =-②

a 为物块下落的加速度。因为物块的加速度应与A

点加速度一样大小,故 r a ω = ③

由①②③解得: 2

mr

I G

mgr +-=ω (2)假若飞轮受到的阻尼力矩为G 的话,由(1)

问知,飞轮的角加速度2

mr

I G mgr +-=ω 。现在来求绳子脱落以后飞轮的角加速度ω' 。同样根据动量矩,

在z 轴方向:

I

G G I -='-='ω

ω

可以证明:类似于位移、加速度、初速度和末速度之间的关系式as v v t 2202=-。角位移、角加速度、角初速度、角末速度之间也有类似的关系:

θθ

θθ 2202=-t θθω

θ2

2

22mr

I G mgr t +-== ④

对于绳子脱落到停止转动的过程有:

?

?ωθ??

? ??-='=-I G t 2202

④⑤式中t θ 指绳子脱落时飞轮的角加速度,由④⑤解得: ()?

θθ2

mr

I I mgIr G ++=

3.263.26 如题3.26.1图所示

y

题1.3.26

坐标系Oxyz 。设杆的长度为a 2,质量为m 。受到墙和地面的作用力分别为12,N N ,当杆与地面的倾斜角为θ时,质心C 的坐标为:

θ

θsin cos a y a x c c ==

对上两式求时间导数,的质心的速度和加速度:

????

?=-=θθθθ cos sin a y

a x c c ?????+-=--=θθθθθθθθ

cos sin sin cos 22a a y a a x c c ① θ a y x

v c c c =+=

22② ()2

2

2

12

1sin sin θθα

I mv mga c +

=

-③

2

3

1ma

I =④

由②③④得 ()θαθsin sin 232-=a

g ⑤

对⑤式求时间导数得 θθ

cos 43a

g -= ⑥ 又由动量定理 c x

m N =2⑦ 当杆脱离墙时,有 02=N ⑧ 由①⑤⑥⑦⑧得 αθsin 2sin 3=⑨

所以 ??

?

??=αθsin 3

2arcsin

理论力学习题

班级姓名学号 第一章静力学公理与受力分析(1) 一.是非题 1、加减平衡力系公理不但适用于刚体,还适用于变形体。() 2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。() 3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。() 4、凡是受两个力作用的刚体都是二力构件。() 5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。()二.选择题 1、在下述公理、法则、原理中,只适于刚体的有() ①二力平衡公理②力的平行四边形法则 ③加减平衡力系公理④力的可传性原理⑤作用与反作用公理 三.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。整体受力图可在原图上画。 )a(球A )b(杆AB d(杆AB、CD、整体 )c(杆AB、CD、整体)

f(杆AC、CD、整体 )e(杆AC、CB、整体) 四.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 )a(球A、球B、整体)b(杆BC、杆AC、整体

班级 姓名 学号 第一章 静力学公理与受力分析(2) 一.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑 接触。整体受力图可在原图上画。 W A D B C E Original Figure A D B C E W W F Ax F Ay F B FBD of the entire frame )a (杆AB 、BC 、整体 )b (杆AB 、BC 、轮E 、整体 )c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体

胡汉才编著《理论力学》课后习题答案第3章习题解答(精编文档).doc

【最新整理,下载后即可编辑】 3-3在图示刚架中,已知kN/m 3 = m q,2 6 = F kN,m kN 10? = M,不计刚架自重。求固定端A处的约束力。 m kN 12 kN 6 0? = = = A Ay Ax M F F, , 3-4杆AB及其两端滚子的整体重心在G点,滚子搁置在倾斜的光滑刚性平面上,如图所示。对于给定的θ角,试求平衡时的β角。 A θ 3 l G β G θ B B F A R F3 2l O 解:解法一:AB为三力汇交平衡,如图所示ΔAOG中 β sin l AO=,θ-? = ∠90 AOG,β-? = ∠90 OAG,β θ+ = ∠AGO 由正弦定理: ) 90 sin( 3 ) sin( sin θ β θ β - ? = + l l, ) cos 3 1 ) sin( sin θ β θ β = + l 即β θ β θ θ βsin cos cos sin cos sin 3+ = 即θ βtan tan 2= ) tan 2 1 arctan(θ β= 解法二:: = ∑ x F,0 sin R = -θ G F A(1) = ∑ y F,0 cos R = -θ G F B(2)

)(=∑F A M ,0 sin )sin(3 R =++-β βθl F l G B (3) 解(1)、(2)、(3)联立,得 )tan 2 1 arctan(θβ= 3-5 由AC 和CD 构成的组合梁通过铰链C 连接。支承和受力如图所示。已知均布载荷强度kN/m 10=q ,力偶矩m kN 40?=M ,不计梁重。 kN 15kN 5kN 40kN 15===-=D C B A F F F F ;;; 解:取CD 段为研究对象,受力如图所示。 0)(=∑F C M ,024=--q M F D ;kN 15=D F 取图整体为研究对象,受力如图所示。 0)(=∑F A M ,01682=--+q M F F D B ;kN 40=B F 0=∑y F ,04=+-+D B Ay F q F F ;kN 15-=Ay F 0=∑x F ,0=Ax F 3-6如图所示,组合梁由AC 和DC 两段铰接构成,起重机放在梁上。已知起重机重P1 = 50kN ,重心在铅直线EC 上,起重载荷P2 = 10kN 。如不计梁重,求支座A 、B 和D 三处的约束反力。

理论力学题库(含答案)---1

理论力学---1 1-1.两个力,它们的大小相等、方向相反和作用线沿同一直线。这是 (A)它们作用在物体系统上,使之处于平衡的必要和充分条件; (B)它们作用在刚体系统上,使之处于平衡的必要和充分条件; (C)它们作用在刚体上,使之处于平衡的必要条件,但不是充分条件; (D)它们作用在变形体上,使之处于平衡的必要条件,但不是充分条件; 1-2. 作用在同一刚体上的两个力F1和F2,若F1 = - F2,则表明这两个力 (A)必处于平衡; (B)大小相等,方向相同; (C)大小相等,方向相反,但不一定平衡; (D)必不平衡。 1-3. 若要在已知力系上加上或减去一组平衡力系,而不改变原力系的作用效果,则它们所作用的对象必需是 (A)同一个刚体系统; (B)同一个变形体; (C)同一个刚体,原力系为任何力系; (D)同一个刚体,且原力系是一个平衡力系。 1-4. 力的平行四边形公理中的两个分力和它们的合力的作用范围 (A)必须在同一个物体的同一点上; (B)可以在同一物体的不同点上; (C)可以在物体系统的不同物体上; (D)可以在两个刚体的不同点上。 1-5. 若要将作用力沿其作用线移动到其它点而不改变它的作用,则其移动范围 (A)必须在同一刚体内; (B)可以在不同刚体上; (C)可以在同一刚体系统上; (D)可以在同一个变形体内。 1-6. 作用与反作用公理的适用范围是 (A)只适用于刚体的内部; (B)只适用于平衡刚体的内部; (C)对任何宏观物体和物体系统都适用; (D)只适用于刚体和刚体系统。 1-7. 作用在刚体的同平面上的三个互不平行的力,它们的作用线汇交于一点,这是刚体平衡的 (A)必要条件,但不是充分条件; (B)充分条件,但不是必要条件; (C)必要条件和充分条件; (D)非必要条件,也不是充分条件。 1-8. 刚化公理适用于 (A)任何受力情况下的变形体; (B)只适用于处于平衡状态下的变形体; (C)任何受力情况下的物体系统; (D)处于平衡状态下的物体和物体系统都适用。 1-9. 图示A、B两物体,自重不计,分别以光滑面相靠或用铰链C相联接,受两等值、反向且共线的力F1、F2的作用。以下四种由A、B所组成的系统中,哪些是平衡的?

理论力学习题及答案(全)

第一章静力学基础 一、是非题 1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。 () 2.在理论力学中只研究力的外效应。() 3.两端用光滑铰链连接的构件是二力构件。()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。() 6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。() 7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。 ()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。() 二、选择题 1.若作用在A点的两个大小不等的力 1和2,沿同一直线但方向相反。则 其合力可以表示为。 ①1-2; ②2-1; ③1+2; 2.作用在一个刚体上的两个力A、B,满足A=-B的条件,则该二力可能是 。 ①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。 ③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。 3.三力平衡定理是。 ①共面不平行的三个力互相平衡必汇交于一点; ②共面三力若平衡,必汇交于一点; ③三力汇交于一点,则这三个力必互相平衡。 4.已知F 1、F 2、F 3、F4为作用于刚体上的平面共点力系,其力矢 关系如图所示为平行四边形,由此。 ①力系可合成为一个力偶; ②力系可合成为一个力; ③力系简化为一个力和一个力偶; ④力系的合力为零,力系平衡。 5.在下述原理、法则、定理中,只适用于刚体的有。 ①二力平衡原理;②力的平行四边形法则; ③加减平衡力系原理;④力的可传性原理; ⑤作用与反作用定理。 三、填空题

《理论力学》第三章作业答案

[习题3--4] 已知挡土墙自重kN W400 =,土压力 kN F320 =,水压力kN F P 176 =,如图3-26所示。求 这些力向底面中心O简化的结果;如能简化为一合力, 试求出合力作用线的位置。图中长度单位为m。 解: (1) 求主矢量 ) ( 134 . 69 40 cos 320 176 40 cos0 0kN F F F P Rx - = - = - = ) ( 692 . 605 40 sin 320 400 40 sin0 0kN F W F Ry - = - - = - - = ) ( 625 . 609 ) 692 . 605 ( ) 134 . 69 (2 2 2 2kN F F F Ry Rx R = - + - = + = R F与水平面之间的夹角: " ' 018 29 83 134 . 69 692 . 605 arctan arctan= - - = = Rx Ry F F α (2) 求主矩 ) ( 321 . 296 ) 60 cos 3 3( 40 sin 320 60 sin 3 40 cos 320 2 176 8.0 4000 0m kN M O ? = - ? - ? + ? - ? = (3)把主矢量与主矩合成一个力 ) ( 486 .0 625 . 609 321 . 296 m F M d R O= = = ) ( 498 .0 5. 83 sin 486 .0 sin0 m d x= = = α [习题3-9] 求图示刚架支座A、B的反力,已知:图(a)中,M=2.5kN·m,

m 5. F =5kN;图(b)中,q=1kN/m,F =3kN。 解:图(a ) (1)以刚架ABCD 为研究对象,画出其受力图如图所示。 (2)因为AC 平衡,所以 ① 0)(=∑i A F M 0254 5.2532=??-??++?F F M R B 085.75.22=-++B R )(1kN R B = ② 0=∑ix F 053 =?-F R Ax )(35 3 5kN R Ax =?=

理论力学复习题

1.图示结构中的各构件自重不计。已知P =5 kN ,M=5 kN. m,q = 2.5kN/m 。 试求固定端A及滚动支座B处的约束反力。 2、一重W的物体置于倾角为α的斜面上,若摩擦系数为f, 且tgα

理论力学课后习题答案分析

第五章 Lt 习题5-2.重为G的物体放在倾角为a的斜面上,摩擦系数为 所需拉力T的最小值是多少,这时的角9多大? 解:(1)研究重物,受力分析(支承面约束用全反力R表 示), (2)由力三角形得 sin(a +甲」gin[(90J - a + (a + 6)] 千曲")& 皿0 -

??0=甲聽=arctgf T=Gsin(tt +(pJ

习题5-6.欲转动一放在V形槽中的钢棒料,需作用一矩M=15N.m勺力偶,已知棒料重400N,直径为25cm;求棒料与槽间的摩擦系数f。 解:(1)研究钢棒料,受力分析(支承面约束用全反力R表示),画受力图: (2)由力三角形得: R广护血(4亍-趴)& =0co昭5—忙) (3)列平衡方程: Vm o (F) = 0: - M+K血礼x/*+&$in化xr = O 由⑵、(3)得: M=FT[sin(45tf -(p H) + cos(45J -(p fl)]xrx sin(p w =JP>sin(p… x2sin45L,cos(p K 化35° (4)求摩擦系数: Wr =04243

习题5-7. 尖劈顶重装置如图所示,尖劈 A 的顶角为a ,在B块上受重物Q的作用, A、B块间的摩擦系数为f (其他有滚珠处表示光滑);求:(1)顶起重 物所需力P之值;(2)取支力P后能保证自锁的顶角a之值。 解:(1)研究整体,受力分析,画受力图: 列平衡方程 审":-S+JV X=O ■^ = Q 由力三角形得 P 二JV 勰(a+w)二伽(d +v)^?r(ff+) 1 (2)研究尖 劈

理论力学到题库及答案

理论力学部分 第一章 静力学基础 一、是非题 1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。 ( ) 2.两端用光滑铰链连接的构件是二力构件。 ( ) 3.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。 ( ) 4.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。 ( ) 5.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。 ( ) 6.约束反力的方向总是与约束所能阻止的被约束物体的运动方向一致的。 ( ) 二、选择题 线但方向相反。 1.若作用在A 点的两个大小不等的力1F 和2F ,沿同一直则其合力可以表示为 。 ① 1F -2F ; ② 2F -1F ; ③ 1F +2F ; 2.三力平衡定理是 。 ① 共面不平行的三个力互相平衡必汇交于一点; ② 共面三力若平衡,必汇交于一点; ③ 三力汇交于一点,则这三个力必互相平衡。 3.在下述原理、法则、定理中,只适用于刚体的有 。 ① 二力平衡原理; ② 力的平行四边形法则; ③ 加减平衡力系原理; ④ 力的可传性原理; ⑤ 作用与反作用定理。 4.图示系统只受F 作用而平衡。欲使A 支座约束力的作用线与AB 成30?角,则斜面的倾角应为 ________。 ① 0?; ② 30?; ③ 45?; ④ 60?。 5.二力A F 、B F 作用在刚体上且 0=+B A F F ,则此刚体________。 ①一定平衡; ② 一定不平衡; ③ 平衡与否不能判断。 三、填空题 1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是 。 2.已知力F 沿直线AB 作用,其中一个分力的作用与AB 成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为 度。 3.作用在刚体上的两个力等效的条件是

(完整版)《理论力学》试题库

《理论力学》试题库 第一部分 填空题: 第一类: 1,已知某质点运动方程为x=2bcoskt,y=2bsinkt,其中b 、k 均为常量,则其运动轨迹方程为————————————,速度的大小为————————————,加速度的大小为————————————。 2、已知某质点运动方程为x=2cos3t,y=2sin3t,z=4t 则其运动速度的大小为 ,加速度的大小为 。 3、已知某质点运动方程为r=e ct ,θ=bt,其中b 、c 是常数,则其运动轨道方程为——————————————————————,其运动速度的大小为——————————,加速度的大小为————————————。 4、已知某质点的运动方程为x=2bcos 2kt ,y=bsin2kt ,则其运动轨道方程为 ;速度大小为 ;加速度大小为 。 5、已知质点运动的参数方程为y=bt ,θ=at ,其中a 、b 为常数,则此质点在极坐标系中的轨道方程式为 ,在直角坐标系中的轨道方程式为 。 6、已知某质点的运动方程为r=at,θ=bt,其中a 、b 是常数,则其运动轨道方程为——————————————————————,其运动速度的大小为——————————,加速度的大小为————————————。 7、已知某质点运动方程为r=at,θ=b/t,其中a 、b 是常数,则其运动轨道方程为———————————————,其运动速度的大小为——————————,加速度的大小为—————————。 8、已知某质点的运动方程为x=at,y=a(e t -e -t )/2,其中a 为常数,则其运动轨道方程为——————————————————————,曲率半径为——————————。 第二类: 9、质点在有心力作用下,其————————————————————均守恒,其运动轨道的微 分方程为——————————————————————,通常称此轨道微分方程为比耐公式。 10、柯尼希定理的表达式为————————————————————,其中等式右边第一项和第

理论力学第三章习题

第三章习题 ( 3.1;3.6;3.7;3.9;3.10;3.12;3.13;3.20;3.21,3.22) 3.1 半径为r 的光滑半球形碗,固定在水平面上。一均质棒斜靠在碗缘,一 端在碗内,一端则在碗外,在碗内的长度为c ,试证棒的全长为 () c r c 2224- 3.1解 如题3.1.1图。 A G θ图 题1.3.1y x o 2N 1 N B θ θ θ 均质棒受到碗的弹力分别为1N ,,2N 棒自身重力为G 。棒与水平方向的夹角为 θ。设棒的长度为l 。 由于棒处于平衡状态,所以棒沿x 轴和y 轴的和外力为零。沿过A 点且与z 轴平行的合力矩为0。即: 0sin 2cos 2 1 =-=∑θθN N F x ① 0cos 2sin 2 1 =-+=∑G N N F y θθ② 0cos 22=-=∑θl G c N M i ③ 由①②③式得:

()θ θ2 2 cos 1cos 22-=c l ④ 又由于 ,cos 2c r =θ 即 r c 2cos = θ⑤ 将⑤代入④得: ()c r c l 2224-= 3.6 把分子看作相互间距离不变的质点组,试决定以下两 种情况下分子的中心主转动惯量: ()a 二原子分子。它们的质量是1m ,2m ,距离是l 。 ()b 形状为等腰三角形的三原子分子,三角形的高是h , 底边的长度为a 。底边上两个原子的质量为1m ,顶点上的为 2m 。

? C x y h a 1 m 2 m 1 m 第3.6(b)题图 3.6解 (a )取二原子的连线为x 轴,而y 轴与z 轴通过质心。O 为质心,则 Ox ,Oy ,Oz 轴即为中心惯量主轴。 设1m 、2m 的坐标为()()0,0,,0,0,21l l ,因为O 为质心(如题3.6.2图) y z x o 1m 2 m 图 题2.6.3 故 02211=+l m l m ① 且 l l l =-12 ② 由①②得 2 1122121,m m l m l m m l m l += +-= 所以中心惯量主轴:

理论力学第一章习题答案

理论力学第一章习题答案 设开始计时的时刻速度为,由题可知枪弹作匀减速运动设减速度大小为. 则有: 由以上两式得 再由此式得 证明完毕. { { S S t t 题1.1.1图 0v a ()()??? ??? ? +-+=-=2 2121021102122 1t t a t t v s at t v s 1102 1 at t s v += () () 2121122t t t t t t s a +-= () 1第1.3题图

由题分析可知,点的坐标为 又由于在中,有 (正弦定理)所以 联立以上各式运用 由此可得 得 得 化简整理可得 此即为点的轨道方程. (2)要求点的速度,分别求导 y 题1.3.2图 C ? ? ?=+=ψψ ?sin cos cos a y a r x ?AOB ? ψsin 2sin a r = r y r a 2sin 2sin == ψ?1cos sin 22=+??r y a x r a x 2 2cos cos --= -=ψ?12422 222222=---++r y a x y a x r y 22222223y a x r a x y -=-++()() 2 222222234r a y x y a x -++=-C C ??? ? ?? ? =--=2cos sin cos 2cos sin ?ωψψ?ω?ωr y r r x

又因为 对两边分别求导 故有 所以 ①② 对①求导 ③ 对③求导 ④ 对②求导 ⑤ 对⑤求导 ⑥ 对于加速度,我们有如下关系见题1.7.1图 ? ω =ψ?sin 2sin a r =ψ ? ωψ cos 2cos a r = 22y x V +=4cos sin cos 2cos sin 2222 ? ωψψ?ω?ωr r r +??? ? ??--=()ψ?ψ??ψ ω ++= sin cos sin 4cos cos 22r ? ? ?==θθ sin cos r y r x θθθ sin cos r r x -=θθθθθθθcos sin sin 2cos 2 r r r r x ---=θθθcos sin r r y +=θθθθθθθsin cos cos 2sin 2 r r r r y -++= a 题1.7.1图

理论力学课后习题第三章解答

理论力学课后习题第三章解答 3.1解 如题3.1.1图。 均质棒受到碗的弹力分别为,棒自身重力为。棒与水平方向的夹角为。设棒的长度为。 由于棒处于平衡状态,所以棒沿轴和轴的和外力为零。沿过点且与 轴平行的合力矩为0。即: ① ② ③ 由①②③式得: ④ 又由于 即 ⑤ 将⑤代入④得: 图 题1.3.11N ,2N G θl x y A z 0sin 2cos 21=-=∑θθN N F x 0cos 2sin 21=-+=∑G N N F y θθ0cos 2 2 =-=∑θl G c N M i ()θ θ2 2cos 1cos 22-=c l ,cos 2c r =θr c 2cos = θ

3.2解 如题3.2.1图所示, 均质棒分别受到光滑墙的弹力,光滑棱角的弹力,及重力。由于棒处于平衡状态,所以沿方向的合力矩为零。即 ① 由①②式得: 所以 ()c r c l 2224-=o 图 题1.3.21N 2N G y 0cos 2=-=∑G N F y θ0cos 2 2cos 2 =-=∑θθl G d N M z l d = θ3cos 31 arccos ? ? ? ??=l d θ

3.3解 如题3.3.1图所示。 棒受到重力。棒受到的重力。设均质棒的线密度为。 由题意可知,整个均质棒沿轴方向的合力矩为零。 3.4解 如题3. 4.1图。 轴竖直向下,相同的球、、互切,、切于点。设球的重力大小 图 题1.3.32 AB i G ag ρ=1i G bg ρ=2ρz ()BH BF G OD G M z --?=∑2 1sin θ=0sin cos 2sin 2=?? ? ??--θθρθρa b gb a ga ab a b 2tan 22 +=θ图 题1.3.4Ox A B C B C D

《理论力学》测试试题库

《理论力学》试题库

————————————————————————————————作者:————————————————————————————————日期:

《理论力学》试题库 第一部分填空题: 第一类: 1,已知某质点运动方程为x=2bcoskt,y=2bsinkt,其中b、k均为常量,则其 运动轨迹方程为 ————————————,速度的大小为 ———————————— ,加速度的大小为 ———— ———————— 。 2、已知某质点运动方程为x=2cos3t,y=2sin3t,z=4t则其运动速度的大小为,加速度的大小为。 3、已知某质点运动方程为r=e ct,θ=bt,其中b、c是常数,则其运动轨道方程 为 ——————————————————————,其运动速度的大小为 —————————— ,加速度的大小为 — ——————————— 。 4、已知某质点的运动方程为x=2bcos2kt,y=bsin2kt,则其运动轨道方程 为 ;速度大小为;加速度大小为。 5、已知质点运动的参数方程为y=bt,θ=at,其中a、b为常数,则此质点在极坐标系中的轨道方程式为,在直角坐标系中的轨道方程式为。 6、已知某质点的运动方程为r=at,θ=bt,其中a、b是常数,则其运动轨道方 程为 ——————————————————————,其运动速度的大小为 —————————— ,加速度的大小为 ———————————— 。 7、已知某质点运动方程为r=at,θ=b/t,其中a、b是常数,则其运动轨道方 程为 ———————————————,其运动速度的大小为 —————————— ,加速度的大小为 —————— ——— 。 8、已知某质点的运动方程为x=at,y=a(e t-e-t)/2,其中a为常数,则其运动 轨道方程为 ——————————————————————,曲率半径为 —————————— 。 第二类: 9、质点在有心力作用下,其 ———————————————————— 均守恒,其运动轨道的微

理论力学第三章习题解析

第三章习题 ( 3.1;3.6;3.7;3.9;3.10;3.12;3.13;3.20;3.21,3.22) 3.1 半径为r 的光滑半球形碗,固定在水平面上。一均质棒斜靠在碗缘,一端 在碗内,一端则在碗外,在碗内的长度为c ,试证棒的全长为 () c r c 2224- 3.1解 如题3.1.1图。 图 题1.3.1 均质棒受到碗的弹力分别为1N ,,2N 棒自身重力为G 。棒与水平方向的夹角为 θ。设棒的长度为l 。 由于棒处于平衡状态,所以棒沿x 轴和y 轴的和外力为零。沿过A 点且与 z 轴平行的合力矩为0。即: 0sin 2cos 2 1 =-=∑θθN N F x ① 0cos 2sin 2 1 =-+=∑G N N F y θθ② 0cos 22=-=∑θl G c N M i ③ 由①②③式得:

()θ θ2 2 cos 1cos 22-=c l ④ 又由于 ,cos 2c r =θ 即 r c 2cos = θ⑤ 将⑤代入④得: ()c r c l 2224-= 3.6 把分子看作相互间距离不变的质点组,试决定以下两种 情况下分子的中心主转动惯量: ()a 二原子分子。它们的质量是1m ,2m ,距离是l 。 ()b 形状为等腰三角形的三原子分子,三角形的高是h ,底 边的长度为a 。底边上两个原子的质量为1m ,顶点上的为2m 。

? C x y h a 1 m 2 m 1 m 第3.6(b)题图 3.6解 (a )取二原子的连线为x 轴,而y 轴与z 轴通过质心。O 为质心,则Ox , Oy ,Oz 轴即为中心惯量主轴。 设1m 、2m 的坐标为()()0,0,,0,0,21l l ,因为O 为质心(如题3.6.2图) 故 02211=+l m l m ① 且 l l l =-12 ② 由①②得 2 1122121,m m l m l m m l m l += +-= 所以中心惯量主轴:

昆明理工大学理论力学第一章答案

第一章 静力学公理与物体的受力分析 一、就是非判断题 1.1.1 在任何情况下,体内任意两点距离保持不变的物体称为刚体。 ( ∨ ) 1.1.2 物体在两个力作用下平衡的必要与充分条件就是这两个力大小相等、方向相反,沿同一直线。 ( × ) 1.1.3 加减平衡力系公理不但适用于刚体,而且也适用于变形体。 ( × ) 1.1.4 力的可传性只适用于刚体,不适用于变形体。 ( ∨ ) 1.1.5 两点受力的构件都就是二力杆。 ( × ) 1.1.6 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。 ( × ) 1.1.7 力的平行四边形法则只适用于刚体。 ( × ) 1.1.8 凡矢量都可以应用平行四边形法则合成。 ( ∨ ) 1.1.9 只要物体平衡,都能应用加减平衡力系公理。 ( × ) 1.1.10 凡就是平衡力系,它的作用效果都等于零。 ( × ) 1.1.11 合力总就是比分力大。 ( × ) 1.1.12 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。 ( × ) 1.1.13 若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。 ( ∨ ) 1.1.14 当软绳受两个等值反向的压力时,可以平衡。 ( × ) 1.1.15 静力学公理中,二力平衡公理与加减平衡力系公理适用于刚体。 ( ∨ ) 1.1.16 静力学公理中,作用力与反作用力公理与力的平行四边形公理适用于任何物体。 ( ∨ ) 1.1.17 凡就是两端用铰链连接的直杆都就是二力杆。 ( × ) 1.1.18 如图1、1所示三铰拱,受力F ,F 1作用,其中F 作用于铰C 的销子上,则AC 、BC 构件都不就是二力构件。 ( × ) 二、填空题 1.2.1 力对物体的作用效应一般分为 外 效应与 内 效应。 1.2.2 对非自由体的运动所预加的限制条件称为 约束 ;约束力的方向总就是与约束所能阻止的物体的运动趋势的方向 相反 ;约束力由 主动 力引起,且随 主动 力的改变而改变。 1.2.3 如图1、2所示三铰拱架中,若将作用于构件AC 上的力偶M 搬移到构件BC 上,则A 、

理论力学考试的试题

本部理论力学复习资料 计算各题中构件的动量、对转轴的转动惯量,对转轴的动量矩、动能。图a-d 中未标注杆长L ,质量m ,圆盘半径R ,质量M ,均为均质构件,转动角速度均为w 。 填空题 1.平面任意力系平衡的充分必要条件是力系的( )( )为零。 2.力系向一点简化得到的主矢与简化中心位置( )关,主矩矢一般与简化中心位置( )关。平面一般力系向一点简化可能得到的结果为力系简化为( )、( )或力系平衡。 4.平面汇交力系独立的平衡方程有( )个,空间汇交力系有( )个独立 平衡方程。 5.动点作曲线运动时的全加速度等于( )与( )两者矢量和。 6.已知质点运动方程为22,x t t y t =-+=,式中单位均为国际单位,则2t =秒时质点速度在,x y 轴投影分别为( )( );质点速度大小为( );加速度在,x y 轴投影大小分别为( )( )。 8. 力F 在x 轴上投影Fx=0和力F 对x 轴之矩Mx(F)=0,那么力F 应与( )轴( )并且( )。 9. 力偶矩矢的三个基本要素是( )( )和( )。 10. 直角刚杆AO=2m ,BO=3m ,已知某瞬时A 点的速度V A =4m/s,而B 点加速度与BO 成?=α60角。则该瞬时刚杆的角速度ω=( )rad/s ,角加速度ε=( )rad/s 2。 (a)(b) (c) e f

11.物体保持原有的( )( )状态的性质称为惯性。 12.平面一般力系向一点简化可能得到的结果为力系简化为( )、( )或力系平衡。 13.质心运动定理在空间直角坐标系下的三个投影方程为:( );( );( )。 14.摩擦角是指临界平衡时( )与( )夹角。 15.瞬时平动刚体上各点的速度( );各点加速度一般( )。(填相等、不相等)。 选择题 斜面倾角为30α= ,物块质量为m ,与斜面间的摩擦系数0.5s f =,动滑动摩擦系数 d f = (A ) (B ) (C ) (D)质量为m 压力大小为(A) mg (C ) 点 (t 以厘米计),则点( ) (C)6cm,8cm/s 2 (D) 16cm,8cm/s 2 点的合成运动中的速度合成定理a e r v v v =+ ,适用于哪种类型的牵连运动? (A) 只适用于牵连运动为平动的情况 (B) (C) (D) 楔形块A ,B 自重不计,大小相等,方向相反,(A) A ,B 都不平衡(C) A 平衡, B 不平衡

理论力学习题(1)

第一章 思考题 1.1 平均速度与瞬时速度有何不同?在什么情况下,它们一致? 答:平均速度因所取时间间隔不同而不同,它只能对运动状态作一般描述,平均速度的方向只是在首末两端点连线的方向;而瞬时速度表示了运动的真实状况,它给出了质点在运动轨道上各点处速度的大小和方向(沿轨道切线方向)。只有在匀速直线运动中,质点的平均速度才与瞬时速度一致。 1.2 在极坐标系中,θθ&&r v r v r ==,为什么2θ&&&r r a r -=而非r &&?为什么 θθθ&&&&r r a 2+=而非θθθ&&&&r r a +=?你能说出r a 中的2θ&r -和θa 中另一个θ&&r 出现的原因和 它们的物理意义吗? 答:在极坐标系中,径向速度和横向速度,不但有量值的变化,而且有方向的变化,单位矢量对时间的微商不再等于零,导致了上面几项的出现。实际上将质点的运动视为径向的直线运动以及以极点为中心的横向的圆周运动。因此径向加速度分量r a 中,除经 向直线运动的加速度r & &外,还有因横向速度的方向变化产生的加速度分量2θ&r -;横向加速度分量中除圆周运动的切向加速度分量θ&&r 外,还有沿横向的附加加速度θ&&r 2,其中的一半θ&&r 是由于径向运动受横向转动的影响而产生的,另一半θ&&r 是由于横向运动受径 向运动的影响而产生的。 1.3 在内禀方程中,n a 是怎样产生的?为什么在空间曲线中它总沿着主法线的方向?当质点沿空间曲线运动时,副法线方向的加速度b a 等于零,而作用力在副法线方向的分量b F 一般不等于零,这是不是违背了牛顿运动定律呢? 答:由于自然坐标系是以轨道切线、主法线和副法线为坐标系,当质点沿着轨道曲线运动时,轨道的切线方向始终在密切平面内,由于速度方向的不断变化,产生了n a 沿

理论力学习题册答案

第一章 静力学公理与受力分析(1) 一.是非题 1、加减平衡力系公理不但适用于刚体,还适用于变形体。 ( ) 2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。( ) 3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。 ( ) 4、凡是受两个力作用的刚体都是二力构件。 ( ) 5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。 ( ) 二.选择题 1、在下述公理、法则、原理中,只适于刚体的有 ( ) ①二力平衡公理 ②力的平行四边形法则 ③加减平衡力系公理 ④力的可传性原理 ⑤作用与反作用公理 三.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 )a (球A )b (杆AB )c (杆AB 、CD 、整体 )d (杆AB 、CD 、整体

)e(杆AC、CB、整体)f(杆AC、CD、整体 四.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 )a(球A、球B、整体)b(杆BC、杆AC、整体

第一章静力学公理与受力分析(2) 一.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 W A D B C E Original Figure A D B C E W W F Ax F Ay F B FBD of the entire frame ) a(杆AB、BC、整体) b(杆AB、BC、轮E、整体 )c(杆AB、CD、整体) d(杆BC带铰、杆AC、整体

理论力学复习题

1.物体重P=20KN,用绳子挂在支架的滑轮B上,绳子的另一端接在绞D上,如图所示,转动绞,物体便能升起。设滑轮的大小,AB与CD杆自重及摩擦忽略不算,A,B,C三处均为铰链链接。当物体平衡时,求拉杆AB和支杆CB所受的力。 2.在图示刚架的点B作用一水平力F尺寸如图,钢架重量忽略不计,求支座A,D的约束力 Fa和Fd。 3.已知梁AB上作用一力偶,力偶矩为M,梁长为L,梁重不计,求在图a,b,c三种情况下,

支座A,B的约束力。 4.无重水平梁的支撑和载荷如图a,b所示,已知力F,力偶矩M的力偶和强度为q的均布载荷,求支座A,B处的约束力。

5.由AC和CD构成的组合梁通过铰链C链接,它的支撑和受力如图所示,已知均布载荷强度q=10kN/m,力偶矩M=40kN·m,不计梁重,求支座A,B,D的约束力和铰链C处的所受的力。 6.在图示构架中,各杆单位长度的重量为300N/m,载荷P=10kN,A处为固定端,B,C,D,处为铰链,求固定端A处及B,C铰链处的约束力。

7..杆OA长L,有推杆推动而在图面内绕点O转动,如图所示,假定推杆的速度为v,其弯头高为a。求杆端A的速度大小(表示为x的函数)。

8.平底顶杆凸轮机构如图所示,顶杆AB课沿导槽上下移动,偏心圆盘绕轴O转动,轴O 位于顶杆轴线上。工作时顶杆的平底始终接触凸轮表面。该凸轮半径为R,偏心距OC=e,凸轮绕轴O 转动的角速度为w,OC与水平线成夹角φ。当φ=0°时,顶杆的速度。 9.图示铰接四边形机构中,O1A=O2B=100mm,又O1O2=AB,杆O1A以等角速度w=2rad/s绕轴O1转动。杆AB上有一套筒C,此套筒与杆CD相铰接。机构的各部件都在同一铅直面内。求φ=60°时,杆CD的速度和加速度。

理论力学习题答案第三章

第三章思考题解答 答:确定一质点在空间中得位置需要3个独立变量,只要确定了不共线三点的位置刚体的位置也就确定了,故须九个独立变量,但刚体不变形,此三点中人二点的连线长度不变,即有三个约束方程,所以确定刚体的一般运动不需3n 个独立变量,有6个独立变量就够了.若刚体作定点转动,只要定出任一点相对定点的运动刚体的运动就确定了,只需3个独立变量;确定作平面平行运动刚体的代表平面在空间中的方位需一个独立变量,确定任一点在平面上的位置需二个独立变量,共需三个独立变量;知道了定轴转动刚体绕转动轴的转角,刚体的位置也就定了,只需一个独立变量;刚体的平动可用一个点的运动代表其运动,故需三个独立变量。 答物体上各质点所受重力的合力作用点即为物体的重心。当物体的大小远小于地球的线度时物体上各质点所在点的重力加速度都相等,且方向彼此平行即重力场为均匀场,此时质心与重心重合。事实上但物体的线度很大时各质点所在处g 的大小是严格相等,且各质点的重力都指向地心,不是彼此平行的,重心与质心不和。 答 当物体为均质时,几何中心与质心重合;当物体的大 小远小于地球的线度时,质心与重心重合;当物体为均质且大小远小于地球的线度时,三者都重合。 答 主矢F 是力系各力的矢量和,他完全取决于力系中各力的大小和方向,故主矢不随简化中心的位置而改变,故而也称之为力系的主矢;简化中心的位置不同,各力对简化中心的位矢i r 也就不同则各力对简化中心的力矩也就不同,故主矩随简化中心的位置而变,被称之为力系对简化中心的主矩。分别取O 和O '为简化中心,第i 个力i F 对O 和O '的位矢分别为i r 和i r ',则i r =i r '+O O ',故 ()()i i i i i i O F O O r F r M ?'-'=?'= ∑∑'()∑∑?'-?'=i i i i i F O O F r ∑?'+=i i o F O O M 即o o M M ≠' 主矢不变,表明刚体的平动效应不变,主矩随简化中心的 位置改变,表明力系的作用对刚体上不同点有不同的转动效应,但不改变整个刚体的转动规律或者说不影响刚体绕质心的转动。设O 和O '对质心C 的位矢分别为C r 和C r ',则C r '=C r +O O ',把O 点的主矢∑=i i F F ,主矩o M 移 到C 点得力系对重心的主矩 ∑?+=i i C o C F r M M 把O '为简化中心得到的主矢∑= i i F F 和主矩o ' M 移到 C 点可得 ∑?+'=i i C o C F r M M ()∑?'-'+=i i C o F O O r M ∑?+=i i C o F r M 简化中心的改变引起主矩的改变并不影响刚体的运动。事实上,简化中心的选取不过人为的手段,不会影响力系的物理效应。 3.5 答 不等。如题3-5图示, l 题3-5图 dx l m dm = 绕Oz 轴的转动惯量 2 22434 2 4131487?? ? ??+≠==? -l m ml ml dx l m x I l l z 这表明平行轴中没有一条是过质心的,则平行轴定理 2md I I c +=是不适应的 不能,如3-5题。但平行轴定理修改后可用于不过质心的二平行轴。如题3-6图所示, B l 题3-6图

理论力学题库(含答案)---

. 理论力学---1 1-1. 两个力,它们的大小相等、方向相反和作用线沿同一直线。这是 (A)它们作用在物体系统上,使之处于平衡的必要和充分条件; (B)它们作用在刚体系统上,使之处于平衡的必要和充分条件; (C)它们作用在刚体上,使之处于平衡的必要条件,但不是充分条件; (D)它们作用在变形体上,使之处于平衡的必要条件,但不是充分条件; 1-2. 作用在同一刚体上的两个力F1和F2,若F1 = - F2,则表明这两个力 (A)必处于平衡; (B)大小相等,方向相同; (C)大小相等,方向相反,但不一定平衡; (D)必不平衡。 1-3. 若要在已知力系上加上或减去一组平衡力系,而不改变原力系的作用效果,则它们所作用的对象必需是 (A)同一个刚体系统; (B)同一个变形体; (C)同一个刚体,原力系为任何力系; (D)同一个刚体,且原力系是一个平衡力系。 1-4. 力的平行四边形公理中的两个分力和它们的合力的作用范围 (A)必须在同一个物体的同一点上; (B)可以在同一物体的不同点上; (C)可以在物体系统的不同物体上; (D)可以在两个刚体的不同点上。 1-5. 若要将作用力沿其作用线移动到其它点而不改变它的作用,则其移动范围 (A)必须在同一刚体内; (B)可以在不同刚体上; (C)可以在同一刚体系统上; (D)可以在同一个变形体内。 1-6. 作用与反作用公理的适用范围是 (A)只适用于刚体的内部; (B)只适用于平衡刚体的内部; (C)对任何宏观物体和物体系统都适用; (D)只适用于刚体和刚体系统。 1-7. 作用在刚体的同平面上的三个互不平行的力,它们的作用线汇交于一点,这是刚体平衡的 (A)必要条件,但不是充分条件; (B)充分条件,但不是必要条件; (C)必要条件和充分条件; (D)非必要条件,也不是充分条件。 1-8. 刚化公理适用于 (A)任何受力情况下的变形体; (B)只适用于处于平衡状态下的变形体; (C)任何受力情况下的物体系统; (D)处于平衡状态下的物体和物体系统都适用。

相关文档
相关文档 最新文档