文档库 最新最全的文档下载
当前位置:文档库 › 随机变量及其分布列概念公式总结

随机变量及其分布列概念公式总结

随机变量及其分布列概念公式总结
随机变量及其分布列概念公式总结

随机变量及其分布总结

1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示.

2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量

3、分布列:设离散型随机变量ξ可能取得值为

x 1,x 2,…,x 3,…,

ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表

为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质:

(1)P i ≥0,i =1,2,…; (2)P 1+P 2

+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格

6.两点分布列:

7超几何分布列:

一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品

数,则事件 {X=k }发生的概率为(),0,1,2,,k n k

M N

M

n

N

C C P X k k m C --===,其中

min{,}m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列

为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布

8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是

k n k k

n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).

于是得到随机变量ξ的概率分布如下:

ξ 0

1 … k … n

P

n

n q p C 00

111-n n q p C … k

n k k n q p C - …

q p C n n n

称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为

则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数

(4)ξ~N (μ,2

σ),则=ξE μ

(5)b aE b a E +=+ξξ)(

11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,

且取这些值的概率分别是1p ,2p ,…,n p ,…,那么,

ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

称为随机变量ξ的均方差,简称为方差,式中的ξE 是随机变量ξ的期望. 12. 标准差:ξD 的算术平方根ξD 叫做随机变量ξ的标准差, 13.方差的性质:

(1)若ξ服从两点分布,则=ξD p (1-p ). (2)若ξ~B (n ,p ),则=ξD np (1-p ). (3)()0=c D ,c 为常数 (4)ξ~N (μ,2σ),则=ξD 2σ (5)ξξD a b a D 2)(=+

14正态分布密度函数可写成

22

()21

(),(,)x f x x μσ--

=∈-∞+∞,(σ>0)

15正态分布:一般地,如果对于任何实数a b <,随机变量X 满足

,()()b

a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal

distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作

),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN .

16.正态曲线的性质:

(1)曲线在x 轴的上方,与x 轴不相交 (2)曲线是单峰的,它关于直线x=μ对称

(3)曲线在x=

(4)曲线与x 轴之间的面积为1

(5)μ一定时,σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中:

(6)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移。 17.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,

2

221)(x e

x f -

=

π

,(-∞<x <+∞)

18(1)()6826.0=+≤<-σμσμx P

(2)()9544.022=+≤<-σμσμx P (3)()9974.033=+≤<-σμσμx P

复数概念及公式总结

数系的扩充和复数概念和公式总结 1.虚数单位i: 它的平方等于-1,即21 i=- 2.i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i 3.i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1 4.复数的定义:形如(,) a bi a b R +∈的数叫复数,a叫复数的实部,b叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示复数通常用字母z表示,即(,) =+∈ z a bi a b R 5.复数与实数、虚数、纯虚数及0的关系:对于复数(,) +∈,当且仅当b=0时, a bi a b R 复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi 叫做纯虚数;a≠0且b≠0时,z=bi叫做非纯虚数的纯虚数;当且仅当a=b=0时,z就是实数0. 5.复数集与其它数集之间的关系:N Z Q R C. 6.两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等如果a,b,c,d∈R,那么a+bi=c+di?a=c,b=d 一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小当两个复数不全是实数时不能比较大小 7.复平面、实轴、虚轴: 点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴 数 (1)实轴上的点都表示实数 (2)虚轴上的点都表示纯虚数 (3)原点对应的有序实数对为(0,0) 设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数, 8.复数z1与z2的加法运算律:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i. 9.复数z1与z2的减法运算律:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i.

随机变量及其分布列概念公式总结

随机变量及其分布总结 1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示. 2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量 3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: (1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格 6.两点分布列: 7超几何分布列: 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品 数,则事件 {X=k }发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --=== ,其中mi n {,} m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列 为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X

服从超几何分布 8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数 (4)ξ~N (μ,2σ),则=ξE μ (5)b aE b a E +=+ξξ)( 11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…, 且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

小学概念公式大全

小学数学毕业总复习——概念复习 进率: 1千米=1000米;1米=10分米;1分米=10厘米;1米=100厘米;1千米=100000厘米。 1平方米=100平方分米;1平方分米=100平方厘米;1平方米=10000平方厘米;1公顷=10000平方米。 1平方千米=100公顷;1平方千米=1000000平方米;1吨=1000千克;1千克= 1000克。 1立方米=1000立方分米;1立方分米=1000立方厘米;1升=1000毫升;1毫升=1立方厘米。 1小时=60分;1分=60秒;1个世纪=100年;1年=365天(闰年366天);2月有28天或29天。 1个季度=3个月;1年=12个月。1元=10角;1角=10分;1元=100分。 周长公式: 长方形周长=(长+宽)×2(C=(a+b)×2);正方形周长=边长×4(C=4a); 圆的周长=直径×圆周率(C=πd=2πr);半圆周长=圆周长的一半+直径(C=πr+2r) 长方体棱长和=(长+宽+高)×4(C=(a+b+h)×4);正方体棱长和=棱长×12(C=12a) 面积公式: 三角形的面积=底×高÷2(S= a×h÷2);正方形的面积=边长×边长(S= a×a=a2) 长方形的面积=长×宽(S= a×b);平行四边形的面积=底×高(S= a×h) 梯形的面积=(上底+下底)×高÷2(S=(a+b)h÷2);圆的面积=半径×半径×π (S=πr2) 长方体底面积=长×宽(S=ab);前面面积=长×高(S=ah);右面面积(横截面面积)=宽×高(S=bh) 圆剪拼成近似长方形,周长多两条半径。圆柱剪拼成近似长方体多两个半径乘高的面积。 正方形的面积=对角线×对角线÷2 表面积公式: 长方体表面积=(长×宽+长×高+宽×高)×2(S=(ab+ah+bh) ×2);正方体表面积=棱长×棱长×6(S=6a2 ) 圆柱的侧面积=底面周长×高。(S=ch=πdh=2πrh);占地面积通常指的是底面面积。 圆柱的表面积=底面周长×高+底面积×2(S=ch+2s=ch+2πr2);计算表面积要考虑实际问题。 体积公式: 长方体的体积=长×宽×高(V=abh);正方体的体积=棱长×棱长×棱长(V=a×a×a=a3) 长(正)方体的体积=底面积×高(V=Sh)圆柱的体积=底面积×高。(V=Sh=πr2h) 圆锥的体积=1/3×底面积×高。(V=1/3Sh=1/3πr2h)直柱体体积=底面积×高。(V=Sh) 圆柱体积(长方体体积)=横截面面积×长圆柱体积=侧面积的一半×半径(V=1/2sr) 已知圆锥的体积,求圆锥的底面积或高,要用方程解。(同三角形面积已知,求高或底用方程解。) 数量关系式: 1、单价×数量=总价;单产量×数量=总产量;速度(和)×时间=路程;工效(和)×时间=工作总量 2、加数+加数=和;一个加数=和-另一个加数;被减数-减数=差;减数=被减数-差; 被减数=减数+差;因数×因数=积;一个因数=积÷另一个因数;被除数÷除数=商; 除数=被除数÷商;被除数=商×除数;被除数=商×除数+余数 3、盐水浓度=盐的重量÷盐水重量;出勤率=出勤人数÷总人数;成活率=成活的棵树÷总棵数; 合格率=合格数÷零件总数;出油率=油的重量÷豆的重量;优秀率=优秀人数÷总人数; 4、利润=利润÷成本价;现价÷原价=折数;营业额×税率=营业税;利息=本金×利率×时间 5、工资交个人所得税要分段考虑。赚钱和亏本都是把成本看作单位“1”。取钱要取回本金和利息。 运算律和性质: 1、加法交换律:两数相加交换加数的位置,和不变。(a+b=b+a) 2、加法结合律:三个数相加,先把前两个数相加,再同第三个数相加,或先把后两个数相加,再同第一个数相 加,和不变。a+b+c=a+(b+c) 3、乘法交换律:两数相乘,交换因数的位置,积不变。(ab=ba) 4、乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘,或先把后两个数相乘,再同第一个相乘, 它们的积不变。(abc=a(bc)) 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。a×(b+c)=ab+ac 【a×(b—c)=ab—ac,同乘法分配律】 6、商不变规律:在除法里,被除数和除数同时扩大(或缩小)相同的倍数(0除外),商不变。

复数概念及公式总结教学内容

复数概念及公式总结

数系的扩充和复数概念 1.虚数单位i:它的平方等于-1,即21 i=- 2. i与-1的关系: i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i; 3. i的周期性: 4.复数的定义:形如(,) +∈的数叫复数,a叫复数的实部,b叫复数的虚部全体复数所成 a bi a b R 的集合叫做复数集,用字母C表示复数通常用字母z表示,即 z a bi a b R =+∈ (,) 5. 复数与实数、虚数、纯虚数及0的关系:对于复数(,) +∈,当且仅当b=0时,复数 a bi a b R a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;a≠0且b≠0时,z=bi叫做非纯虚数的纯虚数;当且仅当a=b=0时,z就是实数0. 5.复数集与其它数集之间的关系:N___Z___Q___R___C. 6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等如果a,b,c,d∈R,那么a+bi=c+di?a=c,b=d 一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较当两个复数不全是实数时不能比较大小 7. 复平面、实轴、虚轴:

点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面, x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数 (1)实轴上的点都表示____________ (2)虚轴上的点都表示____________ (3)原点对应的有序实数对为(0,0) 设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R )是任意两个复数, 8.复数z 1与z 2的加法运算律:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i . 9.复数z 1与z 2的减法运算律:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i . 10.复数z 1与z 2的乘法运算律:z 1·z 2= (a +bi )(c +di )=(ac -bd )+(bc +ad )i . 11.复数z 1与z 2的除法运算律: 12.共轭复数: 通常记复数z 的共轭复数为z 。例如z =3+5i 与z =3-5i 互为共轭复数 13. 共轭复数的性质 (1)实数的共轭复数仍然是它本身 (2)22Z Z Z Z ==? (3)两个共轭复数对应的点关于实轴对称 14.复数的两种几何意义: 15几个常用结论 (1)()i i 212=+,(2)()i i 212-=- (3)i i -=1, (4) i i i =-+11 16.复数的模: (5) i i i -=+-11 复数bi a Z +=的模22b a Z += (6)()()22b a bi a bi a +=-+ 点),(b a Z 向量OZ 一一对应 一一对应 一一对应 复数()R b a bi a Z ∈+=,

第三章--多维随机变量及其分布总结

第三章--多维随机变量及其分布总结

第三章 多维随机变量及其分布 第一节 二维随机变量 一、二维随机变量的分布函数 设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量. 一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究. 首先引入(X , Y )的分布函数的概念. 定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数 F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y } 称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数. 分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率.. 由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为 P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) (1) 与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质: 1? F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2). 2? 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1.(凡含-∞的概率分布为0) 3? F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ). 4? 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0. 注: 二元分布函数具有性质1?~ 4?, 其逆也成立(2?中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1?~ 4?, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4?是必不可少的, 即它不能由1?~ 3?推出(除去0 ≤ F (x , y ) ≤ 1). 二、二维离散型随机变量 如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量. 设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0; 111 =∑∑∞=∞ =i j ij p . 我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为 = ),(y x F ∑∑≤≤==x x y y j i i j y Y x X P },{=∑∑≤≤x x y y ij i j p 这里 ∑∑ ≤≤x x y y i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和. 例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时, 各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数.. 解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}= 3 12231=?.

随机变量及其分布考点总结

第二章 随机变量及其分布 复习 一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x x ξ取每一个值),2,1(Λ=i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列. 121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题: 1、随机变量ξ的分布列为(),1,2,3(1) c P k k k k ξ== =+……,则P(13)____ξ≤≤= 2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为1 7 ,现在甲乙两人从袋中轮流摸去一 球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。(1)求ξ的分布列(2)求甲取到白球的的概率 3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。 4 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5 . (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率. (参考公式:2 ()()()()() n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)

随机变量及其分布函数

随机变量及其分布函数 将随机事件以数量来标识,即用随机变量描述随机现象的研究方法,它是定义在样本空间上具有某种可预测性的实值函数。 分布函数则完整的表述了随机变量。 一、 随机变量与分布函数 (1) 随机变量: 取值依赖于某个随机试验的结果(样本空间),并随着试验结果不同而变化的变量,称之为随机变量。 分布函数: [1] 定义: 设X 是一个随机变量,对任意实数x ,记作 (){}F x P X x ≤=,称()F x 为随机变量X 的分 布函数,又称随机变量X 服从分布()F x ,显然,函数 ()F x 的定义域为(),-∞+∞,值域为[0,1]。 [2] 性质: ?()F x 单调非降。 ?()0F -∞=、()1F +∞=。 ?()(0)F x F x =+,即()F x 一定是右连续的。 ?对于任意两个实数a b <, {}()()P a X b F b F a <≤=- ?对于任意实数0x ,

00 0{}()()P X x F x F x ==-- ?000{}1{}1()P X x P X x F x >=-≤=- ?000{}{)lim }(x x P X x P X x x F →- =≤<=- ?000{}1{}1()P X x P X x F x ≥=-<=-- 二、 离散型随机变量与连续型随机变量 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概率()i i P X x p ==(12)i =、……称为X 的概率分布或分布律,表格表示形式如下: [2] 性质: ?0i p ≥ ? 1 1n i i p ==∑ ?分布函数()i i x x F x p ==∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有:

信号与系统重点概念公式总结

信号与系统重点概念公式 总结 Last updated on the afternoon of January 3, 2021

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jba 为实部,b 为虚部; 或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为 复数的辐角。(复平面) 2.欧拉公式: wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n = 如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21 21 2==≠=?? 则称集合F 为正交函数集 如果n i K i ,2,11 ==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为:n i K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121 **==?≠=??? 其中)(*t f i 为)(t f i 的复共轭。2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。 3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。 如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t ) ()∞<

复数知识点精心总结

复数知识点 考试内容: 复数的概念. 复数的加法和减法. 复数的乘法和除法. 数系的扩充. 考试要求: (1)了解复数的有关概念及复数的代数表示和几何意义. (2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算. (3)了解从自然数系到复数系的关系及扩充的基本思想. 1. ⑴复数的单位为i ,它的平方等于-1,即1i 2-=. ⑵复数及其相关概念: ① 复数—形如a + b i 的数(其中R b a ∈,); ② 实数—当b = 0时的复数a + b i ,即a ; ③ 虚数—当0≠b 时的复数a + b i ; ④ 纯虚数—当a = 0且0≠b 时的复数a + b i ,即b i. ⑤ 复数a + b i 的实部与虚部—a 叫做复数的实部,b 叫做虚部(注意a ,b 都是实数) ⑥ 复数集C —全体复数的集合,一般用字母C 表示. ⑶两个复数相等的定义: 00==?=+∈==?+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且. ⑷两个复数,如果不全是实数,就不能比较大小. 注:①若21,z z 为复数,则ο1若021φz z +,则21z z -φ.(×)[21,z z 为复数,而不是实数] ο2若21z z π,则021πz z -.(√) ②若C c b a ∈,,,则0)()()(222=-+-+-a c c b b a 是c b a ==的必要不充分条件.(当22)(i b a =-, 0)(,1)(22=-=-a c c b 时,上式成立) 2. ⑴复平面内的两点间距离公式:21z z d -=. 其中21z z ,是复平面内的两点21z z 和所对应的复数,21z z d 和表示间的距离. 由上可得:复平面内以0z 为圆心,r 为半径的圆的复数方程:)(00φr r z z =-. ⑵曲线方程的复数形式: ①00z r z z 表示以=-为圆心,r 为半径的圆的方程.

离散数学部分概念和公式总结

离散数学部分概念和公式总结 命题:称能判断真假的陈述句为命题。 命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。 命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。若指定的一组值使A的值为真,则称成真赋值。真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。 命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。 (2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。 (3)若A至少存在一组赋值是成真赋值,则A是可满足式。 主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。 主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。 命题的等值式:设A、B为两命题公式,若等价式A?B是重言式,则称A与B是等值的,记作A<=>B。 约束变元和自由变元:在合式公式?x A和?x A中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A?B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。 前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Q k…x k B,称A为前束范式。集合的基本运算:并、交、差、相对补和对称差运算。 笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。 二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。特殊关系:(1)、空关系:Φ(2)全域关系:EA={ | x∈A ∧y∈A }= A×A (3)恒等关系:IA={ | x∈A} (4)小于等于关系:LA={| x, y∈A∧x≤y∈A },A ? R (5)整除关系:R? ={| x,y∈ψ∧x ? y} ,ψ是集合族 二元关系的运算:设R是二元关系, (1)R中所有有序对的第一元素构成的集合称为R的定义域dom R = { x |?y(∈R)} (2)R中所有有序对的第二元素构成的集合称为R的值域ranR = {y |?x(∈R)} (3)R的定义域和值域的并集称为R的域fld R= dom R∪ran R 二元关系的性质:自反性,反自反性,对称性,反对称性,传递性。 等价关系:如果集合A上的二元关系R是自反的,对称的和传递的,那么称R是等价关系。设R是A上的等价关系,x , y是A的任意元素,记作x~y。 等价类:设R是A上的等价关系,对任意的?x∈A,令[x]R={ y| y∈A∧x R y },称[x]R 为x关于R的等价类。 偏序关系:设R是集合A上的二元关系,如果R是自反的,反对称的和传递的,那么称R 为A上的偏序,记作≤;称序偶< A ,R >为偏序集合。 函数的性质:设f: A→B, (1)若ran f = B,则称f 是满射(到上)的。

随机变量及其分布小结与复习

复习课: 随机变量及其分布列 教学目标 重点:理解随机变量及其分布的概念,期望与方差等的概念;超几何分布,二项分布,正态分布等的特点;会求条件概率,相互独立事件的概率,独立重复试验的概率等. 难点:理清事件之间的关系,并用其解决一些具体的实际问题. 能力点:分类整合的能力,运算求解能力,分析问题解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:容易出现事件之间的关系混乱,没能理解问题的实际意义. 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.随机变量 ⑴随机变量定义:在随机试验中,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.简单说,随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.常用希腊字母x、y、ξ、η等表示. ⑵如果随机变量可能取的值可以按次序一一列出(可以是无限个)这样的随机变量叫做离散型随机变量.

⑶如果随机变量可能取的值是某个区间的一切值,这样的随机变量叫做连续型随机变量. 2.概率分布定义(分布列) 设离散型随机变量ξ可能取的值为123,,,,i x x x x L L ,ξ取每一个值(1,2,)i x i =L 的概率 ()i i P x p ξ==,则称表 ξ 1x 2x L i x L P 1P 2P L i P L 称为随机变量ξ的概率分布列,简称ξ的分布列. 注:1.离散型随机变量的分布列具有下述两个性质: (1)0,123≥,,,i p i =L ;123(2)1p p p +++=L 3.常见的分布列 ⑴二项分布:在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰发生k 次的概 率为()(1)k k n k n p X k C p p -==-,显然x 是一个随机变量.随机变量x 的概率分布如下: x 1 L k L n P 00n n C p q 111 n n C p q - L k k n k n C p q - L n n n C p q 我们称这样的随机变量x 服从二项分布,记作~(,)X B n p ⑵两点分布列:如果随机变量ξ的分布列为: ξ 0 1 P 1P - P 这样的分布列称为两点分布列,称随机变量服从两点分布,而称(1)p P ξ==为成功概率.两点分布是特殊的二项分布(1)p ξ~B , ⑶超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有x 件次品数,则事件{} x k =发生的概率为(),0,1,2,3,,k N k M N M n N C C P X k k m C --===L .其中{}min ,m M n =,且*,,,,n N M N n M N N ≤≤∈,则称分布列

人教版小学数学概念公式大全

三角形的面积=底×高÷2。公式S= a×h÷2 正方形的面积=边长×边长公式 S= a2 或S=a×a 长方形的面积=长×宽公式 S= ab 平行四边形的面积=底×高公式 S= ah 梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长×宽×高公式:V=abh 长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa 圆的周长=直径×π公式:L=πd=2πr 圆的面积=半径×半径×π公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。

读懂理解会应用以下定义定理性质公式 一、算术方面 1、加法交换律:两数相加交换加数的位置,和不变。 2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3、乘法交换律:两数相乘,交换因数的位置,积不变。 4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。 如:(2+4)×5=2×5+4×5 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 7、么叫等式?等号左边的数值与等号右边的数值相等的式子 叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数, 等式仍然成立。 8、什么叫方程式?答:含有未知数的等式叫方程式。 9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

高中数学复数的知识点总结

高中数学复数的知识点总结 高中数学复数的知识点总结 定义 数集拓展到实数范围内,仍有些运算无法进行。比如判别式小于0的一元二次方程仍无解,因此将数集再次扩充,达到复数范围。形如z=a+bi的数称为复数(complexnumber),其中规定i为虚数单位,且i^2=i*i=-1(a,b是任意实数)我们将复数z=a+bi中的实数a称为复数z的实部(realpart)记作Rez=a实数b称为复数z的虚部(imaginarypart)记作Imz=b.已知:当b=0时,z=a,这时复数成为实数当a=0且b≠0时,z=bi,我们就将其称为纯虚数。 运算法则 加法法则 复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。 即(a+bi)+(c+di)=(a+c)+(b+d)i. 乘法法则 复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i^2=1,把实部与虚部分别合并。两个复数的积仍然是一个复数。 即(a+bi)(c+di)=(ac-bd)+(bc+ad)i.

除法法则 复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算, 即(a+bi)/(c+di) =[(a+bi)(c-di)]/[(c+di)(c-di)] =[(ac+bd)+(bc-ad)i]/(c^2+d^2). 开方法则 若z^n=r(cosθ+isinθ),则 z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=0,1,2,3……n-1) 复数中的难点 (1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明. (2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练. (3)复数的辐角主值的求法. (4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的.模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.

选修2-3第二章随机变量及其分布知识点总结

第二章概率总结 一、知识点 1.随机试验的特点: ①试验可以在相同的情形下重复进行; ②试验的所有可能结果是明确可知的,并且不止一个 ③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会 出现哪一个结果. 2.分类 随机变量 (如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结 果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X、Y等 或希腊字母ξ、η等表示。) 离散型随机变量:连续型随机变量: 3.离散型随机变量的分布列 一般的,设离散型随机变量X可能取的值为x1, x2, ,x i , ,x n X取每一个值xi(i=1,2,)的概率P(ξ=x i)=P i,则称表 为离散型随机变量X 的概率分布,简称分布列 性质:①---------------------------------------------- ②-------------------------------------------------. 二点分布 如果随机变量X的分布列为: 其中0

一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件, 这n 件中所含这类物品件数X 是一个离散型随机变量, 则它取值为k 时的概率为()(0,1,2,,)k n k M N M n N C C P X k k m C --===,其中 则称随机变量X 的分布列 , 为超几何分布列,且称随机变量X 服从参数N 、M 、n 的超几何分布 注意:(1)超几何分布的模型是不放回抽样; (2)超几何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中一类的 总数、样本容量 条件概率 1.定义:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率, 叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率 2.事件的交(积):由事件A 和事件B 同时发生所构成的事件D ,称为事件A 与事件B 的交(或积).记作D=A ∩B 或D=AB 3.条件概率计算公式: 例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品, 求第二个又取到次品的概率. 相互独立事件 1.定义:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件 叫做相互独立事件 2.相互独立事件同时发生的概率公式 两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。则有 如果事件A1,A2,…An 相互独立,那么这n 个事件同时发生的概率, 等于每个事件发生的概率的积。即: P (A1·A2·…·An )=P (A1)·P (A2)·…·P(An) 3解题步骤 说明(1)判断两事件A 、B 是否为相互独立事件,关键是看A (或B )发生与否对B (或A )发生的概率是否影响,若两种状况下概率不变,则为相互独立. (2)互斥事件是指不可能同时发生的两个事件;相互独立事件是指一事件的发生与否对另一事件发生的概率没影响. (3)如果A 、B 是相互独立事件,则A 的补集与B 的补集、A 与B 的补集、A 的补集与B 也都相互独立.

2020高中数学概念公式大全

高中数学概念公式大全 一、 三角函数 1、以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则 sin α= r y ,cos α=r x ,tg α=x y ,ctg α=y x ,sec α=x r ,csc α=y r 。 2、同角三角函数的关系中,平方关系是:1cos sin 22=+αα, αα22sec 1=+tg ,αα22csc 1=+ctg ; 倒数关系是:1=?ααctg tg ,1csc sin =?αα,1sec cos =?αα; 相除关系是:αααcos sin = tg ,α α αsin cos =ctg 。 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如: =-)23sin(απαcos -,)215(απ -ctg =αtg , =-)3(απtg αtg -。 4、函数B x A y ++=)sin(?ω),(其中00>>ωA 的最大值是 B A +,最小值是A B -,周期是ω π 2= T ,频率是π ω 2= f ,相位是?ω+x ,初相是?;其图象的对称轴是直线 )(2 Z k k x ∈+ =+π π?ω,凡是该图象与直线B y =的交点都 是该图象的对称中心。 5、三角函数的单调区间:

x y sin =的递增区间是?????? +-2222ππππk k ,)(Z k ∈,递减区间是?? ???? ++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22, )(Z k ∈,tgx y =的递增区间是?? ? ? ?+ - 22 πππ πk k ,)(Z k ∈,ctgx y =的递减区间是()πππ+k k ,)(Z k ∈。 6、=±)sin(βαβαβαsin cos cos sin ± =±)cos(βαβαβαsin sin cos cos μ = ±)(βαtg β αβ αtg tg tg tg ?±μ1 7、二倍角公式是:sin2α=ααcos sin 2? cos2α=αα2 2 sin cos -=1cos 22 -α=α2 sin 21- tg2α= α α 212tg tg -。 8、三倍角公式是:sin3α=αα3 sin 4sin 3- cos3α=ααcos 3cos 43 - 9、半角公式是:sin 2α=2cos 1α-± cos 2α=2 cos 1α +± tg 2α=α αcos 1cos 1+-±=ααsin cos 1-=ααcos 1sin +。

相关文档
相关文档 最新文档