文档库 最新最全的文档下载
当前位置:文档库 › 全省主要城市环境空气质量月报

全省主要城市环境空气质量月报

全省主要城市环境空气质量月报
全省主要城市环境空气质量月报

全省主要城市环境空气质量月报

(2019年11月)

2019年11月,按照《环境空气质量标准》(GB3095-2012)分别对全省16个州、市政府所在地二氧化硫、二氧化氮、可吸入颗粒物(PM10)、一氧化碳、臭氧和细颗粒物(PM2.5)开展监测及评价。各州、市政府所在地环境空气优良天数统计见表1,环境空气质量综合指数排名见表2。

表1全省16个州、市政府所在地环境空气优良天数统计州市名称优良轻度污染及以上优良率(%)昆明16140100%

曲靖2550100%

玉溪2820100%

保山300100%

昭通2370100%

丽江290100%

普洱300100%

临沧300100%

楚雄300100%

蒙自300100%

文山2640100%

景洪2550100%

大理300100%

芒市2910100%

泸水3270100%

香格里拉290100%

表2全省16个州、市政府所在地环境空气质量综合指数排名

城市名称排名

香格里拉1

丽江2

大理3

保山4

普洱5

蒙自6

临沧7

城市名称排名

芒市8

文山9

楚雄10

昭通11

景洪12

曲靖13

玉溪14

泸水15

昆明16

16个城市二氧化硫、二氧化氮、可吸入颗粒物、细颗粒物月均浓度分别为9微克/立方米、18微克/立方米、36微克/立方米、20微克/立方米。可吸入颗粒物、二氧化氮和细颗粒物分别较上月上升33.3%、28.5%和25%,二氧化硫与上月持平;细颗粒物、二氧化硫、二氧化氮、可吸入颗粒物与上年同期持平。一氧化碳日均值第95百分位浓度平均为0.9毫克/立方米,较上月上升12.5%,较上年同期上升28.6%;臭氧日最大8小时均值第90百分位浓度平均为82微克/立方米,较上月下降4.7%,较上年同期上升22.4%。

图1云南省环境空气主要污染物月均值变化情况(单位:μg/m3)

说明:1.城市环境空气优良率=优良天数占当月总监测天数的百分率。

2.城市环境空气质量排名依据环境空气质量综合指数从小到大进行排名。环境空气质量综合指数是描述城市环境空气质量综合状况的无量纲指数,它综合考虑了二氧化硫、二氧化氮、可吸入颗粒物(PM10)、一氧化碳、臭氧和细颗粒物(PM2.5)等六项污染物的污染程度,综合指数越大表明城市综合污染程度越高。

(完整版)环境监测系统解决方案

环境监测系统解决方案 一、系统概要 本综合管控云平台是一套基于云计算的物联网综合管控云服务平台。平台可适配于各种物联网应用系统,实时监控管理接入设备的状态与运行情况,并对设备进行远程操作,通过云平台对接物联网设备做到精确感知、精准操作、精细管理,提供稳定、可靠、低成本维护的一站式云端物联网平台。环境监测系统通过对现场温度、湿度、光照、风向、风速、PM2.5、气压等参数的数据采集,将参数数据远传至物联网云平台,实现现场各个设备的数据实时监测,用户可以通过电脑网页或是手机app实时查看,可以自由设置各个参数的标准值上下限,如果数据超限可以给相关的工作人员发送短信或是微信报警提醒,做到提前预警,避免造成不必要的损失,实现在远程就能值守现场设备。 二、拓扑图 现场传感器数据通过物联网中继器上传云平台,客户通过电脑网页或是手机app可以实时监控现场设备数据。

三、系统构成 3.1系统登陆 ①PC端登陆: 本系统采用B/S架构,PC端用户只需打开浏览器通过IP地址进入管理系统,凭管理员分配的用户名密码进行登陆管理。(登陆界面可定制企业logo及信息)如下图: ②手机端登陆: 用户可在任何有本地局域网信号的地方,通过IOS或Android版本APP登陆系统,登陆账号与PC端账号相同。IOS 版本APP请在Apple Store搜索“易云系统”进行下载,安卓版本请在“易云物联网系统”公众号或PC端系统中扫描二维码进行下载。 3.2数据监控 能够便捷监控实时数据,并且可通过数据变化自动启停其他设备,各项数据可用数值、图片、文字分别展示,并通过短信等功能向用户发送报警信息。另外,可设定不同的监控点,更直观的监测每个测温点实时情况,模拟真实的设备位置分布。如下图:

物联网智能环境监测系统

《传感器与物联网技 术》 综合报告 题目:智能环境与物联网技术 专业: 学号: 姓名: 提交日期:二О一六年六月 摘要

环境与所有人的日常生活都息息相关,而物联网技术也随着计算机技术,信息技术,以及智能技术的发展越来越多的开始被应用到我们的日常生活中来。本文主要针对物联网技术应用到环境监测中的相关问题进行了分析与探讨。 智能环境利用各种传感器技术,移动计算,信息融合等技术对空气环境,海洋环境,河,湖水质,生态环境,城市环境质量进行全面有效地监控,通过构建全国各地环境质量的检测实现对全国范围内的环境进行实时在线监控和综合分析,建立全国性的污染源信息综合管理系统,为采取环境治理措施和污染预警提供更客观,有效的依据。 关键字:智能环境物联网技术传感器

目录 1引言 (4) 1.1 物联网简介 (4) 1.2智能环境研究的目的和背景 (4) 2需求分析 (4) 2.1智能环境功能需求分析 (5) 2.2各子系统需求分析 (5) 2.2.1大气污染监测子系统需求分析 (5) 2.2.2海洋污染监测子需求分析 (5) 2.2.3水质监测子系统需求分析 (5) 2.2.4生态环境检测子系统需求分析 (5) 2.2.5城市环境检测子系统需求分析 (5) 2.3其他非功能需求分析 (6) 2.3.1可靠性需求 (6) 2.3.2开放性需求 (6) 2.3.3可扩展性需求 (6) 2.3.4安全性需求 (6) 2.3.5应用环境需求 (6) 3详细设计 (6) 3.1各环境监测子系统解决方案 (6) 3.2智能环境监测系统结构图 (5) 3.2.1各子系统环境监测拓扑结构图 (6) 4结论 (12) 参考文献 (13)

以色列环境空气质量标准

Abatement of Nuisances Regulations (Air Quality), 1992 - Summary Ambient standards for air pollutants are set out in these regulations. Part A. -- Gasses Pollutant Chemical Formula Concentration Time period (in milligrams per cubic meter) ?Ozone - O3 - 0.230 0.5h; 0.160 24 hours ?Sulfur Dioxide SO2 - 0.500 0.5h; 0.280 24 hours; 0.060 1 year ?1,2 Dichloroethane CH2ClCH2Cl - 6.0 0.5 hour; 2.0 24 hours ?Dichloromethane CH2Cl2 - 6.0 0.5 hour; 3.0 24 hours ?Toluene C7H8 - 10.0 24 hours ?Tetrachloroethylene C2Cl4 - 5.0 24 hours ?Trichloroethylene C2HCl3 - 1.0 24 hours ?Hydrogen Sulfide H2S - 0.045 0.5 hour; 0.015 24 hours ?Styrene C8H8 - 0.100 0.5 hour ?Formaldehyde CH2O - 0.100 0.5 hour ?Carbon Monoxide CO - 60.0 0.5 hour; 11.0 8 hour ?Nitrogen Oxides(as NO2) NOx - 0.940 0.5 hour; 0.560 24 hours Part B -- Suspended Particulate Matter Pollutant Chemical Formula Concentration Time period (in milligrams per cubic meter) ?Suspended Particulate Matter - 0.300 3 hours; 0.200 24 hours; 0.075 1 year ?Respirable Particulate Matter - 0.150 24 hours; 0.060 1 year ?Vanadium (in Suspended Particulate Matter) - V 0.001 24 hours ?Sulfate Salts SO4 - .025 24 hours

六盘水市环境质量月报

六盘水市环境质量月报 (2018年7月) 一、中心城区环境空气质量 2018年7月,我市中心城区按《环境空气质量标准》(GB 3095-2012)要求开展了二氧化硫(SO2)、二氧化氮(NO2)、一氧化碳(CO)、臭氧(O3)、可吸入颗粒物(PM10)和细颗粒物(PM2.5)6项指标的环境空气质量监测,共监测31天,AQI优良天数为31天,优良率100%,首要污染物为臭氧,环境空气质量综合指数2.63。 表1 2018年7月六盘水市中心城区空气各指标监测结果 二、六盘水市各市、县、特区、区及全市环境空气质量 2018年7月,全市4个市、县、特区、区按照《环境空气质量标准》(GB 3095-2012)要求开展了二氧化硫(SO2)、二氧化氮(NO2)、一氧化碳(CO)、臭氧(O3)、可吸入颗粒物(PM10) - 4 -

和细颗粒物(PM2.5)6项指标的环境空气质量监测,依据《城市环境空气质量排名技术规定》(HJ663-2013),按空气质量综合指数(简称综合指数)进行排序,排名依次为六枝特区、水城县、盘州市、钟山区。优良天数比例分别是六枝100%、水城县100%、盘州市100%、钟山区100%。全市环境空气质量综合指数2.25。具体结果和排名详见表2: 表2 2018年7月六盘水市各市、县、特区、区及全市 环境空气质量监测结果 三、集中式饮用水源地水质 1、中心城区集中式饮用水源地水质 六盘水市中心城区集中式饮用水源地为玉舍水库,备用水源地为龙贵地水库、双桥水库。2018年7月,以上3个水库所监测的指标全部达到《地表水环境质量标准》(GB3838—2002)中集中式 - 4 -

空气质量在线监测系统

空气质量在线监测系统 各模块性能特点: 粉尘监测模块以激光为光源,通过激光光散射原理监测分析粉尘颗粒物数量。 能够实时在线监测,通过光学原理达到更快的响应速度。以激光为光源,使质量浓度转换系数不受颗粒物颜色的影响,保证了测量的准确度。 温湿度传感器可用来精确测量土壤、空气、液体温湿度,传感器的精度和稳定 性依赖于感温元件的特性及精度级别。 噪声监测模块采用了国外先进的传感技术,可通过检测探头对噪声进行连续监 测,响应时间快,工作可靠稳定。 雨量传感器适用于气象站、水文站、农林、国防等有关部门,用来遥测液体降 水量、降水强度、降水起止时间。 日照传感器采用高精度感光元件可以用来测量光谱范围为0.3-3μm太阳总辐射, 具有线性好、精度高、稳定可靠等特点。 系统监控平台软件为全中文操作语言,具有记录、存储、显示、数据处理、输出、打印、故障维护指示及有线/无线传输功能。通过网络通讯技术为以后多个子站点向中心站数据汇总预留了扩展空间,具有较强的实用性。监测软件可任意添加包括:粉尘、噪声、温湿度、风速风向、负氧离子、大气压力、气体等参数(需定制),还可将监测数据形成报表并打印上报远程数据。 系统整体具有测量精度高,量程范围宽,稳定性好,功耗低,抗干扰能力强等 特点。 系统组成: 现场采集端:粉尘分析模块、噪声采集模块、风速风向分析模块、温湿度采集 模块、总辐射监测设备、降雨量检测设备。

通讯:有线232通讯或无线GPRS通讯设备 环境监控中心软硬件建设:包括数据库及通讯服务器、服务器、系统监控平台 软件等组成。 PM2.5粉尘检测仪技术参数: 可直读粉尘质量浓度(mg/m3) 可进行全天候连续在线监测或定时监测; 带有自校准系统,可有效消除仪器的系统误差。 显示器:大屏液晶,中文菜单 检测灵敏度0.01mg/m3(低灵敏度); 0.001mg/m3(高灵敏度)。 重复性误差:±2% 测量精度:±10% 测量范围: 0.01~100 mg/m3或0.001~10 mg/m3。 工作条件 a) 环境温度:(0~40)℃; b) 相对湿度:<90%; c) 大气压:86kPa~106 kPa。 测定时间:标准时间为1分钟,设有0.1分及手动档(可任意设定采样时间)。 具有公共场所监测模式、大气环境监测模式以及劳动卫生模式。可计算出时间加权平均值(TWA)和短时间接触允许浓度(STEL)等。 存贮:可循环存储999组数据。 定时采样:可设定测量时间(1~9999)秒,关机时间(0~9999)秒,预热时间(0~10)秒及采样次数(1~9999)次。 粉尘浓度超标报警阈值设定:浓度阈值及采样周期可自行设定

基于单片机的pm2.5空气质量检测系统设计-通信工程大学论文

基于单片机的空气质量检测系统设计 专业:通信工程 班级:2013级1班 姓名:王世达

引言 (3) 1 概述 (5) 1.1 系统组成 (5) 1.2 硬件设计 (5) 1.3 软件设计 (6) 2 电路设计 (7) 2.1 原理图 (7) 2.2 单片机及外围电路设计 (7) 2.3 传感器电路设计 (16) 2.4 A/D模数转换电路 (17) 2.5 LCD显示电路 (19) 2.6 LED显示电路 (20) 2.7 报警模块 (21) 3 程序设计 (23) 3.1 主程序设计 (23) 3.2 按键部分......................................................................................................... 错误!未定义书签。 3.3 显示部分 (23) 3.4 A/D转换部分 (25) 4 应用软件介绍 (29) 4.1 keil的应用 (29) 4.2 protel99se的应用 (30) 4.3 Proteus的应用 (31) 5 设计的应用 (33) 5.1 主要用途 (33) 5.2 应用场景 (33) 6 结果与分析 (34) 总结 (35) 致谢 (36) 参考文献 (37) 附录1 原理图 (38) 附录2 程序源代码 (39)

随着现代科技的高度发展,工业生产力正在不断提高,而由此带来的负面影响也尤为显著,那就是环境的污染,它严重危害着人类的健康和生活。雾霾,为大气污染之一,一直以来广受人们关注。现在有越来越多的地区和国家开始高度重视雾霾天气,并将其视为一种灾害性天气。其实,很早以前就报道过一些雾霾灾害的重大事件,在这几次事件当中,不仅危害到人们的健康,甚至还剥夺了很多人的生命,比如1952年伦敦杀人雾事件和2013年北京雾霾事件。PM2.5,指环境中直径小于2.5μm的颗粒物,是雾霾的主要成分之一,由于其粒径小,活性强,易附有毒、有害物质,因而对人体健康威胁很大。因此,对PM2.5的测量显得越来越重要。本文将空气中PM2.5的浓度作为评定空气质量的依据。本设计的控制核心采用的是非常实用的51系列单片机AT89C52,配合粉尘浓度采集装置和显示设备,共同完成数据的采集,处理及显示。并会根据设置好的报警值报警提示,并且用不同颜色的指示灯显示空气质量。本文详细介绍了各个单元的电路设计过程及各功能的实现方法,该系统有良好的人机交互界面,有较高的测量精度,不仅简单实用而且便于携带。相信,它的价值一定会得到体现。 关键词: 雾霾;大气污染;PM2.5;单片机;AT89C52;空气质量

浑南区环境空气质量月报

浑南区环境空气质量月报 (2018年7月) 沈阳市环境保护局浑南新区分局 浑南区共有4个环境空气自动监测站点、4个环境空气微子站站点,其中森林路为对照点位大气环境功能区划为一类区,其余大气环境功能区划二类区。 环境空气质量按照《环境空气质量标准》(GB3095-2012)、《环境空气质量指数(AQI)技术规定(试行)》(HJ633-2012)及《环境空气质量评价技术规范(试行)》(HJ663-2013)进行评价。城市空气质量综合指数按照《城市环境空气质量排名技术规定》(环办〔2014〕64号)进行统计及排序。 一、环境空气质量现状 2018年7月份浑南区各点位按照环境空气达标天数从少到多、污染从重到轻排列,顺序是东陵路<浑南东路<新秀街=海为路=森林路<奥体中心<金仓路=电力计量中心。 1、浑南东路点位 2018年7月份,浑南东路环境空气达标天数为24天,占比77%;2017年7月份,该点位达标天数为18天,同比上升19%;2018年6月份,该点位达标天数为18天,环比上升17%。本月污染级别天数的比例如下图:

2、新秀街点位 2018年7月份,新秀街环境空气达标天数为27天,占比87%;2017年7月份,该点位达标天数为19天,同比上升26%;2018年6月份,该点位达标天数为16天,环比上升34%。本月污染级别天数的比例如下图: 3、东陵路点位 2018年7月份,东陵路环境空气达标天数为21天,占比68%;2017年7月份,该点位达标天数为18天,同比上升8%;2018年6月份,该点位达标天数为13天,环比上升26%。本月污染级别天数的比例如下图:

4、森林路点位 2018年7月份,森林路环境空气达标天数为27天,占比87%;2017年7月份,该点位达标天数为20天,同比上升23%;2018年6月份,该点位达标天数为18天,环比上升27%。本月污染级别天数的比例如下图: 5、金仓路点位 2018年7月份,金仓路-沈阳天利环境空气达标天数为30天,占比97%;2018年6月份,该点位达标天数为19天,环比上升33%。本月污染级别天数的比例如下图:

智能家居空气质量检测系统

44 Innovation 创新家电科技 空气质量分析软件,是一套环境软件,是整套系统的中枢,也是技术含量比较高的部分。这套软件会根据传输过来的数据进行分析处理,并得出结论和应该采取的措施以减少空气对人们身体的伤害。 语音播报器,也是不可或缺的一部分,它是利用语音合成技术,嵌入语音合成芯片,如中文语音合成芯片,把空气质量分析软件得出的结论和应采取的措施合成语音播报出来,及时地提醒我们采取措施减少危害。 空气净化器,是整个系统的净化终端,可以净化花粉、烟等可吸入颗粒物;活性炭滤网能够减少甲醛含量;而光触媒滤网能够高效降解空气中的有毒有害气体,有效杀灭多种病菌;UV 紫外光可以杀灭多种自然菌,预防感冒,增加臭氧和离子群,增强人体抵抗力。 智能家居空气质量检测系统最重要的功能就是保证新鲜空气和人们身体的健康,预防有害气体对我们造成的危害,具体功能如下。 预防甲醛中毒。甲醛广泛用于建筑材料,是无色、具有强烈刺激性气味的气体,更是高致癌物质。对于刚装修好的房子或者是刚刚换了新家具的房子,很容易甲醛超标。这是一个很重要的检测指标,一旦甲醛超标,语音播报器就会播报,甲醛超标了多少,如轻度超标,可以采取开窗通风,多放置一些植物和竹炭去除甲醛;如果浓度超标严重,就要考虑先换个地方住,采取更加专业的措施去除甲醛了。 预防煤气泄漏。一旦有煤气泄漏,语音播报器就会马上报警,提醒主人,关紧煤气,打开窗户。 避免因花粉、烟等可吸入颗粒物易导致花粉过敏、呼吸道疾病和哮喘病的发生。可以检测屋内不同的粉尘含量,例如春天的花粉,如果超标,就要采取措施增加空气湿度,尽量减少户外活动等。 高效降解空气中的有毒有害气体,采用UV 紫外光空气灭菌技术有效杀灭多种病菌,预防一些传染病或者流行性感冒。某种细菌突然产生或者含量集聚增加,预示着可能某种传染病或者流行病在盛行,要让我们及时防范和治疗。 此外还可以增加空气含氧量和被誉为“空气中的维生素”的负离子的含量,从而提高人体的抵抗力。 智能家居已经成为越来越热门的话题,但是人们享受生活的前提是家人的平安、身体的健康。智能家居空气质量检测系统可以为我们创造了一个良好的生活环境,让人们的生活品质与幸福并重。 (供稿: 北京宇音天下科技有限公司 畅新爱) 智能家居空气质量检测系统 随着人们生活水平的不断提高,对健康的重视程度和要求越来越高。每当新居装修完毕,家具及装修材料中散发出的有毒气体对老人和孩子会带来很严重的伤害,也因此智能家居空气质量检测系统被越来越多的家庭所关注和接受。 空气质量检测系统——Air Quality Detecting System (AQDS )是利用传感技术,zigbee 技术等短距离无线通信技术,通过语音合成技术(TTS 技术)和空气质量智能分析软件来实现对室内的空气质量进行检测、分析和报警提示,并智能开启空气净化器,给家人打造一个健康的空气环境。 它的原理是通过在室内安装不同的空气质量传感模块,检测空气质量情况,利用zigbee 模块或者蓝牙模块传输到计算机。由于计算机上装有空气质量分析软件,可以自动分析出家居环境的质量如何,可以采取何种措施提高空气质量等。这些信息能够通过语音播报器播报出来,提示主人需采取空气净化措施,并智能开启空气净化器。 具体来说,空气质量检测系统由空气质量传感模块,zigbee 或者蓝牙模块,空气质量分析软件和语音播报器和空气净化器五部分组成。 空气质量传感模块。不同的模块有不同的检测功能,例如甲醛传感器检测空气中甲醛的含量有没有超标;煤气传感器检测煤气有没有泄露的情况;粉尘传感器检测春天粉尘浓度;空气综合质量传感器检测空气中每种应有气体的含量,如果氧气的含量下降,细菌的含量增加,会提示开窗通气等。针对不同的家庭需要,传感器的数量和种类也不尽相同。 Zigbee 模块或者蓝牙模块等都是采用短距离无线通信技术,特点是传输距离近,功耗低,成本低。 科技前沿 智能家居已经成为越来越热门的话题,但是人们享受生活的前提是家人的平安、身体的健康。智能家居空气质量检测系统可以为我们创造了一个良好的生活环境,让人们的生活品质与幸福并重。

智能环境监测系统的设计说明

智能环境监测系统的设计 Design on the intelligent system of monitoring environment

摘要 系统主要由数据采集端和移动监控终端两部分组成。采用16位单片机SPCE061A为处理核心,在数据采集端,利用两片CD4067BE分别挂接16只DHT11温湿度传感器和16只光照强度传感器;采用10位ADC实现对环境声音的实时录制,加入OV7670摄像头进行实时拍照监控,最后把所采集到的数据帧通过NRF905无线传输模块传送到移动监控终端。在移动监控终端,通过NRF905接收数据,将处理后的环境参数数据进行显示,接收到的语音压缩编码通过10位DAC进行解码播放,通过按键切换进入全屏环境参数显示模式或全屏监控照片显示模式,并将接受到的环境参数、声音、照片存储到SD卡中。本文以SPCE061A超低功耗单片机为核心,设计了通用智能终端和智能温湿度传感器,重点介绍了该终端和传感器的任务、硬件、软件以及控制算法的设计与实现。硬件方面,介绍了系统各个部分的设计思想、原理电路以及,并给出了系统总硬件原理图;另外,为了实现系统的低成本和低功耗,在满足设计要求的前提下,尽可能选用了价格低廉和低功耗的元器件。软件方面,采用了时间触发的混合调度器模式设计,对系统各个任务进行了设计,并给出了系统软件低功耗设计方法。 关键词:SPCE061A;多节点;无线传输;HMI Abstract The system is designed for two parts of data acquisition terminal and mobile monitoring terminal. Its processing core is SPCE061A which is a 16 bits mcu. In the data acquisition terminal, 16 DHT11 of single bus temperature, humidity sensor and 16 light intensity sensor are hung on two CD4067BE. The environmental sound is recorded to coding and compression with 10 bits ADC which is built in the mcu at any time. Add OV7670 which is a camera module to monitor at anytime. ALL collected data is transmitted to the mobile monitoring terminal through NRF905 of wireless transmission module. In the mobile monitoring terminal, the data is received through NRF905.The environmental parameter data is displayed after dealing with and the compression coding of speech is decoded to play with 10 bits DAC.We can switch to full-screen environment parameter display mode or full-screen picture display mode with the keys. At last, the environmental parameter, sound and photos are stored to the SD card.Based on the SPCE061A ultra low power microcontroller as the core, a general intelligent terminal and intelligent temperature and

环境空气质量监测规范试行

环境空气质量监测规范 (试行) 第一章总则 第一条为防治空气污染,规范环境空气质量监测工作,根据《中华人民共和国环境保护法》、《中华人民共和国大气污染防治法》和《国务院关于落实科学发展观加强环境保护的决定》的有关规定,制定本规范。 第二条本规范规定了环境空气质量监测网的设计和监测点位设置要求、环境空气质量手工监测和自动监测的方法和技术要求以及环境空气质量监测数据的管理和处理要求。 本规范适用于国家和地方各级环境保护行政主管部门为确定环境空气质量状况,防治空气污染所进行的常规例行环境空气质量监测活动。 第三条国务院环境保护行政主管部门负责国家环境空气质量监测网的组织和管理,各县级以上地方人民政府环境保护行政主管部门可参照本规范对地方环境空气质量监测网进行组织和管理。 第二章环境空气质量监测网 第四条设计环境空气质量监测网,应能客观反映环境空气污染对人类生活环境的影响,并以本地区多年的环境空气质量状况

及变化趋势、产业和能源结构特点、人口分布情况、地形和气象条件等因素为依据,充分考虑监测数据的代表性,按照监测目的确定监测网的布点。 监测网的设计,首先应考虑所设监测点位的代表性。常规环境空气质量监测点可分为4类:污染监控点、空气质量评价点、空气质量对照点和空气质量背景点。 第五条国家根据环境管理的需要,为开展环境空气质量监测活动,设置国家环境空气质量监测网,其监测目的为:(一)确定全国城市区域环境空气质量变化趋势,反映城市区域环境空气质量总体水平; (二)确定全国环境空气质量背景水平以及区域空气质量状况; (三)判定全国及各地方的环境空气质量是否满足环境空气质量标准的要求; (四)为制定全国大气污染防治规划和对策提供依据。 第六条各地方应根据环境管理的需要,按本规范规定的原则,设置省(自治区、直辖市)级或市(地)级环境空气质量监测网(以下称“地方环境空气质量监测网”),其监测目的为:(一)确定监测网覆盖区域内空气污染物可能出现的高浓度值; (二)确定监测网覆盖区域内各环境质量功能区空气污染物的代表浓度,判定其环境空气质量是否满足环境空气质量标准的

城市空气质量月报

城市空气质量月报 (2019年1月) 内蒙古自治区环境监测中心站编制 2019年1月,内蒙古自治区12个盟市及82个旗县上报环境空气质量监测数据,监测点位包括42个国控空气自动监测站点和85个区控空气自动监测站点,11个盟市上报降尘监测数据,监测区域均为政府所在地建成区。 一、盟市环境空气质量 1月份,12盟市环境空气质量达标天数比例在74.2~100.0%之间,平均达标天数比例为91.1%,同比下降5.1个百分点。细颗粒物(PM2.5)平均浓度为37微克/立方米,同比上升32.1%;可吸入颗粒物(PM10)平均浓度为70微克/立方米,同比上升18.6%;二氧化硫(SO2)平均浓度为24微克/立方米,同比上升9.1%;二氧化氮(NO2)平均浓度为29微克/立方米,同比上升26.1%;一氧化碳(CO)日均值第95百分位浓度平均为1.6毫克/立方米,同比上升23.1%;臭氧(O3)日最大8小时滑动平均值第90百分位浓度平均为71微克/立方米,与上年同期持平。详见表1、表2。 表1 1月份全区各盟市环境空气质量指数(AQI)级别天数统计及同比情况

表2 1月份全区各盟市环境空气污染物浓度统计及同比情况 二、旗县3环境空气质量 1月份全区旗县环境空气质量达标天数比例在51.6~100.0%之间,平均达标天数比例为95.3%。细颗粒物(PM2.5)平均浓度为25微克/立方米,可吸入颗粒物(PM10)平均浓度为53微克/立方米,二氧化硫(SO2)平均浓度为18微克/立方米,二氧化氮(NO2)平均浓度为20微克/立方米,一氧化碳(CO)日均值第95百分位浓度平均为1.4毫克/立方米,臭氧(O3)日最大8小时滑动平均值第90百分位浓度平均为73微克/立方米。详见表3。 1“臭氧”为当月日均值第90百分位数 2“一氧化碳”为当月日均值第95百分位数 3旗县环境空气质量统计范围为非国控点位覆盖的我区77个旗县(市)和海南区、乌达区、石拐区、白云鄂博矿区、扎赉诺尔区

空气质量监测系统技术方案

空气质量自动监测系统技术方案

目录 一.前言 二.系统概述 三.系统组成 四.空气质量监测仪性能特点 五.仪器工作原理 六.监测参数及性能指标 七.采样系统 八.多点校准设备(高精度配气仪) 九.零气发生器 十.气象系统 十一.中心站软件系统介绍 十二.项目详细的自动监测系统框图、安装方案十三.常见故障维修

大气环境自动监测系统技术文件 一.前言 环境保护监测先行,自动化、信息化是做好环境监测的前提和保障。在地方经济 迅速发展的同时、各地区不断出现不同程度的水、气、噪声等环境污染事件,严重影响了人们的生活质量,阻碍了当地经济的持续发展。随着国家制定的各种环境保护政策及法规的颁布实施,各级地方政府在对辖区内的环境治理日益重视的同时,加大了对环境监测的投资力度,各地区陆续规划安装了大气环境质量监测地面站,实施城市空气质量预报。 THY-AQM60系列城市级大气环境监测系统完全可以实现区域环境保护监测部门对环境监测的实际需要,满足城市空气质量预报的要求。 二、系统概述 THY-AQM60系列城市级大气环境监测系统通过在城市均布点设置子站(子站数量根据当地情况而定),安装在线式环境监测设备。监测数据实时传送到当地环保监控中心;中心可通过系统实时监测终端监测辖区内分布的各点在线监测设备的实时动态数据,并及时记录;建立监测系统数据库,根据历史记录数据和分析结果预测、预报辖区环境污染状况及发展趋势,为有效控制辖区内环境状况提供科学依据。 系统将在环保局监控中心安装一个视频显示屏及建立一个显示控制系统,该系统可满足环保局政务公示及辖区环境监测数据、信息实时发布的需要。 THY-AQM60系列环境空气质量自动监测系统是以自动监测仪器为核心的自动“测-控”系统。系列环境空气自动监测系统是基于干法仪器的生产技术,利用定电位电解传感器原理,结合国际上成熟的电子技术和网络通讯技术研制、开发出来的最新科技产品。该系统符合国家对城市环境空气自动监测系统的各项技术指标要求,国产化程度高,具有较强的实用性和理想的性能价格比,可替代同类进口产品,是开展城市环境空气自动监测的理想仪系列环境空气自动监测系统由一个中心站和若干个子站构成(子站数量根据当地情况而定),安装在线式环境监测设备。因此系统软件将由中心站软件和子站软件两大部分组成,两者有机结合,协调整个监测系统的运行,完成对各种监测仪器的数据采集和远程通讯控制 及数据处理,并形成报告。 三、系统组成 大气污染物: NO2(NO、NOx)监测仪、臭氧监测仪、二氧化碳监测仪、一氧化碳监测仪、PM10监测仪 气象系统:可测量风速、风向、温度、湿度、大气压力。

空气质量检测系统的设计与实现论文

空气质量检测系统的设计与实现论文 大气环境是人类生存环境的重要组成部分,也是人类生存、发展的基本物质基础。当前,随着我国经济的快速发展,工业企业的不断扩张,环境污染严重。由于工业集中,加上人口密集等原因使得空气污染主要集中城市,经常会出现雾霾天气。大气污染物主要是总悬浮颗粒物(TSP)、可吸入颗粒物(PM10)、臭氧 (O3)、一氧化碳(CO)等。大气污染物经工厂直接排放或间接排放到大气中,严重地危害到人们的身体健康。课题组设计了基于ZigBee技术的空气质量检测系统,监测人员只需在监测区域放置空气质量检测仪,即可时时获取区域内各种污染气体浓度及对应指标,为及时处理大气污染突发时间提供有力的技术保证。 1系统工作原理 1.1系统结构图本文设计的空气质量检测系统实现全天候、自动化、主动获取空气质量信息。本文的空气质量检测仪原理框图如图1所示,采用上下位机相结合的设计方式,下位机由传感器模块、数据处理模块(CC253X芯片)、数据传送模块等部分构成;上位机由测控计算机、通讯模块构成。由微处理器通过传感器模块采集空气质量相关数据并通过zigbee模块传输至测控计算机,测控计算机完成对空气质量数据的处理分析,为管理人员提供做出判断或决策的依据。从而实现对特定区域内空气质量实时监测。

1.2ZigBee技术简介ZigBee无线传感器网络是由许多传感器以自组织方式构成的无线网络,它综合了传感器技术、嵌入式计算技术、分布式信息处理技术和ZigBee技术,可广泛应用于工业监测、安全系统、环境监测和军事等领域。ZigBee技术是一种低速率、低功耗、低复杂度、低成本的双向无线通信网络技术。 2系统电路设计本文无线收发模块采用芯片CC2530。 CC2530是用于2.4-GHzIEEE802.15.4、ZigBee和RF4CE应用的片上系统(SoC)解决方案。以较低的总的材料成本建立网络节点。CC2530结合了领先的RF收发器的优良性能,业界标准的增强型8051CPU,系统内可编程闪存,8-KBRAM和其它强大的功能。充分考虑到应用环境,结合CC2530具有不同的运行模式,使得它尤其适应超低功耗要求的系统。如图2所示。 3系统软设计3.1CC2530芯片的软设计设计中CC2530单片机程序的编写环境为IAREW8051V8.1集成开发环境,使用C语言编写,使程序移植和调用方便、灵活,能最大程度的提高系统程序的可靠性和稳定性。由主程序,AD数据转换,通讯三个模块组成。数据的采集要求每秒采用一次,采用定时中断的方式执行数据的采集,将采集的数据经过AD转换后通过串行数据通信发送给ZigBee芯片。 3.2应用程序设计空气质量检测系统上位机部分是采用Microsoft公司的VC++6.0进行开发,以Zigbee通信方式实现空气质量数据(温度、湿度、PM2.5、PM10等参数)的存储与和读

中华人民共和国国家标准环境空气质量标准

中华人民共和国国家标准环境空气质量标准 添加时间:[2004-05-27]创建人:管理员 GB 3095-1996 (代替GB 3095-82) 国家环境保护局1996-01-18批准1996-10-01实施 前言 根据《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,为改善环境空气质量,防止生态破坏,创造清洁适宜的环境,保护人体健康,特制订本标准。 本标准从1996年10月1日起实施,同时代替GB3095-82。 本标准在下列内容和章节有改变: -标准名称; -3.1-3.14(增加了14种术语的定义); -4.1-4.2(调整了分区和分级的有关内容); -5.(补充和调整了污染物项目、取值时间和浓度限值); -7.(增加了数据统计的有效性规定)。 本标准由国家环境保护局科技标准司提出。 本标准由国家环境保护局负责解释。 1 主题内容与适用范围 本标准规定了环境空气质量功能区划分、标准分级、污染物项目、取值时间及浓度限值,采样与分析方法及数据统计的有效性规定。 本标准适用于全国范围的环境空气质量评价。 2 引用标准 GB/T 15262空气质量二氧化硫的测定──甲醛吸收副玫瑰苯胺分光光度法 GB 8970空气质量二氧化硫的测定──四氯汞盐副玫瑰苯胺分光光度法

GB/T 15432环境空气总悬浮颗粒物测定──重量法 GB 6921空气质量大气飘尘浓度测定方法 GB/T 15436环境空气氮氧化物的测定──Saltzman法 GB/T 15435环境空气二氧化氮的测定──Saltzman法 GB/T 15437环境空气臭氧的测定──靛蓝二磺酸钠分光光度法 GB/T 15438环境空气臭氧的测定──紫外光度法 GB 9801空气质量一氧化碳的测定──非分散红外法 GB 8971空气质量苯并[a]芘的测定──乙酰化滤纸层析荧光分光光度法 GB/T 15439环境空气苯并[a]芘的测定──高效液相色谱法 GB/T 15264空气质量铅的测定──火焰原子吸收分光光度法 GB/T 15434环境空气氟化物的测定──滤膜氟离子选择电极法 GB/T 15433环境空气氰化物的测定──石灰滤纸氟离子选择电极法 3、定义 1.总悬浮颗粒物(Total Suspended Particicular,TSP):指能悬浮在空气中,空气动力学当量直径≤100微米的颗粒物。 2.可吸入颗粒物(Particular matter less than 10 μm,PM10):指悬浮在空气中,空气动力学当量直径≤10微米的颗粒物。 3.氮氧化物(以NO2计):指空气中主要以一氧化氮和二氧化氮形式存在的氮的氧化物。

恩施州环境空气质量月报.pdf

恩施州环境空气质量月报 (2019年3月) 恩施州环境保护监测站

目录 一、主要污染物月均浓度值 (1) 二、颗粒物月均浓度比较 (1) 三、空气质量达标天数 (3) 四、城市环境空气质量指数 (4)

一、主要污染物月均浓度值 2019年3月,全州8县市城区主要污染物月均浓度情况如下: PM10月均浓度为49μg/m3,8县市城区均未超过年均二级标准限值。 PM2.5月均浓度为30μg/m3,巴东县城区超过年均二级标准限值,其他7县市均未超过年均二级标准限值。 SO2月均浓度为9μg/ m3,8县市城区均未超过年均二级标准限值。 NO2月均浓度为18μg/ m3,8县市城区均未超过年均二级标准限值。 CO日均值第95百分位月均浓度为1.0mg/ m3,8县市城区均未超过24小时平均二级标准限值。 O3日最大8小时第90百分位月均浓度为110μg/ m3,8县市均未超过日最大8小时平均二级标准。 二、主要污染物月均浓度比较 2019年3月,全州8县市城区PM10浓度均值为49μg/m3,较2018年同期相比上升28.9%。2019年1-3月,全州8县市城区PM10浓度均值为57μg/m3,较2018年同期相比下降1.7%。 2019年3月,全州8县市城区PM2.5浓度均值为30μg/m3,较2018年同期上升30.4%。2019年1-3月,全州8县市城区PM2.5浓度均值为38μg/m3,较2018年同期持平。 2019年3月,全州8县市城区O3日最大8小时第90百分位浓度均值为110μg/m3,较2018年同期上升12.2%。2019年1-3月,全州8县市城区O3日最大8小时第90百分位浓度均值为98μg/m3,较2018年同期上升11.4%。 第1页共4页

城市环境空气质量月报1

城市环境空气质量月报1 (2020年9月) 内蒙古自治区环境监测中心站编制 2020年9月,内蒙古自治区12个盟市及所辖103个旗县(市、区)建成区开展城市环境空气质量监测,12个盟市中心城区开展降尘监测。 一、盟市环境空气质量 9月份,12个盟市环境空气质量达标天数比例在96.6%~100.0 %之间,平均达标天数比例为99.4 %,同比上升2.4个百分点。细颗粒物(PM2.5)平均浓度为17微克/立方米,与上年同期持平;可吸入颗粒物(PM10)平均浓度为36微克/立方米,同比下降12.2个百分点;二氧化硫(SO2)平均浓度为10微克/立方米,同比下降16.7个百分点;二氧化氮(NO2)平均浓度为20微克/立方米,同比下降16.7个百分点;一氧化碳(CO)日均值第95百分位浓度平均为0.7毫克/立方米,与上年同期持平;臭氧(O3)日最大8小时滑动平均值第90百分位浓度平均为110微克/立方米,同比下降16.7个百分点。 详见表1、表2。 按照《环境空气质量评价技术规范》要求评价,9月份环境空气质量综合指数相对较高的盟市是乌海市和包头市;相对较低的盟市是锡林郭勒盟和呼伦贝尔市。同比降幅大于10%的盟市是赤峰市、呼和浩特市、乌兰察布市、锡林郭勒盟、通辽市、巴彦淖尔市、包头市和兴安盟。 详见表3。 1本报告12 盟市平均达标天数比例为国控点位数据、103 旗县(市、区)平均达标天数比例为国控点位及区控点 位数据;各项污染物的监测状态按照《环境空气质量标准》(GB3095-2012)修改单(生态环境部公告2018年第29号)中的相关要求执行;各盟市PM10、PM2.5浓度统计扣除沙尘天气影响,达标天数比例统计保留沙尘天气影响。 旗县PM10、PM2.5浓度统计不扣除沙尘天气影响。

空气质量监测系统技术指标

空气质量监测系统技术指标 1.货物名称 2.技术指标 2.1可吸入颗粒物PM10监测仪(含校准膜) (1) ★测量原理:连续实时尘采集和?射线衰减测量 (2)放射源:碳14(C14),<3.7MBq(<100居里) (3)量程:0-5,000μg/m3或0-10,000μg/m3 (4)最低检出限:<1μg/m3(24小时平均);<4μg/m3(1小时平均) (5)仪器精度(24小时):±2μg/m3 (6)★分辨率:±1μg/m3(瞬时) (7)相关系数:R>0.98 (8)★测量周期:每个斑点在采集位置24小时(默认值);用户可设置30分钟到24小时 (9)数据平均:每隔1/2小时和24小时数据自动存储;每1/2,1,3和24小时数据显示 (10)★采样流速:1m3/h(16.67升/分),内部音速小孔两端测量;用户可选择0-20升/分。 (11)电源:仪器:100-240 VAC, 50/60Hz,330W最大;15W不带泵或加热器

泵:220/240V,50/60Hz,100W (12)尺寸:仪器:483mm (宽)X 311mm(高)X 330mm(深) 泵:210mm (宽)X 222mm(高)X 108mm(深) (13)输出:模拟输出:电压0-10V或电流4-20mA浓度值(μg/m3) 串口输出:RS-232/485 (14)工作温度:-30到60℃ (15)仪器可测沙尘暴项目 (16) ★和现有设备任何备件可互通互换 (17) ★为保证设备原装正品,需提供原厂针对本项目的授权和售后服务承诺书。 2.2可吸入颗粒物PM2.5监测仪(含校准膜) (1)★用途:测量环境空气中的PM2.5质量浓度 (2)★测量方法:实时地在环境温度下同时进行颗粒物的采集和质量测量,采用β射线吸收和光散射双检测技术 (3)★通过美国EPA PM2.5联邦等效方法认证 (4)★采样头:美国EPA认可的PM10采样头和PM-2.5切割器 (5)★动态加热系统:获得美国EPA认可,能使样气相对湿度控制在低于35%,能消除湿气干扰和保留挥发性颗粒物,保证测量的准确性 (6)测量量程:在0-1mg/m3和0-10mg/m3两个量程 (7)最低检测限:小于0.5μg/m3 (2 σ)(1小时数据) (8)★测量小时精度:±2.0ug/m3小于80ug/m3,其他±5.0ug/m3 (9)准确度:±5%(与美国联邦参考方法FRM比较) (10)跨漂:0.02%/天 (11)检测器源:β射线源采用小于100μCi的碳-14;光源采用IRLED,6mW,880nm (12)采样流量:16.67升/分钟。 (13)★仪器的时间分辨率:1分钟 (14)压力/温度测量:实时监测环境压力与温度,自动修正数据 (15)信号输出:0-1V,0-5V,0-10V或4-20mA,2个RS232输出 (16) ★和现有设备任何备件可互通互换 (17) ★为保证设备原装正品,需提供原厂针对本项目的授权和售后服务承诺书。 2.3 二氧化硫分析仪

环境空气质量自动监测系统

环境空气质量自动监测系统是一套自动监测仪器为核心的自动“测-控”系统。空气质量的自动监测系统一般采用湿法和干法两种方式。湿法的测量原理是库仑法和电导法等,需要大量试剂,存在试剂调整和废液处理等问题,操作繁琐,故障率高,维护量大。该法以日本为主,但自1996年起,日本在法定的测量方法中增加了干式测量原理,湿法现已处于淘汰阶段。干法基于物理光学测量原理,使样品始终保持在气体状态,没有试剂的损耗,维护量较小。干法以欧美国家为主,代表了目前的发展趋势。 1 系统的结构 干法监测子站主要由样品采集、空气自动分析仪、气象参数传感器、动态自动校准系统、数据采集和传输系统以及条件保证系统等组成。 1.1 大气污染物自动分析仪 SO2自动分析仪:基于SO2分子接收紫外线(214 nm)能量成为激发态分子,在返回基态时,发出特征荧光,由光电倍增管将荧光强度信号转换成电信号,通过电压/频率转换成数字信号送给CPU进行数据处理。当SO2浓度较低,激发光程较短且背景为空气时,荧光强度与SO2浓度成正比。采用空气除烃器可消除多环芳烃(PAHs)对测量的干扰。 NOx自动分析仪:NO与O3发生反应生成激发态的NO2*,在返回基态时发射特征光,发光强度与NO浓度成正比。NO2不与O3发生反应,可通过钼催化还原反应(315℃)将NO2转换成NO后进行测量。如果样气通过钼转换器进入反应管,则测量的是NOx,NOx 与NO浓度之差即为NO2。 O3自动分析仪:利用O3分子吸收射入中空玻璃管的254 nm的紫外光,测量样气的出射光强。通过电磁阀的切换,测量涤除O3后的标气的出射光强。二者之比遵循比尔-朗伯公式,据此可得到O3浓度值。 PM10自动分析仪(β射线法):仪器利用恒流抽气泵进行采样,大气中的悬浮颗粒被吸附在β源和盖革计数器之间的滤纸表面,抽气前后盖革计数器计数值的改变反映了滤纸上吸附灰尘的质量,由此可以得到单位体积空气中悬浮颗粒的浓度。 对自动分析仪的自动校准通过动态自动校准系统完成,该系统包括动态自动校准仪、零气发生器、标准气源。 目前,我国尚未出台各主要大气自动分析仪的技术条件要求,表1是中国环境监测总站验收DASIBI公司产品时的验收标准。美国EPA对自动分析仪的性能指标要求(40 CFR PART 53)见表2。 表1 DASIBI公司产品的验收标准 指标 SO2 NOx O3 CO PM10 24 h零漂<±5 ppb <5 ppb <5 ppb 0.5 ppm 各台仪器间的平行性≤±7% 24 h标漂<±5 ppb <5 ppb <5 ppb 0.5 ppm 线性度<±5 ppb <5 ppb <5 ppb 0.5 ppm 响应时间(t90) 5 min 5 min 2 min 2 min 重现性 5 ppb 5 ppb 20 ppb 0.5 ppm 流量范围 300~800 ml/min 250~700 ml/min 1.0~3.0 L/min 1.0 L/min (16.7±1%)L/min 表2 美国EPA对大气自动分析仪的技术性能要求 性能参数 SO2 NO2 CO 光化学氧化剂 量程(ppm) 0~0.5 0~0.5 0~50 0~0.5 噪声(ppm) 0.005 0.005 0. 50 0.005 MDL(ppm) 0.01 0.01 1.0 0.01

相关文档
相关文档 最新文档