文档库 最新最全的文档下载
当前位置:文档库 › 2004年第6体面心立方晶胞空隙

2004年第6体面心立方晶胞空隙

2004年第6体面心立方晶胞空隙

立方面心的最密堆积,每个晶胞中有4个八面体空隙:6个面心位置所包围的是1个八面体空隙,每条棱的中点是4个晶胞共有的一个八面体空隙。

可计为1/4,12条棱,合计为3个八面体空隙。面心立方晶胞有8个四面体空隙,8个顶点共有8个四面体空隙。

六方晶系四指数推导

1.4 晶向指数和晶面指数 一晶向和晶面 1 晶向 晶向:空间点阵中各阵点列的方向(连接点阵中任意结点列的直线方向)。晶体中的某些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线的指向。 2 晶面 晶面:通过空间点阵中任意一组阵点的平面(在点阵中由结点构成的平面)。晶体中原子所构成的平面。 不同的晶面和晶向具有不同的原子排列和不同的取向。材料的许多性质和行为(如各种物理性质、力学行为、相变、X光和电子衍射特性等)都和晶面、晶向有密切的关系。所以,为了研究和描述材料的性质和行为,首先就要设法表征晶面和晶向。为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶向指数与晶面指数。 二晶向指数和晶面指数的确定 1 晶向指数的确定方法 三指数表示晶向指数[uvw]的步骤如图1所示。 (1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边长a,b,c,坐标原点在待标晶向上。 (2)选取该晶向上原点以外的任一点P(xa,yb,zc)。 (3)将xa,yb,zc化成最小的简单整数比u,v,w,且u∶v∶w = xa∶yb∶zc。 (4)将u,v,w三数置于方括号内就得到晶向指数[uvw]。 图1 晶向指数的确定方法 图2 不同的晶向及其指数 当然,在确定晶向指数时,坐标原点不一定非选取在晶向上不可。若原点不在待标晶向上,那就需要选取该晶向上两点的坐标P(x1,y1,z1)和Q(x2,y2,z2),然后将(x1-x2),(y1-y2),

(z 1-z 2)三个数化成最小的简单整数u ,v ,w ,并使之满足u ∶v ∶w =(x 1-x 2)∶(y 1-y 2)∶(z 1-z 2)。则[uvw ]为该晶向的指数。 显然,晶向指数表示了所有相互平行、方向一致的晶向。若所指的方向相反,则晶向指数的数字相同,但符号相反,如图3中[001]与[010]。 说明: a 指数意义:代表相互平行、方向一致的所有晶向。 b 负值:标于数字上方,表示同一晶向的相反方向。 c 晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。用表示,数字相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。晶体结构中那些原子密度相同的等同晶向称为晶向轴,用表示。 <100>:[100] [010] [001] [001] [010] [100] <111>:[111] [111] [111] [111] [111] [111] [111] [111] 图3 正交点阵中的几个晶向指数 2 晶面指数的确定 国际上通用的是密勒指数,即用三个数字来表示晶面指数(h k l )。图4中的红色晶面为待确定的晶面,其确定方法如下。 图4 晶面指数的确定 (1)建立一组以晶轴a ,b ,c 为坐标轴的坐标系,令坐标原点不在待标晶面上,各轴上的坐标长度单位分别是晶胞边长a ,b ,c 。 (2)求出待标晶面在a ,b ,c 轴上的截距xa ,yb ,zc 。如该晶面与某轴平行,则截距为∞。 (3)取截距的倒数1/xa ,1/yb ,1/zc 。 (4)将这些倒数化成最小的简单整数比h ,k ,l ,使h ∶k ∶l = 1/xa ∶1/yb ∶1/zc 。 (5)如有某一数为负值,则将负号标注在该数字的上方,将h ,k ,l 置于圆括号内,写成(hkl ),则(hkl )就是待标晶面的晶面指数。 说明:晶面指数所代表的不仅是某一晶面,而是代表着一组相互平行的晶面。 a 指数意义:代表一组平行的晶面;

七大晶系图解

晶体的七大晶系是十分专业的问题,它有时是鉴别晶体的关键,鉴藏矿晶的人多少应该知道一些。 概论 已知晶体形态超过四万种,它们都是按七种结晶模式发育生长, 即七大晶系。晶体是以三维方向发育的几何体,为了表示三维空间,分别用三、四根假想的轴通过晶体的长、宽、高中心,这几根轴的交角、长短不同而构成七种不同对称、不同外观的晶系模式:等轴晶系, 四方晶系,三方晶系,六方晶系,斜方晶系,单斜晶系,三斜晶系 上图是七大晶系的理论模型,在同一水平面上,请大家仔细分辨它们的区 别。面向观众的轴称x 轴,与画面平行的横轴称y 轴,竖直的 轴称z 轴,也可叫“主轴” 请看图

一,等轴晶系简介 等轴晶系的三个轴长度一样,且相互垂直,对称性最强。这个晶系的晶体通俗地说就是方块状、几何球状,从不同的角度看高低宽窄差不多。如正方体、八面体、四面体、菱形十二面体等,它们的相对晶面和相邻晶面都相似,这种晶体的横截面和竖截面一样。此晶系的矿物有黄铁矿、萤石、闪锌矿、石榴石,方铅矿等。请看这种晶系的几种常见晶体的理论形态:

等轴晶系的三个晶轴(x 轴y 轴z 轴)一样长, 互相垂直

常见的等轴晶系的晶体模型图 金刚石晶体

八面体和立方体的聚形的方铅矿 黄铁矿 四方晶系简介

四方晶系的三个晶轴相互垂直,其中两个水平轴(x 轴、y 轴)长度一样,但z 轴的长度可长可短。通俗地说,四方晶系的晶体大都是四棱的柱状体,(晶体横截面为正方形,但有时四个角会发育成小柱面,称“复四方”),有的是长柱体,有的是短柱体。再,四方晶系四个柱面是对称的,即相邻和相对的柱面都一样,但和顶端不对称(不同形);所有主晶面交角都是九十度交角。请看模型图: 四方晶系的晶体如果z 轴发育,它就是长柱状甚至针状;如果两个横轴(x 、y)发育大于竖轴z 轴,那么该晶体就是四方板状,最有代表性的就是钼铅矿。请看常见的一些四方晶系的晶体模型:

三方晶系和六方晶系

关于我对三方晶系、六方晶系以及将六方晶系 转化成三方晶系的一点认识 关键词:三方晶系.六方晶系、转化。 摘要:本文详细阐述了三方晶系、六方晶系,七大晶系和六大晶系的相关知识以及它们之间的区别和联系。通过对三方晶系和六方晶系的晶格常熟、三方点阵和六方点阵的形成以及它们的对称性关系进行讨论,进一步阐明了三方晶系之所以能归入六方晶系的理论基础,解释了六方晶系转化成三方晶系的方法。 三方晶系(trigonal SyStem ):

三方晶系 属中级晶族。特征对称元素为三重对称轴。可划分出六方晶胞的菱面体晶胞。 在晶体外形或去观物性中能呈现出具有唯一高次三重轴或三重反轴特征对称元素的晶 体归属于三方晶系。 三次轴 三方晶系一类正当晶格单位有两种选取模式:一种是取菱形六面体的三方素晶格R,其 晶格参数具有a=b=c, α = β = γ<120o ≠90o 的特征;另一种是取体积为素晶格R 三倍的 三方H 格子,此中晶体学界常用的轴系变换方式是三方H 格子具有a=b≠c, α=β=90o , Y=I20。的特征。代表矿物:??,红宝石、蓝宝石 (即 刚玉)。 六方晶系(hexagonal CryStaI system):三方晶系碳酸盐

六方晶系晶轴 在唯一具有高次轴的C 轴主轴方向存在六重轴或六重反轴特征对称元素的晶体归属六 方晶系。 六次轴 六方晶系特征对称性决定了六方晶系晶胞对应的基向量特点是:副轴和均与主轴垂直, 二个副轴基向量的大小相等,副轴间的夹角为120° ,即其晶胞参数具有a=b≠c, α=β =90° , Y =120°的关系。六方晶系(hexagonal SyStem ) >有一个6次对称轴或者6次倒转 轴,该轴是晶体的直立结晶轴C 轴。另外三个水平结晶轴正端互成120° .夹角。轴角α = β =90o , Y =120° ,轴单位a=b≠c o 六方晶系晶体常见有六棱柱状、六方板(片)状以及它 们的各种聚形,偶然会出现十二棱柱体(复六方柱)。代表矿物:祖母绿emerald,含钻的 翠绿色绿柱石。化学组成为Be3Λ12[Si6018]o 六方晶系,晶体呈六方柱状,柱面有纵向条纹。玻璃光泽,硬度7.5。性质稳定,不易 受腐蚀,是一种贵重宝石,以其透明的绿色为主要鉴定特征。其颜色的鲜艳程度和亮度主 要取决于氧化钻和氧化铁的含呈。含氧化铁愈多,则颜色变为深暗,质量下降。世界90% 的优质祖母绿产于哥伦比亚,碧绿清澈,晶莹凝透,以稍带蓝色的翠绿色质量最佳,和翡翠 一样是宝石中的六方晶系 六方晶系祖母绿

6.晶体中原子堆垛方式

()四晶体中的原子堆垛方式 因此面心立方晶格和密排六方晶格均属于最紧密排列的结构 对各类晶体的配位数和致密度进行分析计算的结果表明,配位数以12为最大,致密度以0.74为最高 为什么两者的晶体结构不同而却会有相同的密排程度 为了回答这一向题需要了解晶体中的原子堆垛方式 图1-10a为在一个平面上原子最紧密排列的情况原子之间彼此紧密接触 这个原子最紧密排列的平面即密排面,对于密排六方品格而言是其底面,对于面心立方品格而言,则为垂直于立方体空间对角线的对角面 密排面的六边形模型: 可以把密排面的原子中心连结成六边形网格,该六边形网格又可分为六个等边三角形,而这六个三角形的中心又与原子的六个空隙中心相重合。从图1.10可以看出,这六个空隙可分为b、c组,每组分别构成一个等边三角形。 第二层密排面的排列原则如图1.11所示: 为了获得最紧密的排列,第二层密排面()层 B的每个原子应当正好坐落在下面一层()层 A密排面的b组空隙()组 或c上 关键是第三层密排面它有两种堆垛方式: 1.第一种是第三层密排面的每个原子中心正好对应第一层()层 A密排面的原子中心,第四层密排面又与第二层重复,以下依次类推。因此,密排面的堆垛顺序是ABABAB,按照这种堆垛方式,即构成密排六方晶格,如图1.12所示 C的每个原子中心不与第一层密排面的2.第二种堆垛方式是第三层密排而()层 原子中心重复,而是位于既是第二层原子的空隙中心,又是第一层原子的空

隙中心处。之后,第四层的原子中心与第一层的原子中心重复,第五层的又与第二层的重复,照此类推,它的堆垛方式为ABCABCABC,这就构成了面心立方晶格,如图1.13所示 体心立方晶格的原子堆垛方式: 1.密排面是哪个:在体心立方晶胞中,除位于体心的原子与位于顶角的八个原 子相切外,八个顶角上的原了彼此间并不相互接触。显然,原子排列较为紧密的面相当于连结晶胞立方体的两个斜对角线所组成的面。 2.密排面模型:若将该面取出并向四周扩展,则可画成如图1.14所示的形式。 3.密排面比较:由图可以看出,这层原子面的空隙是由四个原子所构成,而密 排六方品格和面心立方晶格密排面的空隙由三个原子所构成,显然,前者的空隙较后者大,原子排列的紧密程度较差,通常称其为次密排面。 4.原子堆垛方式:为了获得较为紧密的排列,第二层次密排面()层 B的每个原子应坐落在第一层()层 A的空隙中心上,第三层的原子位于第二层的原子空隙处并与第一层的原子中心相重复,依此类推。因而它的堆垛方式为 ABABAB,由此构成体心立方晶格,如图1.14所示

(完整版)七大晶系详细图解

七大晶系详细图解 已知晶体的形态已经超过了四万种,但是万物都会有规律,晶体自然也是有的。它们都是按七种结晶方式模式发育的,即七大晶系。晶体即是一种以三维方向发育的的几何体,为了表示三维空间,分别用三、四跟人为添加的轴来表示晶体的长宽高以及中心。三条轴分别用X、Y、Z(U)(Z轴也可叫做“主轴”)来表示,而为了更好表示轴之间的度数,我们用α、β、γ来表示轴角。就这样出现了七种不同的晶系模式:立方晶系(也称等轴晶系)、四方晶系、三方晶系、六方晶系、正交晶系(也称斜方晶系)、单斜晶系、三斜晶系。其中又按照对称程度又分为高级晶族、中级晶族、低级晶族。高级晶族中只有一个立方晶系;中级晶族有六方、四方、三方三个晶系;低级晶族有正交、单斜、三斜三个晶系。 一、立方晶系 立方晶系的三个轴的长度是一样的,即X=Y=Z,且互相垂直,即α=β=γ=90°,对称性最强。具有4个立方体对角线方向三重轴特征对称元素的晶体归属立方晶系。属于立方晶系的有:面心立方晶胞、体心立方晶胞、简单立方晶胞。这个晶系的晶体并不是只有狭义的正方体一种形状,四面体、八面体、十二面体形状的

晶体都属于立方晶系。它们从不同角度看高低宽窄都差不太多,相对晶面和相邻晶面都相似,横截面和竖截面一样。最典型立方晶系的晶体为:氯化钠。 常见立方晶系晶体模型图: 晶体实物图:

二、四方晶系 四方晶系四方晶系的三条晶轴互相垂直,即α=β=γ=90°。其中两个水平轴(X 轴、Y轴)长度一样,Z轴的长度可长可短,通俗的说:四方晶系的晶体大多是四棱的柱状体,有的是长柱体,有的是短柱体,即其晶胞必具有四方柱的形状。横截面为正方形,四个柱面是对称的,即相邻和相对的柱面都是一样的,但和顶端不对称。所有主晶面交角都是90。特征对称元素为四重轴。如果Z轴发育,它就是长柱状甚至针状;如果两个横轴(X轴、Y轴)发育大于Z轴,那么晶体就会呈现四方板状,最有代表的就是磷酸二氢钠和硫酸镍β了。 常见的立方晶系的晶体模型图: 注:柱体的棱角发育成窄小晶面,此种晶体又叫“复四方”——四个主柱面,四个小柱面。 晶体实物图:

第二章 晶体结构

晶体结构分类方法

(B) 2.1 符号中的第一个大写字母表示结构的类型,后面的数字为第个大写字母表示结构的类型后面的数字为顺序号,不同的顺序号表示不同的结构,例如A1是铜型结 结构等。 构,B2是CsCl型结构等,C3是FeS 2

Pearson符号 它所属的布喇菲点阵类型(例如P、I、F、C等),第三个数 等) 字表示单胞中的原子数。 2.2 金属单质的晶体结构 在元素周期表中,共有70多种金属元素。

由于金属键不具有饱和性和方向性,使金属的晶体结构倾向配位数(

将用原子刚性球模型讨论每个单胞所含的原子数以及这些构中的间隙等。 2.2.1 面心立方结构 结构符号是A1,Pearson 符号是c F4。 原子坐标为0 0 0,0 1/2 1/2,1/2 0 1/2和1/2 1/2 0 每个晶胞含4个原子 最紧密排列面是{111},密排方向 是<110>。原子直径是a/2<110>的 长度,即 面心立方结构的晶胞体积为a 3, 晶胞内含4个原子,所以它的致密 度η为4 2a r =423443443 3 33? ??? ????×=×=ππηa r 每个原子有个最近邻原子,它的 配位数(CN )是12。 74 .062 ==πa a

面心立方结构的最密 排面是{111},面心立 方结构是以{111}最密 排面按一定的次序堆 垛起来的。 第一层{111}面上有两个 可堆放的位置:▲和▼位 可堆放的位置▲和▼位 置,在第二层只能放在一 种位置,在面上每个球和 下层3个球相切,也和上 层3个球相切。 第一层为A,第 二放在B 位置, 第三层放在C 位 置,第四层在 置第四层在 放回A位置。 {111}面 按…abcabc… 顺序排列,这 就形成面心立 方结构。

四种晶体类型的比较

四种晶体类型的比较

物质熔沸点高低的比较方法

物质的熔沸点的高低与构成该物质的晶体类型及晶体内部粒子间的作用力有关,其规律如下: 1、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体> >HBr(气)。 液体>气体。例如:NaBr(固)>Br 2 2、不同类型晶体的比较规律 一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高(如W)有低(如Hg)。例如:金刚石>食盐>干冰 3、同种类型晶体的比较规律 A、原子晶体:熔、沸点的高低,取决于共价键的键长和键能,键长越短,键能越大共价键越稳定,物质熔沸点越高,反之越低。如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C碳化硅>晶体硅。 B、离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,离子半径越小,离子所带电荷越多,离子键就越强,熔、沸点就越高,反之越低。 例如:MgO>CaO,NaF>NaCl>NaBr>NaI。KF>KCl>KBr>KI,CaO>KCl。

C 、金属晶体:金属晶体中金属阳离子所带电荷越多,半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na <Mg <Al ,Li>Na>K 。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 D 、分子晶体:熔、沸点的高低,取决于分子间作用力的大小。分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高) 如:H 2O >H 2Te >H 2Se >H 2S ,C 2H 5OH >CH 3—O —CH 3。 (1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH 4<SiH 4<GeH 4<SnH 4。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如熔沸点 CO >N 2,CH 3OH >CH 3—CH 3。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。 如:C 17H 35COOH >C 17H 33COOH ;硬脂酸 > 油酸 (4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加, 熔沸点升高,如C 2H 6>CH 4, C 2H 5Cl >CH 3Cl ,CH 3COOH >HCOOH 。

标注六方晶系晶向指数的平行投影修正系数法

用平行投影修正系数法标注六方晶系晶向指数 桂进秋席生岐※张建勋范群成 西安交通大学材料科学与工程学院 摘要:介绍了采用平行投影修正系数法标注六方晶系晶向指数的新方法,并对其原理进行了论证。 关键词:六方晶系晶向指数Miller-Bravais指数平行投影 0前言 众所周知,金属中常见的3种晶体结构为体心立方、面心立方和密排六方,其中密排六方结构属于六方晶系。由于其对称性特点,在晶体学中惯用四轴坐标表示六方晶系的晶面和晶向,称为Miller-Bravais 指数[1]。在这种体系中对晶面指数的标注并未有什么不便,但是对晶向指数的标注却比较麻烦,容易出错。正如范群成[2]所指出,晶向[1213]在文献[3]中被误标为[1212],而在文献[4]中又被误标为[1211]。 在一般的教科书[1,4,5,6]中,六方晶系Miller-Bravais晶向指数[uvtw]有2种主要的标注方法。一种是所谓的移步法[4],选择合适的路径沿4个晶轴方向从待定晶向上的一点(通常是坐标原点)依次移动到另一点,而合适的路径要求满足u+v=-t约束条件。由于这一约束条件的限制,移动路径及距离的选取决定相当困难,不易寻找。另一种是公式法[1,4,6],即先在三轴坐标系中标出[UVW],再利用公式:u=(2U-V)/3, v=(2V-U)/3, t= -(u+v), w=W 换算成[uvtw]。该方法不但麻烦,完全依赖于对换算公式的记忆,而且不直观,不便于对晶向的理解和把握。 为更直观地从晶胞结构图中直接计算来标出六方晶系中的晶向指数,范群成曾提出了正射投影修正系数法[2]。如图1所示,这种方法是由待标晶向上任一点(常取特殊点)分别向a1,a2,a3和c轴作垂直投影,求出以晶格常数为单位的投影值,并给c轴的投影值乘以修正系数3/2,然后化为最小简单整数。这种方法在一个晶胞中通过垂直投影来计算出晶向指数,和晶胞结合,直观性有改进,和移步法的结果有一致性,比移步法容易操作。 受正射投影法的启示,在《材料科学基础》课堂讨论的过程中,我们提出了另一种也较为简便易行的来标定六方晶系Miller-Bravais晶向指数的方法——平行投影修正系数法。本文就对这种新方法做一详细介绍。

晶胞结构

晶胞结构 一、金属晶体 2.钾型A2(体心立方堆积)堆积晶胞 钾型A2堆积晶胞是立方体心, 因此晶胞的大小可以用等径圆球的半径r 表示出来, 即晶胞的边长a 与r 的关系为: A2堆积的空间利用率的计算:A2堆积用圆球半径r 表示的晶胞体积为: a r r a r a 43 ,3 4 ,43===%02.68833 3643422342 23364)34(333 33==?=?===πππr r V V A r V r r V 晶胞圆球圆球晶胞堆积的空间利用率为:个圆球的体积为:每个晶胞中

3.六方最密堆积 (4)A1(面心立方最密堆积) A1是ABCABCABC······型式的堆积,从这种堆积中可以抽出一个立方面心点阵,因此这种堆积型式的最小单位是一个立方面心晶胞。A1堆积晶胞是立方面心, 因此晶胞的大小可以用等径圆球的半

径r 表示出来, 即晶胞的边长a 与r 的关系为: A1堆积空间利用率的计算: A1堆积用圆球半径r 表示的晶胞体积为: (5)A4 堆积形成晶胞 A4堆积晶胞是立方面心点阵结构, 因此晶胞的大小可以用等径圆球的半径r 表示出来, 即晶胞的边长a 与r 的关系为: A4堆积的空间利用率的计算: A4堆积用圆球半径r 表示的晶胞体积为: r a r a 22 ,42==%05.742 3121634413 4 4 4216)22(3 3 3 3 3==?=?===πππr r V V A r V r r V 晶胞 圆球圆球晶胞堆积的空间利用率为:个圆球的体积为:每个晶胞中 a r r a r r a 83 ,38 ,8243== =?=%01.341633 35123484348 833512)38(3333 3==?=?===πππr r V V A r V r r V 晶胞 圆球 圆球晶胞堆积的空间利用率为:个圆球的体积为:每个晶胞中

晶体晶胞结构讲解

物质结构要点 1、核外电子排布式 外围核外电子排布式价电子排布式 价电子定义:1、对于主族元素,最外层电子 2、第四周期,包括3d与4S 电子 电子排布图 熟练记忆 Sc Fe Cr Cu 2、S能级只有一个原子轨道向空间伸展方向只有1种球形 P能级有三个原子轨道向空间伸展方向有3种纺锤形 d能级有五个原子轨道向空间伸展方向有5种 一个电子在空间就有一种运动状态 例1:N 电子云在空间的伸展方向有4种 N原子有5个原子轨道 电子在空间的运动状态有7种 未成对电子有3个 ------------------------结合核外电子排布式分析 例2 3、区的划分 按构造原理最后填入电子的能级符号 如Cu最后填入3d与4s 故为ds区 Ti 最后填入能级为3d 故为d区 4、第一电离能:同周期从左到右电离能逐渐增大趋势(反常情况:S2与P3 半满或全 满较稳定,比后面一个元素电离能较大) 例3、比较C、N、O、F第一电离能的大小 --------------- F >N>O>C

例4、某元素的全部电离能(电子伏特)如下: I1 I2 I3 I4 I5 I6 I7 I8 23.6 35.1 54.9 77.4 113.9 138.1 739.1 871.1 回答下列各问: (1)I6到I7间,为什么有一个很大的差值?这能说明什么问题? _________________________ (2)I4和I5间,电离能为什么有一个较大的差值_________________________________ (3)此元素原子的电子层有 __________________层。最外层电子构型为 ______________ 5、电负性:同周期从左到右电负性逐渐增大(无反常)------------F> O >N >C 6、对角线规则:某些主族元素与右下方的主族元素的性质有 些相似,被称为“对角线规则”如:锂和镁在空气中燃烧 的产物,铍和铝的氢氧化物的酸碱性以及硼和硅的含氧酸酸性的强弱 7、共价键:按原子轨道重叠形式分为:σ键和π键 (具有方向性和饱和性) 单键 -------- 1个σ键 双键------1个σ键和1个π键 三键---------1个σ键和2个π键 8、等电子体:原子总数相等,价电子总数相等----------具有相似的化学键特征 例5、N2 CO CN-- C22-互为等电子体 CO2 CS2 N2O SCN-- CNO-- N3- 互为等电子体 从元素上下左右去找等电子体,左右找时及时加减电荷,保证价电子相等。9、应用VSEPR理论判断下表中分子或离子的构型。 化学式σ键电子对数中心原子含有 孤对电子对数 VSEPR模型 分子立体构型杂化类型 ABn SO3

三方晶系和六方晶系

矿物晶体七大晶系图解矿物晶体七大晶系图解——————三方晶系和六方晶系三方晶系和六方晶系三方晶系和六方晶系((一) 三方晶系和六方晶系有许多相似之处,一些矿物专著和科普书刊往往将二者合并在一起,或干脆就称晶体有六大晶系。 与前面讲的五个晶系最大的不同是三方/六方晶系的晶轴有四根,即一根竖直轴(z 轴)三根水平横轴(x、y、u 轴)。竖轴与三根横轴的交角皆为90度垂直,三根横轴间的夹角为120度(六方晶系为60度,也可说成三横轴前端交角120度。)。如果围绕z 轴旋转一周,三方晶系晶体的横轴可以重合三次,六方晶系晶体的横轴则重合六次,故,三方/六方晶系晶体的对称度都高,z 轴是高次轴,也就是主轴。 三方晶系常见的晶体有三棱柱状、三角片状等,有时呈六棱柱、六角片状(复三方、复三角面)及它们的各种聚形;六方晶系晶体常见有六棱柱状、六方板(片)状以及它们的各种聚形,偶然会出现十二棱柱体(复六方柱)。有时候三方/六方晶系会出现菱形六面体晶型,较容易同三斜晶系的晶体混同。 三方晶系和六方晶系以严格的矿物学理论而言是不应该混淆的,但作为非矿物学家的我们,没有必要去探究那些高深的理论或从专业研究角度去区分它们的理论差异,那没有太大的实际用途。如果一定要我用一句通俗的话来描述三方和六方的区别,可以这样说:三方晶系的矿物既能长成三棱柱、三角板片的晶型,也能长成六棱柱、六角板片的晶型与六方晶系晶体混淆,但六方晶系的矿物通常不会长成三棱柱或三角板片等与三方晶系混淆(仅有一个三方双锥例外)。

一般说来,三方/六方晶系的晶体外观比较好认。常见的矿物有水晶、方解石、电气石、绿柱石、刚玉、辰砂、赤铁矿、磷灰石等。请看实际晶体: 六方晶系的高温β石英石英,,又叫无腰水晶又叫无腰水晶 三方晶系的α α 石英石英石英,,即低温水晶即低温水晶,,最为普遍常见最为普遍常见

七大晶系详细图解

. 七大晶系详细图解 已知晶体的形态已经超过了四万种,但是万物都会有规律,晶体自然也是有的。它们都是按七种结晶方式模式发育的,即七大晶系。晶体即是一种以三维方向发育的的几何体,为了表示三维空间,分别用三、四跟人为添加的轴来表示晶体的长宽高以及中心。三条轴分别用X、Y、Z(U)(Z轴也可叫做“主轴”)来表示,而为了更好表示轴之间的度数,我们用α、β、γ来表示轴角。就这样出现了七种不同的晶系模式:立方晶系(也称等轴晶系)、四方晶系、三方晶系、六方晶系、正交晶系(也称斜方晶系)、单斜晶系、三斜晶系。其中又按照对称程度又分为高级晶族、中级晶族、低级晶族。高级晶族中只有一个立方晶系;中级晶族有六方、四方、三方三个晶系;低级晶族有正交、单斜、三斜三个晶系。 一、立方晶系 立方晶系的三个轴的长度是一样的,即X=Y=Z,且互相垂直,即α=β=γ=90°,对称性最强。具有4个立方体对角线方向三重轴特征对称元素的晶体归属立方晶系。属于立方晶系的有:面心立方晶胞、体心立方晶胞、简单立方晶胞。这个晶系的晶体并不是只有狭义的正方体一种形状,四面体、八面体、十二面体形状的. . 晶体都属于立方晶系。它们从不同角度看高低宽窄都差不太多,相对晶面和相邻晶面都相似,横截面和竖截面一样。最典型立方晶系的晶体为:氯化钠。

常见立方晶系晶体模型图: 晶体实物图:

. . 二、四方晶系 四方晶系四方晶系的三条晶轴互相垂直,即α=β=γ=90°。其中两个水平轴(X 轴、Y轴)长度一样,Z轴的长度可长可短,通俗的说:四方晶系的晶体大多是四棱的柱状体,有的是长柱体,有的是短柱体,即其晶胞必具有四方柱的形状。横截面为正方形,四个柱面是对称的,即相邻和相对的柱面都是一样的,但和顶端不对称。所有主晶面交角都是90。特征对称元素为四重轴。如果Z轴发育,它就是长柱状甚至针状;如果两个横轴(X轴、Y轴)发育大于Z轴,那么晶体就会呈现四方板状,最有代表的就是磷酸二氢钠和硫酸镍β了。 常见的立方晶系的晶体模型图:

晶体的类型与性质知识总结

晶体的类型与性质知识规律总结 晶体类型离子晶体分子晶体原子晶体金属晶体 定义离子间通过离子 键相结合而成的 晶体 分子间以分子间作用 力相结合的晶体 相邻原子间以共价 键相结合而形成的 空间网状结构的晶 体 金属阳离子和自 由电子之间的较 强作用形成的单 质晶体 构成粒子阴、阳离子分子原子金属离子、自由电 子 粒子间作用力 离子间肯定有离 子键,可能有原子 间的共价键 分子间:分子间作用 力。可能有分子内共 价键(稀有气体例外) 共价键 金属离子和自由 电子之间较强的 相互作用 代表物NaCl,NaOH,MgSO4干冰,I2,P4,H2O 金刚石,SiC,晶体 硅,SiO2 镁、铁、金、钠 熔、沸点熔点、沸点较高熔点、沸点低熔点、沸点高熔点、沸点差异较大(金属晶体熔沸点一般较高,少部 分低) 导热性不良不良不良良好 导电性固态不导电,熔化 或溶于水导电 固态和液态不导电, 溶于水可能导电 不导电。有的能导 电,如晶体硅,但金 刚石不导电。 晶体、熔化时都导 电 硬度硬度较大硬度很小硬度很大硬度差异较大 溶解性多数易溶于水等 极性溶剂 相似相溶难溶解 难溶于水(钠、钙 等与水反应) 决定熔点、 沸点高主要 因素 离子键强弱分子间作用力大小共价键强弱金属键强弱 二、几种典型的晶体结构 ①、NaCl晶体 1)在NaCl晶体的每个晶胞中,Na+占据的位置有 2 种。顶点8个,面 心6个

2)Cl-占据的位置有 2 种。棱上12个,体心1个 3)在NaCl晶体中,每个Na+周围与之等距离且最近的Na+有 12 个;每个Cl-周围与之等距离且最近的Cl-有12 个。 4)在NaCl晶体中每个Na+同时吸引着6个Cl-,每个Cl-同时也吸引着 6个Na+,向空间延伸,形成NaCl晶体。 5)每个晶胞平均占有 4 个Na+和 4 个Cl-。1molNaCl能构成这样的晶胞个。 6) Na+与其等距紧邻的6个Cl-围成的空间构型为_____正八面体_________ ②、CsCl晶体 1)每个Cs+同时吸引着 8 个Cl-,每个Cl-同时吸引着 8 个Cs+; 2)在CsCl晶体中,每个Cs+周围与它等距离且最近的Cs+有6个,每个Cl-周围与它等距离且最近的Cl-有 6 个; 3)一个CsCl晶胞有 1 个Cs+和 1 个Cl-组成;4)在CsCl晶体中,Cs+与Cl-的个数比为 1:1 。 ③、金刚石(如图3):每个碳原子都被相邻的四个碳原子包围,以共价键结合成为正四面体结构并向空间发展,键角都是109o28',最小的碳环上有六个碳原子,但六个碳原子不在同一平面上。 ④石墨(如图4、5):层状结构,每一层内,碳原子以正六边形排列成平面的网状结构,碳原子之间存在很强的共价键(大π键),故熔沸点很高。每个正六边形平均拥有两个碳原子、3个C-C。片层间存在范德华力,是混合型晶体。熔点比金刚石高。石墨为层状结构,各层之间以范德华力结合,容易滑动,所以石墨很软。在金刚石中每个碳原子与相邻的四个碳原子经共价键结合形成正四面体结构,碳原子所有外层电子均参与成键,无自由电子,所以不导电。而石墨晶体中,每个碳原子以三个共价键与另外三个碳原子相连,在同一平面内形成正六边形的环。这样每个碳原子上仍有一个电子未参与成键,电子比较自由,相当于金属中的自由电子,所以石墨能导电。 ⑤干冰(如图6):分子晶体,每个CO2分子周围紧邻其他12个CO2分子。平均每个CO2晶胞中含4个CO2分子。

晶体的对称性与晶系

晶体的对称性与晶系 自然界不论是宏观物体还是微观粒子,普遍存在着对称性。晶莹的雪花、美丽的花朵、艳丽的蝴蝶都具有对称性,人体也具有对称性。地下的矿物,如水晶、钻石、闪锌矿……也都具有对称性。微观粒子如水分子、苯分子以及所有分子都具有对称性。对称性显示出物体的匀称和完美,为人们所喜爱和追求,因而设计师设计的宏伟建筑如天安门、人民大会堂、长江大桥……都呈现出对称性。 本文主要介绍晶体的宏观对称性,包括旋转轴、对称面和对称中心等,以及晶体宏观对称性与晶系的关系。 晶体的宏观对称性 晶体宏观对称性有旋转轴(也称对称轴)、对称面(也称镜面)和对称中心,分别介绍如下。 旋转轴 旋转轴是对称元素,绕旋转轴可做旋转操作。n 次旋转轴记为n ,απ 2=n ,α 称为基转角。例如NaCl 晶体的外形是立方体,立方体对应面中心联线方向有4次旋转轴,绕此轴每旋转90°后,晶体形状不变;立方体对角线联线方向有3次旋转轴,绕此轴每旋转120°后,晶体形状不变;立方体对应棱边中心联线方向有2次旋转轴,绕此轴每旋转180°,晶体形状不变。图6-4示出这3种旋转轴。可以证明在晶体宏观外形中存在的旋转轴有1,2,3,4和6次旋转轴5种,不存在5次轴和大于6次的旋转轴。 对称面 对称面是对称元素,对称面也称镜面,常用m 表示。凭借对称面可以做反映操作,如同物体与镜子中的像是反映关系。人的双手手心相对,平行放置,左右手就互为镜象。许多晶体中存在对称面,NaCl 晶体有9个对称面。 对称中心 对称中心也是对称元素,常用i 表示。通过对称中心可以做倒反操作。例如人的双手手心相对,逆平行放置,此时左右手构成倒反关系。NaCl 晶胞中,在体心位置存在对称中心。因此晶胞中任意一个原子与对称中心相连,在反方向等距离处必存在同样的原子。晶体有无对称中心对晶体的性质有较大的影响。 凭借上述三种对称元素所做的对称操作都是简单操作,如果连续做两个简单操作就成为复合操作。旋转倒反操作是复合操作,与它对应的对称元素称为反轴,记为n 。与旋转轴一

《材料科学基础》课后答案(1-7章)

第一章 8.计算下列晶体的离于键与共价键的相对比例 (1)NaF (2)CaO (3)ZnS 解:1、查表得:X Na =0.93,X F =3.98 根据鲍林公式可得NaF 中离子键比例为:21 (0.93 3.98)4 [1]100%90.2%e ---?= 共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21 (1.00 3.44)4 [1]100%77.4%e ---?= 共价键比例为:1-77.4%=22.6% 3、ZnS 中离子键比例为:2 1/4(2.581.65)[1]100%19.44%ZnS e --=-?=中离子键含量 共价键比例为:1-19.44%=80.56% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 第二章 1.回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: (001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236] (2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。 (3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。 解:1、 2.有一正交点阵的 a=b, c=a/2。某晶面在三个晶轴上的截距分别为 6个、2个和4个原子间距,求该晶面的密勒指数。 3.立方晶系的 {111}, 1110}, {123)晶面族各包括多少晶面?写出它们的密勒指数。 4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、[1101]晶向和(1012)晶面,并 确定(1012)晶面与六方晶胞交线的晶向指数。 5.根据刚性球模型回答下列问题: (1)以点阵常数为单位,计算体心立方、面心立方和密排六方晶体中的原子半径及四面体和八面体的间隙半径。 (2)计算体心立方、面心立方和密排六方晶胞中的原子数、致密度和配位数。 6.用密勒指数表示出体心立方、面心立方和密排六方结构中的原子密排面和原子密排方向,并分别计算这些晶面和晶向上的原子密度。 解:1、体心立方 密排面:{110}21 14 1.414a -+? = 密排方向:<111> 11.15a -= 2、面心立方

7大晶系

一、立方晶系 立方晶系的三个轴的长度是一样的,即X=Y=Z,且互相垂直,即α=β=γ=90°,对称性最强。具有4个立方体对角线方向三重轴特征对称元素的晶体归属立方晶系。属于立方晶系 的有:面心立方晶胞、体心立方晶胞、简单立方晶胞。这个晶系的晶体并不是只有狭义的正方体一种形状,四面体、八面体、十二面体形状的晶体都属于立方晶系。它们从不同角度看高低宽窄都差不太多,相对晶面和相邻晶面都相似,横截面和竖截面一样。最典型立方晶系的晶体为:氯化钠。 二、四方晶系 四方晶系四方晶系的三条晶轴互相垂直,即α=β=γ=90°。其中两个水平轴(X轴、Y轴)长度一样,Z轴的长度可长可短,通俗的说:四方晶系的晶体大多是四棱的柱状体,有的是长柱体,有的是短柱体,即其晶胞必具有四方柱的形状。横截面为正方形,四个柱面是对称的,即相邻和相对的柱面都是一样的,但和顶端不对称。所有主晶面交角都是90。特征对称元素为四重轴。如果Z轴发育,它就是长柱状甚至针状;如果两个横轴(X轴、Y轴)发育大于Z轴,那么晶体就会呈现四方板状,最有代表的就是磷酸二氢钠和硫酸镍β了。

三、斜方晶系 斜方晶系的晶体中三个轴的长短完全不相等,它们的交角仍然是互为90度垂直。即X≠Y≠Z。Z轴和Y轴相互垂直90°。X轴与Y轴垂直,但是不与Z轴垂直,即α=γ=90,β>90°与正方晶系直观相比,区别就是:x轴、y轴长短不一样。如果围绕z轴旋转,四方晶系旋转九十度即可使x轴y轴重合,旋转一周使x轴y轴重合四次(使另两轴重合的次数多于两次,该轴称“高次轴”),四方晶系有一个高次轴,也叫“主轴”。斜方晶系围绕z 轴旋转,需180度才可使x轴y轴重合,旋转一周只重合两次,属低次轴。也就是说,斜方晶系的对称性比四方晶系要低。特征对称元素是二重对称轴或对称面。其实,斜方晶系的晶体如果围绕x轴或y轴旋转,情况与围绕z轴旋转相同。换句话说,斜方晶系没有高次轴,或曰没有理论上的主轴。从模型上看,四方晶系的x轴和y轴所指向的晶面完全都是对称相同的,斜方晶系的x轴和y轴所指向的晶面却是各自对称相等的。

(完整word版)晶体的类型与性质

晶体的类型与性质 一、四种晶体类型的比较 想一想 1.离子晶体中有无共价键?举例说明。离子晶体熔化时,克服了什么作用? 2.分子晶体中存在共价键,分子晶体熔化时,共价键是否被破坏? 3.稀有气体的单质属于什么晶体? 4.晶体微粒间的作用力只影响晶体的物理性质吗?举例说明研究晶体性质的一般思路。 5.离子晶体在熔融状态下能导电,这与金属导电的原因是否相同? 6.分子晶体的熔点一定低于金属晶体,这种说法对吗?为什么? 二、四种晶体类型的判断 1.依据组成晶体的晶格质点和质点间的作用判断 (1)若晶格质点是阴阳离子,质点间的作用是离子键,则该晶体是离子晶体。 (2)若晶格质点是原子,质点间的作用是共价键,则该晶体是原子晶体。 (3)若晶格质点是分子,质点间的作用是分子间作用力,则该晶体是分子晶体。 (4)若晶格质点是金属阳离子和自由电子,质点间的作用是金属键,则该晶体是金属晶体。 2.依据物质的分类判断 (1)金属氧化物、强碱、绝大多数的盐类是离子晶体。 (2)大多数非金属单质、气态氢化物、非金属氧化物(除SiO2外)、酸、绝大多数有机物(除 有机盐外)是分子晶体。 (3)金刚石、晶体硅、碳化硅(SiC)、二氧化硅等是原子晶体。 (4)金属单质与合金是金属晶体。 3.依据晶体的熔点判断 (1)离子晶体的熔点较高。 (2)原子晶体熔点高。 (3)分子晶体熔点低。 (4)金属晶体多数熔点高,部分较低。 4.依据导电性判断 (1)离子晶体溶于水及熔融状态时能导电。 (2)原子晶体一般为非导体。 (3)分子晶体为非导体。 (4)金属晶体是电的良导体。 5.依据硬度和机械性能判断 (1)离子晶体硬度较大或略硬而脆。 (2)原子晶体硬度大。 (3)分子晶体硬度小且较脆。 (4)金属晶体多数硬度大,但也有较低的,且具有延展性。

晶体结构

第二章答案 1依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么? 答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。 离子键的特点是没有方向性和饱和性,结合力很大。共价键的特点是具有方向性和饱和性,结合力也很大。金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。范德华键是通过分子力而产生的键合,分子力很弱。氢键是两个电负性较大的原子相结合形成的键,具有饱和性。 2 等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙? 答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。 3 n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的? 答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。 不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。 4、已知Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体结构的堆积系数与密度。 解:MgO为NaCl型,O2-做密堆积,Mg2+填充空隙。rO2- =0.140nm,rMg2+=0.072nm,z=4,晶胞中质点体积:(4/3×πr O2-3+4/3×πrMg2+ 3)×4,a=2(r++r-),晶胞体积=a3,堆积系数=晶胞中MgO体积/晶胞体积=68.5%,密度=晶胞中MgO质量/晶胞体积=3.49g/cm3。 5从理论计算公式计算NaC1与MgO的晶格能。MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。 、解:u=z1z2e2N0A/r0×(1-1/n)/4πε0,e=1.602×10-19,ε0=8.854×10-12,N0=6.022×1023,NaCl:z1=1,z2=1,A=1.748,nNa+=7,nCl-=9,n=8,r0=2.81910-10m,u NaCl=752KJ/mol;MgO:z1=2,z2=2,A=1.748,nO2-=7,nMg2+=,n=7,r0=2.1010m,uMgO=392KJ/mol;∵uMgO> uNaCl,∴MgO的熔点高。 6 解释下列概念: 晶系:根据晶体的特征对称元素所进行的分类。晶体根据其在晶体理想外形或综合宏观物理性质中呈现的特征对称元素可划分为立方、六方、三方、四方、正交、单斜、三斜等7类,是为7个晶系,分属于3个不同的晶族。高级晶族中只有一个立方晶系;中级晶族中有六方、四方和三方三个晶系;低级晶族中有正交、单斜和三斜三个晶系。晶体:是内部质点在三维空间成周期性重复排列的固体。或晶体是具格子构造的固体。 晶体常数:晶轴轴率或轴单位,轴角。 类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四面体空隙、而B3+分布于八面体空隙,称为正尖晶石;反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 晶胞:任何晶体都对应一种布拉菲格子,因此任何晶体都可划分出与此种布拉菲格子平行六面体相对应的部分,这一部分晶体就称为晶胞。晶胞是能够反映晶体结构特征的最小单位。

相关文档