文档库 最新最全的文档下载
当前位置:文档库 › 红外探测器简介.doc

红外探测器简介.doc

红外探测器简介.doc
红外探测器简介.doc

红外探测器

设计研发部 -平

一、红外探测器市场以及应用领域

红外探测技术目前主要分为近红外、中红外和远红外三种研究领域。其中,中红外探测技术由于中红外线的高强度和高穿透性,应用最为广泛,研究也最为成熟;远红外的主要优点就是其穿透性,可用于探测、加热等,应用也比较广泛。近红外,由于其包含氢氧键、碳氢键、碳氧键等功能键的特征吸收线。大气中的水气、二氧化碳、大气辉光等也集中在这个波段。特有的光谱特性使得短波红外探测器可以在全球气候监测、国土资源监测、天文观测、空间遥感和国防等领域发挥重大作用。红外探测器广泛应用于军事、科学、工农业生产和医疗卫生等各个领域,尤其在军事领域,红外探测器在精确制导、瞄准系统、侦察夜视等方面具有不可替代的作用。随着红外探测技术的飞速发展,红外探测器在军事、民用等诸多领域都有着日益广泛的应用。作为高新技术的红外探测技术在未来的应用将更加广泛,地位更加重要。

小型红外探测器是受价格驱动的商品市场,而中型和大型阵列探测器则是受成本和性能驱动的市场,并且为新产品提供了差异化的空间。但是在每种红外探测器技术(如热电/热电偶/微测辐射热计)之间存在着巨大的障碍。由于这些技术都是基于不同的制造工艺,如果没有企业合并或收购,很难从一种技术转换到另外一种技术。

红外探测器已进入居民日常安防中,其中主动式红外探测器遇到

树叶、雨、小动物、雪、沙尘、雾遮挡则不应报警,人或相当体积的

物品遮挡将发生报警。主动红外探测器技术主要采用一发一收,属于线形防,现在已经从最初的单光束发展到多光束,而且还可以双发双收,最大限度地降低误报率,从而增强该产品的稳定性,可靠性。据

美国相关公司市场调研分析师预测,全球军用红外探测器需求额有望

在 2020 年达到 163. 5 亿美元,复合年均增长率为7. 71%。

红外探测器按探测机理可分为热探测器和光子探测器,按其工作中载流子类型可以分为多数载流子器件和少数载流子器件两大类,按照探测器是否需要致冷,分为致冷型探测器和非致冷型探测器。非致冷探测器目前主要是非晶硅、氧化钒和 InGaAs 等探测器,致冷型探测器主要包括碲镉汞三元化合物、量子阱红外光探测器Ⅱ类超晶格等。在过去的几十年里,大量的新型材料、新颖器件不断涌现,红外光电

探测器完成了第一代的单元、多元光导器件向第二代红外焦平面器件

的跨越,目前正朝着以大规模、高分辨力、多波段、高集成、轻型化

和低成本为特征的第三代红外焦平面技术的方向发展。二、焦平面红

外探测器应用现状

热探测器的应用早于光子探测器。热探测器包括热释电探测器、温差电偶探测器、电阻测辐射热计等。热探测器具有宽谱响应、室温工作的优点,但是它响应时间较慢、高频时探测率低,目前主要应用于民用领域。光子探测器是基于光电效应制备的探测器,通过配备致冷系

统,具有高量子效率、高灵敏度、低噪声等效温差、快速响应等优点。在军事领域,光子探测器占据主导地位。常用的光子探测器有

碲镉汞 ( HgCdTe) 、InGaAs、InAs /InGaSb Ⅱ类超晶格、GaAs /AlGaAs 量子阱等。近年来量子点红外光探测器也引起广泛关注,量子点红外光探测器在理论上具有很多优点,但实际制备的量子点红外光探测器

与理论预测的还是有一定差距。常见红外探测器种类及其特点如下表

所示:

红外探测器种类

气动探测器

探温差电偶、温差电堆

测辐射热计

热释电

Ⅳ -Ⅵ化合

物材料

Ⅱ -Ⅵ化合

物材料

电Ⅲ -Ⅴ化合

物材料

非本征型

自由载流子

探光

PIN 、 Schottky 、测伏

器探APD 、 MSM 、

RCE

量量子阱探测器

量子点探测器

工作原理优点缺点

受热膨胀

简单轻便,成本无选择性温差电效应

低,光谱围宽,探测率较低电阻温度特性

可室温工作响应速度较慢热释电效应

机械特性差

禁带宽度窄介电常数大,结基于带间跃迁吸收光电

电容大

应用波长围宽缺陷密度高导效应

技术比较成熟成本较高

材料性能优良

需要合适衬底

技术比较成熟

重掺杂杂质能级跃迁,成本低,工艺简吸收系数低,需主要应用于长波,响应单,可量产,易低温工作波长围宽于调节响应波长量子效率较低高迁移率半导体带跃成本低,增益

量子效率低,需迁,载流子迁移率变化高,易制备较大

低温工作从而引起电导变化的二维面阵

高灵敏度和响应

薄膜材料生长要光生载流子产生光电压率,噪声小,功

求较高

耗低

需特殊的光耦合半导体材料相间排列形

波长大幅可调,方式

技术比较成熟,量子阱中基态电成具有量子局限效应的

容易实现多色探子浓度受掺杂限势阱,子带间跃迁

测制

量子效率不高维度很小的量子点部电

较小暗电流,较量子点尺寸、密子受到局限,产生不连

大增益,较高的度和均匀性的控续电子能级,子带间跃

工作温度制比较困难迁

国外第四代空空导弹制导系统中,如美国的响尾蛇、英国阿斯拉姆、俄罗斯R -73、法国米卡红外型、德国依尔伊斯特、以色列“怪

蛇”系列等最新型号都采用了基于焦平面红外探测的红外制导技术。国产武器装备也是如此,空空导弹中应用抗干扰型多元成像导引头,

能够高离轴角发射,并具备超机动性;在防空导弹中采用红外成像导引头,较好地解决了超低空飞行引信容易误启动的情况;在反坦克导弹中使用了红外焦平面成像式自导头,配有非冷却式光电探测器,成为非致冷式红外成像制导反坦克导弹。在瞄准系统、侦察夜视领域,焦平面红外探测器也具有广泛的应用前景。据报道,一款夜间瞄准系统升级设备将用于美国海军陆战队 AH-1 眼镜蛇攻击直升机,此机载夜间瞄准系统是一个光电前视红外塔楼状传感器组件,能为海军陆战队提供远程监视、跟踪、高空目标探测、测距和激光指示。美国海军战斗机专家正在更新航母起飞的 F/A-18 战斗轰炸机机载前视红外瞄准系统,以达到给飞行员提供大幅增加的目标检测和识别围、先进激光指示能力、远离海岸行驶的精确评估、光电和红外成像的目的。三、焦平面红外探测器发展现状

1、国研究现状

国研制焦平面红外探测器主要研究机构有技术物理研究所、物理研究所、44 所、高德红外等单位。技术物理研究所在碲镉汞、铟镓砷红外探测器的研制方面,包括材料生长、器件工艺设计、电路设计方面都积累了丰富的经验。目前,焦平面红外探测器产业化发展迅速,国已有多家企业具有生产致冷型或非致冷型焦平面红外探测器的能

力,其所生产的典型产品指标如表所示:

探测器类型材料阵列规模像元间距(μm)光谱围(μm)

非晶硅640×480 25 8~14

非制冷氧化钒400×300 17 8~14

铟镓砷640×512 25 1~1.7

碲镉汞640×512 15 3.7~4.8

制冷II 类超晶格320 × 256 30 3.7~4.8

II 类超晶格320 × 256 15 7.4~10.5 近年来,国已建有具有自主知识产权的 8 英寸 0. 25 μm非致冷红外探测器生产线,新型氧化钒 800×600 高分辨力非致冷焦平面红外探测器及Ⅱ类超晶格红外探测器短波、中波和长波产品均已面世,这些成果对于提升国家自主创新能力和国家战略装备的研制具有重要

意义。总体来看,国产焦平面红外探测器的制造能力正在迅速提高,

不仅实现了从衬底、外延、芯片、封装到致冷机的自行设计和研发,

也实现了从材料到组件的全国产化。

2、国外研究现状

国外焦平面红外探测器的生产厂商主要分布在美国、英国、法国、德国、日本及以色列等国。目前国外典型的焦平面红外探测器性能指

标如下表所示:

探测材料阵列规模像素尺寸(μm)光谱围工作温度( K )

VOx 640 × 480 28 × 28 8~14 300

InGaAs 640 × 512 25× 25 0.4~1.7 300

Si: As 2048 × 2048 18× 18 5~28 7.8

InSb 1024 × 1024 15 × 15 3 ~5 77

HgCdTe 4096 × 4096 10 × 10 1.0~54 37

HgCdTe 1280 × 1024 15 × 15 3. 4~7. 8 77~ 100

HgCdTe 640 × 512 15 × 15 8~10 90

Raythen 公司已研制出一种双波段HgCdTe 红外焦平面阵列结构,而且还将会作为对现有的地基和机载战术系统进行升级的第三代

产品而获得进一步的发展。在小型探测器研究领域,DARPA 已成功研制了一系列像元间距为 5 ~8μm的红外探测器,而作为DARPA 的大口径海洋基础数据阵列计划的一部分,一种基于像元间距5μm的

碲镉汞焦平面阵列的中波红外相机也已被研制出。

美国 Northrop Grumman 公司研制的硒化铅探测器被认为是焦平面红外探测的一大突破,这种致冷型光子探测器具有很高的灵敏度和

成像速率,但价格低廉,无需采用低温制冷装置。

法国 Sofradir 公司的红外探测器产品较多,包括 HgCdTe,InSb,InGaAs,QWIP 以及微测辐射热计,覆盖了短波红外、中波红外、长

波红外光谱。近期公司又推出了像元间距为10μm 的 Daphnis 系列红

外探测器,该探测器是世界上第一款采用小像元间距技术制成的致冷

型中波红外成像产品,非常适合电光系统研究人员用来研制陆基、机

载和舰载军事系统。

早在 2002 年,美国传感无限公司就成功研制出高性能的InGaAs 焦平面探测器产品。由于InGaAs 探测器固有的价值,使得美军对此

投入了大量的人力物力。 2002 至 2015 年,传感无限公司在InGaAs 探测器的研制上进展迅速,短短几年就完成了多种型号的InGaAs 焦

平面系列产品的研制。美国传感无限公司2012 年实现了 4 英寸 InP 基工艺的量产之后,就进入到各种型号产品工程应用的发展时期。其

发展历程如下图所示:

四、存在的问题及发展趋势

目前主流的焦平面红外探测器具有成像系统体积小、质量轻、功耗低、系统灵敏度高、工作帧频高等一系列优点,但其缺点也很明显,

如 HgCdTe 红外探测器材料均匀性相对较差,Ⅱ类超晶格探测器分子束外延生长工艺不够成熟,量子阱红外探测器不吸收正入射光,量子效率相对较低,量子点红外探测器也存在量子点材料不均匀的问题。这些探测器均存在成像非均匀性的问题,是指焦平面阵列在均匀辐射输入时,各单元输出的不一致性。红外光学系统的影响,如镜头加工精度、镜头孔径等因素影响;红外焦平面外界输入的影响;红外焦平面阵列中无效探测单元的影响;红外焦平面阵列温度变化的影响;读出电路本身非均匀性及读出电路与探测器耦合非均匀性的影响。非均匀性影响测量精度,特别是在弱信号探测时尤为严重。

目前的校正方法主要有两类,一类是定标类校正,另一类是场景类校正。目前在军事中广泛应用的校正方法主要是定标类校正方法。

为了进一步提升红外焦平面成像的均匀性、提升武器装备中制导精度,开展红外探测器成像非均匀性参数校正的新方法研究以及探测器数

据采集系统的定性检查和定量校准是迫切和必要的。

焦平面红外探测器的发展趋势主要体现在以下几个方面。首先是探测器向高集成度、小型化方向发展,这主要体现在像元间距越来越小,阵列规模越来越大。其次是非致冷型红外探测器研究热度增加,与致冷型红外探测器相比,非致冷型红外探测器探测精度略差,但是由于没有致冷系统,它具有价格低、功耗低、质量轻、体积小易于便携设计等一系列优点,此外,低温致冷系统和复杂的扫描装置是红外系统的主要故障源,所以非致冷热成像还具有可靠性高的优势。最后是多波长焦平面红外探测成为研究热点。单一波长的红外探测容易受外界环境干扰导致探测能力和准确度下降,在红外制导武器中,单一波长的红外探测器一旦受对应波段的激光武器攻击,很难避免被致盲。采用多波段探测,可以有效地避免外界干扰,降低虚警率,提高系统

对假目标的鉴别能力,满足未来战场的需要。

有线被动红外探测型号 有线被动红外探测器参数介绍

有线被动红外探测型号有线被动红外探测器参数介绍 有线被动红外探测型号有哪些?这是一款特殊的四鉴(红外+红外+微波+专用集成电路)合成的室外入侵探测器。依靠其先进的高位数字信号处理技术来处理3个感应器的信号,具有超强的稳定性。能在2种敏感等级上有3种不同的检测模式,为给现场环境选择最好的检测方法,并在最佳的检测能力和最低的误报率之间的得到最佳的比率。探测器还有微波单独检测的B模式,以避免涂料喷洒在镜头上带来损害。其独特的防水设计非常适合户外安装。以下是有线被动红外探测器参数介绍。 以此同时,还有其他功能,如微波防遮挡技术和报警记忆等功能。

功能说明: -双红外和微波检测技术-微带脉冲传输技术 -微波防遮挡技 术-4平面上18光束菲涅耳透镜带 -温度线性补 偿-垂直调整 -检测模式-B-“或”-“与” -抗氧化光学零件 -检测灵敏度可 选-墙体安装、墙角安装 -记忆报警模 式-整体视角:90°探测器距离:12米 -抗太阳 光 -Ip 65防水设计 -防宠物25 斤-通用链接器可选

技术参数: 电源规格:9-12V DC 消耗电流:30mA 微波评率:10.525G 自检时间:110s 安装高度: 1.5m-2.4m 报警时间:2s 抗RFI/EMI: 0.1-500MHz/3V/m 抗白光: >100000LUX 温度补偿方式:数字方式温度补偿 使用温度: -10℃/+55℃ 使用湿度(RH):95% 灵敏度: 2级可调 检测速度: 0.2m/s to 3.5m/s 尺寸:160mmX65mmX50.5mm 探测范围: 12mX12m 110°(标准透镜) 12mX3m 12°(幕帘透镜) 12mX12m 110°(防宠物透镜)

红外对射探测器安装常识

红外对射探测器安装常识 一、红外对射探测器的安装比起被动红外探测器而言,难度要大一点,但也只是略微复杂而已。但是只要您对接线方式、位置确定、调试应该有足够的了解,并参照说明书谨慎进行,相信不会有问题。 红外对射探测器主要由防护盖、安装座、防拆开关、红外透光片、电路板、界线座、调整开关、外壳等组成,并没有想象的复杂。我们在安装前,最好能按照设计图用铅笔或其他工具实现画好安装的位置(或把红外对射探测器放在安装地勾画出轮廓),再用水平仪或其他工具确定安装位置,保证安装的精度和美观。 红外对射探测器的安装方式 ①支柱式安装:比较流行的支柱有圆形和方形两种,早期比较流行的是圆形截面支柱,现在的情况正好反过来了,方形支柱在工程界越来越流行。主要是探测器安装在方形支柱上没有转动、不易移动。除此以外,有广泛的不锈钢、合金、铝合金型材可供选择也是它的优势之一。在工种上的另外一种做法是选用角钢作为支柱,如果不能保证走线有效地穿管暗敷,让线路裸露在空中,这种方法是不能取的。 支柱的形状可以是"1"字形、"z"字形或者弯曲的,由建筑物的特点及防盗要求而定,关键点在于支柱的固定必须坚

固牢实,没有移位或摇晃,以利于安装和设防、减少误报。; ②墙壁式安装:现在防盗市场上处于技术前沿的主动红外线探测器制造商,能够提供水平180°全方位转角,仰俯20°以上转角的红外线探测器,如aleph主动红外线探测器ha、abt、abf系列产品,可以支持探头在建筑物外壁或围墙、栅栏上直接安装。 红外对射探测器安装的一般原则 设置在通道上的探测器,其主要功能式防备人的非法通行,为了防止宠物、小动物等引起误报,探头的位置一般应距离地面50 m以上。遮光时间应调整到较快的位置上,对非法入侵作出快速反应。 设置在围墙上的探测器,其主要功能是防备人为的恶意翻越,顶上安装和侧面安装两种均可。 顶上安装的探测器,探头的位置应高出栅栏,围墙顶部25 m,以减少在墙上活动的小鸟、小猫等引起误报。四光束探测器的防误报能力比双光束强,双光束又比单光束强。 侧面安装则是将探头安装在栅栏,围墙靠近顶部的侧面,一般是作墙壁式安装,安装于外侧的居多。这种方式能避开小鸟、小猫的活动干扰。 每一种方式都又他们自己的优点或缺陷,工程商对每一种安装方式都又他们自己的偏爱。用户应根据自己建筑物的特点和防盗要求加以选用。

红外探测器主要参数定义

红 外 探 测 器 1.量子效率 在某一特定波长上,每秒钟产生的光电子数与入射光子数之比。对理想的探测器,入射一个光子发射一个电子,1)(=λη。当然实际上不是所有的光子都可以被吸收,因此1)(<λη。 探测器对波长为λ处的量子效率可以表示为: hv P e I S //)(=λη 其中S J h .106260755.634-?=,是普朗克常数,e 是元电荷。 2. 响应率 输出信号电压S 与输入红外辐射功率P 之比即: )或(W A W V P S R /)/(= 3. 响应波长范围 单色响应率与波长的关系,称为光谱响应曲线或响应光谱。热敏型红外 探测器的响应率与波长无关。光电型红外探测器有峰值波长p λ和长波限c λ。 通常取响应率下降到p λ一半所在的波长为c λ。 光电探测器只有在小于c λ范围有响应,因此称为选择性红外探测器。

对于光子探测器,仅当入射光子的能量大于某一极小值时才能产生光电效应。就是说,探测器仅对波长小于cλ,或者频率大于的光子才有响应。因此,光子探测器的响应随波长线性上升,然后到某一截止波长cλ突然下降为零。 而热型探测器响应波长无选择性,对可见光到远红外的各种波长的辐射同样敏感,在室温工作。灵敏度低、响应时间偏长,最快的响应时间也在毫秒量级。热释电探测器主要应用于被动式的传感器中,主要应用于防盗报警、来客告知等被动探测以及石油化工、电力等行业的温度测量、温度检测等灵敏度不是很高的场合。此外,热释电材料是还是制备非制冷红外成像设备的重要材料。 常见红外光子探测器及响应波段 4.噪声 如果测量探测器输出的电子系统有足够大的放大倍数,即使没有入射辐射。也可以看到一些毫无规律的电压起伏,它的均方根称为噪声电压N,此噪声来源于探测器中的某些基本的物理过程。探测器的噪声主要有以下几个来源:f/1噪声(闪烁噪声),暗电流噪声(热噪声)以及光电流噪声。 f/1噪声为低频噪声,在AlGaAs GaAs/QWIP中的影响很小,不是主要的制约因素。制约器件性能的主要因素是暗电流噪声和光子噪声,即载流子

红外探测技术及红外探测器发展现状

红外探测技术及红外探测器发展现状 中国安防行业网2014/7/25 14:10:00 关键字:红外,探测技术,发展现状浏 览量:6731 一、技术现状 红外探测技术目前主要分为近红外、中红外和远红外三种研究领域。 其中,中红外探测技术由于中红外线的高强度和高穿透性,应用最为广泛,研究也最为成熟,甚至可以分析物质的分子组成; 远红外的主要优点就是其穿透性,可用于探测、加热等,应用也比较广泛。 只有近红外,由于其强度小,穿透力一般,故长期以来没有引起重视,只是近些年来才成为研究热点,因为用近红外技术可以做某些成分的定量检测,最关键的是还不必破坏试样。 (一)技术优势 红外技术有四大优点:环境适应性好,在夜间和恶劣天候下的工作能力优于可见光;隐蔽性好,不易被干扰;由于是靠目标和背景之间、目标各部分的温度和发射率差形成的红外辐射差进行探测,因而识别伪装目标的能力优于可见光;红外系统的体积小,重量轻,功耗低。 (二)制约因素 目标的光谱特性;探测系统的性能;目标和探测口之间的环境和距离——这三大因素是红外技术发展过程中需要解决的主要问题。例如:为充分利用大气窗口,探测器光谱响应从短波红外扩展到长波红外,实现了对室温目标的探测;探测器从单元发展到多元,从多元发展到焦平面,上了两大台阶,相应的系统实现了从点源探测到目标热成象的飞跃;系统从单波段向多波段发展;发展了种类繁多的探测器,为系统应用提供了充分的选择余地。 (三)国内领先技术 红外探测器芯片一直受制于西方政府和供应商。为打破国外技术垄断,2012年4月,高德红外用2.4亿元超募资金实施“红外焦平面探测器产业化项目”。2014年2月25日,高德红外公告,公司“基于非晶硅的非制冷红外探测器”项目成果已获湖北省科技厅鉴定通

热释电红外传感器简介(相关知识)

热释电红外传感器简介 被动式红外探测器不需要附加红外辐射光源,本身不向外界发射任何能量,而是由探测器直接探测来自移动目标的红外辐射,因此才有被动式之称。被动式红外探测器是利用热释电效应进行探测的。被动式红外探测器又称为热释电红外探测器,其主要工作原理便是热释电效应。热释电效应是指如果使某些强介电质材料(如钦酸钡、钦错酸铅P(zT)等)的表面温度发生变化,则随着温度的上升或下降,材料表面发生极化,即表面上就会产生电荷的变化,从而使物质表面电荷失去平衡,最终电荷变化将以电压或电流形式输出。 热释电红外传感器通过接收移动人体辐射出的特定波长的红外线,可以将其转化为与人体运动速度,距离,方向有关的低频电信号。当热释电红外传感器受到红外辐射源的照射时,其内部敏感材料的温度将升高,极化强度减弱,表面电荷减少,通常将释放掉的这部分电荷称为热释电电荷。由于热释电电荷的多少可以反映出材料温度的变化,所以由热释电电荷经电路转变成的输出电压也同样可以反映出材料温度的变化,从而探测出红外辐射能量的变化。红外探测器的光学系统可以将来自多个方向的红外辐射能量聚焦在探测器上,这样红外探测器就可以探测到某一个立体探测空间内热辐射的变化。 当防范区域内没有移动的人体时,由于所有的背景物体(如墙壁、家具等)在室温下红外辐射的能量比较小,而且基本上是稳定的,所以不能触发报警器。当有人体突然进入探测区域时,会造成红外辐射

能量的突然变化,红外探测器将接收到的活动人体与背景物体之间的红外热辐射能量的变化转化为相应的电信号,电信号的大小,决定于敏感元件温度变化的快慢,经过后级比较器与状态控制器产生相应的输出信号U,送往报警器,发出报警信号。红外探测器的探测波长为8~14um,人体的红外辐射波长正好处于这个范围之内,因此能较好的探测到活动的人体。被动式红外探测器属于空间控制型探测器,其警戒范围在不同方向呈多个单波束状态,组成锥体感热区域,构成立体警戒。 由于被动式红外技术具有监测距离较远,灵敏度较高,节能价廉等优点,本课题采用红外探测器作为报警探测器,并在设计中增加了自动声光报警的功能,使报警系统更加趋于完善。 2 热释电红外传感器电路图 热释电红外线(PIR)传感器是80年代发展起来的一种新型高灵敏度探测元件。是一种能检测人体发射的红外线而输出电信号的传感器,它能组成防入侵报警器或各种自动化节能装置。它能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。将这个电压信号加以放大,便可驱动各种控制电路。 图2-3为热释电红外传感器的内部电路框图。

红外报警器知识

一红外报警器的分类 1、红外报警系统一般分为主动式和被动式: 主动红外报警系统主要由投光器(红外发射机)、受光器(红外接收机)和报警主机组成。分别置于收、发端的光学系统一般采用的是光学透镜,起到将红外光束聚焦成较细的平行光束的作用,以使红外光的能量能集中传送。红外光在人眼看不见的光谱范围,有人经过时,必然全部或部分遮挡红外光束。接收端输出的电信号的强度会因此产生变化,从而启动报警控制器发出报警信号。 被动式红外报警器不需要附加红外辐射光源,本身不向外界发射任何能量,而是由红外探测器直接探测来自移动目标的红外辐射。 主动式报警器比较适合户外,例如公司,安装和布线比较复杂,我们公司围墙上用的是主动式红外线报警器;被动式报警器一般适用于室内,例如家庭,商场,安装方便,总部财务中心用的就是被动式的报警器。 2、红外线报警按接线方式不同,可分为分线式和总线式 分线式报警主机是前端探测设备开关信号直接接在主机防区上,从而触发报警主机报警,而这些开关信号必须通过两条线缆连接报警主机的防区端口,每一个信号都需要两条独立的线缆连接,也就是说,有多少个防区就需要多少对线缆。 而总线式报警主机不同,它是把前端探测设备开关信号接在地址模块(或叫报警模块、防区扩展模块)上,当某个防区的探测设备发现有人非法进入时,探测器发出报警信号,由地址模块通过数据总线传送给报警主机,实时的将本防范区域的报警信号、警情类型显示到报警主机键盘上,并触发声光报警,使操作人员能及时、准确地掌握警情,及时调动保安人员进行处理。 这样的话,就不需要每一对探头就拉一对信号线到主机了,只要接地址模块就行了,地址模块到主机的距离可以达到1200米,而一对信号总线最多可以接到248个地址模块(或叫报警模块、防区扩展模块),大大节省了线材和人力等成本,施工方便。 二报警器报警主机的讲解(以下说的都是主动式红外报警器) 1、报警主机 报警主机是报警系统的“大脑”部分,处理探测器的信号,并且通过键盘等设备提供布撤防操作来控制报警系统。在报警时可以提供声/光提示,同时还可以通过电话线将警情传送到报警中心。 报警主机主要包括以下几个部分: (1)主板:包括控制器、存储芯片、集成电路等。 (2)变压器:将220V交流电转变成16.5V的交流电压,为主机供电。(附带说一下:交流电简称AC,直流电简称DC,一般电源或设备上都有标识,。)(3)配线端子:用于配线,连接键盘,警灯,报警器等

红外探测器原理

红外探测器原理 安防2007-10-16 10:17:07 阅读888 评论3 字号:大中小订阅 被动红外探测器 凡是温度超过绝对0℃的物体都能产生热辐射,而温度低于1725℃的物体产生的热辐射光谱集中在红外光区域,因此自然界的所有物体都能向外辐射红外热。而任 何物体由于本身的物理和化学性质的不同、本身温度不同所产生的红外辐射的波 长和距离也不尽相同,通常分为三个波段。 近红外:波长范围0.75~3μm 中红外:波长范围3~25μm 远红外:波长范围25~1000μm 人体辐射的红外光波长3~50μm,其中8~14μm占46%,峰值波长在9.5μm。㈠被动红外报警探测器 在室温条件下,任何物品均有辐射。温度越高的物体,红外辐射越强。人是恒温动物,红外辐射也最为稳定。我们之所以称为被动红外,即探测器本身不发 射任何能量而只被动接收、探测来自环境的红外辐射。探测器安装后数秒种已适 应环境,在无人或动物进入探测区域时,现场的红外辐射稳定不变,一旦有人体 红外线辐射进来,经光学系统聚焦就使热释电器件产生突变电信号,而发出警报 。被动红外入侵探测器形成的警戒线一般可以达到数十米。 被动式红外探测器主要由光学系统、热传感器(或称为红外传感器)及报警 控制器等部分组成。其核心是不见是红外探测器件,通过关学系统的配合作用可 以探测到某个立体防范空间内的热辐射的变化。红外传感器的探测波长范围是8~14μm,人体辐射的红外峰值波长约为10μm,正好在范围以内. 被动式红外探测器(Passive Infared Detector,PIR)根据其结构不同、警 戒范围及探测距离也有所不同,大致可以分为单波束型和多波束型两种。单波束PIR采用反射聚焦式光学系统,利用曲面反射镜将来自目标的红外辐射汇聚在红外传感器上。这种方式的探测器境界视场角较窄,一般在5°以下,但作用距离较远,可长达百米。因此又称为直线远距离控制型被动红探测器,适合保护狭长的走廊、通道以及封锁门窗和围墙。多波束型采用透镜聚焦式光学系统,目前大都采 用红外塑料透镜——多层光束结构的菲涅尔透镜。这种透镜是用特殊塑料一次成

红外探测器

8.2红外探测器8.2.1 热探测器 8.2.2 光子探测器

8.2 红外探测器的分类 ?红外探测器是能将红外辐射能转换成电能的一种光敏器件,是红外探测系统的关键部分,常常也被称为红外传感器。它的性能好坏,直接影响系统性能的优劣。因 此,选择合适的、性能良好的红外探测 器,对红外探测系统相当的重要。 ?常见的红外探测器分为两种:热探测器和光子探测器。

8.2.1 热探测器 ?工作原理:热探测器利用探测元件吸收红外辐射后产生温升,然后伴随发生某些物理性能的变化。测量这些物理性能的变化就可以测量出它吸收的能量或功率。?过程:第一步是热探测器吸收红外辐射引起温升;第二步是利用热探测器某些温度效应吧温升转变成电量的变化。 ?常见类型:常利用的物理性能变化有下列四种,热敏电阻型,热电偶型,热释电 型,高莱气动型。

热敏电阻型探测器 ?热敏物质吸收红外辐射后,温度升高,阻值发生变化。阻值变化的大小与吸收的红外辐射能量成正比。利用物质吸收红外辐射后电阻发生变化而制成的红外探测器叫做热敏电阻。 热敏电阻常用来测量热辐射。 ?热敏电阻有金属和半导体两种。 ?热敏电阻的电阻与温度的关系: ?R(T)--电阻值 ? T--温度 ?A,C,D--随材料而变化的常数 T D C e AT T R/ ) (? =

?金属热敏电阻,电阻温度 系数为正,绝对值比半导 体小,电阻与温度的关系 基本上是线性的,耐高温 能力较强,多用于温度的 模拟测量。 ?半导体热敏电阻恰恰相反,用于辐射探测,如报 警、防火系统、热辐射体 搜索和跟踪。 ?常见的是NTC型热敏电阻.

安全防范产品简介---红外探测器

安全防范产品简介 (一) 防盗报警器: 1、入侵探测器--将被保护现场发生的入侵信息变成电子信号并向外传送的一种装置。俗称探头,又称报警器的前端器材。 2、信号传输部分--又称信道,是探测器电子信号对外传输的通道。目前传输的主要方式有三种,即有线、无线,借用线三种不同的传输方式: 有线传输又称专线传输,即用专用电线、电缆、光缆等将报警信号传输到别处去。其优点是抗干扰能力强,又能防破坏,线被短路、断路都能被即时发现。缺点是施工麻烦。 无线传输将入侵探测器与无线发射器相接,一旦发生警情,将向空中发出无线电信号。无线接收机收到信号产生报警,通知人员进行处理。其优点是,安装简单、机动性强、多点发射一点接收,控制距离远、面积大,缺点是可能被更强大的无线电波,雷电等杂散电场所干扰。 借用线传输电话线、电力线、有线电视网等公共线路均可借用为报警信号传输。优点是施工容易,不用专门布线。缺点是防破坏能力差。 3、防盗报警控制器--能将入侵探测器发出来的入侵信息电子信号变成声光报警信号并加以显示和记录、存储的装置。常用的有台式、柜式、箱式和壁挂式几种。但产生报警声音,显示报警部位,存储记录报警信息是必需具备的基本功能。 (二) 入侵探测器 点控制式 这是一种警戒范围较小,仅限于局部控制的系列入侵探测器,其特点是,构造简单、工作稳定、安装简便、价格低廉,缺点是防范不够严密。 磁开关入侵探测器 磁开关入侵探测器:又称磁控开关。由永久磁铁和干簧管两部分组成。干簧管又称舌簧管,其构造是在充满惰性气体的密封玻璃管内封装2个或2个以上软铁电极。在自然状态下,两个电极不接触的叫常开式,接触的叫常闭式。其中常开式应用较广,将其安装在门或窗的框上,电极用导线与控制器连接,而磁铁安

红外探测器简介

红外探测器 设计研发部-平 一、红外探测器市场以及应用领域 红外探测技术目前主要分为近红外、中红外和远红外三种研究领域。其中,中红外探测技术由于中红外线的高强度和高穿透性,应用最为广泛,研究也最为成熟;远红外的主要优点就是其穿透性,可用于探测、加热等,应用也比较广泛。近红外,由于其包含氢氧键、碳氢键、碳氧键等功能键的特征吸收线。大气中的水气、二氧化碳、大气辉光等也集中在这个波段。特有的光谱特性使得短波红外探测器可以在全球气候监测、国土资源监测、天文观测、空间遥感和国防等领域发挥重大作用。红外探测器广泛应用于军事、科学、工农业生产和医疗卫生等各个领域,尤其在军事领域,红外探测器在精确制导、瞄准系统、侦察夜视等方面具有不可替代的作用。随着红外探测技术的飞速发展,红外探测器在军事、民用等诸多领域都有着日益广泛的应用。作为高新技术的红外探测技术在未来的应用将更加广泛,地位更加重要。 小型红外探测器是受价格驱动的商品市场,而中型和大型阵列探测器则是受成本和性能驱动的市场,并且为新产品提供了差异化的空间。但是在每种红外探测器技术(如热电/热电偶/微测辐射热计)之间存在着巨大的障碍。由于这些技术都是基于不同的制造工艺,如果没有企业合并或收购,很难从一种技术转换到另外一种技术。 红外探测器已进入居民日常安防中,其中主动式红外探测器遇到

树叶、雨、小动物、雪、沙尘、雾遮挡则不应报警,人或相当体积的物品遮挡将发生报警。主动红外探测器技术主要采用一发一收,属于线形防,现在已经从最初的单光束发展到多光束,而且还可以双发双收,最大限度地降低误报率,从而增强该产品的稳定性,可靠性。据美国相关公司市场调研分析师预测,全球军用红外探测器需求额有望在2020年达到163. 5亿美元,复合年均增长率为7. 71%。 红外探测器按探测机理可分为热探测器和光子探测器,按其工作中载流子类型可以分为多数载流子器件和少数载流子器件两大类,按照探测器是否需要致冷,分为致冷型探测器和非致冷型探测器。非致冷探测器目前主要是非晶硅、氧化钒和InGaAs等探测器,致冷型探测器主要包括碲镉汞三元化合物、量子阱红外光探测器Ⅱ类超晶格等。在过去的几十年里,大量的新型材料、新颖器件不断涌现,红外光电探测器完成了第一代的单元、多元光导器件向第二代红外焦平面器件的跨越,目前正朝着以大规模、高分辨力、多波段、高集成、轻型化和低成本为特征的第三代红外焦平面技术的方向发展。 二、焦平面红外探测器应用现状 热探测器的应用早于光子探测器。热探测器包括热释电探测器、温差电偶探测器、电阻测辐射热计等。热探测器具有宽谱响应、室温工作的优点,但是它响应时间较慢、高频时探测率低,目前主要应用于民用领域。光子探测器是基于光电效应制备的探测器,通过配备致冷系统,具有高量子效率、高灵敏度、低噪声等效温差、快速响应等优点。在军事领域,光子探测器占据主导地位。常用的光子探测器有

红外探测器概述

第二章红外探测器概述 Chapter 1. Outlines of infrared detector 1.1红外探测器的物理基础 Physical basis of infrared detector 本讲的主要内容: 1.了解红外探测器的分类; 2.了解大气窗口的基本知识; 3.理解各类红外探测器的基本原理; 4.掌握光子探测器和热探测器的特点。 红外探测器是将入射的红外辐射信号转变成电信号输出的器件,是红外系统的核心部分。红外辐射是波长介于可见光与微波之间的电磁波(电磁辐射),其短波方面的界限决定于人眼的视感,一般定为0.75微米;长波方面的界限,尚无定论。人眼察觉不到。要察觉这种辐射的存在并测量其强弱,必须把它转变成可以察觉和测量的其他物理量。一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。现代红外探测器所利用的主要是红外热效应和光电效应。这些效应的输出大都是电量,或者可用适当的方法转变成电量。一个红外探测器至少有一个对红外辐射产生敏感效应的物体,称为响应元。此外,还包括响应元的支架、密封外壳和透红外辐射的窗口。有时还包括致冷部件、光学部件和电子部件等。 按所利用的效应,红外探测器可分成三大类: 热敏(型)红外探测器,光子(型)(或光电型)红外探测器和整流(型)红外探测器。 1. 简史(History) 1800年,F.W.赫歇耳在太阳光谱中发现了红外辐射的存在。当时,他使用的是水银温度计,即最原始的热敏型红外探测器。1830年,L.诺比利利用当时新发现的温差电效应(也称塞贝克效应),制成了一种以半金属铋和锑为温差电偶的热敏型探测器。称作温差电型红外探测器(也称真空温差电偶)。其后,又从单个温差电偶发展成多个电偶串联的温差电堆。1880年,S.P.兰利利用金属细丝的电阻随温度变化的特性制成另一种热敏型红外探测器,称为测辐射热计。1947年,M.J.E.高莱发明一种利用气体热膨胀制成的气动型红外探测器(又称高莱管)。在40年代,又用半导体材料制作温差电型红外探测器和测辐射热计,使这两种探测器的性能比原来使用半金属或金属时得到很大的改进。半导体的测辐射热计又称热敏电阻型红外探测器。 60年代中期,出现了热释电型探测器。它也是一种热敏型探测器,但其工作原理与前三种热敏型红外探测器有根本的区别。最早的光电型红外探测器是利用光电子发射效应即外光电效应制成的。以Cs-O-Ag为阴极材料的光电管(1943年出现)可以探测到 1.3微米。外光电效应的响应波长难以延伸,因此,它的发展主要是近红外成像器件,如变像管。 利用半导体的内光电效应制成的红外探测器,对红外技术的发展起了重要的作用。内光电效应分光电导和光生伏打两种效应。利用这些效应制成的探测器分别称为光导型红外探测器和光伏型红外探测器(见光子型探测器)。 在半导体中引起电导改变或产生电动势是一个激活过程,需要有一定的能量。因此,

简述红外探测器的类型及工作原理、性能参数及其物理含义、工作的三个大气窗口的波长范围

2.简述红外探测器的类型(1)及各自的工作原理(2)、红外探测器的性能参数及其物理含义(3)、红外探测器工作的三个大气窗口的波长范围(4)、热绝缘结构的热探测机理的红外探测器设计中的重要性(5)。 (1)红外探测器的类型 常见的红外探测器的分类 (红外热传感器还要加上气体型)(2)各自工作原理 一、热传感器 红外热传感器的工作是利用辐射热效应。探测器件接收辐射能后引起温度升高,再由接触型测温元件测量温度改变量,从而输出电信号。热探测器主要有四类:热释电型、热敏电阻型、热电阻型和气体型。 1.热敏电阻型 热敏电阻是由锰、镍、钴的氧化物混合后烧结而成。热敏电阻一般制成薄片状,当红外辐射照射在热敏电阻片上,其温度升高,电阻值减小。测量热敏电阻值变化的大小,即可得知入射红外辐射的强弱,从而可以判断产生红外辐射物体的温度。 2.热电偶型 热电偶是由热电功率差别较大的两种金属材料(如铋/银、铜/康铜、铋/铋锡合金等)构成。原理:当红外辐射入射到热电偶回路的测温接点上时,该接点温度升高,而另一个没有被红外辐射辐照的接点处于较低的温度,此时,在闭合回路中将产生温差电流,同时回路中产生温差电势。温差电势的大小,反映了接点吸收红外辐射的强弱。 3.气体型 高莱气动型传感器是利用气体吸收红外辐射后,温度升高,体积增大的特性,来反映红外辐射的强弱。红外辐射通过窗口入射到吸收膜上,吸收膜将吸收的热能传给气体,使气体温度升高。气压增大,从而使柔镜移动。在室的另一边,一束可见光通过栅状光栏聚焦在柔镜上,经柔镜反射回来的栅状图像又经过栅状光栏投射到光电管上。当柔镜因压力变化而移动时,栅状图像与栅状光栏发生相对位移,使落到光电管上的光量发生改变,光电管的输出信号也发生改变。这个变化量就反映出入射红外辐射的强弱。这种传感器的恃点是灵敏度高,性能稳定。

红外传感器参数

1、组成: 红外线传感器包括光学系统、检测元件和转换电路。 2、分类: 光学系统按结构不同可分为透射式和反射式两类。检测元件按工作原理可分为热敏检测元件和光电检测元件。热敏元件应用最多的是热敏电阻。热敏电阻受到红外线辐射时温度升高,电阻发生变化,通过转换电路变成电信号输出。光电检测元件常用的是光敏元件,通常由硫化铅、硒化铅、砷化铟、砷化锑、碲镉汞三元合金、锗及硅掺杂等材料制成。 (1)红外线传感器依动作可分为:1)将红外线一部份变换为热,藉热取出电阻值变化及电动势等输出信号之热型。 2)利用半导体迁徙现象吸收能量差之光电效果及利用因PN 接合之光电动势效果的量子型。 热型的现象俗称为焦热效应。 (2)按照功能能够分成五类: 1)辐射计,用于辐射和光谱测量;2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪;3)热成像系统,可产生整个目标红外辐射的分布图象;4)红外测距和通信系统;5)混合系统,是指以各类系统中的两个或者多个的组合。 三、xx传感器主要物理量 (1)响应率 谓红外探测器的响应率就是其输出电压与输入的红外辐射功率之比。 (2)响应波长范围红外探测器的响应率与入射辐射的波长有一定的关系,热敏红外探测器响应率r与波长λ无关。光λp对应响应峰值rp,rp /2于对应为截止波长λc。

(3)噪声等效功率(NEP)若投射到探测器上的红外辐射功率所产生的输出电压正好等于探测器本身的噪声电压,这个辐射功率就叫做噪声等效功率(NEP)。噪声等效功率是一个可测量的量。设入射辐射的功率为P,测得的输出电压为 U0,然后除去辐射源,测得探测器的噪声电压为UN,则按比例计算,要使U0=UN,的辐射功率为 (4)探测率经过分析,发现NEP与检测元件的面积S和放大器带宽Δf 乘积的平方根成正比,比例系数的倒数称为探测率D*。即D*实质上就是当探测器的敏感元件具有单位面积、放大器的带宽为lHz时的辐射所获得的信噪比。 (5)响应时间红外探测器的响应时间就是加入或去掉辐射源的响应速度响应时间,而且加入或去掉辐射源的响应速度响应时间相等。红外探测器的响应时间是比较短的。 工作原理: 人体都有恒定的体温,一般在37度,所以会发出特定波长10um左右的红外线,被动式红外探头就是靠探测人体发射的10um左右的红外线而进行工作的。人体发射的10um左右的红外线通过菲泥尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。1)这种探头是以探测人体辐射为目标的。所以热释电元件对波长为10um左右的红外辐射必须非常敏感。2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲泥尔滤光片,使环境的干扰受到明显的控制作用。3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。 4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。5)菲泥尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。 xx参数:

红外探测器的原理特点与安装

红外探测器的原理特点与安装 前言 红外探测器是防盗报警系统中最关键的组成部分,直接决定系统的灵敏性与稳定性,是整个系统品质的保障。中国安防厂商在这些年来,无论在技术的掌握与生产能力的提升上,均有明显的改善,这得归功于中国厂商不断吸收外商的产品设计和生产技术,并致力于降低成本,使中国安防产品开始得到工程商们的认同,加上低价对于甲方有着重要的吸引力,使得国产品在市场上成长迅速。虽然国产品的品质仍与进口产品有段差距,但在用户对安防产品不熟悉的情况下,中国安防产品仍极具竞争优势。 许多外国厂商也承认,以前外商大幅依靠技术优势来应对中国国产品的成本优势,但近年来差距已经缩小,优势渐减,可见中国厂商在技术上已经逐步赶上国外厂商,部分厂商更具有创新能力,推出具特色的产品,使得中国安防产品的水准大幅提高。这个现象主要来自许多厂商对于品牌意识与产品质量的重视,加大了投资与研发力度。 红外探测器的原理及特点 人体都有恒定的体温,一般在37度左右,会发出特定波长10gm左右的红外线,被动红外探测器就是靠探测人体发射的10gm左右的红外线而进行工作的。人体发射的10gm左右的红外线通过菲涅尔滤 光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。 1?被动红外探测器是以探测人体辐射为目标的,所以热释电元件对波长为10gm 左右的红外辐射必须非常敏感。 2?为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲涅尔滤光片,使环境的干扰受到明显的控制作用。 3?其传感器包含两个互相串联或并联的热释电元件。而且制成的两个电极化方 向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。 4 ? 一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元 接收,但是两片热释电元接收到的热量不同,热释电也不同不能抵消,经信号处理而报警。 被动红外深测器优缺点 优点:本身不发任何类型辐射,器件功耗很小,隐蔽性较好,价格低廉。 缺点:容易受各种热源、阳光源干扰;被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探测器接收;易受射频辐射的干扰;环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵。 如何正确安装与使用被动红外探测器 被动红外探测器是一种在安防工程中使用极为普遍的一类探测器。但要其正常使用,既要防止漏报, 又要减少误报,主要是将误报现象降到最低的限度。要做到这一点,必须首先要了解被动红外探测器的一些基本概念

红外探测器

红外探测器 一、简介 红外探测器(Infrared Detector)是能把接收到的红外辐射能转换成一种便于计量的物理量的器件,将入射的红外辐射信号转变成电信号输出的器件。 红外辐射是波长介于可见光与微波之间的电磁波,人眼察觉不到。要察觉这种辐射的存在并测量其强弱,必须把它转变成可以察觉和测量的其他物理量。一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。现代红外探测器所利用的主要是红外热效应和光电效应。这些效应的输出

大都是电量,或者可用适当的方法转变成电量。 二、发展历史 1800年,F.W.赫歇耳在太阳光谱中发现了红外辐射的存在。当时,他使用的是水银温度计,即最原始的热敏型红外探测器。 1830年,L.诺比利利用当时新发现的温差电效应(也称塞贝克效应),制成了一种以半金属铋和锑为温差电偶的热敏型探测器。称作温差电型红外探测器(也称真空温差电偶)。其后,又从单个温差电偶发展成多个电偶串联的温差电堆。 1880年,S.P.兰利利用金属细丝的电阻随温度变化的特性制成另一种热敏型红外探测器,称为测辐射热计。1947年,M.J.E.高莱发明一种利用气体热膨胀制成的气动型红外探测器(又称高莱管)。 在40年代,又用半导体材料制作温差电型红外探测器和测辐射热计,

使这两种探测器的性能比原来使用半金属或金属时得到很大的改进。半导体的测辐射热计又称热敏电阻型红外探测器。热敏电阻型红外探测器:用氧化物半导体制成很小的薄片,表面涂黑。当薄片吸收红外辐射而温度升高时,电阻发生变化,用电阻的改变量度量红外辐射的强弱。 60年代中期,出现了热释电型探测器。它也是一种热敏型探测器。 三、类别及基本原理 不同种类的物体发射出的红外光波段是有其特定波段的,该波段的红外光处在可见光波段之外。因此人们可以利用这种特定波段的红外光来实现对物体目标的探测与跟踪。将不可见的红外辐射光探测出并将其转换为可测量的信号的技术就是红外探测技术。 热效应探测器:热效应探测器吸收红外辐射后,温度升高,可以使探测材料产生温差电动势、电阻率变化,自发极化强度变化,或者气体体积与压强变化等,测量这些物理性能的变化就可以测定被吸收的红外辐射能量或功率。

(仅供参考)红外焦平面探测器普及知识

红外焦平面探测器普及知识 红外焦平面阵列(IR FPA)技术已经成为当今红外成像技术发展的主要方向。红外焦平面阵列像元的灵敏度高,能够获取更多的信息以及更高的可变帧速率。红外焦平面阵列探测器对入射的红外能量进行积分,然后产生视频图像,经过调节后被提供给视频显示器,以供人观察。焦平面阵列每个像元的输出是一种模拟信号,它是与积分时间内入射在该元件上的红外能量成正比的。但是由于制造工艺和使用环境的影响,即使对温度均匀的背景,焦平面背景中所有像元产生的输出信号也是不一致的,即红外焦平面阵列器件的非均匀性(Nonuniformity,NU)。为了满足成像系统的使用要求,需要对红外焦平面阵列探测器进行非均匀性校正。 从生产工艺而言,单纯从提高焦平面阵列质量的角度来降低其非均匀性,不仅困难而且造价昂贵。因此,通过校正算法减小非均匀性对红外焦平面阵列成像质量的影响,提高成像质量,不仅是必须的,同时具有很高的经济价值和应用价值。目前,对红外图像质量的改善,一般是根据红外焦平面阵列对于温度响应的不一致性,采用非均匀性校正的方法,提高红外图像的质量。主要有两类校正方法:基于红外参考辐射源的非均匀性校正算法和基于场景的自适应校正方法。在实际应用中,普遍采用的是基于红外参考辐射源定标的校正方法。但是,采用参考辐射源定标的校正方法校正的红外图像,因红外焦平面阵列器件由于长时间的工作,受到时间、环境等因素的影响,红外图像质量逐渐下降,出现类似细胞状和块状的斑纹,影响了红外图像的质量。所以,需要在基于参考辐射源定标的校正方法的基础上,对于红外图像的质量进行改善。 国内外现状和发展趋势 自然界的一切物体,只要其温度高于绝对零度,总是在不断地辐射能量。红外热成像技术就是把这种红外热辐射转换为可见光,利用景物本身各部分温度辐射与发射率的差异获得图像细节,将红外图像转化为可见图像。利用这项技术研制成的装置称为红外成像系统或热像仪。用热像仪摄取景物的热图像来搜索、捕获和跟踪目标,具有隐蔽性好、抗干扰、易识别伪装、获取信息丰富等优点。因此,红外热成像技术在海上救援、天文探测、遥感、医学等各领域得到广泛应用。 红外热成像系统可以分为制冷和非制冷两种类型,制冷型有第一代和第二代之分,非制冷型可分为热释电摄像管和热电探测器阵列。第一代热成像系统主要由红外探测器、光机扫描器、信号处理电路和视频显示器组成,其中红外探测器是系统的核心器件,一般是分离式探测器。这种

红外探测器分类及应用

红外探测器分类及应用 红外探测器是能对外界红外光辐射产生响应的光电传感器,是目前传感器领域发展的重点之一。利用它制成的探测器是军事、气象、农业、工业、医学等方面需要的设备,它涉及物理、材料等基础科学和光学、机械、微电子和计算机等多学科领域的综合科学技术。 按照工作机理分类: 热探测器和光子探测器的分类和特点 ·光子探测器:光子探测器的工作机理是利用入射光辐射的光子流与探测器材料中的电子互相作用,从而改变电子的能量状态,引起各种电学现象,这种现象称为光子效应。光子探测器有内光电和外光电探测器两种,后者又分为光电导,光生伏特,光电发射型,光磁电型等四种。 ·热探测器:红外热探测器的工作原理是利用辐射热效应。探测器件接收辐射能量后引起温度升高,再由接触型测温元件测量温度改变量,从而输出点型号。热探测器主要有四类:热电堆,热释电型,和气体型。

光子探测器和热探测器的分类和特点 类型 典型敏感材料 特点 光子 探测器 光导型(光敏电阻) MCT,PbS,PbSe 灵敏度高,响应速度 快,具有较高的响应频 率,一般需在低温下工 作,探测波段较窄 光伏型 MCT,InSb,PbSnTe 光电发射型 PiSi/Si, IrSi/Si 光磁电型 PEM 热探 测器 热敏电阻 Mn,Ni,Co的氧化物材料 响应时间较长,灵敏度 较低,响应波段宽,可 以在室温下工作,使用 简单。 热释电 LiTaO3晶体,压电陶瓷PZT, 高分子薄膜PVFZ 气体型 高莱气动传感器 热电堆和热电偶 金铁镍铬合金,钨-铼合金 光子探测器和热探测器的性能特点比较 性能 光子探测器 热探测器 灵敏度 高 较低 响应时间 短(us量级) 长(通常ms量级) 光谱响应范围 特定波长灵敏 理论上与波长分布无关 D*值 高 低 工作条件 室温或制冷 一般为室温 成本 高 低 光子探测器的介绍和应用 1. 光导型探测器: 当红外辐射照射在某些半导体材料表面上时,半导体材料中有些电子和空穴可 以从原来不导电的束缚状态变为能导电的自由状态,使半导体的导电率增加, 这种现象叫光电导现象,利用光电导现象制成的探测器成为光电导探测器。 应用:水分分析,火焰探测,红外光谱仪,火车轴温检测,安防,军事等, 2. 光伏型探测器:

红外探测器使用说明

无线高智能红外探测器安装使用说明书 一、概述: HC-PS301是一种采用了光谱分析,光量子探测等技术的高智能方向红外探测器。通过HST尖端技术对人本发出的远红外光谱进行智能分析,量化计算,准确地对人体移动作出报警,采用HST尖端技术使探测器更加稳定,更加省电。 1、具更强的抗干扰能力; 2、精细的全范围温度补偿; 3、含微处理,CPU控制,防小动物; 4、真正实现无线(纯内电供电、无线发射信号)安装方便; 5、超微功耗设计(整机正常工作电流≤70uA ,节电模式下纯内电可连续工作六个月以上); 6、多工作模式: 1)节电模式(两次报警最小时间间隔为6分钟) 2)测试模式(两次报警最小时间间隔为10秒) 3)普通模式(两次报警最小时间间隔为60秒) 7、低电压提示:当电池电压不足时,探测器向主机发出低电压信号,并每隔30分钟黄色指 示灯连闪5次,主机收到低电压信号每隔一小时发出“嘀”一声短响,并且该防区指示灯闪烁,进行故障提示; 探测器的工作原理: 在自然界,任何高于绝对温度(-273)的物体都将产生红外光谱,在红外探测器地警戒范围内,当无物体移动时,热释电红外传感器感应到的只是背景温度,当有物体进入警戒区内,通过菲涅尔透镜,热释电红外传感器感应到的是移动物体温度与背景温度的差异,将红外信号变化转化为电信号后发出的报警信号 二、技术规格 工作电压:DC6V (2节CR123A高能量电池) 工作电流:正常探测电流≤70uA,静态≤30uA,报警电流≤14mA 发射频率:315MHz 发射距离:≥150米(无障碍、无干扰) 探测角度:上下110°、左右10°

覆盖范围:覆盖范围示意图 探测距离:三级可调:8M、10M、13M 感应器:特制低噪双元结构 抗电磁干扰:≥30V/m 抗白光干扰:≥6500LUX 自检:上电自检(上电有60秒钟自检时间) 定时自检(每隔12小时自检一次,并发射自检码) 工作环境:工作温度-10 ℃~60 ℃、 相对湿度5%~95%无霜 保存温度:-20 ℃~70 ℃ 外形尺寸:126×64×41mm 探测器的录码设置 ■全面设防有效地录码设置 ◆进入系统,输入录码代码【311+6#】,主机面板全面设防指示灯亮,此时让需录入的配件发射一次信号,主机回响“嘀”一声,完成后按【#】结束,全面设防指示灯灭,以此类推,可录入12个探测配件。 部分防区有效地录码设置 ◆进入系统,输入录码代码【321+#】,主机面板部分防区指示灯亮,此时让需录入的配件发射一次信号,主机回响“嘀”一声,完成后按【#】结束,部分防区指示灯灭,以此类推,可录入12个探测配件。 注:如录入探测器时,主机回响“嘀嘀”两声,表示该探测器以录入或防区已录满。 ※如果条件可以的话,尽量采用离安装地点400M以上的地方进行异地录码,然后到是有现场安装 录码时,必须将主机的天线收回,切勿拉出。 ■删除配件录码 ◆删除探测器:进入系统,输入探测器删除代码【351+#】,主机回响“嘀”一长声,此时探测器全部删除。 ◆删除故障探测器;进入系统,输入故障探测器删除代码【355+#】,主机回响“嘀”一长声,此时故障探测器全部删除。 三、工作状态设定 1、跳线A(方向选择) A连通为无方向识别,A断开为有方向识别

红外探测器

红外探测器 红外探测器(Infrared Detector)是将入射的红外辐射信号转变成电信号输出的器件。红外辐射是波长介于可见光与微波之间的电磁波,人眼察觉不到。要察觉这种辐射的存在并测量其强弱,必须把它转变成可以察觉和测量的其他物理量。一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。现代红外探测器所利用的主要是红外热效应和光电效应。这些效应的输出大都是电量,或者可用适当的方法转变成电量。 20 世纪,红外探测技术首先受到军事部门的关注,它实现了黑暗中的目标探测、保密通讯等。 最初的红外探测采用点源探测技术,该方法将目标看作一个热点源,以此来探测、锁定并追踪目标。由于获得的特征信息量十分有限,且非常容易受到各类红外、激光等干扰,因此单元探测基本不具备目标识别的能力。第一代红外导弹采用非致冷的硫化铅探测器进行点源探测,工作波段为 1 ~ 3 μm,探测飞机发动机喷口的红外辐射,因此仅可进行尾追攻击,攻击角度小,作用距离近,且受红外诱饵、背景和气象条件影响严重。第二代红外导弹采用了致冷技术,硫化铅或者碲化铟探测器工作波段为 3 ~ 5 μm,并且使导引头有了更大的视角和跟踪加速度,但是抗干扰能力和作战性能表现平平。 随着计算机技术、光电子技术等发展,光电对抗越来越强烈,简单的点源式探测技术面临重大挑战,逐渐发展为多元探测技术,可以获取较丰富的目标信息。第三代红外导弹采用致冷碲化铟探测器,多为圆锥扫描和玫瑰线扫描,探测范围大,跟踪角速度高,具备一定程度的全向攻击能力及抗干扰能力。 20 世纪 80 年代研发的多元红外探测器面阵凝视成像系统探测元数量达到 10^3~ 10^6量级,可以直接置于红外物镜的焦平面上,实现所谓的大角度“凝视”,电子脉冲代替了光学机械扫描体制。系统灵敏度可提高两个量级且可同时处理多个目标,体积缩小、重量减轻、响应更快、可靠性提高,在军事上有更突出的适用性。第四代红外导弹,如美国的 AIM-9X 采用了凝视焦平面阵列成像,导引头具有更高的抗干扰能力和真正意义上的全向攻击能力,实现了发射后不管。 目前,红外探测技术正朝着中波红外、长波红外双波段甚至多波

相关文档